WO2019150912A1 - Power conversion device, driving device, and power steering device - Google Patents

Power conversion device, driving device, and power steering device Download PDF

Info

Publication number
WO2019150912A1
WO2019150912A1 PCT/JP2019/000631 JP2019000631W WO2019150912A1 WO 2019150912 A1 WO2019150912 A1 WO 2019150912A1 JP 2019000631 W JP2019000631 W JP 2019000631W WO 2019150912 A1 WO2019150912 A1 WO 2019150912A1
Authority
WO
WIPO (PCT)
Prior art keywords
inverter
neutral point
power
relay circuit
motor
Prior art date
Application number
PCT/JP2019/000631
Other languages
French (fr)
Japanese (ja)
Inventor
香織 鍋師
弘光 大橋
北村 高志
Original Assignee
日本電産株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本電産株式会社 filed Critical 日本電産株式会社
Priority to JP2019568964A priority Critical patent/JPWO2019150912A1/en
Publication of WO2019150912A1 publication Critical patent/WO2019150912A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62DMOTOR VEHICLES; TRAILERS
    • B62D5/00Power-assisted or power-driven steering
    • B62D5/04Power-assisted or power-driven steering electrical, e.g. using an electric servo-motor connected to, or forming part of, the steering gear
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode

Definitions

  • the present invention relates to a power conversion device, a drive device, and a power steering device.
  • Patent Document 1 discloses a power conversion device having two inverter units.
  • a failure of a switching element is detected by a failure detection means.
  • the on / off operation control of the switching element is switched from normal time control to failure time control to drive the rotating electric machine in order to continue driving the rotating electric machine (motor).
  • an object of the present invention is to realize an efficient element arrangement.
  • One aspect of a power conversion device is a power conversion device that converts power from a power source into power supplied to a motor having n-phase (n is an integer of 3 or more) windings.
  • a first inverter connected to one end of the wire; a first mounting board on which the first inverter is mounted; a second inverter connected to the other end relative to the one end; the second inverter being mounted;
  • One aspect of the drive device includes the power converter, and a motor connected to the power converter and supplied with power converted by the power converter.
  • One aspect of the power steering device includes the power conversion device, a motor to which power converted by the power conversion device is supplied, and a power steering mechanism driven by the motor.
  • the arrangement area on the mounting substrate is effectively utilized, or the wiring path for the motor winding is simplified, so that efficient element arrangement is realized.
  • FIG. 1 is a diagram schematically showing a block configuration of a motor drive unit according to the present embodiment.
  • FIG. 2 is a diagram schematically showing a circuit configuration of the motor drive unit according to the present embodiment.
  • FIG. 3 is a diagram showing current values flowing in coils of each phase of the motor in a normal state.
  • FIG. 4 is a diagram schematically illustrating a hardware configuration of the motor drive unit.
  • FIG. 5 is a diagram schematically illustrating a hardware configuration of the first mounting board and the second mounting board.
  • FIG. 6 is a diagram illustrating a hardware configuration around the angle sensor.
  • FIG. 7 is a diagram showing the state of the magnetic field by the first sensor magnet.
  • FIG. 8 is a diagram illustrating a state of the magnetic field by the first sensor magnet.
  • FIG. 1 is a diagram schematically showing a block configuration of a motor drive unit according to the present embodiment.
  • FIG. 2 is a diagram schematically showing a circuit configuration of the motor drive unit according to the present embodiment.
  • FIG. 9 is a diagram illustrating a modification example in which the sensor configuration is different.
  • FIG. 10 is a diagram showing a modification example in which the magnet configuration is different.
  • FIG. 11 is a diagram illustrating a modification in which the arrangement of the heat sink is considered.
  • FIG. 12 is a diagram schematically illustrating a hardware configuration of a mounting board according to a modified example having a different board configuration.
  • FIG. 13 is a diagram schematically illustrating a circuit configuration according to a modified example in which the configuration of the neutral point relay circuit is different.
  • FIG. 14 is a diagram schematically illustrating a circuit configuration according to another modification example in which the configuration of the neutral point relay circuit is different.
  • FIG. 15 is a diagram schematically illustrating a circuit configuration according to still another modification example in which the configuration of the neutral point relay circuit is different.
  • FIG. 16 is a diagram showing another modification example of the modification example shown in FIG.
  • FIG. 17 is a diagram schematically showing a hardware configuration of the motor drive unit in the modification shown in FIG.
  • FIG. 18 is a diagram schematically illustrating the hardware configuration of the first mounting board and the second mounting board in the hardware configuration illustrated in FIG. 11.
  • FIG. 19 is a diagram showing a modified example of the substrate configuration different from that of FIG.
  • FIG. 20 is a diagram schematically illustrating the configuration of the power steering apparatus according to the present embodiment.
  • FIG. 1 is a diagram schematically showing a block configuration of a motor drive unit 1000 according to the present embodiment.
  • the motor drive unit 1000 includes power supply apparatuses 101 and 102, a motor 200, and control circuits 301 and 302.
  • a motor driving unit 1000 including a motor 200 as a component will be described.
  • the motor drive unit 1000 including the motor 200 corresponds to an example of the drive device of the present invention.
  • the motor drive unit 1000 may be an apparatus for driving the motor 200 that does not include the motor 200 as a component.
  • the motor drive unit 1000 that does not include the motor 200 corresponds to an example of the power conversion device of the present invention.
  • the first power supply apparatus 101 includes a first inverter 111, a second neutral point relay circuit 121, a current sensor 401, and a voltage sensor 411.
  • the second power supply apparatus 102 includes a second inverter 112, a first neutral point relay circuit 122, a current sensor 402 and a voltage sensor 412. *
  • the motor drive unit 1000 can convert the power from the power source (reference numerals 403 and 404 in FIG. 2) into the power to be supplied to the motor 200 by the two power supply devices 101 and 102.
  • the first and second inverters 111 and 112 can convert DC power into three-phase AC power that is a pseudo sine wave of U phase, V phase, and W phase.
  • the first inverter 111 is connected to one end 210 of the coil of the motor 200, and the second inverter 112 is connected to the other end 220 of the coil of the motor 200.
  • connection between components (components) means electrical connection unless otherwise specified.
  • the motor 200 is, for example, a three-phase AC motor.
  • the motor 200 has U-phase, V-phase, and W-phase coils.
  • the winding method of the coil is, for example, concentrated winding or distributed winding.
  • the control circuits 301 and 302 include microcontrollers 341 and 342, as will be described in detail later.
  • the first control circuit 301 controls the first power supply apparatus 101 based on input signals from the current sensor 401 and the angle sensor 321.
  • the second control circuit 302 controls the second power supply apparatus 102 based on input signals from the current sensor 402 and the angle sensor 322.
  • a control method of the power supply devices 101 and 102 in the control circuits 301 and 302 for example, a control method selected from vector control and direct torque control (DTC) is used.
  • DTC direct torque control
  • FIG. 2 is a diagram schematically showing a circuit configuration of the motor drive unit 1000 according to the present embodiment. However, FIG. 2 mainly shows the circuit configuration of the power supply apparatuses 101 and 102. *
  • the motor drive unit 1000 is connected to a power source.
  • the power supply includes a first power supply 403 and a second power supply 404 that are independent of each other.
  • the power supplies 403 and 404 generate a predetermined power supply voltage (for example, 12V).
  • a DC power supply is used as the power supplies 403 and 404.
  • the power supplies 403 and 404 may be AC-DC converters, DC-DC converters, or batteries (storage batteries).
  • the motor drive unit 1000 may include a power source therein. *
  • the motor drive unit 1000 includes coils 103 and 104, a capacitor 105, a first inverter 111, a second inverter 112, a first neutral point relay circuit 122, a second neutral point relay circuit 121, a motor 200, and control circuits 301 and 302. Is provided. *
  • the motor drive unit 1000 includes a first system corresponding to the one end 210 side of the coil (winding) of the motor 200 and a second system corresponding to the other end 220 side of the coil (winding) of the motor 200.
  • the first system includes a first inverter 111, a first neutral relay circuit 122, and a first control circuit 301.
  • the second system includes a second inverter 112, a second neutral relay circuit 121, and a second control circuit 302.
  • the first system inverter 111 and the control circuit 301 are supplied with power from the first power supply 403.
  • the second system inverter 112 and the control circuit 302 are supplied with power from the second power supply 404. Since the drive system including the power supply and the control circuit is made redundant including the power supply, as described later, even when the power supply in one system is abnormal, the power supply is continued by the other system. *
  • the power supply apparatuses 101 and 102 have a configuration in which part of the above-described two systems is straddled.
  • the first power supply apparatus 101 includes a first system inverter 111, a second system neutral point relay circuit 121, and a first system control circuit 301.
  • the first system inverter 111 and the second system neutral point relay circuit 121 are controlled by the first system control circuit 301.
  • the second power supply apparatus 102 includes a second system inverter 112, a first system first neutral point relay circuit 122, and a second system control circuit 302.
  • the second system inverter 112 and the first system first neutral relay circuit 122 are controlled by the second system control circuit 302. *
  • Coils 103 and 104 are provided between the power supplies 403 and 404 and the inverters 111 and 112.
  • the coils 103 and 104 function as a noise filter and smooth high frequency noise included in the voltage waveform supplied to each of the inverters 111 and 112.
  • the coils 103 and 104 smooth the high frequency noise to prevent the high frequency noise generated by the inverters 111 and 112 from flowing out to the power sources 403 and 404.
  • a capacitor 105 is connected to the power supply terminals of the inverters 111 and 112.
  • the capacitor 105 is a so-called bypass capacitor and suppresses voltage ripple.
  • the capacitor 105 is, for example, an electrolytic capacitor, and the capacity and the number to be used are appropriately determined according to the design specifications. *
  • the first inverter 111 includes a bridge circuit having three legs. Each leg includes a high-side switch element connected between the power source and the motor 200 and a low-side switch element connected between the motor 200 and the ground. Specifically, the U-phase leg includes a high-side switch element 113H and a low-side switch element 113L. The V-phase leg includes a high-side switch element 114H and a low-side switch element 114L. The W-phase leg includes a high-side switch element 115H and a low-side switch element 115L.
  • the switch element for example, a field effect transistor (MOSFET or the like) or an insulated gate bipolar transistor (IGBT) is used. When the switch element is an IGBT, a diode (freewheel) is connected in antiparallel with the switch element.
  • MOSFET field effect transistor
  • IGBT insulated gate bipolar transistor
  • the first inverter 111 includes, for example, shunt resistors 113R, 114R, and 115R as current sensors 401 (see FIG. 1) for detecting currents flowing through the windings of the U-phase, V-phase, and W-phase, respectively. Prepare for each leg.
  • the current sensor 401 includes a current detection circuit (not shown) that detects a current flowing through each shunt resistor.
  • a shunt resistor can be connected between the low side switch element and ground at each leg.
  • the resistance value of the shunt resistor is, for example, about 0.5 m ⁇ to 1.0 m ⁇ . *
  • the number of shunt resistors may be other than three.
  • two shunt resistors 113R and 114R for U phase and V phase, two shunt resistors 114R and 115R for V phase and W phase, or two shunt resistors 113R and 115R for U phase and W phase are used. May be.
  • the number of shunt resistors to be used and the arrangement of the shunt resistors are appropriately determined in consideration of the product cost and design specifications. *
  • the second inverter 112 includes a bridge circuit having three legs.
  • the U-phase leg includes a high-side switch element 116H and a low-side switch element 116L.
  • the V-phase leg includes a high-side switch element 117H and a low-side switch element 117L.
  • the W-phase leg includes a high-side switch element 118H and a low-side switch element 118L.
  • the second inverter 112 includes, for example, shunt resistors 116R, 117R, and 118R. *
  • the first inverter 111 is connected to one end 210 of a coil (winding) of the motor 200. More specifically, the U-phase leg of the first inverter 111 (that is, the node between the high-side switch element and the low-side switch element) is connected to one end 210 of the U-phase coil of the motor 200. The V-phase leg of the first inverter 111 is connected to one end 210 of the V-phase coil. The W-phase leg of the first inverter 111 is connected to one end 210 of the W-phase coil. *
  • the second inverter 112 is connected to the other end 220 of the coil (winding) of the motor 200. More specifically, the U-phase leg of the second inverter 112 is connected to the other end 220 of the U-phase coil of the motor 200. The V-phase leg of the second inverter 112 is connected to the other end 220 of the V-phase coil. The W-phase leg of the second inverter 112 is connected to the other end 220 of the W-phase coil. *
  • the first neutral point relay circuit 122 switches the formation / non-formation of the neutral point on the one end 210 side of the one end 210 side (first system side) and the other end 220 side (second system side) with respect to the coil. Is possible. Specifically, the first neutral point relay circuit 122 is connected to one end 210 of the coil of the motor 200 in parallel with the first inverter 111. The first neutral point relay circuit 122 can switch connection / disconnection between the one ends 210 of the coils of the motor 200. *
  • the first neutral point relay circuit 122 has three first neutral point relays 123, 124, and 125 each having one end connected in common to the node N1 and the other end connected to a coil of each phase of the motor 200.
  • first neutral relay 123 is connected to node N1 and one end 210 of the U-phase coil.
  • First neutral point relay 124 is connected to node N1 and one end 210 of the V-phase coil.
  • First neutral point relay 125 is connected to node N1 and one end 210 of the W-phase coil.
  • the second neutral point relay circuit 121 switches the formation / non-formation of the neutral point on the other end 220 side among the one end 210 side (first system side) and the other end 220 side (second system side) with respect to the coil. It is possible. Specifically, the second neutral relay circuit 121 is connected to the other end 220 of the coil of the motor 200 in parallel with the second inverter 112. The second neutral point relay circuit 121 can switch connection / disconnection between the other ends 220 of the coils of the motor 200. *
  • the second neutral point relay circuit 121 has three second neutral point relays 126, 127, and 128, one end of which is commonly connected to the node N 2 and the other end is connected to a coil of each phase of the motor 200.
  • second neutral point relay 126 is connected to node N2 and the other end 220 of the U-phase coil.
  • Second neutral point relay 127 is connected to node N2 and other end 220 of the V-phase coil.
  • Second neutral point relay 128 is connected to node N2 and other end 220 of the W-phase coil.
  • a semiconductor switch element such as a MOSFET or a mechanical relay is used. *
  • the control circuits 301 and 302 include, for example, power supply circuits 311 and 312, angle sensors 321 and 322, input circuits 331 and 332, microcontrollers 341 and 342, drive circuits 351 and 352, and ROMs 361 and 362. .
  • the control circuits 301 and 302 are connected to the power supply apparatuses 101 and 102.
  • the control circuits 301 and 302 control the power supply apparatuses 101 and 102.
  • the first control circuit 301 controls the first inverter 111 and the second neutral point relay circuit 122.
  • the second control circuit 302 controls the second inverter 112 and the first neutral point relay circuit 121. *
  • the control circuits 301 and 302 can realize closed-loop control by controlling the target rotor position (rotation angle), rotation speed, current, and the like.
  • the rotation speed is obtained, for example, by differentiating the rotation angle (rad) with time, and is represented by the number of rotations (rpm) at which the rotor rotates per unit time (for example, 1 minute).
  • the control circuits 301 and 302 can also control the target motor torque.
  • the control circuits 301 and 302 may include a torque sensor for torque control, but torque control is possible even if the torque sensor is omitted. Further, a sensorless algorithm may be provided instead of the angle sensor.
  • the two control circuits 301 and 302 synchronize their control operations by performing control in synchronization with the rotation of the motor.
  • the power supply circuits 311 and 312 generate a DC voltage (for example, 3V, 5V) necessary for each block in the control circuits 301 and 302.
  • the angle sensors 321 and 322 are, for example, Hall ICs.
  • the angle sensors 321 and 322 are also realized by a combination of an MR sensor having a magnetoresistive (MR) element and a sensor magnet.
  • the angle sensors 321 and 322 detect the rotation angle of the rotor of the motor 200, and output a rotation signal representing the detected rotation angle to the microcontrollers 341 and 342.
  • the angle sensors 321 and 322 may not be required. *
  • the voltage sensors 411 and 412 detect the voltage at one end of the neutral point relay circuits 121 and 122 connected to the coil of the motor 200 and output the detected voltage values to the input circuits 331 and 332.
  • the input circuits 331 and 332 receive motor current values detected by the current sensors 401 and 402 (hereinafter referred to as “actual current values”) and voltage values detected by the voltage sensors 411 and 412.
  • the input circuits 331 and 332 convert the actual current value and voltage value level to the input levels of the microcontrollers 341 and 342 as necessary, and output the actual current value and voltage value to the microcontrollers 341 and 342, respectively.
  • the input circuits 331 and 332 are analog-digital conversion circuits. *
  • the microcontrollers 341 and 342 receive the rotor rotation signals detected by the angle sensors 321 and 322 and also receive the actual current value and voltage value output from the input circuits 331 and 332.
  • the microcontrollers 341 and 342 generate a PWM signal by setting a target current value according to the actual current value and the rotation signal of the rotor, and output the generated PWM signal to the drive circuits 351 and 352.
  • the microcontrollers 341 and 342 generate PWM signals for controlling the switching operation (turn-on or turn-off) of each switch element in the inverters 111 and 112 of the power supply apparatuses 101 and 102.
  • microcontrollers 341 and 342 can generate a signal for determining the on / off state of the neutral point relay circuits 121 and 122 according to the received voltage value.
  • the drive circuits 351 and 352 are, for example, gate drivers.
  • the drive circuits 351 and 352 generate a control signal (for example, a gate control signal) for controlling the switching operation of each switch element in the first and second inverters 111 and 112 according to the PWM signal, and generate the generated control signal for each switch element.
  • the drive circuits 351 and 352 are connected to the neutral point relay circuits 121 and 122 according to signals from the microcontrollers 341 and 342 that determine the on / off states of the neutral point relay circuits 121 and 122, respectively. It is possible to generate a control signal for turning on / off the sex point relay and to supply the generated control signal to each neutral point relay.
  • the microcontrollers 341 and 342 may have the functions of the drive circuits 351 and 352. In that case, the drive circuits 351 and 352 are omitted. *
  • the ROMs 361 and 362 are, for example, a writable memory (for example, PROM), a rewritable memory (for example, a flash memory), or a read-only memory.
  • the ROMs 361 and 362 store a control program including a command group for causing the microcontrollers 341 and 342 to control the power supply apparatuses 101 and 102.
  • the control program is temporarily expanded in a RAM (not shown) at the time of booting. *
  • Control of the power supply apparatuses 101 and 102 includes normal and abnormal control.
  • the control circuits 301 and 302 (mainly the microcontrollers 341 and 342) can switch the control of the power supply apparatuses 101 and 102 from normal control to abnormal control.
  • the on / off states of the first neutral point relay circuit 122 and the second neutral point relay circuit 121 are determined according to the type of control.
  • a specific example of the operation of the motor drive unit 1000 will be described, and a specific example of the operation of the power supply apparatus 100 will be mainly described. (Control during normal operation)
  • Normal indicates a state in which both of the two power supplies 403 and 404, the two inverters 111 and 112, and the two control circuits 301 and 302 operate correctly.
  • control circuits 301 and 302 turn off the first neutral point relay circuit 122 and turn off the second neutral point relay circuit 121.
  • the coils of each phase of the motor 200 are disconnected from each other, and the coils of each phase are independently connected to the legs of the two inverters 111 and 112, respectively.
  • the first neutral relay circuit 122 When the first neutral point relay circuit 122 is turned off, the one ends 210 of the coils of the respective phases of the motor 200 are insulated from each other. “The first neutral relay circuit 122 is turned off” means that the first neutral relays 123, 124, and 125 are all turned off. *
  • the second neutral point relay circuit 121 When the second neutral relay circuit 121 is turned off, the other ends 220 of the coils of the respective phases of the motor 200 are insulated from each other. “The second neutral point relay circuit 121 is turned off” means that the second neutral point relays 126, 127, and 128 are all turned off. *
  • the control circuits 301 and 302 drive the motor 200 by performing three-phase energization control using both the first inverter 111 and the second inverter 112.
  • the control circuits 301 and 302 can perform three-phase energization control by switching control of the switch element of the first inverter 111 and the switch element of the second inverter 112 with a duty that varies periodically.
  • the duty cycle variation in each of the first inverter 111 and the second inverter 112 can be switched by the control circuits 301 and 302.
  • FIG. 3 is a diagram showing current values flowing in the coils of the respective phases of the motor 200 in a normal state. *
  • FIG. 3 shows currents obtained by plotting current values flowing in the U-phase, V-phase, and W-phase coils of the motor 200 when the power supply devices 101 and 102 are controlled according to the normal three-phase energization control.
  • a waveform (sine wave) is illustrated.
  • the horizontal axis in FIG. 3 represents the motor electrical angle (deg), and the vertical axis represents the current value (A).
  • Ipk represents the maximum current value (peak current value) of each phase.
  • the power supply devices 101 and 102 can drive the motor 200 using, for example, a rectangular wave in addition to the sine wave illustrated in FIG.
  • Table 1 shows the value of current flowing through the terminals of each inverter for each electrical angle in the sine wave of FIG.
  • Table 1 specifically shows a current value at every electrical angle of 30 ° flowing at a connection point between the first inverter 111 and one end 210 of each of the U-phase, V-phase, and W-phase coils.
  • Table 1 shows current values for each electrical angle of 30 ° flowing through the connection points between the second inverter 112 and the other ends 220 of the U-phase, V-phase, and W-phase coils.
  • the direction of current flowing from one end 210 to the other end 220 of the motor 200 is defined as a positive direction.
  • the direction of current flowing from the other end 220 of the motor 200 to the one end 210 is defined as a positive direction. Therefore, the phase difference between the current of the first inverter 111 and the current of the second inverter 112 is 180 °.
  • the magnitude of the current value I 1 is [(3) 1/2 / 2] * I pk
  • the magnitude of the current value I 2 is I pk / 2.
  • the current of the U-phase coil is “0”.
  • a current of magnitude I 1 flows from the second inverter 112 to the first inverter 111 through the V-phase coil, and a magnitude I from the first inverter 111 to the second inverter 112 flows through the W-phase coil. 1 current flows.
  • the coils of the U-phase current of magnitude I 2 flows through the second inverter 112 from the first inverter 111, the coil of the V phase magnitude I from the second inverter 112 to the first inverter 111 pk of current flows, the coil of the W-phase current having a magnitude I 2 flows from the first inverter 111 to the second inverter 112.
  • a current of magnitude I 1 flows from the first inverter 111 to the second inverter 112 through the U-phase coil, and a magnitude I from the second inverter 112 to the first inverter 111 flows through the V-phase coil. 1 current flows.
  • the current of the W-phase coil is “0”.
  • a current of magnitude I pk flows from the first inverter 111 to the second inverter 112 through the U-phase coil, and a magnitude I from the second inverter 112 to the first inverter 111 flows through the V-phase coil.
  • second current flows to the coil of the W-phase current having a magnitude I 2 flows from the second inverter 112 to the first inverter 111.
  • a current of magnitude I 1 flows from the first inverter 111 to the second inverter 112 through the U-phase coil, and a magnitude I from the second inverter 112 to the first inverter 111 flows through the W-phase coil. 1 current flows.
  • the current of the V-phase coil is “0”.
  • a current of magnitude I 2 flows from the first inverter 111 to the second inverter 112 through the U-phase coil, and a magnitude I from the first inverter 111 to the second inverter 112 flows through the V-phase coil. 2 current flows, and a current of magnitude I pk flows from the second inverter 112 to the first inverter 111 in the W-phase coil.
  • the current of the U-phase coil is “0”.
  • a current of magnitude I 1 flows from the first inverter 111 to the second inverter 112 through the V-phase coil, and a magnitude I from the second inverter 112 to the first inverter 111 flows through the W-phase coil. 1 current flows.
  • a current of magnitude I 2 flows from the second inverter 112 to the first inverter 111 through the U-phase coil, and a magnitude I from the first inverter 111 to the second inverter 112 flows through the V-phase coil.
  • pk of current flows, the coil of the W-phase current having a magnitude I 2 flows from the second inverter 112 to the first inverter 111.
  • a current of magnitude I 1 flows from the second inverter 112 to the first inverter 111 through the U-phase coil, and a magnitude I from the first inverter 111 to the second inverter 112 flows through the V-phase coil. 1 current flows.
  • the current of the W-phase coil is “0”.
  • a current of magnitude I pk flows from the second inverter 112 to the first inverter 111 through the U-phase coil, and a magnitude I from the first inverter 111 to the second inverter 112 flows through the V-phase coil. 2 flows, and a current of magnitude I 2 flows from the first inverter 111 to the second inverter 112 in the W-phase coil.
  • a current of magnitude I 1 flows from the second inverter 112 to the first inverter 111 through the U-phase coil, and a magnitude I from the first inverter 111 to the second inverter 112 flows through the W-phase coil. 1 current flows.
  • the current of the V-phase coil is “0”.
  • a current of magnitude I 2 flows from the second inverter 112 to the first inverter 111 through the U-phase coil, and a magnitude I from the second inverter 112 to the first inverter 111 flows through the V-phase coil. 2 current flows, and a current of magnitude I pk flows from the first inverter 111 to the second inverter 112 in the W-phase coil.
  • the sum of the currents flowing through the three-phase coils in consideration of the current direction is “0” for each electrical angle.
  • the control circuits 301 and 302 can also perform control such that the sum of currents is a value other than “0”. (Control in case of abnormality)
  • Abnormality refers to a state in which one or more of the two power supplies 403 and 404, the two inverters 111 and 112, and the two control circuits 301 and 302 have failed.
  • the abnormality is roughly classified into an abnormality of the first system and an abnormality of the second system.
  • the abnormality of each system includes an abnormality due to a failure of the inverters 111 and 112 and an abnormality of the drive system.
  • drive system abnormality refers to various abnormal conditions such as an abnormality in the power supply only, an abnormality in the control circuit only, an abnormality in both the power supply and the control circuit, and a state where the control unit is stopped due to the power supply abnormality. including. Further, the failure of the inverters 111 and 112 includes disconnection, short circuit, switch element failure, and the like in the inverter circuit. *
  • the control circuits 301 and 302 analyze the voltage values detected by the voltage sensors 411 and 412 so that the counterpart to the system to which the self belongs. Detect abnormalities in the side system.
  • the control circuits 301 and 302 can check the voltages at the counterpart inverters 111 and 112 via the voltage sensors 411 and 412 and the neutral point relay circuits 121 and 122 under their control.
  • the neutral point relay circuits 121 and 122 are connected to the inverters 111 and 112 via the one end 210 and the other end 220 of the motor coil, and the voltage sensors 411 and 412 To detect.
  • the microcontrollers 341 and 342 can also detect an abnormality by analyzing a difference between the actual current value of the motor and the target current value.
  • the control circuits 301 and 302 are not limited to these methods, and widely known methods relating to abnormality detection can be used. *
  • the control circuits 301 and 302 switch the control of the power supply apparatuses 101 and 102 from normal control to abnormal control.
  • the timing for switching control from normal to abnormal is about 10 msec to 30 msec after the abnormality is detected.
  • the control circuits 301 and 302 turn on the neutral point relay circuits 121 and 122 of the counterpart system when an abnormality occurs. For example, when the first control circuit 301 detects an abnormality, the first control circuit 301 turns on the second neutral point relay circuit 121. *
  • the second neutral relay circuit 121 When the second neutral relay circuit 121 is turned on, the other ends 220 of the three-phase coils of the motor 200 are connected to each other. As a result, the coil of the motor 200 is Y-connected. Then, the node N2 in the second neutral point relay circuit 121 functions as a neutral point. “The second neutral point relay circuit 121 is turned on” means that the second neutral point relays 126, 127, and 128 in the second neutral point relay circuit 121 are all turned on. In this connected state, the first control circuit 301 can energize the coil of the motor 200 by performing three-phase energization control of the first inverter 111. *
  • the first control circuit 301 detects an abnormality, an abnormality occurs in the second system.
  • the abnormality in the second system is an abnormality in the drive system
  • the second control circuit 302 is in a state where it has lost control of the second inverter 112 (a state where the second control circuit 302 has failed). Even in such a case, since the first control circuit 301 controls the second neutral point relay circuit 121, a neutral point is formed on the second system side. Then, power supply to the motor 200 is continued by the inverter 111 on the first system side.
  • the second inverter 112 is cut off from the power from the power source 404 when the second control circuit 302 fails. Specifically, all the switch elements in the second inverter 112 are automatically turned off at the normal time when there is no control signal. For this reason, current does not flow from the power supply 404 to the second inverter 112, and power loss is suppressed.
  • the second control circuit 302 When the second control circuit 302 detects an abnormality, the second control circuit 302 turns on the first neutral point relay circuit 122. Note that the control circuits 301 and 302 may turn on the neutral point switches 131 and 132 even in a specific case other than when an abnormality occurs. *
  • the first neutral point relay circuit 122 When the first neutral point relay circuit 122 is turned on, the one ends 210 of the three-phase coils of the motor 200 are connected to each other. As a result, the coil of the motor 200 is Y-connected. Then, the node N1 in the first neutral point relay circuit 122 functions as a neutral point. “The first neutral point relay circuit 122 is turned on” means that all the first neutral point relays 123, 124, and 125 in the first neutral point relay circuit 122 are turned on. In this connected state, the second control circuit 302 can energize the coil of the motor 200 by controlling the second inverter 112 for three-phase energization. *
  • the second control circuit 302 detects an abnormality, it means that an abnormality has occurred in the first system.
  • the abnormality in the first system is an abnormality in the drive system
  • the first control circuit 301 is in a state where it cannot control the first inverter 111 (failed state). Even in such a case, since the second control circuit 302 controls the first neutral point relay circuit 122, a neutral point is formed on the first system side. Then, power supply to the motor 200 is continued by the inverter 112 on the second system side.
  • the first inverter 111 is cut off from the power from the power supply 403 when the first control circuit 301 fails. Specifically, all the switch elements in the first inverter 111 are automatically turned off at the normal time when there is no control signal. For this reason, current does not flow from the power source 403 to the first inverter 111, and power loss is suppressed.
  • control circuits 301 and 302 are configured to perform switching operations in the switching elements of the inverters 111 and 112, for example, by PWM control that can obtain a waveform similar to the current waveform shown in FIG. To control. *
  • Table 2 shows the values of the current flowing through the terminals of the second inverter 140 for each electrical angle when the second inverter 112 is controlled by, for example, three-phase energization control such that a waveform similar to the current waveform shown in FIG. 3 is obtained. It is illustrated in Table 2 specifically shows the current value at every electrical angle of 30 ° flowing through the connection point between the second inverter 112 and the other end 220 of each of the U-phase, V-phase, and W-phase coils. The definition of the current direction is as described above. *
  • a current of magnitude I 2 flows from the first inverter 111 to the second inverter 112 in the U-phase coil, and a magnitude of the current from the second inverter 112 to the first inverter 111 flows in the V-phase coil.
  • the current flow I pk the coil of the W-phase current having a magnitude I 2 flows from the first inverter 111 to the second inverter 112.
  • a current of magnitude I 1 flows from the first inverter 111 to the second inverter 112 through the U-phase coil, and a magnitude I from the second inverter 112 to the first inverter 111 flows through the V-phase coil. 1 current flows.
  • the current of the W-phase coil is “0”. The sum of the current flowing into the neutral point and the current flowing out of the neutral point is always “0” for each electrical angle.
  • the inverters 111 and 112 are set to the neutral point by a control method described in, for example, Japanese Patent Application Laid-Open No. 2014-192950. Is possible.
  • a special gate driver whose control signal voltage is different from that in the normal state is required.
  • neutralization by the neutral point relay circuits 121 and 122 only needs to be turned on when there is an abnormality, so only one on-voltage of the control signal is required and no special gate driver is required. It is.
  • FIG. 4 is a diagram schematically showing a hardware configuration of the motor drive unit 1000.
  • the motor drive unit 1000 includes the motor 200, the first mounting board 1001, the second mounting board 1002, the housing 1003, and the connectors 1004 and 1005 described above as hardware configurations. *
  • one end 210 and the other end 220 of the coil protrude and extend toward the mounting boards 1001 and 1002. Both the one end 210 and the other end 220 of the coil cross between the first mounting substrate 1001 and the second mounting substrate 1002. Specifically, both one end 210 and the other end 220 of the coil are connected to the second mounting substrate 1002, for example. Both one end 210 and the other end 220 of the coil pass through the second mounting substrate 1002 and are connected to the first mounting substrate 1001. *
  • the first mounting substrate 1001 and the second mounting substrate 1002 face each other.
  • the rotation axis of the motor 200 extends in the direction in which the substrate surfaces face each other.
  • the first mounting substrate 1001, the second mounting substrate 1002, and the motor 200 are housed in the housing 1003 so that their positions are fixed. *
  • FIG. 5 is a diagram schematically showing the hardware configuration of the first mounting board 1001 and the second mounting board 1002. *
  • a first inverter 111 and a second neutral relay circuit 121 are mounted on the first mounting board 1001.
  • a second inverter 112 and a first neutral relay circuit 122 are mounted on a second mounting board 1002 that is different from the first mounting board 1001. Since the circuits of each system made redundant in the first system and the second system are distributed to the two mounting boards 1001 and 1002, an efficient element arrangement in which the circuit scale is equalized on the two mounting boards is possible. It becomes. *
  • a first control circuit 301 is also mounted on the first mounting substrate 1001.
  • a second control circuit 302 is also mounted on the second mounting substrate 1002. Since the control circuits 301 and 302 are mounted on the same mounting board as the inverters 111 and 112 and the neutral point relay circuits 121 and 122 to be controlled by the control circuits 301 and 302, wiring for control is provided in the board. Fits in. Therefore, efficient element arrangement is possible. *
  • the first inverter 111 on the first mounting board 1001 and the first neutral relay circuit 122 on the second mounting board 1002 are mutually opposite when viewed in the opposing direction of the first mounting board 1001 and the second mounting board 1002. It is mounted at the overlapping position.
  • the second neutral relay circuit 121 on the first mounting board 1001 and the second inverter 112 on the second mounting board 1002 are viewed in the opposite direction of the first mounting board 1001 and the second mounting board 1002.
  • Such a circuit arrangement enables an efficient element arrangement in which the wiring path connecting the one end 210 and the other end 220 of the coil and each circuit is simplified.
  • the first inverter 111 on the first mounting substrate 1001 and the second inverter 112 on the second mounting substrate 1002 are symmetrically arranged when viewed in the opposing direction of the first mounting substrate 1001 and the second mounting substrate 1002. It becomes. Further, when viewed in the opposing direction of the first mounting board 1001 and the second mounting board 1002, the second neutral point relay circuit 121 on the first mounting board 1001 and the first neutrality on the second mounting board 1002 are used.
  • the point relay circuit 122 is symmetrically arranged. Such a symmetrical arrangement enables common board design for the two mounting boards 1001 and 1002.
  • FIG. 6 is a diagram illustrating a hardware configuration around the angle sensors 321 and 322. *
  • a first angle sensor 321 is mounted on the first mounting board 1001, and a second angle sensor 322 is mounted on the second mounting board 1002.
  • These angle sensors 321 and 322 are magnetic sensors, and sensor magnets 323 and 324 are provided between the two mounting boards 1001 and 1002. That is, the mounting boards 1001 and 1002 are provided on both sides of the sensor magnets 323 and 324, and each mounting board 1001 and 1002 includes an angle sensor 321 that is a magnetic sensor for detecting the rotation angle of the sensor magnets 323 and 324. 322 is mounted.
  • the angle sensors 321 and 322 are provided on the mounting boards 1001 and 1002, so that the redundancy of the angle sensors 321 and 322 is realized. Further, the independence due to the two control circuits 301 and 302 being individually mounted on the two mounting boards 1001 and 1002 is ensured from the viewpoint of sensor input. *
  • the first mounting board 1001 is mounted with the first inverter 111 connected to the motor 200 and the first control circuit 301 for controlling the first inverter 111, and the second mounting board 1002.
  • the second inverter 112 connected to the motor 200 and the second control circuit 302 that controls the second inverter 112 are mounted. For this reason, the redundancy of the angle sensors 321 and 322 associated with the two control systems is realized.
  • the sensor magnets 323 and 324 are fixed to the shaft 250, and the shaft 250 extends from the motor 200 toward the two mounting boards 1001 and 1002, and rotates together with the rotor of the motor 200.
  • the sensor magnets 323 and 324 may be fixed to the shaft 250 by direct fixing to the shaft or indirectly by other members.
  • a pin, a yoke, a plate, or the like may be attached to the shaft, and the sensor magnets 323, 324 may be fixed to the pin, the yoke, the plate, or the like.
  • a shaft for fixing the sensor magnets 323 and 324 may be connected to a motor shaft integrated with the rotor of the motor.
  • the shaft 250 penetrates the mounting board 1002 located on the motor 200 side of the two mounting boards 1001 and 1002. Since the shaft 250 penetrates at least one of the two mounting boards 1001 and 1002, the arrangement of the shaft 250 and the sensor magnets 323 and 324 becomes easy. *
  • two sensor magnets 323 and 324 are provided.
  • the first sensor magnet 323 is fixed to the tip of the shaft 250.
  • the first angle sensor 321 is positioned on the extension of the rotation axis of the shaft 250. In other words, the first angle sensor 321 is located on an extension in the direction in which the shaft 250 extends from the motor 200. The angle sensor 321 provided at such a position is less affected by the eccentricity or vibration of the shaft 250 in detecting the rotation angle.
  • the second sensor magnet 324 is a ring magnet through which the shaft 250 penetrates, and the sensor magnet 324 can be easily fixed to the shaft 250 as compared with the case where the shaft 250 does not penetrate.
  • the first sensor magnet 323 plays a role of applying a magnetic field toward the first angle sensor 321 mounted on the first mounting substrate 1001.
  • the second sensor magnet 324 plays a role of applying a magnetic field toward the second angle sensor 322 mounted on the second mounting substrate 1002.
  • the first sensor magnet 323 applies a magnetic field in the extension direction of the rotation axis of the shaft 250
  • the second sensor magnet 324 applies a magnetic field in the opposite direction to the first sensor magnet 323.
  • FIG. 7 is a diagram showing the state of the magnetic field by the first sensor magnet 323. *
  • the first sensor magnet 323 has a magnetic pole surface 325 in which an N pole and an S pole are arranged facing the substrate surface of the first mounting substrate 1001.
  • the magnetic pole surface 325 is a magnetic pole surface facing the direction in which the rotation axis of the shaft 250 extends.
  • the magnetic field 327 generated from the magnetic pole surface 325 rises from the magnetic pole surface 325 toward the substrate surface of the first mounting substrate 1001 and spreads in a range close to the magnetic pole surface 325.
  • the first angle sensor 321 is located on the extension of the rotation axis of the shaft 250.
  • the first angle sensor 321 is mounted at a position where at least a part of the first angle sensor 321 overlaps the first sensor magnet 323 when viewed from the direction in which the rotation axis of the shaft 250 extends.
  • One angle sensor 321 can be disposed close to the first sensor magnet 323. As a result, the distance between the two mounting substrates 1001 and 1002 is reduced, and the apparatus can be miniaturized.
  • FIG. 8 is a diagram showing the state of the magnetic field by the second sensor magnet 324. *
  • the second sensor magnet 324 has two magnetic pole surfaces 326 facing each other with the shaft 250 interposed therebetween.
  • the two magnetic pole surfaces 326 extend along the direction in which the shaft 250 extends, and one of the two magnetic pole surfaces 326 is an N pole and the other is an S pole.
  • the magnetic pole surfaces 326 extending along the rotation axis of the shaft 250 are located on both sides of the shaft 250, and the magnetic pole surfaces 326 having different polarities face each other with the shaft 250 interposed therebetween.
  • FIG. 8 shows two magnetic poles, one of which is an N pole and the other is an S pole. However, the configuration in which the direction of the magnetic pole surface is away from the shaft center (so-called radial direction) is used to increase the number of magnetic poles. Suitable. 8 shows a plurality of sensors as the second angle sensor 322, it is sufficient that at least one second angle sensor 322 is provided.
  • FIG. 9 is a diagram illustrating a modification example in which the sensor configuration is different.
  • the first angle sensor 321 is provided at a position off the extension line of the shaft 250.
  • the first sensor magnet 323 is a ring magnet through which the shaft 250 passes. That is, in this modification, the first angle sensor 321 and the first sensor magnet 323 are symmetrical with the second angle sensor 322 and the second sensor magnet 324. For this reason, the performance in the two angle sensors 321 and 322 made redundant becomes equivalent.
  • both the first sensor magnet 323 and the second sensor magnet 324 are provided not in the tip of the shaft 250 but in the middle of the shaft 250.
  • FIG. 10 is a diagram showing a modification example in which the magnet configuration is different. *
  • one sensor magnet 329 is provided in the middle of the shaft 250, and a magnetic field 330 is applied to both the first mounting board 1001 side and the second mounting board 1002 side from the one sensor magnet 329. spread.
  • the two angle sensors 321 and 322 detect the rotation angle with the magnetic field from the common sensor magnet 329.
  • FIG. 11 is a diagram showing a modification in which the arrangement of the heat sink is considered. *
  • one heat sink 1010 that is commonly used by the two mounting boards 1001 and 1002 is provided between the two mounting boards 1001 and 1002.
  • the shaft 250 penetrates one mounting substrate 1002 and also penetrates the heat sink 1010.
  • the first angle sensor 321 on the first mounting board 1001 is mounted on the surface of the first mounting board 1001 facing the heat sink 1010.
  • the second angle sensor 322 on the second mounting substrate 1002 is mounted on the surface of the second mounting substrate 1002 facing the heat sink 1010.
  • FIG. 12 is a diagram schematically showing a hardware configuration of a mounting board according to a modified example having a different board configuration. *
  • FIG. 13 is a diagram schematically showing a circuit configuration according to a modified example in which the configuration of the neutral point relay circuit is different. *
  • the first neutral point switch 132 is connected to the power supply terminal E1H located on the power supply 403 side of the first inverter 111 and the ground terminal E1L located on the ground side of the first inverter 111. Connected.
  • the first neutral point switch 132 functions as an example of a first neutral point relay circuit that switches connection / disconnection between the power supply terminal E1H and the ground terminal E1L.
  • the first neutral point switch 132 of the modification shown in FIG. 13 also has a neutral point on the one end 210 side of the one end 210 side (first system side) and the other end 220 side (second system side) with respect to the coil. It is possible to switch between formation and non-formation. *
  • connection between the power supply terminal E1H and the ground terminal E1L in the first neutral point relay circuit 122 can be switched by a smaller number of switch elements than the number of phases of the motor 200 (here, three phases as an example). Therefore, the circuit scale is smaller than the conventional structure.
  • the first neutral point switch 132 includes three power supply sides of the high-side switch elements 113H, 114H, and 115H and a ground side of the three low-side switch elements 113L, 114L, and 115L with respect to the first inverter 111. Can be switched with one element.
  • the second neutral point switch 131 is connected to the power supply terminal E2H located on the power supply 404 side in the second inverter 112 and the ground terminal E2L located on the ground side in the second inverter 112.
  • the second neutral point switch 131 functions as an example of a second neutral point relay circuit that switches connection / disconnection between the power supply terminal E2H and the ground terminal E2L.
  • the second neutral point switch 131 of the modification shown in FIG. 13 is also neutral on the other end 220 side of the one end 210 side (first system side) and the other end 220 side (second system side) with respect to the coil. It is possible to switch the formation / non-formation of points. *
  • Switching between connection / disconnection of the power supply terminal E2H and the ground terminal E2L in the second neutral point relay circuit 121 can be performed by a smaller number of switch elements than the number of phases of the motor 200 (here, three phases as an example). Therefore, the circuit scale is smaller than the conventional structure.
  • the second neutral point switch 131 includes three high-side switch elements 116H, 117H, and 118H on the power source side and three low-side switch elements 116L, 117L, and 118L on the ground side of the second inverter 112. Can be switched with one element.
  • separation switches 106 and 107 are provided between the coils 103 and 104 and the inverters 111 and 112.
  • the separation switches 106 and 107 can switch connection / disconnection between the power supplies 403 and 404 and the inverters 111 and 112.
  • the control circuits 301 and 302 turn on the neutral point switches 131 and 132 for the counterpart system.
  • the control circuits 301 and 302 may turn on the neutral point switches 131 and 132 even in a specific case other than when an abnormality occurs.
  • the separation switches 106 and 107 are automatically turned off when the control signal is stopped. For this reason, when the control circuits 301 and 302 become inoperable, the separation switches 106 and 107 of the system incapable of operating are turned off. *
  • the first control circuit 301 detects an abnormality
  • the first control circuit 301 turns on the second neutral point switch 131.
  • the separation switch 107 on the second system side is turned off as a result of whether the second control circuit 302 is turned off.
  • the second system When the first control circuit 301 detects an abnormality, the second system is in an abnormal state.
  • the abnormality in the second system is an abnormality in the drive system, the second control circuit 302 is in a state where it has lost control of the second inverter 112 (a state where the second control circuit 302 has failed). Even in such a case, since the first control circuit 301 controls the second neutral point switch 131, a neutral point is formed on the second system side. Then, power supply to the motor 200 is continued by the inverter 111 on the first system side.
  • the second control circuit 302 When the second control circuit 302 detects an abnormality in the modification shown in FIG. 13, the second control circuit 302 turns on the first neutral point switch 132. Also, the separation switch 106 on the first system side is turned off, or the second control circuit 302 is turned off. *
  • the parasitic diodes of the high-side switch element and the low-side switch element and the first neutral point switch 132 are used.
  • One ends 210 of the three-phase coils of the motor 200 are connected to each other. Therefore, the coil of the motor 200 is Y-connected.
  • the first neutral point switch 132 functions as a neutral point.
  • the first neutral point switch 132 that functions as a neutral point is insulated from the power source 403 when the separation switch 106 on the first system side is turned off.
  • FIG. 14 is a diagram schematically showing a circuit configuration according to another modified example in which the configuration of the neutral point relay circuit is different. *
  • the first neutral point relay circuit 122 includes a power supply terminal E1H located on the power supply 403 side in the first inverter 111 and a ground terminal E1L located on the ground side in the first inverter 111. Connected to.
  • the first neutral point relay circuit 122 can switch connection / disconnection between the power supply terminal E1H and the ground terminal E1L.
  • the first neutral point relay circuit 122 includes a first neutral point relay 123 and a backup relay 124. *
  • the first neutral point relay 123 is connected to or disconnected from the power supply side of the three high-side switch elements 113H, 114H and 115H and the ground side of the three low-side switch elements 113L, 114L and 115L with respect to the first inverter 111. Can be switched by one element.
  • the backup relay 124 is connected in parallel to the first neutral point relay 123. Since the switch operation is backed up by the backup relay 124 when the first neutral point relay 123 is in an OFF failure, the first neutral point relay circuit 122 can continue normal operation.
  • the high-side switch elements 113H, 114H, and 115H, the low-side switch elements 113L, 114L, and 115L, and the first neutral-point relay 123 in each circuit of the first inverter 111 and the first neutral point relay circuit 122 are semiconductors having a freewheeling diode. It is a switch element. And in the 1st inverter 111 and the 1st neutral point relay 123, a free-wheeling diode turns to a reverse direction.
  • the first neutral point relay circuit 122 including the first neutral point relay 123 connected in such a direction can switch the formation / non-formation of the neutral point.
  • the second neutral point relay circuit 121 is connected to the power supply terminal E2H located on the power supply 404 side in the second inverter 112 and the ground terminal E2L located on the ground side in the second inverter 112.
  • the second neutral point relay circuit 121 can switch connection / disconnection between the power supply terminal E2H and the ground terminal E2L.
  • the second neutral point relay circuit 121 includes a second neutral point relay 125 and a backup relay 126. *
  • the second neutral point relay 125 is connected to or disconnected from the power supply side of the three high side switch elements 116H, 117H and 118H and the ground side of the three low side switch elements 116L, 117L and 118L with respect to the second inverter 112. Can be switched by one element.
  • the backup relay 126 is connected in parallel to the second neutral point relay 125. Since the switch operation is backed up by the backup relay 126 when the second neutral point relay 125 is in an off failure, the second neutral point relay circuit 121 can continue normal operation. *
  • the high-side switch elements 116H, 117H, and 118H, the low-side switch elements 116L, 117L, and 118L, and the second neutral-point relay 125 in each circuit of the second inverter 112 and the second neutral point relay circuit 121 are semiconductors having a freewheeling diode. It is a switch element. And in the 2nd inverter 112 and the 2nd neutral point relay 125, a free-wheeling diode turns to a reverse direction.
  • the second neutral point relay circuit 121 including the second neutral point relay 125 connected in such a direction can switch the formation / non-formation of the neutral point.
  • FIG. 15 is a diagram schematically showing a circuit configuration according to still another modified example in which the configuration of the neutral point relay circuit is different. *
  • the backup relay is connected in series to the neutral point relay.
  • the backup relay 124 of the first neutral point relay circuit 122 is connected to the power supply terminal E1H and the ground terminal E1L in parallel with the first neutral point relay 123.
  • the backup relay 126 of the second neutral point relay circuit 121 is connected to the power supply terminal E2H and the ground terminal E2L in parallel with the second neutral point relay 125.
  • FIG. 16 is a diagram showing another modification example of the modification example shown in FIG. *
  • the two power supplies 403 and 404 are independent of each other but have a common ground.
  • the separation switches 108 and 109 are provided between the inverters 111 and 112 and the ground.
  • the separation switches 108 and 109 of the system in which the abnormality has occurred are turned off, and the current path from the neutral point to the ground is interrupted. By such interruption, a neutral point is formed in the system in which an abnormality has occurred, and three-phase energization control by a normal system becomes possible.
  • FIG. 16 as an example, a first power supply 403 for the first inverter 111 and a second power supply 404 for the second inverter 112 are shown. Since the separation switches 108 and 109 are provided between the inverters 111 and 112 and the ground, the motor drive unit 1000 may be connected to a single power source common to the first inverter 111 and the second inverter 112. (Hardware configuration of motor drive unit 1000 in the modified example) A hardware configuration of the motor drive unit 1000 in the modification shown in FIG. 7 will be described.
  • FIG. 17 is a diagram schematically showing a hardware configuration of motor drive unit 1000 in the modification shown in FIG.
  • one end 210 and the other end 220 of the coil protrude from the motor 200 and extend toward the mounting boards 1001 and 1002.
  • One end 210 of the coil is connected to the second mounting substrate 1001 and penetrates through the second mounting substrate 1001 and is connected to the first mounting substrate 1001. Further, the other end 220 of the coil is connected only to the second mounting substrate 1001. *
  • the first mounting substrate 1001 and the second mounting substrate 1002 face each other.
  • the rotation axis of the motor 200 extends in the direction in which the substrate surfaces face each other.
  • the first mounting substrate 1001, the second mounting substrate 1002, and the motor 200 are housed in the housing 1003 so that their positions are fixed. *
  • FIG. 18 is a diagram schematically showing the hardware configuration of the first mounting board 1001 and the second mounting board 1002 in the hardware configuration shown in FIG. *
  • a first inverter 111 and a second neutral point switch 131 are mounted on the first mounting board 1001. Further, the second inverter 112 and the first neutral point switch 132 are mounted on a second mounting board 1002 different from the first mounting board 1001. Since the circuits of each system made redundant in the first system and the second system are distributed to the two mounting boards, efficient element arrangement with the same circuit scale is possible for the two mounting boards. *
  • DC bars 230 and 240 are provided.
  • the DC bar 230 passes between the first mounting board 1001 and the second mounting board 1002 and is connected to the first neutral point switch 132.
  • the DC bar 240 passes between the first mounting board 1001 and the second mounting board 1002 and is connected to the second neutral point switch 131.
  • a bus bar, a pin, or the like may be provided instead of the DC bar.
  • a first control circuit 301 is also mounted on the first mounting substrate 1001.
  • a second control circuit 302 is also mounted on the second mounting substrate 1002. Since the control circuits 301 and 302 are mounted on the same mounting board as the inverters 111 and 112 and the neutral point switches 131 and 132 to be controlled by the control circuits 301 and 302, the wiring for control is on the same board. Fits in. Therefore, efficient element arrangement is possible.
  • FIG. 19 is a diagram showing a modification example in which the substrate configuration is different from that in FIG. *
  • a third mounting substrate 1007 is provided in addition to the first mounting substrate 1001 and the second mounting substrate 1002.
  • the third mounting substrate 1007 is located between the first mounting substrate 1001 and the second mounting substrate 1002.
  • the control circuits 301 and 302 are mounted on the third mounting board 1007, and the inverters 111 and 112 and the neutral point switches 131 and 132 are connected to the first mounting board 1001 and the first mounting board 1001 as in the hardware configuration shown in FIG. 2 mounted on a mounting substrate 1002.
  • a vehicle such as an automobile generally includes a power steering device.
  • the power steering device generates an auxiliary torque for assisting a steering torque of a steering system that is generated when a driver operates a steering wheel.
  • the auxiliary torque is generated by the auxiliary torque mechanism, and the burden on the operation of the driver can be reduced.
  • the auxiliary torque mechanism includes a steering torque sensor, an ECU, a motor, a speed reduction mechanism, and the like.
  • the steering torque sensor detects steering torque in the steering system.
  • the ECU generates a drive signal based on the detection signal of the steering torque sensor.
  • the motor generates auxiliary torque corresponding to the steering torque based on the drive signal, and transmits the auxiliary torque to the steering system via the speed reduction mechanism.
  • FIG. 20 is a diagram schematically showing the configuration of the power steering apparatus 2000 according to the present embodiment.
  • the electric power steering device 2000 includes a steering system 520 and an auxiliary torque mechanism 540. *
  • the steering system 520 is also referred to as, for example, a steering handle 521, a steering shaft 522 (also referred to as “steering column”), universal joints 523A, 523B, and a rotating shaft 524 (“pinion shaft” or “input shaft”). Provided.) *
  • the steering system 520 includes, for example, a rack and pinion mechanism 525, a rack shaft 526, left and right ball joints 552A and 552B, tie rods 527A and 527B, knuckle 528A and 528B, and left and right steering wheels (for example, left and right front wheels) 529A, 529B.
  • a rack and pinion mechanism 525 for example, a rack and pinion mechanism 525, a rack shaft 526, left and right ball joints 552A and 552B, tie rods 527A and 527B, knuckle 528A and 528B, and left and right steering wheels (for example, left and right front wheels) 529A, 529B.
  • the steering handle 521 is connected to the rotating shaft 524 via a steering shaft 522 and universal shaft joints 523A and 523B.
  • a rack shaft 526 is connected to the rotation shaft 524 via a rack and pinion mechanism 525.
  • the rack and pinion mechanism 525 includes a pinion 531 provided on the rotation shaft 524 and a rack 532 provided on the rack shaft 526.
  • the right steering wheel 529A is connected to the right end of the rack shaft 526 through a ball joint 552A, a tie rod 527A, and a knuckle 528A in this order.
  • the left steering wheel 529B is connected to the left end of the rack shaft 526 via a ball joint 552B, a tie rod 527B, and a knuckle 528B in this order.
  • the right side and the left side correspond to the right side and the left side as viewed from the driver sitting on the seat, respectively.
  • a steering torque is generated by the driver operating the steering handle 521, and is transmitted to the left and right steering wheels 529A and 529B via the rack and pinion mechanism 525. Accordingly, the driver can operate the left and right steering wheels 529A and 529B.
  • the auxiliary torque mechanism 540 includes, for example, a steering torque sensor 541, an ECU 542, a motor 543, a speed reduction mechanism 544, and a power supply device 545.
  • the auxiliary torque mechanism 540 gives auxiliary torque to the steering system 520 from the steering handle 521 to the left and right steering wheels 529A and 529B.
  • the auxiliary torque may be referred to as “additional torque”. *
  • the power supply device 545 for example, the power supply devices 101 and 102 shown in FIG.
  • the motor 543 for example, the motor 200 shown in FIG.
  • the motor drive unit 1000 is preferably used.
  • a mechanism including elements other than the ECU 542, the motor 543, and the power supply device 545 among the elements illustrated in FIG. 20 corresponds to an example of a power steering mechanism driven by the motor 543. *
  • the steering torque sensor 541 detects the steering torque of the steering system 520 applied by the steering handle 521.
  • the ECU 542 generates a drive signal for driving the motor 543 based on a detection signal from the steering torque sensor 541 (hereinafter referred to as “torque signal”).
  • the motor 543 generates an auxiliary torque corresponding to the steering torque based on the drive signal.
  • the auxiliary torque is transmitted to the rotating shaft 524 of the steering system 520 via the speed reduction mechanism 544.
  • the speed reduction mechanism 544 is, for example, a worm gear mechanism.
  • the auxiliary torque is further transmitted from the rotating shaft 524 to the rack and pinion mechanism 525. *
  • the power steering device 2000 is classified into a pinion assist type, a rack assist type, a column assist type, and the like depending on a place where an assist torque is applied to the steering system 520.
  • FIG. 14 shows a pinion assist type power steering apparatus 2000.
  • the power steering device 2000 is also applied to a rack assist type, a column assist type, and the like. *
  • the ECU 542 can receive not only a torque signal but also a vehicle speed signal, for example.
  • the microcontroller of the ECU 542 can vector-control the motor 543 based on a torque signal, a vehicle speed signal, or the like.
  • the ECU 542 sets a target current value based on at least the torque signal.
  • the ECU 542 preferably sets the target current value in consideration of the vehicle speed signal detected by the vehicle speed sensor and the rotor rotation signal detected by the angle sensor.
  • the ECU 542 can control the drive signal of the motor 543, that is, the drive current so that the actual current value detected by the current sensor (see FIG. 1) matches the target current value.
  • the left and right steering wheels 529A and 529B can be operated by the rack shaft 526 using the combined torque obtained by adding the assist torque of the motor 543 to the steering torque of the driver.
  • the motor drive unit 1000 of the above-described embodiment for the above-described electromechanical integrated motor, appropriate current control can be performed at both normal and abnormal times.
  • the power assist in the power steering device is continued both in the normal time and in the abnormal time.
  • the robustness of a power steering apparatus improves.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Power Engineering (AREA)
  • Control Of Ac Motors In General (AREA)
  • Inverter Devices (AREA)
  • Power Steering Mechanism (AREA)

Abstract

[Problem] To achieve the effective arrangement of elements. [Solution] This power conversion device is provided with: a first inverter connected to one end of a cable; a first mounting board on which the first inverter is mounted; a second inverter connected to the other end of the cable; a second mounting board on which the second inverter is mounted; a first neutral point relay circuit mounted on the second board and switching between formation and non-formation of a neutral point on the one end; and a second neutral point relay circuit mounted on the first board and switching between formation and non-formation of a neutral point on the other end, wherein the first inverter and the first neutral point relay circuit are mounted at positions overlapping each other when viewed in the direction in which the first mounting board and the second mounting board face each other, and the second inverter and the second neutral point relay circuit are mounted at positions overlapping each other when viewed in said direction.

Description

電力変換装置、駆動装置およびパワーステアリング装置Power conversion device, drive device, and power steering device
本発明は、電力変換装置、駆動装置およびパワーステアリング装置に関する。 The present invention relates to a power conversion device, a drive device, and a power steering device.
従来、2つのインバータによりモータの電力を変換するインバータ駆動システムが知られる。  Conventionally, an inverter drive system that converts electric power of a motor by two inverters is known. *
例えば特許文献1には2つのインバータ部を有する電力変換装置が開示される。特許文献1では、故障検出手段によりスイッチング素子の故障が検出される。そして、スイッチング素子に故障が生じた場合、回転電機(モータ)の駆動継続のため、スイッチング素子のオンオフ作動制御が正常時制御から故障時制御に切り替えられて回転電機が駆動される。 For example, Patent Document 1 discloses a power conversion device having two inverter units. In Patent Document 1, a failure of a switching element is detected by a failure detection means. When a failure occurs in the switching element, the on / off operation control of the switching element is switched from normal time control to failure time control to drive the rotating electric machine in order to continue driving the rotating electric machine (motor).
特開2014-192950号公報JP 2014-192950 A
近年、電力変換装置、駆動装置およびパワーステアリング装置における電力供給について、電源および制御回路を含んだ駆動系の全部あるいは一部の冗長化による電力供給の継続性の向上が求められる。 しかし、冗長化に伴い素子の数が増大するので、素子配置の効率化が求められる。 そこで、本発明は、効率的な素子配置の実現を目的とする。 In recent years, regarding power supply in a power conversion device, a drive device, and a power steering device, it is required to improve the continuity of power supply by making all or part of a drive system including a power supply and a control circuit redundant. However, since the number of elements increases with redundancy, the efficiency of element arrangement is required. Therefore, an object of the present invention is to realize an efficient element arrangement.
本発明に係る電力変換装置の一態様は、電源からの電力を、n相(nは3以上の整数)の巻線を有するモータに供給する電力に変換する電力変換装置であって、上記巻線の一端に接続される第1インバータと、上記第1インバータが実装された第1実装基板と、上記一端に対する他端に接続される第2インバータと、上記第2インバータが実装され、上記第1実装基板と基板面同士が対向した第2実装基板と、上記第2基板上に実装され、かつ、上記巻線に対する上記一端側と上記他端側とのうち上記一端側における中性点の形成・非形成を切替える第1中性点リレー回路と、上記第1基板上に実装され、かつ、上記巻線に対する上記一端側と上記他端側とのうち上記他端側における中性点の形成・非形成を切替える第2中性点リレー回路と、を備え、上記第1インバータと上記第1中性点リレー回路が、上記第1実装基板と上記第2実装基板との対向方向で見た場合に互いに重なり合う位置に実装され、上記第2インバータと上記第2中性点リレー回路が、上記対向方向で見た場合に互いに重なり合う位置に実装される。  One aspect of a power conversion device according to the present invention is a power conversion device that converts power from a power source into power supplied to a motor having n-phase (n is an integer of 3 or more) windings. A first inverter connected to one end of the wire; a first mounting board on which the first inverter is mounted; a second inverter connected to the other end relative to the one end; the second inverter being mounted; A mounting board and a second mounting board opposite to each other on the board surface; mounted on the second board; and a neutral point on the one end side of the one end side and the other end side with respect to the winding. A first neutral point relay circuit for switching between formation and non-formation; and a neutral point mounted on the first substrate and having a neutral point on the other end side of the one end side and the other end side with respect to the winding. A second neutral relay circuit that switches between forming and non-forming; The first inverter and the first neutral relay circuit are mounted at positions that overlap each other when viewed in the opposing direction of the first mounting board and the second mounting board, and The second neutral point relay circuits are mounted at positions that overlap each other when viewed in the facing direction. *
本発明に係る駆動装置の一態様は、上記電力変換装置と、上記電力変換装置に接続され、上記電力変換装置によって変換された電力が供給されるモータと、を備える。  One aspect of the drive device according to the present invention includes the power converter, and a motor connected to the power converter and supplied with power converted by the power converter. *
本発明に係るパワーステアリング装置の一態様は、上記電力変換装置と、上記電力変換装置によって変換された電力が供給されるモータと、上記モータにより駆動されるパワーステアリング機構と、を備える。 One aspect of the power steering device according to the present invention includes the power conversion device, a motor to which power converted by the power conversion device is supplied, and a power steering mechanism driven by the motor.
本発明によれば、実装基板上の配置面積が有効に活用され、あるいは、モータの巻線に対する配線経路が簡素化されるので、効率的な素子配置が実現される。 According to the present invention, the arrangement area on the mounting substrate is effectively utilized, or the wiring path for the motor winding is simplified, so that efficient element arrangement is realized.
図1は、本実施形態によるモータ駆動ユニットのブロック構成を模式的に示す図である。FIG. 1 is a diagram schematically showing a block configuration of a motor drive unit according to the present embodiment. 図2は、本実施形態によるモータ駆動ユニットの回路構成を模式的に示す図である。FIG. 2 is a diagram schematically showing a circuit configuration of the motor drive unit according to the present embodiment. 図3は、正常時におけるモータの各相の各コイルに流れる電流値を示す図であるFIG. 3 is a diagram showing current values flowing in coils of each phase of the motor in a normal state. 図4は、モータ駆動ユニットのハードウェア構成を模式的に示す図である。FIG. 4 is a diagram schematically illustrating a hardware configuration of the motor drive unit. 図5は、第1実装基板および第2実装基板のハードウェア構成を模式的に示す図である。FIG. 5 is a diagram schematically illustrating a hardware configuration of the first mounting board and the second mounting board. 図6は、角度センサ周辺のハードウェア構成を示す図である。FIG. 6 is a diagram illustrating a hardware configuration around the angle sensor. 図7は、第1のセンサマグネットによる磁場の状態を示す図である。FIG. 7 is a diagram showing the state of the magnetic field by the first sensor magnet. 図8は、第1のセンサマグネットによる磁場の状態を示す図である。FIG. 8 is a diagram illustrating a state of the magnetic field by the first sensor magnet. 図9は、センサ構成が異なる変形例を示す図である。FIG. 9 is a diagram illustrating a modification example in which the sensor configuration is different. 図10は、マグネット構成が異なる変形例を示す図である。FIG. 10 is a diagram showing a modification example in which the magnet configuration is different. 図11は、ヒートシンクの配置が考慮された変形例を示す図である。FIG. 11 is a diagram illustrating a modification in which the arrangement of the heat sink is considered. 図12は、基板構成が異なる変形例による実装基板のハードウェア構成を模式的に示す図である。FIG. 12 is a diagram schematically illustrating a hardware configuration of a mounting board according to a modified example having a different board configuration. 図13は、中性点リレー回路の構成が異なる変形例による回路構成を模式的に示す図である。FIG. 13 is a diagram schematically illustrating a circuit configuration according to a modified example in which the configuration of the neutral point relay circuit is different. 図14は、中性点リレー回路の構成が異なる別の変形例による回路構成を模式的に示す図である。FIG. 14 is a diagram schematically illustrating a circuit configuration according to another modification example in which the configuration of the neutral point relay circuit is different. 図15は、中性点リレー回路の構成が異なる更に別の変形例による回路構成を模式的に示す図である。FIG. 15 is a diagram schematically illustrating a circuit configuration according to still another modification example in which the configuration of the neutral point relay circuit is different. 図16は、図7に示された変形例に対する別の変形例を示す図である。FIG. 16 is a diagram showing another modification example of the modification example shown in FIG. 図17は、図7に示された変形例におけるモータ駆動ユニットのハードウェア構成を模式的に示す図である。FIG. 17 is a diagram schematically showing a hardware configuration of the motor drive unit in the modification shown in FIG. 図18は、図11に示されたハードウェア構成における第1実装基板および第2実装基板のハードウェア構成を模式的に示す図である。FIG. 18 is a diagram schematically illustrating the hardware configuration of the first mounting board and the second mounting board in the hardware configuration illustrated in FIG. 11. 図19は、図10とは異なる基板構成の変形例を示す図である。FIG. 19 is a diagram showing a modified example of the substrate configuration different from that of FIG. 図20は、本実施形態によるパワーステアリング装置の構成を模式的に示す図である。FIG. 20 is a diagram schematically illustrating the configuration of the power steering apparatus according to the present embodiment.
以下、添付の図面を参照しながら、本開示の電力変換装置、駆動装置およびパワーステアリング装置の実施形態を詳細に説明する。但し、以下の説明が不必要に冗長になるのを避け、当業者の理解を容易にするため、必要以上に詳細な説明は省略する場合がある。例えば、既によく知られた事項の詳細説明や実質的に同一の構成に対する重複説明を省略する場合がある。  Hereinafter, embodiments of a power conversion device, a drive device, and a power steering device of the present disclosure will be described in detail with reference to the accompanying drawings. However, in order to avoid the following description from being unnecessarily redundant and to facilitate understanding by those skilled in the art, a more detailed description than necessary may be omitted. For example, detailed descriptions of already well-known matters and repeated descriptions for substantially the same configuration may be omitted. *
本明細書において、電源からの電力を、三相(U相、V相、W相)の巻線(「コイル」と表記する場合がある。)を有する三相モータに供給する電力に変換する電力変換装置を例にして、本開示の実施形態を説明する。ただし、電源からの電力を、四相または五相などのn相(nは4以上の整数)の巻線を有するn相モータに供給する電力に変換する電力変換装置も本開示の範疇である。



(モータ駆動ユニット1000の構造)



 図1は、本実施形態によるモータ駆動ユニット1000のブロック構成を模式的に示す図である。 モータ駆動ユニット1000は、電力供給装置101、102、モータ200および制御回路301、302を備える。 
In this specification, electric power from a power source is converted into electric power supplied to a three-phase motor having three-phase (U-phase, V-phase, W-phase) windings (sometimes referred to as “coils”). An embodiment of the present disclosure will be described using a power conversion device as an example. However, a power conversion device that converts power from a power source into power supplied to an n-phase motor having an n-phase winding (n is an integer of 4 or more) such as four-phase or five-phase is also included in the scope of the present disclosure. .



(Structure of motor drive unit 1000)



FIG. 1 is a diagram schematically showing a block configuration of a motor drive unit 1000 according to the present embodiment. The motor drive unit 1000 includes power supply apparatuses 101 and 102, a motor 200, and control circuits 301 and 302.
本明細書では、構成要素としてモータ200を備えるモータ駆動ユニット1000を説明する。モータ200を備えるモータ駆動ユニット1000は、本発明の駆動装置の一例に相当する。ただし、モータ駆動ユニット1000は、構成要素としてモータ200を備えない、モータ200を駆動するための装置であってもよい。モータ200を備えないモータ駆動ユニット1000は、本発明の電力変換装置の一例に相当する。  In this specification, a motor driving unit 1000 including a motor 200 as a component will be described. The motor drive unit 1000 including the motor 200 corresponds to an example of the drive device of the present invention. However, the motor drive unit 1000 may be an apparatus for driving the motor 200 that does not include the motor 200 as a component. The motor drive unit 1000 that does not include the motor 200 corresponds to an example of the power conversion device of the present invention. *
第1の電力供給装置101は、第1インバータ111、第2中性点リレー回路121電流センサ401および電圧センサ411を備える。第2の電力供給装置102は、第2インバータ112、第1中性点リレー回路122、電流センサ402および電圧センサ412を備える。  The first power supply apparatus 101 includes a first inverter 111, a second neutral point relay circuit 121, a current sensor 401, and a voltage sensor 411. The second power supply apparatus 102 includes a second inverter 112, a first neutral point relay circuit 122, a current sensor 402 and a voltage sensor 412. *
モータ駆動ユニット1000は、2つの電力供給装置101、102によって、電源(図2の符号403、404)からの電力をモータ200に供給する電力に変換することが可能である。例えば、第1および第2インバータ111、112は、直流電力を、U相、V相およびW相の擬似正弦波である三相交流電力に変換することが可能である。  The motor drive unit 1000 can convert the power from the power source ( reference numerals 403 and 404 in FIG. 2) into the power to be supplied to the motor 200 by the two power supply devices 101 and 102. For example, the first and second inverters 111 and 112 can convert DC power into three-phase AC power that is a pseudo sine wave of U phase, V phase, and W phase. *
第1インバータ111は、モータ200のコイルの一端210に接続され、第2インバータ112は、モータ200のコイルの他端220に接続される。本明細書において、部品(構成要素)同士の「接続」とは、特に断らない限り電気的な接続を意味する。  The first inverter 111 is connected to one end 210 of the coil of the motor 200, and the second inverter 112 is connected to the other end 220 of the coil of the motor 200. In this specification, “connection” between components (components) means electrical connection unless otherwise specified. *
モータ200は、例えば三相交流モータである。モータ200は、U相、V相およびW相のコイルを有する。コイルの巻き方は、例えば、集中巻きまたは分布巻きである。  The motor 200 is, for example, a three-phase AC motor. The motor 200 has U-phase, V-phase, and W-phase coils. The winding method of the coil is, for example, concentrated winding or distributed winding. *
制御回路301、302は、後で詳述するようにマイクロコントローラ341、342などを備える。第1の制御回路301は、電流センサ401および角度センサ321からの入力信号に基づいて第1の電力供給装置101を制御する。また、第2の制御回路302は、電流センサ402および角度センサ322からの入力信号に基づいて第2の電力供給装置102を制御する。制御回路301、302における電力供給装置101、102の制御手法として、例えばベクトル制御、直接トルク制御(DTC)から選択された制御手法が用いられる。 図2を参照して、モータ駆動ユニット1000の具体的な回路構成を説明する。  The control circuits 301 and 302 include microcontrollers 341 and 342, as will be described in detail later. The first control circuit 301 controls the first power supply apparatus 101 based on input signals from the current sensor 401 and the angle sensor 321. In addition, the second control circuit 302 controls the second power supply apparatus 102 based on input signals from the current sensor 402 and the angle sensor 322. As a control method of the power supply devices 101 and 102 in the control circuits 301 and 302, for example, a control method selected from vector control and direct torque control (DTC) is used. A specific circuit configuration of the motor drive unit 1000 will be described with reference to FIG. *
図2は、本実施形態によるモータ駆動ユニット1000の回路構成を模式的に示す図である。但し、図2では、主に電力供給装置101、102の回路構成が示される。  FIG. 2 is a diagram schematically showing a circuit configuration of the motor drive unit 1000 according to the present embodiment. However, FIG. 2 mainly shows the circuit configuration of the power supply apparatuses 101 and 102. *
モータ駆動ユニット1000は電源に接続される。電源は、それぞれ独立した第1電源403と第2電源404を備える。電源403、404は所定の電源電圧(例えば12V)を生成する。電源403、404として、例えば直流電源が用いられる。ただし、電源403、404は、AC-DCコンバータまたはDC―DCコンバータであってもよいし、バッテリー(蓄電池)であってもよい。また、モータ駆動ユニット1000は、内部に電源を備えていてもよい。  The motor drive unit 1000 is connected to a power source. The power supply includes a first power supply 403 and a second power supply 404 that are independent of each other. The power supplies 403 and 404 generate a predetermined power supply voltage (for example, 12V). For example, a DC power supply is used as the power supplies 403 and 404. However, the power supplies 403 and 404 may be AC-DC converters, DC-DC converters, or batteries (storage batteries). Further, the motor drive unit 1000 may include a power source therein. *
モータ駆動ユニット1000は、コイル103、104、コンデンサ105、第1インバータ111、第2インバータ112、第1中性点リレー回路122、第2中性点リレー回路121、モータ200および制御回路301、302を備える。  The motor drive unit 1000 includes coils 103 and 104, a capacitor 105, a first inverter 111, a second inverter 112, a first neutral point relay circuit 122, a second neutral point relay circuit 121, a motor 200, and control circuits 301 and 302. Is provided. *
モータ駆動ユニット1000は、モータ200のコイル(巻線)の一端210側に対応した第1系統と、モータ200のコイル(巻線)の他端220側に対応した第2系統とを備える。第1系統には、第1インバータ111と第1中性点リレー回路122と第1制御回路301が含まれる。第2系統には、第2インバータ112と第2中性点リレー回路121と第2制御回路302が含まれる。第1系統のインバータ111と制御回路301は第1電源403から電力を供給される。第2系統のインバータ112と制御回路302は第2電源404から電力を供給される。電源と制御回路を含んだ駆動系が、電源も含めて冗長化されるので、後述するように、一方の系統における電源の異常時にも、他方の系統によって電力供給が継続される。  The motor drive unit 1000 includes a first system corresponding to the one end 210 side of the coil (winding) of the motor 200 and a second system corresponding to the other end 220 side of the coil (winding) of the motor 200. The first system includes a first inverter 111, a first neutral relay circuit 122, and a first control circuit 301. The second system includes a second inverter 112, a second neutral relay circuit 121, and a second control circuit 302. The first system inverter 111 and the control circuit 301 are supplied with power from the first power supply 403. The second system inverter 112 and the control circuit 302 are supplied with power from the second power supply 404. Since the drive system including the power supply and the control circuit is made redundant including the power supply, as described later, even when the power supply in one system is abnormal, the power supply is continued by the other system. *
電力供給装置101、102は、上述した2つの系統に一部が跨がった構成を有する。第1の電力供給装置101は、第1系統のインバータ111と第2系統の中性点リレー回路121と第1系統の制御回路301とを備える。そして、第1系統のインバータ111と第2系統の中性点リレー回路121は、第1系統の制御回路301によって制御される。第2の電力供給装置102は、第2系統のインバータ112と第1系統の第1中性点リレー回路122と第2系統の制御回路302とを備える。そして、第2系統のインバータ112と第1系統の第1中性点リレー回路122は、第2系統の制御回路302によって制御される。  The power supply apparatuses 101 and 102 have a configuration in which part of the above-described two systems is straddled. The first power supply apparatus 101 includes a first system inverter 111, a second system neutral point relay circuit 121, and a first system control circuit 301. The first system inverter 111 and the second system neutral point relay circuit 121 are controlled by the first system control circuit 301. The second power supply apparatus 102 includes a second system inverter 112, a first system first neutral point relay circuit 122, and a second system control circuit 302. The second system inverter 112 and the first system first neutral relay circuit 122 are controlled by the second system control circuit 302. *
電源403、404とインバータ111、112との間にはコイル103、104が備えられる。コイル103、104は、ノイズフィルタとして機能し、各インバータ111、112に供給される電圧波形に含まれる高周波ノイズを平滑化する。また、コイル103、104は、インバータ111、112で発生する高周波ノイズが電源403、404側に流出することを防ぐため高周波ノイズを平滑化する。また、各インバータ111、112の電源端子には、コンデンサ105が接続される。コンデンサ105は、いわゆるバイパスコンデンサであり、電圧リプルを抑制する。コンデンサ105は、例えば電解コンデンサであり、容量および使用する個数は設計仕様などによって適宜決定される。  Coils 103 and 104 are provided between the power supplies 403 and 404 and the inverters 111 and 112. The coils 103 and 104 function as a noise filter and smooth high frequency noise included in the voltage waveform supplied to each of the inverters 111 and 112. In addition, the coils 103 and 104 smooth the high frequency noise to prevent the high frequency noise generated by the inverters 111 and 112 from flowing out to the power sources 403 and 404. A capacitor 105 is connected to the power supply terminals of the inverters 111 and 112. The capacitor 105 is a so-called bypass capacitor and suppresses voltage ripple. The capacitor 105 is, for example, an electrolytic capacitor, and the capacity and the number to be used are appropriately determined according to the design specifications. *
第1インバータ111は、3個のレグを有するブリッジ回路を備える。各レグは、電源とモータ200との間に接続されたハイサイドスイッチ素子およびモータ200とグランドとの間に接続されたローサイドスイッチ素子を備える。具体的には、U相用レグは、ハイサイドスイッチ素子113Hおよびローサイドスイッチ素子113Lを備える。V相用レグは、ハイサイドスイッチ素子114Hおよびローサイドスイッチ素子114Lを備える。W相用レグは、ハイサイドスイッチ素子115Hおよびローサイドスイッチ素子115Lを備える。スイッチ素子としては、例えば電界効果トランジスタ(MOSFETなど)または絶縁ゲートバイポーラトランジスタ(IGBT)が用いられる。なお、スイッチ素子がIGBTである場合には、スイッチ素子と逆並列にダイオード(フリーホイール)が接続される。  The first inverter 111 includes a bridge circuit having three legs. Each leg includes a high-side switch element connected between the power source and the motor 200 and a low-side switch element connected between the motor 200 and the ground. Specifically, the U-phase leg includes a high-side switch element 113H and a low-side switch element 113L. The V-phase leg includes a high-side switch element 114H and a low-side switch element 114L. The W-phase leg includes a high-side switch element 115H and a low-side switch element 115L. As the switch element, for example, a field effect transistor (MOSFET or the like) or an insulated gate bipolar transistor (IGBT) is used. When the switch element is an IGBT, a diode (freewheel) is connected in antiparallel with the switch element. *
第1インバータ111は、例えば、U相、V相およびW相の各相の巻線に流れる電流を検出するための電流センサ401(図1を参照)として、シャント抵抗113R、114Rおよび115Rをそれぞれ各レグに備える。電流センサ401は、各シャント抵抗に流れる電流を検出する電流検出回路(不図示)を備える。例えば、シャント抵抗は、各レグにおいて、ローサイドスイッチ素子とグランドとの間に接続され得る。シャント抵抗の抵抗値は、例えば0.5mΩ~1.0mΩ程度である。  The first inverter 111 includes, for example, shunt resistors 113R, 114R, and 115R as current sensors 401 (see FIG. 1) for detecting currents flowing through the windings of the U-phase, V-phase, and W-phase, respectively. Prepare for each leg. The current sensor 401 includes a current detection circuit (not shown) that detects a current flowing through each shunt resistor. For example, a shunt resistor can be connected between the low side switch element and ground at each leg. The resistance value of the shunt resistor is, for example, about 0.5 mΩ to 1.0 mΩ. *
シャント抵抗の数は3つ以外でもよい。例えば、U相、V相用の2つのシャント抵抗113R、114R、V相、W相用の2つのシャント抵抗114R、115R、または、U相、W相用の2つのシャント抵抗113R、115Rが用いられてもよい。使用されるシャント抵抗の数およびシャント抵抗の配置は、製品コストおよび設計仕様などが考慮されて適宜決定される。  The number of shunt resistors may be other than three. For example, two shunt resistors 113R and 114R for U phase and V phase, two shunt resistors 114R and 115R for V phase and W phase, or two shunt resistors 113R and 115R for U phase and W phase are used. May be. The number of shunt resistors to be used and the arrangement of the shunt resistors are appropriately determined in consideration of the product cost and design specifications. *
第2インバータ112は、3個のレグを有するブリッジ回路を備える。U相用レグは、ハイサイドスイッチ素子116Hおよびローサイドスイッチ素子116Lを備える。V相用レグは、ハイサイドスイッチ素子117Hおよびローサイドスイッチ素子117Lを備える。W相用レグは、ハイサイドスイッチ素子118Hおよびローサイドスイッチ素子118Lを備える。第1インバータ111と同様に、第2インバータ112は、例えば、シャント抵抗116R、117Rおよび118Rを備える。  The second inverter 112 includes a bridge circuit having three legs. The U-phase leg includes a high-side switch element 116H and a low-side switch element 116L. The V-phase leg includes a high-side switch element 117H and a low-side switch element 117L. The W-phase leg includes a high-side switch element 118H and a low-side switch element 118L. Similar to the first inverter 111, the second inverter 112 includes, for example, shunt resistors 116R, 117R, and 118R. *
第1インバータ111は、モータ200のコイル(巻線)の一端210に接続される。具体的に説明すると、第1インバータ111のU相用レグ(つまり、ハイサイドスイッチ素子およびローサイドスイッチ素子の間のノード)は、モータ200のU相コイルの一端210に接続される。第1インバータ111のV相用レグは、V相コイルの一端210に接続される。第1インバータ111のW相用レグは、W相コイルの一端210に接続される。  The first inverter 111 is connected to one end 210 of a coil (winding) of the motor 200. More specifically, the U-phase leg of the first inverter 111 (that is, the node between the high-side switch element and the low-side switch element) is connected to one end 210 of the U-phase coil of the motor 200. The V-phase leg of the first inverter 111 is connected to one end 210 of the V-phase coil. The W-phase leg of the first inverter 111 is connected to one end 210 of the W-phase coil. *
第2インバータ112は、モータ200のコイル(巻線)の他端220に接続される。具体的に説明すると、第2インバータ112のU相用レグは、モータ200のU相コイルの他端220に接続される。第2インバータ112のV相用レグは、V相コイルの他端220に接続される。第2インバータ112のW相用レグは、W相コイルの他端220に接続される。  The second inverter 112 is connected to the other end 220 of the coil (winding) of the motor 200. More specifically, the U-phase leg of the second inverter 112 is connected to the other end 220 of the U-phase coil of the motor 200. The V-phase leg of the second inverter 112 is connected to the other end 220 of the V-phase coil. The W-phase leg of the second inverter 112 is connected to the other end 220 of the W-phase coil. *
第1中性点リレー回路122は、コイルに対する一端210側(第1系統側)と他端220側(第2系統側)とのうち一端210側における中性点の形成・非形成を切替えることが可能である。具体的には、第1中性点リレー回路122は、第1インバータ111と並列に、モータ200のコイルの一端210に接続される。第1中性点リレー回路122は、モータ200のコイルの一端210同士の接続・非接続を切替えることが可能である。  The first neutral point relay circuit 122 switches the formation / non-formation of the neutral point on the one end 210 side of the one end 210 side (first system side) and the other end 220 side (second system side) with respect to the coil. Is possible. Specifically, the first neutral point relay circuit 122 is connected to one end 210 of the coil of the motor 200 in parallel with the first inverter 111. The first neutral point relay circuit 122 can switch connection / disconnection between the one ends 210 of the coils of the motor 200. *
第1中性点リレー回路122は、一端がノードN1に共通に接続され、かつ、他端がモータ200の各相のコイルに接続される3個の第1中性点リレー123、124および125を有する。具体的に説明すると、第1中性点リレー123は、ノードN1とU相コイルの一端210とに接続される。第1中性点リレー124は、ノードN1とV相コイルの一端210とに接続される。第1中性点リレー125は、ノードN1とW相コイルの一端210とに接続される。  The first neutral point relay circuit 122 has three first neutral point relays 123, 124, and 125 each having one end connected in common to the node N1 and the other end connected to a coil of each phase of the motor 200. Have More specifically, first neutral relay 123 is connected to node N1 and one end 210 of the U-phase coil. First neutral point relay 124 is connected to node N1 and one end 210 of the V-phase coil. First neutral point relay 125 is connected to node N1 and one end 210 of the W-phase coil. *
第2中性点リレー回路121は、コイルに対する一端210側(第1系統側)と他端220側(第2系統側)とのうち他端220側における中性点の形成・非形成を切替えることが可能である。具体的には、第2中性点リレー回路121は、第2インバータ112と並列に、モータ200のコイルの他端220に接続される。第2中性点リレー回路121は、モータ200のコイルの他端220同士の接続・非接続を切替えることが可能である。  The second neutral point relay circuit 121 switches the formation / non-formation of the neutral point on the other end 220 side among the one end 210 side (first system side) and the other end 220 side (second system side) with respect to the coil. It is possible. Specifically, the second neutral relay circuit 121 is connected to the other end 220 of the coil of the motor 200 in parallel with the second inverter 112. The second neutral point relay circuit 121 can switch connection / disconnection between the other ends 220 of the coils of the motor 200. *
第2中性点リレー回路121は、一端がノードN2に共通に接続され、かつ、他端がモータ200の各相のコイルに接続される3個の第2中性点リレー126、127および128を有する。具体的に説明すると、第2中性点リレー126は、ノードN2とU相コイルの他端220とに接続される。第2中性点リレー127は、ノードN2とV相コイルの他端220とに接続される。第2中性点リレー128は、ノードN2とW相コイルの他端220とに接続される。 上述した中性点リレーとしては、例えば、MOSFETなどの半導体スイッチ素子またはメカニカルリレーが用いられる。  The second neutral point relay circuit 121 has three second neutral point relays 126, 127, and 128, one end of which is commonly connected to the node N 2 and the other end is connected to a coil of each phase of the motor 200. Have Specifically, second neutral point relay 126 is connected to node N2 and the other end 220 of the U-phase coil. Second neutral point relay 127 is connected to node N2 and other end 220 of the V-phase coil. Second neutral point relay 128 is connected to node N2 and other end 220 of the W-phase coil. As the neutral point relay described above, for example, a semiconductor switch element such as a MOSFET or a mechanical relay is used. *
再び図1を参照する。制御回路301、302は、例えば、電源回路311、312と、角度センサ321、322と、入力回路331、332と、マイクロコントローラ341、342と、駆動回路351、352と、ROM361、362とを備える。制御回路301、302は電力供給装置101、102に接続される。そして、制御回路301、302は電力供給装置101、102を制御する。具体的には、上述したように、第1の制御回路301は、第1インバータ111および第2中性点リレー回路122を制御する。第2の制御回路302は、第2インバータ112および第1中性点リレー回路121を制御する。  Refer to FIG. 1 again. The control circuits 301 and 302 include, for example, power supply circuits 311 and 312, angle sensors 321 and 322, input circuits 331 and 332, microcontrollers 341 and 342, drive circuits 351 and 352, and ROMs 361 and 362. . The control circuits 301 and 302 are connected to the power supply apparatuses 101 and 102. The control circuits 301 and 302 control the power supply apparatuses 101 and 102. Specifically, as described above, the first control circuit 301 controls the first inverter 111 and the second neutral point relay circuit 122. The second control circuit 302 controls the second inverter 112 and the first neutral point relay circuit 121. *
制御回路301、302は、目的とするロータの位置(回転角)、回転速度、および電流などを制御し
てクローズドループ制御を実現することができる。回転速度は、例えば、回転角(rad)を時間微分することにより得られ、単位時間(例えば1分間)にロータが回転する回転数(rpm)で表される。制御回路301、302は、目的とするモータトルクを制御することも可能である。制御回路301、302は、トルク制御のためにトルクセンサを備えてもよいがトルクセンサが省かれていてもトルク制御は可能である。また、角度センサに変えてセンサレスアルゴリズムを備えてもよい。また、2つの制御回路301、302は、各々がモータの回転に同期して制御を行うことで相互の制御動作を同期させる。電源回路311、312は、制御回路301、302内の各ブロックに必要なDC電圧(例えば3V、5V)を生成する。


The control circuits 301 and 302 can realize closed-loop control by controlling the target rotor position (rotation angle), rotation speed, current, and the like. The rotation speed is obtained, for example, by differentiating the rotation angle (rad) with time, and is represented by the number of rotations (rpm) at which the rotor rotates per unit time (for example, 1 minute). The control circuits 301 and 302 can also control the target motor torque. The control circuits 301 and 302 may include a torque sensor for torque control, but torque control is possible even if the torque sensor is omitted. Further, a sensorless algorithm may be provided instead of the angle sensor. The two control circuits 301 and 302 synchronize their control operations by performing control in synchronization with the rotation of the motor. The power supply circuits 311 and 312 generate a DC voltage (for example, 3V, 5V) necessary for each block in the control circuits 301 and 302.


角度センサ321、322は、例えばホールICである。角度センサ321、322は、磁気抵抗(MR)素子を有するMRセンサとセンサマグネットとの組み合わせによっても実現される。角度センサ321、322は、モータ200のロータの回転角を検出し、検出した回転角を表した回転信号をマイクロコントローラ341、342に出力する。モータ制御手法(例えばセンサレス制御)によっては、角度センサ321、322は必要とされない場合がある。  The angle sensors 321 and 322 are, for example, Hall ICs. The angle sensors 321 and 322 are also realized by a combination of an MR sensor having a magnetoresistive (MR) element and a sensor magnet. The angle sensors 321 and 322 detect the rotation angle of the rotor of the motor 200, and output a rotation signal representing the detected rotation angle to the microcontrollers 341 and 342. Depending on the motor control method (for example, sensorless control), the angle sensors 321 and 322 may not be required. *
電圧センサ411、412は、中性点リレー回路121、122の、モータ200のコイルに接続された一端における電圧を検出し、検出した電圧値を入力回路331、332に出力する。  The voltage sensors 411 and 412 detect the voltage at one end of the neutral point relay circuits 121 and 122 connected to the coil of the motor 200 and output the detected voltage values to the input circuits 331 and 332. *
入力回路331、332は、電流センサ401、402によって検出されたモータ電流値(以下、「実電流値」と表記する。)と電圧センサ411、412によって検出された電圧値を受け取る。入力回路331、332は、マイクロコントローラ341、342の入力レベルに実電流値および電圧値のレベルを必要に応じて変換し、実電流値および電圧値をマイクロコントローラ341、342に出力する。入力回路331、332は、アナログデジタル変換回路である。  The input circuits 331 and 332 receive motor current values detected by the current sensors 401 and 402 (hereinafter referred to as “actual current values”) and voltage values detected by the voltage sensors 411 and 412. The input circuits 331 and 332 convert the actual current value and voltage value level to the input levels of the microcontrollers 341 and 342 as necessary, and output the actual current value and voltage value to the microcontrollers 341 and 342, respectively. The input circuits 331 and 332 are analog-digital conversion circuits. *
マイクロコントローラ341、342は、角度センサ321、322によって検出されたロータの回転信号を受信するとともに、入力回路331、332から出力された実電流値および電圧値を受信する。マイクロコントローラ341、342は、実電流値およびロータの回転信号などに従って目標電流値を設定してPWM信号を生成し、生成したPWM信号を駆動回路351、352に出力する。例えば、マイクロコントローラ341、342は、電力供給装置101、102のインバータ111、112における各スイッチ素子のスイッチング動作(ターンオンまたはターンオフ)を制御するためのPWM信号を生成する。  The microcontrollers 341 and 342 receive the rotor rotation signals detected by the angle sensors 321 and 322 and also receive the actual current value and voltage value output from the input circuits 331 and 332. The microcontrollers 341 and 342 generate a PWM signal by setting a target current value according to the actual current value and the rotation signal of the rotor, and output the generated PWM signal to the drive circuits 351 and 352. For example, the microcontrollers 341 and 342 generate PWM signals for controlling the switching operation (turn-on or turn-off) of each switch element in the inverters 111 and 112 of the power supply apparatuses 101 and 102. *
また、マイクロコントローラ341、342は、中性点リレー回路121、122のオン・オフの状態を決定する信号を、受信した電圧値に従って生成することが可能である。  Further, the microcontrollers 341 and 342 can generate a signal for determining the on / off state of the neutral point relay circuits 121 and 122 according to the received voltage value. *
駆動回路351、352は、例えばゲートドライバである。駆動回路351、352は、第1および第2インバータ111、112における各スイッチ素子のスイッチング動作を制御する制御信号(例えば、ゲート制御信号)をPWM信号に従って生成し、生成した制御信号を各スイッチ素子に与える。さらに、駆動回路351、352は、マイクロコントローラ341、342からの、各中性点リレー回路121、122のオン・オフの状態を決定する信号に従って、各中性点リレー回路121、122における各中性点リレーをオン・オフする制御信号を生成し、生成した制御信号を各中性点リレーに与えることが可能である。 マイクロコントローラ341、342は、駆動回路351、352の機能を有していてもよい。その場合、駆動回路351、352は省かれる。  The drive circuits 351 and 352 are, for example, gate drivers. The drive circuits 351 and 352 generate a control signal (for example, a gate control signal) for controlling the switching operation of each switch element in the first and second inverters 111 and 112 according to the PWM signal, and generate the generated control signal for each switch element. To give. Furthermore, the drive circuits 351 and 352 are connected to the neutral point relay circuits 121 and 122 according to signals from the microcontrollers 341 and 342 that determine the on / off states of the neutral point relay circuits 121 and 122, respectively. It is possible to generate a control signal for turning on / off the sex point relay and to supply the generated control signal to each neutral point relay. The microcontrollers 341 and 342 may have the functions of the drive circuits 351 and 352. In that case, the drive circuits 351 and 352 are omitted. *
ROM361、362は、例えば書き込み可能なメモリ(例えばPROM)、書き換え可能なメモリ(例えばフラッシュメモリ)または読み出し専用のメモリである。ROM361、362は、マイクロコントローラ341、342に電力供給装置101、102を制御させるための命令群を含む制御プログラムを格納する。例えば、制御プログラムはブート時にRAM(不図示)に一旦展開される。  The ROMs 361 and 362 are, for example, a writable memory (for example, PROM), a rewritable memory (for example, a flash memory), or a read-only memory. The ROMs 361 and 362 store a control program including a command group for causing the microcontrollers 341 and 342 to control the power supply apparatuses 101 and 102. For example, the control program is temporarily expanded in a RAM (not shown) at the time of booting. *
電力供給装置101、102の制御には正常時および異常時の制御がある。制御回路301、302(主としてマイクロコントローラ341、342)は、電力供給装置101、102の制御を正常時の制御から異常時の制御に切替えることができる。制御の種類に応じて、第1中性点リレー回路122および第2中性点リレー回路121のオン・オフ状態が決定される。 以下、モータ駆動ユニット1000の動作の具体例を説明し、主として電力供給装置100の動作の具体例を説明する。



(正常時の制御)


Control of the power supply apparatuses 101 and 102 includes normal and abnormal control. The control circuits 301 and 302 (mainly the microcontrollers 341 and 342) can switch the control of the power supply apparatuses 101 and 102 from normal control to abnormal control. The on / off states of the first neutral point relay circuit 122 and the second neutral point relay circuit 121 are determined according to the type of control. Hereinafter, a specific example of the operation of the motor drive unit 1000 will be described, and a specific example of the operation of the power supply apparatus 100 will be mainly described.



(Control during normal operation)


先ず、電力供給装置101、102の正常時の制御方法の具体例を説明する。正常とは、2つの電源403、404と、2つのインバータ111、112と、2つの制御回路301、302のいずれもが正しく動作する状態を指す。  First, a specific example of a control method when the power supply apparatuses 101 and 102 are normal will be described. Normal indicates a state in which both of the two power supplies 403 and 404, the two inverters 111 and 112, and the two control circuits 301 and 302 operate correctly. *
正常時において、制御回路301、302は、第1中性点リレー回路122をオフし、かつ、第2中性点リレー回路121をオフする。これにより、モータ200の各相のコイルは互いに非接続となり、各相のコイルは各々独立に2つのインバータ111、112の各レグに接続される。  Under normal conditions, the control circuits 301 and 302 turn off the first neutral point relay circuit 122 and turn off the second neutral point relay circuit 121. Thus, the coils of each phase of the motor 200 are disconnected from each other, and the coils of each phase are independently connected to the legs of the two inverters 111 and 112, respectively. *
第1中性点リレー回路122がオフすると、モータ200の各相のコイルの一端210同士は絶縁される。「第1中性点リレー回路122がオフする」とは、第1中性点リレー123、124および125が全てオフすることを意味する。  When the first neutral point relay circuit 122 is turned off, the one ends 210 of the coils of the respective phases of the motor 200 are insulated from each other. “The first neutral relay circuit 122 is turned off” means that the first neutral relays 123, 124, and 125 are all turned off. *
第2中性点リレー回路121がオフすると、モータ200の各相のコイルの他端220同士は絶縁される。「第2中性点リレー回路121がオフする」とは、第2中性点リレー126、127および128が全てオフすることを意味する。  When the second neutral relay circuit 121 is turned off, the other ends 220 of the coils of the respective phases of the motor 200 are insulated from each other. “The second neutral point relay circuit 121 is turned off” means that the second neutral point relays 126, 127, and 128 are all turned off. *
この接続状態において、制御回路301、302は、第1インバータ111および第2インバータ112の両方を用いて三相通電制御することによってモータ200を駆動する。一例として、制御回路301、302は、第1インバータ111のスイッチ素子と第2インバータ112のスイッチ素子とを、周期変動するデューティでスイッチング制御することにより三相通電制御を行うことができる。第1インバータ111と第2インバータ112とのそれぞれにおけるデューティの周期変動は制御回路301、302によって切り替え可能である。制御回路301、302は、例えば第1インバータ111と第2インバータ112とで逆位相(位相差=180°)となる周期変動に切り替えてもよい。 図3は、正常時におけるモータ200の各相の各コイルに流れる電流値を示す図である。  In this connected state, the control circuits 301 and 302 drive the motor 200 by performing three-phase energization control using both the first inverter 111 and the second inverter 112. As an example, the control circuits 301 and 302 can perform three-phase energization control by switching control of the switch element of the first inverter 111 and the switch element of the second inverter 112 with a duty that varies periodically. The duty cycle variation in each of the first inverter 111 and the second inverter 112 can be switched by the control circuits 301 and 302. For example, the control circuits 301 and 302 may be switched to a period variation in which the first inverter 111 and the second inverter 112 have opposite phases (phase difference = 180 °). FIG. 3 is a diagram showing current values flowing in the coils of the respective phases of the motor 200 in a normal state. *
図3には、正常時の三相通電制御に従って電力供給装置101、102が制御されたときにモータ200のU相、V相およびW相の各コイルに流れる電流値をプロットして得られる電流波形(正弦波)が例示される。図3の横軸は、モータ電気角(deg)を示し、縦軸は電流値(A)を示す。Ipkは各相の最大電流値(ピーク電流値)を表す。なお、電力供給装置101、102は、図3に例示した正弦波以外に、例えば矩形波を用いてモータ200を駆動することも可能である。  FIG. 3 shows currents obtained by plotting current values flowing in the U-phase, V-phase, and W-phase coils of the motor 200 when the power supply devices 101 and 102 are controlled according to the normal three-phase energization control. A waveform (sine wave) is illustrated. The horizontal axis in FIG. 3 represents the motor electrical angle (deg), and the vertical axis represents the current value (A). Ipk represents the maximum current value (peak current value) of each phase. Note that the power supply devices 101 and 102 can drive the motor 200 using, for example, a rectangular wave in addition to the sine wave illustrated in FIG.
表1は、図3の正弦波において電気角毎に各インバータの端子に流れる電流値を示す。表1は、具体的に、第1インバータ111とU相、V相およびW相それぞれのコイルの一端210との接続点に流れる電気角30°毎の電流値を示す。また、表1は、第2インバータ112とU相、V相およびW相それぞれのコイルの他端220との接続点に流れる、電気角30°毎の電流値を示す。ここで、第1インバータ111に対しては、モータ200の一端210から他端220に流れる電流方向を正の方向と定義する。また、第2インバータ112に対しては、モータ200の他端220から一端210に流れる電流方向を正の方向と定義する。従って、第1インバータ111の電流と第2インバータ112の電流との位相差は180°となる。表1において、電流値Iの大きさは〔(3)1/2/2〕*Ipkであり、電流値Iの大きさはIpk/2である。  Table 1 shows the value of current flowing through the terminals of each inverter for each electrical angle in the sine wave of FIG. Table 1 specifically shows a current value at every electrical angle of 30 ° flowing at a connection point between the first inverter 111 and one end 210 of each of the U-phase, V-phase, and W-phase coils. Table 1 shows current values for each electrical angle of 30 ° flowing through the connection points between the second inverter 112 and the other ends 220 of the U-phase, V-phase, and W-phase coils. Here, for the first inverter 111, the direction of current flowing from one end 210 to the other end 220 of the motor 200 is defined as a positive direction. For the second inverter 112, the direction of current flowing from the other end 220 of the motor 200 to the one end 210 is defined as a positive direction. Therefore, the phase difference between the current of the first inverter 111 and the current of the second inverter 112 is 180 °. In Table 1, the magnitude of the current value I 1 is [(3) 1/2 / 2] * I pk , and the magnitude of the current value I 2 is I pk / 2.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
電気角0°において、U相のコイルは電流が「0」となる。電気角0°において、V相のコイルには第2インバータ112から第1インバータ111に大きさIの電流が流れ、W相のコイルには第1インバータ111から第2インバータ112に大きさIの電流が流れる。  At an electrical angle of 0 °, the current of the U-phase coil is “0”. At an electrical angle of 0 °, a current of magnitude I 1 flows from the second inverter 112 to the first inverter 111 through the V-phase coil, and a magnitude I from the first inverter 111 to the second inverter 112 flows through the W-phase coil. 1 current flows.
電気角30°において、U相のコイルには第1インバータ111から第2インバータ112に大きさIの電流が流れ、V相のコイルには第2インバータ112から第1インバータ111に大きさIpkの電流が流れ、W相のコイルには第1インバータ111から第2インバータ112に大きさIの電流が流れる。  In the electrical angle 30 °, the coils of the U-phase current of magnitude I 2 flows through the second inverter 112 from the first inverter 111, the coil of the V phase magnitude I from the second inverter 112 to the first inverter 111 pk of current flows, the coil of the W-phase current having a magnitude I 2 flows from the first inverter 111 to the second inverter 112.
電気角60°において、U相のコイルには第1インバータ111から第2インバータ112に大きさIの電流が流れ、V相のコイルには第2インバータ112から第1インバータ111に大きさIの電流が流れる。電気角60°において、W相のコイルは電流が「0」となる。  At an electrical angle of 60 °, a current of magnitude I 1 flows from the first inverter 111 to the second inverter 112 through the U-phase coil, and a magnitude I from the second inverter 112 to the first inverter 111 flows through the V-phase coil. 1 current flows. At an electrical angle of 60 °, the current of the W-phase coil is “0”.
電気角90°において、U相のコイルには第1インバータ111から第2インバータ112に大きさIpkの電流が流れ、V相のコイルには第2インバータ112から第1インバータ111に大きさIの電流が流れ、W相のコイルには第2インバータ112から第1インバータ111に大きさIの電流が流れる。  At an electrical angle of 90 °, a current of magnitude I pk flows from the first inverter 111 to the second inverter 112 through the U-phase coil, and a magnitude I from the second inverter 112 to the first inverter 111 flows through the V-phase coil. second current flows to the coil of the W-phase current having a magnitude I 2 flows from the second inverter 112 to the first inverter 111.
電気角120°において、U相のコイルには第1インバータ111から第2インバータ112に大きさIの電流が流れ、W相のコイルには第2インバータ112から第1インバータ111に大きさIの電流が流れる。電気角120°において、V相のコイルは電流が「0」となる。  At an electrical angle of 120 °, a current of magnitude I 1 flows from the first inverter 111 to the second inverter 112 through the U-phase coil, and a magnitude I from the second inverter 112 to the first inverter 111 flows through the W-phase coil. 1 current flows. At an electrical angle of 120 °, the current of the V-phase coil is “0”.
電気角150°において、U相のコイルには第1インバータ111から第2インバータ112に大きさIの電流が流れ、V相のコイルには第1インバータ111から第2インバータ112に大きさIの電流が流れ、W相のコイルには第2インバータ112から第1インバータ111に大きさIpkの電流が流れる。  At an electrical angle of 150 °, a current of magnitude I 2 flows from the first inverter 111 to the second inverter 112 through the U-phase coil, and a magnitude I from the first inverter 111 to the second inverter 112 flows through the V-phase coil. 2 current flows, and a current of magnitude I pk flows from the second inverter 112 to the first inverter 111 in the W-phase coil.
電気角180°において、U相のコイルは電流が「0」となる。電気角180°において、V相のコイルには第1インバータ111から第2インバータ112に大きさIの電流が流れ、W相のコイルには第2インバータ112から第1インバータ111に大きさIの電流が流れる。  At an electrical angle of 180 °, the current of the U-phase coil is “0”. At an electrical angle of 180 °, a current of magnitude I 1 flows from the first inverter 111 to the second inverter 112 through the V-phase coil, and a magnitude I from the second inverter 112 to the first inverter 111 flows through the W-phase coil. 1 current flows.
電気角210°において、U相のコイルには第2インバータ112から第1インバータ111に大きさIの電流が流れ、V相のコイルには第1インバータ111から第2インバータ112に大きさIpkの電流が流れ、W相のコイルには第2インバータ112から第1インバータ111に大きさIの電流が流れる。  At an electrical angle of 210 °, a current of magnitude I 2 flows from the second inverter 112 to the first inverter 111 through the U-phase coil, and a magnitude I from the first inverter 111 to the second inverter 112 flows through the V-phase coil. pk of current flows, the coil of the W-phase current having a magnitude I 2 flows from the second inverter 112 to the first inverter 111.
電気角240°において、U相のコイルには第2インバータ112から第1インバータ111に大きさIの電流が流れ、V相のコイルには第1インバータ111から第2インバータ112に大きさIの電流が流れる。電気角240°において、W相のコイルは電流が「0」となる。  At an electrical angle of 240 °, a current of magnitude I 1 flows from the second inverter 112 to the first inverter 111 through the U-phase coil, and a magnitude I from the first inverter 111 to the second inverter 112 flows through the V-phase coil. 1 current flows. At an electrical angle of 240 °, the current of the W-phase coil is “0”.
電気角270°において、U相のコイルには第2インバータ112から第1インバータ111に大きさIpkの電流が流れ、V相のコイルには第1インバータ111から第2インバータ112に大きさIの電流が流れ、W相のコイルには第1インバータ111から第2インバータ112に大きさIの電流が流れる。  At an electrical angle of 270 °, a current of magnitude I pk flows from the second inverter 112 to the first inverter 111 through the U-phase coil, and a magnitude I from the first inverter 111 to the second inverter 112 flows through the V-phase coil. 2 flows, and a current of magnitude I 2 flows from the first inverter 111 to the second inverter 112 in the W-phase coil.
電気角300°において、U相のコイルには第2インバータ112から第1インバータ111に大きさIの電流が流れ、W相のコイルには第1インバータ111から第2インバータ112に大きさIの電流が流れる。電気角300°において、V相のコイルは電流が「0」となる。  At an electrical angle of 300 °, a current of magnitude I 1 flows from the second inverter 112 to the first inverter 111 through the U-phase coil, and a magnitude I from the first inverter 111 to the second inverter 112 flows through the W-phase coil. 1 current flows. At an electrical angle of 300 °, the current of the V-phase coil is “0”.
電気角330°において、U相のコイルには第2インバータ112から第1インバータ111に大きさIの電流が流れ、V相のコイルには第2インバータ112から第1インバータ111に大きさIの電流が流れ、W相のコイルには第1インバータ111から第2インバータ112に大きさIpkの電流が流れる。  At an electrical angle of 330 °, a current of magnitude I 2 flows from the second inverter 112 to the first inverter 111 through the U-phase coil, and a magnitude I from the second inverter 112 to the first inverter 111 flows through the V-phase coil. 2 current flows, and a current of magnitude I pk flows from the first inverter 111 to the second inverter 112 in the W-phase coil.
図3に示される電流波形において、電流の向きを考慮した三相のコイルに流れる電流の総和は電気角毎に「0」となる。ただし、電力供給装置101、102の回路構成によれば、三相のコイルに流れる電流は独立に制御される。このため、制御回路301、302は電流の総和が「0」以外の値となる制御を行うことも可能である。



(異常時の制御) 
In the current waveform shown in FIG. 3, the sum of the currents flowing through the three-phase coils in consideration of the current direction is “0” for each electrical angle. However, according to the circuit configuration of the power supply devices 101 and 102, the current flowing through the three-phase coil is controlled independently. Therefore, the control circuits 301 and 302 can also perform control such that the sum of currents is a value other than “0”.



(Control in case of abnormality)
電力供給装置100の異常時の制御方法の具体例を説明する。異常とは、2つの電源403、404と、2つのインバータ111、112と、2つの制御回路301、302の1つ以上に故障が生じた状態を指す。異常には、大きく分けて第1系統の異常と第2系統の異常とがある。また、各系統の異常としては、インバータ111、112の故障による異常と駆動系の異常がある。本明細書で「駆動系の異常」は、電源のみの異常、制御回路のみの異常、電源と制御回路との両方の異常、電源異常に伴い制御部も動作停止した状態などといった各種の異常状態を含む。また、インバータ111、112の故障は、インバータ回路内における断線、ショート、スイッチ素子の故障などを含む。  A specific example of a control method when the power supply apparatus 100 is abnormal will be described. Abnormality refers to a state in which one or more of the two power supplies 403 and 404, the two inverters 111 and 112, and the two control circuits 301 and 302 have failed. The abnormality is roughly classified into an abnormality of the first system and an abnormality of the second system. Further, the abnormality of each system includes an abnormality due to a failure of the inverters 111 and 112 and an abnormality of the drive system. In this specification, “drive system abnormality” refers to various abnormal conditions such as an abnormality in the power supply only, an abnormality in the control circuit only, an abnormality in both the power supply and the control circuit, and a state where the control unit is stopped due to the power supply abnormality. including. Further, the failure of the inverters 111 and 112 includes disconnection, short circuit, switch element failure, and the like in the inverter circuit. *
異常検知の一例として、制御回路301、302(主としてマイクロコントローラ341、342)は、電圧センサ411、412によって検出された電圧値を解析することで、2つの系統のうち自己が所属する系統に対する相手側の系統における異常を検知する。制御回路301、302は、自分の制御下にある電圧センサ411、412および中性点リレー回路121、122を介して相手側のインバータ111、112における電圧を確認することができる。具体的には、中性点リレー回路121、122はモータのコイルの一端210および他端220を介してインバータ111、112に接続され、電圧センサ411、412は一端210および他端220の電圧を検出する。  As an example of abnormality detection, the control circuits 301 and 302 (mainly the microcontrollers 341 and 342) analyze the voltage values detected by the voltage sensors 411 and 412 so that the counterpart to the system to which the self belongs. Detect abnormalities in the side system. The control circuits 301 and 302 can check the voltages at the counterpart inverters 111 and 112 via the voltage sensors 411 and 412 and the neutral point relay circuits 121 and 122 under their control. Specifically, the neutral point relay circuits 121 and 122 are connected to the inverters 111 and 112 via the one end 210 and the other end 220 of the motor coil, and the voltage sensors 411 and 412 To detect. *
異常検知の他の一例として、マイクロコントローラ341、342は、モータの実電流値と目標電流値との差などを解析することで異常を検知することも可能である。ただし、制御回路301、302は、これらの手法に限られず、異常検知に関する公知の手法を広く用いることができる。  As another example of abnormality detection, the microcontrollers 341 and 342 can also detect an abnormality by analyzing a difference between the actual current value of the motor and the target current value. However, the control circuits 301 and 302 are not limited to these methods, and widely known methods relating to abnormality detection can be used. *
制御回路301、302は、マイクロコントローラ341、342で異常を検知すると、電力供給装置101、102の制御を正常時の制御から異常時の制御に切替える。例えば、正常時から異常時に制御を切替えるタイミングは、異常が検知されてから10msec~30msec程度である。  When the microcontrollers 341 and 342 detect an abnormality, the control circuits 301 and 302 switch the control of the power supply apparatuses 101 and 102 from normal control to abnormal control. For example, the timing for switching control from normal to abnormal is about 10 msec to 30 msec after the abnormality is detected. *
制御回路301、302は、異常時には、相手側の系統の中性点リレー回路121、122をオンする。例えば第1の制御回路301が異常を検知した場合には、第1の制御回路301は第2中性点リレー回路121をオンする。  The control circuits 301 and 302 turn on the neutral point relay circuits 121 and 122 of the counterpart system when an abnormality occurs. For example, when the first control circuit 301 detects an abnormality, the first control circuit 301 turns on the second neutral point relay circuit 121. *
第2中性点リレー回路121がオンすると、モータ200の三相のコイルの他端220同士が接続される。その結果、モータ200のコイルはY結線される。そして、第2中性点リレー回路121の中のノードN2が中性点として機能することになる。「第2中性点リレー回路121がオンする」とは、第2中性点リレー回路121内の第2中性点リレー126、127および128が全てオンすることを意味する。この接続状態で、第1の制御回路301は、第1インバータ111を三相通電制御することでモータ200のコイルを通電することができる。  When the second neutral relay circuit 121 is turned on, the other ends 220 of the three-phase coils of the motor 200 are connected to each other. As a result, the coil of the motor 200 is Y-connected. Then, the node N2 in the second neutral point relay circuit 121 functions as a neutral point. “The second neutral point relay circuit 121 is turned on” means that the second neutral point relays 126, 127, and 128 in the second neutral point relay circuit 121 are all turned on. In this connected state, the first control circuit 301 can energize the coil of the motor 200 by performing three-phase energization control of the first inverter 111. *
第1の制御回路301が異常を検知した場合には、第2系統で異常が生じる。そして、第2系統の異常が駆動系の異常である場合、第2の制御回路302は、第2インバータ112に対する制御を失った状態(第2の制御回路302が失陥した状態)になる。このような場合でも、第1の制御回路301が第2中性点リレー回路121を制御するので第2系統側で中性点が形成される。そして、第1系統側のインバータ111でモータ200に対する電力供給が継続される。  When the first control circuit 301 detects an abnormality, an abnormality occurs in the second system. When the abnormality in the second system is an abnormality in the drive system, the second control circuit 302 is in a state where it has lost control of the second inverter 112 (a state where the second control circuit 302 has failed). Even in such a case, since the first control circuit 301 controls the second neutral point relay circuit 121, a neutral point is formed on the second system side. Then, power supply to the motor 200 is continued by the inverter 111 on the first system side. *
また、第2インバータ112は、第2の制御回路302の失陥時には、電源404からの電力に対し遮断状態となる。具体的には、第2インバータ112における全部のスイッチ素子が、制御信号のない通常時に自ずとオフする。このため、電源404から第2インバータ112には電流が流れ込まず電力損失が抑制される。  Further, the second inverter 112 is cut off from the power from the power source 404 when the second control circuit 302 fails. Specifically, all the switch elements in the second inverter 112 are automatically turned off at the normal time when there is no control signal. For this reason, current does not flow from the power supply 404 to the second inverter 112, and power loss is suppressed. *
第2の制御回路302が異常を検知した場合には、第2の制御回路302は第1中性点リレー回路122をオンする。なお、制御回路301、302は、異常時以外の特定の場合にも中性点スイッチ131、132をオンしてもよい。  When the second control circuit 302 detects an abnormality, the second control circuit 302 turns on the first neutral point relay circuit 122. Note that the control circuits 301 and 302 may turn on the neutral point switches 131 and 132 even in a specific case other than when an abnormality occurs. *
第1中性点リレー回路122がオンすると、モータ200の三相のコイルの一端210同士が接続される。その結果、モータ200のコイルはY結線される。そして、第1中性点リレー回路122の中のノードN1が中性点として機能することになる。「第1中性点リレー回路122がオンする」とは、第1中性点リレー回路122内の第1中性点リレー123、124および125が全てオンすることを意味する。この接続状態で、第2の制御回路302は、第2インバータ112を三相通電制御することでモータ200のコイルを通電することができる。  When the first neutral point relay circuit 122 is turned on, the one ends 210 of the three-phase coils of the motor 200 are connected to each other. As a result, the coil of the motor 200 is Y-connected. Then, the node N1 in the first neutral point relay circuit 122 functions as a neutral point. “The first neutral point relay circuit 122 is turned on” means that all the first neutral point relays 123, 124, and 125 in the first neutral point relay circuit 122 are turned on. In this connected state, the second control circuit 302 can energize the coil of the motor 200 by controlling the second inverter 112 for three-phase energization. *
第2の制御回路302が異常を検知した場合には、第1系統で異常が生じたことになる。第1系統の異常が駆動系の異常である場合、第1の制御回路301は、第1インバータ111を制御することができない状態(失陥した状態)になる。このような場合でも、第2の制御回路302が第1中性点リレー回路122を制御するので第1系統側で中性点が形成される。そして、第2系統側のインバータ112でモータ200に対する電力供給が継続される。  If the second control circuit 302 detects an abnormality, it means that an abnormality has occurred in the first system. When the abnormality in the first system is an abnormality in the drive system, the first control circuit 301 is in a state where it cannot control the first inverter 111 (failed state). Even in such a case, since the second control circuit 302 controls the first neutral point relay circuit 122, a neutral point is formed on the first system side. Then, power supply to the motor 200 is continued by the inverter 112 on the second system side. *
また、第1インバータ111は、第1の制御回路301の失陥時には、電源403からの電力に対し遮断状態となる。具体的には、第1インバータ111における全部のスイッチ素子が、制御信号のない通常時に自ずとオフする。このため、電源403から第1インバータ111には電流が流れ込まず電力損失が抑制される。  Further, the first inverter 111 is cut off from the power from the power supply 403 when the first control circuit 301 fails. Specifically, all the switch elements in the first inverter 111 are automatically turned off at the normal time when there is no control signal. For this reason, current does not flow from the power source 403 to the first inverter 111, and power loss is suppressed. *
異常時における具体的な三相通電制御として、制御回路301、302は、例えば図3に示される電流波形と同様の波形が得られるようなPWM制御によってインバータ111、112の各スイッチング素子におけるスイッチング動作を制御する。  As specific three-phase energization control at the time of abnormality, the control circuits 301 and 302 are configured to perform switching operations in the switching elements of the inverters 111 and 112, for example, by PWM control that can obtain a waveform similar to the current waveform shown in FIG. To control. *
表2は、図3に示される電流波形と同様の波形が得られるような三相通電制御で例えば第2インバータ112が制御された場合に第2インバータ140の端子に流れる電流値を電気角毎に例示する。表2は具体的に、第2インバータ112とU相、V相およびW相それぞれのコイルの他端220との接続点に流れる、電気角30°毎の電流値を示する。電流方向の定義は上述したとおりである。  Table 2 shows the values of the current flowing through the terminals of the second inverter 140 for each electrical angle when the second inverter 112 is controlled by, for example, three-phase energization control such that a waveform similar to the current waveform shown in FIG. 3 is obtained. It is illustrated in Table 2 specifically shows the current value at every electrical angle of 30 ° flowing through the connection point between the second inverter 112 and the other end 220 of each of the U-phase, V-phase, and W-phase coils. The definition of the current direction is as described above. *
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
例えば、電気角30°において、U相のコイルには第1インバータ111から第2インバータ112に大きさIの電流が流れ、V相のコイルには第2インバータ112から第1インバータ111に大きさIpkの電流が流れ、W相のコイルには第1インバータ111から第2インバータ112に大きさIの電流が流れる。電気角60°において、U相のコイルには第1インバータ111から第2インバータ112に大きさIの電流が流れ、V相のコイルには第2インバータ112から第1インバータ111に大きさIの電流が流れる。電気角60°において、W相のコイルは電流が「0」となる。中性点に流れ込む電流と中性点から流れ出る電流との総和は電気角毎に常に「0」になる。  For example, at an electrical angle of 30 °, a current of magnitude I 2 flows from the first inverter 111 to the second inverter 112 in the U-phase coil, and a magnitude of the current from the second inverter 112 to the first inverter 111 flows in the V-phase coil. the current flow I pk, the coil of the W-phase current having a magnitude I 2 flows from the first inverter 111 to the second inverter 112. At an electrical angle of 60 °, a current of magnitude I 1 flows from the first inverter 111 to the second inverter 112 through the U-phase coil, and a magnitude I from the second inverter 112 to the first inverter 111 flows through the V-phase coil. 1 current flows. At an electrical angle of 60 °, the current of the W-phase coil is “0”. The sum of the current flowing into the neutral point and the current flowing out of the neutral point is always “0” for each electrical angle.
表1および表2に示されるように、正常時および異常時の制御の間でモータ200に流れるモータ電流は電気角毎に同一である。このため、異常時の制御において、正常時の制御におけるモータのトルクが維持される。  As shown in Tables 1 and 2, the motor current flowing through the motor 200 during normal and abnormal control is the same for each electrical angle. For this reason, in the control at the time of abnormality, the motor torque in the control at the normal time is maintained. *
なお、異常時の異常箇所が、インバータ111、112内の1つのスイッチ素子である場合には、例えば特開2014-192950号公報に記載された制御手法によってインバータ111、112が中性点とされることが可能である。但し、この制御手法の実現に際しては、制御信号の電圧が正常時とは異なる特殊なゲートドライバが必要とされる。このような制御手法に対し、中性点リレー回路121、122による中性点化は異常時のみでオンされればよいため、制御信号のオン電圧は1つでよく、特殊なゲートドライバが不要である。また、故障を生じたスイッチ素子を含んだインバータ111、112の使用は避けることが望ましいので、この点でも中性点リレー回路121、122によって中性点が形成される手法の方が優れる。



(モータ駆動ユニット1000のハードウェア構成)

モータ駆動ユニット1000のハードウェア構成について説明する。図4はモータ駆動ユニット1000のハードウェア構成を模式的に示す図である。 
In addition, when the abnormal part at the time of abnormality is one switch element in the inverters 111 and 112, the inverters 111 and 112 are set to the neutral point by a control method described in, for example, Japanese Patent Application Laid-Open No. 2014-192950. Is possible. However, in order to realize this control method, a special gate driver whose control signal voltage is different from that in the normal state is required. In contrast to such a control method, neutralization by the neutral point relay circuits 121 and 122 only needs to be turned on when there is an abnormality, so only one on-voltage of the control signal is required and no special gate driver is required. It is. Further, since it is desirable to avoid the use of the inverters 111 and 112 including the switch element in which a failure has occurred, the method in which the neutral point is formed by the neutral point relay circuits 121 and 122 is superior also in this respect.



(Hardware configuration of motor drive unit 1000)

A hardware configuration of the motor drive unit 1000 will be described. FIG. 4 is a diagram schematically showing a hardware configuration of the motor drive unit 1000.
モータ駆動ユニット1000は、ハードウェア構成として、上述したモータ200と、第1実装基板1001と、第2実装基板1002と、ハウジング1003と、コネクタ1004、1005とを備える。  The motor drive unit 1000 includes the motor 200, the first mounting board 1001, the second mounting board 1002, the housing 1003, and the connectors 1004 and 1005 described above as hardware configurations. *
モータ200からは、コイルの一端210と他端220が突き出して実装基板1001、1002に向かって延びる。コイルの一端210と他端220との双方は、第1実装基板1001と第2実装基板1002との間を渡る。具体的には、コイルの一端210と他端220との双方が例えば第2実装基板1002に接続される。コイルの一端210と他端220との双方が、第2実装基板1002を貫通して第1実装基板1001に接続される。  From the motor 200, one end 210 and the other end 220 of the coil protrude and extend toward the mounting boards 1001 and 1002. Both the one end 210 and the other end 220 of the coil cross between the first mounting substrate 1001 and the second mounting substrate 1002. Specifically, both one end 210 and the other end 220 of the coil are connected to the second mounting substrate 1002, for example. Both one end 210 and the other end 220 of the coil pass through the second mounting substrate 1002 and are connected to the first mounting substrate 1001. *
第1実装基板1001と第2実装基板1002とは基板面同士が対向する。基板面が対向した方向に、モータ200の回転軸が延びる。第1実装基板1001と第2実装基板1002とモータ200は、ハウジング1003内に収容されることで互いの位置が固定される。  The first mounting substrate 1001 and the second mounting substrate 1002 face each other. The rotation axis of the motor 200 extends in the direction in which the substrate surfaces face each other. The first mounting substrate 1001, the second mounting substrate 1002, and the motor 200 are housed in the housing 1003 so that their positions are fixed. *
第1実装基板1001には、第1電源403からの電源コードが接続されるコネクタ1004が取り付けられる。第2実装基板1002には、第2電源404からの電源コードが接続されるコネクタ1005が取り付けられる。 図5は、第1実装基板1001および第2実装基板1002のハードウェア構成を模式的に示す図である。  A connector 1004 to which a power cord from the first power supply 403 is connected is attached to the first mounting board 1001. A connector 1005 to which a power cord from the second power supply 404 is connected is attached to the second mounting board 1002. FIG. 5 is a diagram schematically showing the hardware configuration of the first mounting board 1001 and the second mounting board 1002. *
第1実装基板1001には、第1インバータ111および第2中性点リレー回路121が実装される。また、第1実装基板1001とは別の第2実装基板1002には、第2インバータ112および第1中性点リレー回路122が実装される。第1系統と第2系統とに冗長化された各系統の回路が2枚の実装基板1001、1002に振り分けられるので、2枚の実装基板について回路規模が均された効率的な素子配置が可能となる。  A first inverter 111 and a second neutral relay circuit 121 are mounted on the first mounting board 1001. A second inverter 112 and a first neutral relay circuit 122 are mounted on a second mounting board 1002 that is different from the first mounting board 1001. Since the circuits of each system made redundant in the first system and the second system are distributed to the two mounting boards 1001 and 1002, an efficient element arrangement in which the circuit scale is equalized on the two mounting boards is possible. It becomes. *
第1実装基板1001には、第1の制御回路301も実装される。第2実装基板1002には、第2の制御回路302も実装される。各制御回路301、302が、各制御回路301、302による制御対象のインバータ111、112および中性点リレー回路121、122と同一の実装基板上に実装されるので制御のための配線が基板内に納まる。よって、効率的な素子配置が可能である。  A first control circuit 301 is also mounted on the first mounting substrate 1001. A second control circuit 302 is also mounted on the second mounting substrate 1002. Since the control circuits 301 and 302 are mounted on the same mounting board as the inverters 111 and 112 and the neutral point relay circuits 121 and 122 to be controlled by the control circuits 301 and 302, wiring for control is provided in the board. Fits in. Therefore, efficient element arrangement is possible. *
第1実装基板1001上の第1インバータ111と第2実装基板1002上の第1中性点リレー回路122は、第1実装基板1001と第2実装基板1002との対向方向で見た場合に互いに重なり合う位置に実装される。また、第1実装基板1001上の第2中性点リレー回路121と第2実装基板1002上の第2インバータ112は、第1実装基板1001と第2実装基板1002との対向方向で見た場合に互いに重なり合う位置に実装される。このような回路配置により、コイルの一端210および他端220と各回路とを接続する配線経路が簡素化された効率的な素子配置が可能となる。  The first inverter 111 on the first mounting board 1001 and the first neutral relay circuit 122 on the second mounting board 1002 are mutually opposite when viewed in the opposing direction of the first mounting board 1001 and the second mounting board 1002. It is mounted at the overlapping position. When the second neutral relay circuit 121 on the first mounting board 1001 and the second inverter 112 on the second mounting board 1002 are viewed in the opposite direction of the first mounting board 1001 and the second mounting board 1002. Are mounted at positions that overlap each other. Such a circuit arrangement enables an efficient element arrangement in which the wiring path connecting the one end 210 and the other end 220 of the coil and each circuit is simplified. *
第1実装基板1001と第2実装基板1002との対向方向で見た場合に、第1実装基板1001上の第1インバータ111と第2実装基板1002上の第2インバータ112とが互いに対称な配置となる。また、第1実装基板1001と第2実装基板1002との対向方向で見た場合に、第1実装基板1001上の第2中性点リレー回路121と第2実装基板1002上の第1中性点リレー回路122とが互いに対称な配置となる。このような対称な配置により、2枚の実装基板1001、1002について基板設計が共通化できる。 図6は、角度センサ321、322周辺のハードウェア構成を示す図である。  The first inverter 111 on the first mounting substrate 1001 and the second inverter 112 on the second mounting substrate 1002 are symmetrically arranged when viewed in the opposing direction of the first mounting substrate 1001 and the second mounting substrate 1002. It becomes. Further, when viewed in the opposing direction of the first mounting board 1001 and the second mounting board 1002, the second neutral point relay circuit 121 on the first mounting board 1001 and the first neutrality on the second mounting board 1002 are used. The point relay circuit 122 is symmetrically arranged. Such a symmetrical arrangement enables common board design for the two mounting boards 1001 and 1002. FIG. 6 is a diagram illustrating a hardware configuration around the angle sensors 321 and 322. *
第1実装基板1001上には第1の角度センサ321が実装され、第2実装基板1002上には第2の角度センサ322が実装される。これらの角度センサ321,322は磁気センサであり、2つの実装基板1001,1002の間には、センサマグネット323,324が設けられる。つまり、センサマグネット323,324を間に挟んだ両側に実装基板1001,1002を備え、各実装基板1001,1002には、センサマグネット323,324の回転角度を検知する磁気センサである角度センサ321,322が搭載される。このように角度センサ321,322が各実装基板1001,1002に備えられることで、角度センサ321,322の冗長性が実現される。また、2枚の実装基板1001,1002に2つの制御回路301、302が個別に搭載されることによる独立性がセンサ入力の観点からも担保される。  A first angle sensor 321 is mounted on the first mounting board 1001, and a second angle sensor 322 is mounted on the second mounting board 1002. These angle sensors 321 and 322 are magnetic sensors, and sensor magnets 323 and 324 are provided between the two mounting boards 1001 and 1002. That is, the mounting boards 1001 and 1002 are provided on both sides of the sensor magnets 323 and 324, and each mounting board 1001 and 1002 includes an angle sensor 321 that is a magnetic sensor for detecting the rotation angle of the sensor magnets 323 and 324. 322 is mounted. As described above, the angle sensors 321 and 322 are provided on the mounting boards 1001 and 1002, so that the redundancy of the angle sensors 321 and 322 is realized. Further, the independence due to the two control circuits 301 and 302 being individually mounted on the two mounting boards 1001 and 1002 is ensured from the viewpoint of sensor input. *
また、上述したように、第1実装基板1001には、モータ200に接続される第1インバータ111と、前記第1インバータ111を制御する第1制御回路301とが搭載され、第2実装基板1002には、モータ200に接続される第2インバータ112と、前記第2インバータ112を制御する第2制御回路302とが搭載される。このため、2系統の制御系と対応付けられた角度センサ321,322の冗長性が実現される。  Further, as described above, the first mounting board 1001 is mounted with the first inverter 111 connected to the motor 200 and the first control circuit 301 for controlling the first inverter 111, and the second mounting board 1002. The second inverter 112 connected to the motor 200 and the second control circuit 302 that controls the second inverter 112 are mounted. For this reason, the redundancy of the angle sensors 321 and 322 associated with the two control systems is realized. *
センサマグネット323,324はシャフト250に固定され、シャフト250は、モータ200から2枚の実装基板1001,1002側へと延び、モータ200のロータと共に回転する。 シャフト250に対するセンサマグネット323,324の固定としては、シャフトへの直接固定であってもよく、あるいは、他の部材を介した間接的な固定であってもよい。間接的な固定としては、例えば、シャフトに、ピン、ヨーク、プレートなどが取り付けられ、それらピン、ヨーク、プレートなどにセンサマグネット323,324が固定されてもよい。また、モータのロータと一体になったモータシャフトに、センサマグネット323,324の固定用のシャフトが接続されてもよい。 シャフト250は、2枚の実装基板1001,1002のうち、モータ200側に位置する実装基板1002を貫通する。シャフト250が2枚の実装基板1001,1002の少なくとも1つを貫通することで、シャフト250とセンサマグネット323,324との配置が容易となる。  The sensor magnets 323 and 324 are fixed to the shaft 250, and the shaft 250 extends from the motor 200 toward the two mounting boards 1001 and 1002, and rotates together with the rotor of the motor 200. The sensor magnets 323 and 324 may be fixed to the shaft 250 by direct fixing to the shaft or indirectly by other members. As the indirect fixing, for example, a pin, a yoke, a plate, or the like may be attached to the shaft, and the sensor magnets 323, 324 may be fixed to the pin, the yoke, the plate, or the like. Further, a shaft for fixing the sensor magnets 323 and 324 may be connected to a motor shaft integrated with the rotor of the motor. The shaft 250 penetrates the mounting board 1002 located on the motor 200 side of the two mounting boards 1001 and 1002. Since the shaft 250 penetrates at least one of the two mounting boards 1001 and 1002, the arrangement of the shaft 250 and the sensor magnets 323 and 324 becomes easy. *
本実施形態では2つのセンサマグネット323,324が備えられる。2つのセンサマグネット323,324のうち第1のセンサマグネット323は、シャフト250の先端に固定される。そして、2つの角度センサ321,322のうち第1の角度センサ321は、シャフト250の回転軸の延長上に位置する。言い換えると、第1の角度センサ321は、モータ200からシャフト250が延びる方向の延長上に位置する。このような位置に設けられた角度センサ321は、回転角度の検知において、シャフト250の偏心や振れによる影響が小さい。  In this embodiment, two sensor magnets 323 and 324 are provided. Of the two sensor magnets 323 and 324, the first sensor magnet 323 is fixed to the tip of the shaft 250. Of the two angle sensors 321 and 322, the first angle sensor 321 is positioned on the extension of the rotation axis of the shaft 250. In other words, the first angle sensor 321 is located on an extension in the direction in which the shaft 250 extends from the motor 200. The angle sensor 321 provided at such a position is less affected by the eccentricity or vibration of the shaft 250 in detecting the rotation angle. *
2つのセンサマグネット323,324のうち第2のセンサマグネット324は、シャフト250が貫通したリングマグネットであり、シャフト250が貫通しない場合に較べ、シャフト250に対するセンサマグネット324の固定が容易である。  Of the two sensor magnets 323 and 324, the second sensor magnet 324 is a ring magnet through which the shaft 250 penetrates, and the sensor magnet 324 can be easily fixed to the shaft 250 as compared with the case where the shaft 250 does not penetrate. *
2つのセンサマグネット323,324のうち第1のセンサマグネット323は、第1実装基板1001に搭載された第1の角度センサ321に向けて磁場を掛ける役目を負う。また、2つのセンサマグネット323,324のうち第2のセンサマグネット324は、第2実装基板1002に搭載された第2の角度センサ322に向けて磁場を掛ける役目を負う。  Of the two sensor magnets 323 and 324, the first sensor magnet 323 plays a role of applying a magnetic field toward the first angle sensor 321 mounted on the first mounting substrate 1001. Of the two sensor magnets 323 and 324, the second sensor magnet 324 plays a role of applying a magnetic field toward the second angle sensor 322 mounted on the second mounting substrate 1002. *
別の視点では、第1のセンサマグネット323は、シャフト250の回転軸の延長方向に磁場を掛け、第2のセンサマグネット324は、第1のセンサマグネット323とは逆方向に磁場を掛ける。ここで、各センサマグネット323,324が各角度センサ321,322に掛ける磁場の状態について説明する。図7は、第1のセンサマグネット323による磁場の状態を示す図である。  From another viewpoint, the first sensor magnet 323 applies a magnetic field in the extension direction of the rotation axis of the shaft 250, and the second sensor magnet 324 applies a magnetic field in the opposite direction to the first sensor magnet 323. Here, the state of the magnetic field applied to the angle sensors 321 and 322 by the sensor magnets 323 and 324 will be described. FIG. 7 is a diagram showing the state of the magnetic field by the first sensor magnet 323. *
第1のセンサマグネット323は、第1実装基板1001の基板面に対向してN極とS極が並んだ磁極面325を有する。この磁極面325は、シャフト250の回転軸の延びる方向を向いた磁極面である。このような磁極面325から発生する磁場327は、第1実装基板1001の基板面に向けて磁極面325から立ち上がり、磁極面325に近接した範囲に広がった状態となる。このように磁極面325が回転軸の延びる方向を向いた構成の場合、第1の角度センサ321の大面積化が可能である。  The first sensor magnet 323 has a magnetic pole surface 325 in which an N pole and an S pole are arranged facing the substrate surface of the first mounting substrate 1001. The magnetic pole surface 325 is a magnetic pole surface facing the direction in which the rotation axis of the shaft 250 extends. The magnetic field 327 generated from the magnetic pole surface 325 rises from the magnetic pole surface 325 toward the substrate surface of the first mounting substrate 1001 and spreads in a range close to the magnetic pole surface 325. When the magnetic pole surface 325 is thus oriented in the direction in which the rotation axis extends, the area of the first angle sensor 321 can be increased. *
第1の角度センサ321は、上述したように、シャフト250の回転軸の延長上に位置する。第1の角度センサ321が、シャフト250の回転軸の延びる方向から見て、少なくとも一部が第1のセンサマグネット323と重なる位置に搭載されることで、上述した磁場327の状態とも相まって、第1の角度センサ321は第1のセンサマグネット323に対して近接配置が可能となる。この結果、2枚の実装基板1001,1002の相互間隔が狭まり、装置の小型化が図られる。 図8は、第2のセンサマグネット324による磁場の状態を示す図である。  As described above, the first angle sensor 321 is located on the extension of the rotation axis of the shaft 250. The first angle sensor 321 is mounted at a position where at least a part of the first angle sensor 321 overlaps the first sensor magnet 323 when viewed from the direction in which the rotation axis of the shaft 250 extends. One angle sensor 321 can be disposed close to the first sensor magnet 323. As a result, the distance between the two mounting substrates 1001 and 1002 is reduced, and the apparatus can be miniaturized. FIG. 8 is a diagram showing the state of the magnetic field by the second sensor magnet 324. *
第2のセンサマグネット324は、シャフト250を間に挟んで互いに背を向けた2つの磁極面326を有する。それら2つの磁極面326は、シャフト250が延びる方向に沿って広がり、2つの磁極面326の一方がN極で他方がS極である。言い換えると、シャフト250の回転軸に沿って広がる磁極面326がシャフト250を挟んだ両側に位置し、極性の異なる磁極面326同士がシャフト250を挟んで互いに背を向ける。  The second sensor magnet 324 has two magnetic pole surfaces 326 facing each other with the shaft 250 interposed therebetween. The two magnetic pole surfaces 326 extend along the direction in which the shaft 250 extends, and one of the two magnetic pole surfaces 326 is an N pole and the other is an S pole. In other words, the magnetic pole surfaces 326 extending along the rotation axis of the shaft 250 are located on both sides of the shaft 250, and the magnetic pole surfaces 326 having different polarities face each other with the shaft 250 interposed therebetween. *
このような磁極面326から発生する磁場328は、第2実装基板1002の基板面に沿って広がった状態となる。第2の角度センサ322は、シャフト250の脇に位置するが、第2実装基板1002の基板面に沿って広がった磁場328により、第2の角度センサ322には、シャフト250に垂直な方向に近い向きに磁場が掛かることになる。 なお、図8には、一方がN極で他方がS極である2つの磁極が示されるが、磁極面の向きがシャフト中心から遠ざかる方向(いわゆる径方向)を向く構成は、磁極の多極化に適する。また、図8には、第2の角度センサ322として複数のセンサが示されるが、第2の角度センサ322は少なくとも1つ設けられればよい。



 (変形例)



 図9は、センサ構成が異なる変形例を示す図である。 
Such a magnetic field 328 generated from the magnetic pole surface 326 is spread along the substrate surface of the second mounting substrate 1002. The second angle sensor 322 is located on the side of the shaft 250, but the second angle sensor 322 has a direction perpendicular to the shaft 250 due to the magnetic field 328 spreading along the substrate surface of the second mounting substrate 1002. A magnetic field is applied in the near direction. FIG. 8 shows two magnetic poles, one of which is an N pole and the other is an S pole. However, the configuration in which the direction of the magnetic pole surface is away from the shaft center (so-called radial direction) is used to increase the number of magnetic poles. Suitable. 8 shows a plurality of sensors as the second angle sensor 322, it is sufficient that at least one second angle sensor 322 is provided.



(Modification)



FIG. 9 is a diagram illustrating a modification example in which the sensor configuration is different.
図9に示す変形例では、第1の角度センサ321がシャフト250の延長線上から外れた位置に設けられる。また、第1のセンサマグネット323は、シャフト250が貫通したリングマグネットである。つまり、この変形例では、第1の角度センサ321および第1のセンサマグネット323が、第2の角度センサ322および第2のセンサマグネット324と対称な構成となる。このため、冗長化された2つの角度センサ321,322における性能が同等となる。また、この変形例では、第1のセンサマグネット323および第2のセンサマグネット324の双方とも、シャフト250の先端ではなくシャフト250の途中に設けられる。 図10は、マグネット構成が異なる変形例を示す図である。  In the modification shown in FIG. 9, the first angle sensor 321 is provided at a position off the extension line of the shaft 250. The first sensor magnet 323 is a ring magnet through which the shaft 250 passes. That is, in this modification, the first angle sensor 321 and the first sensor magnet 323 are symmetrical with the second angle sensor 322 and the second sensor magnet 324. For this reason, the performance in the two angle sensors 321 and 322 made redundant becomes equivalent. In this modification, both the first sensor magnet 323 and the second sensor magnet 324 are provided not in the tip of the shaft 250 but in the middle of the shaft 250. FIG. 10 is a diagram showing a modification example in which the magnet configuration is different. *
図10に示す変形例では、シャフト250の途中に1つのセンサマグネット329が設けられ、この1つのセンサマグネット329から第1の実装基板1001側および第2の実装基板1002側の双方に磁場330が広がる。そして、2つの角度センサ321,322は、共通のセンサマグネット329からの磁場で回転角度を検知する。 この変形例では、センサマグネット329が1つであるため構造が簡素である。 図11は、ヒートシンクの配置が考慮された変形例を示す図である。  In the modification shown in FIG. 10, one sensor magnet 329 is provided in the middle of the shaft 250, and a magnetic field 330 is applied to both the first mounting board 1001 side and the second mounting board 1002 side from the one sensor magnet 329. spread. The two angle sensors 321 and 322 detect the rotation angle with the magnetic field from the common sensor magnet 329. In this modification, the structure is simple because there is one sensor magnet 329. FIG. 11 is a diagram showing a modification in which the arrangement of the heat sink is considered. *
図11に示す変形例では、2枚の実装基板1001,1002で共通に用いられる1つのヒートシンク1010が2枚の実装基板1001,1002の間に設けられる。シャフト250は、一方の実装基板1002を貫通すると共にヒートシンク1010も貫通する。  In the modification shown in FIG. 11, one heat sink 1010 that is commonly used by the two mounting boards 1001 and 1002 is provided between the two mounting boards 1001 and 1002. The shaft 250 penetrates one mounting substrate 1002 and also penetrates the heat sink 1010. *
第1の実装基板1001上の第1の角度センサ321は、第1の実装基板1001の、ヒートシンク1010に対向した表面に実装される。また、第2の実装基板1002上の第2の角度センサ322は、第2の実装基板1002の、ヒートシンク1010に対向した表面に実装される。  The first angle sensor 321 on the first mounting board 1001 is mounted on the surface of the first mounting board 1001 facing the heat sink 1010. The second angle sensor 322 on the second mounting substrate 1002 is mounted on the surface of the second mounting substrate 1002 facing the heat sink 1010. *
第1の角度センサ321に磁場を掛ける第1のセンサマグネット323は、第1の実装基板1001とヒートシンク1010との間でシャフト250に固定される。また、第2の角度センサ322に磁場を掛ける第2のセンサマグネット324は、第2の実装基板1002とヒートシンク1010との間でシャフト250に固定される。つまり、第1のセンサマグネット323と第2のセンサマグネット324は、ヒートシンク1010の両側に位置する。 このような構成により、ヒートシンク1010も含めた省スペースな配置が実現される。 図12は、基板構成が異なる変形例による実装基板のハードウェア構成を模式的に示す図である。  A first sensor magnet 323 that applies a magnetic field to the first angle sensor 321 is fixed to the shaft 250 between the first mounting substrate 1001 and the heat sink 1010. A second sensor magnet 324 that applies a magnetic field to the second angle sensor 322 is fixed to the shaft 250 between the second mounting substrate 1002 and the heat sink 1010. That is, the first sensor magnet 323 and the second sensor magnet 324 are located on both sides of the heat sink 1010. With such a configuration, a space-saving arrangement including the heat sink 1010 is realized. FIG. 12 is a diagram schematically showing a hardware configuration of a mounting board according to a modified example having a different board configuration. *
図12に示されたハードウェア構成では、第1実装基板1001と第2実装基板1002とに加えて第3実装基板1007が備えられる。第3実装基板1007は、第1実装基板1001と第2実装基板1002の間に位置する。そして、制御回路301、302が第3実装基板1007上に実装されるとともに、インバータ111、112および中性点リレー回路121、122は図5に示されたハードウェア構成と同様に第1実装基板1001と第2実装基板1002に実装される。このようなハードウェア構成により、パワー回路と制御回路とが分離されるので安全性の向上、および電源配線の簡素化が可能となる。 図13は、中性点リレー回路の構成が異なる変形例による回路構成を模式的に示す図である。  In the hardware configuration shown in FIG. 12, a third mounting board 1007 is provided in addition to the first mounting board 1001 and the second mounting board 1002. The third mounting substrate 1007 is located between the first mounting substrate 1001 and the second mounting substrate 1002. The control circuits 301 and 302 are mounted on the third mounting board 1007, and the inverters 111 and 112 and the neutral point relay circuits 121 and 122 are the first mounting board as in the hardware configuration shown in FIG. 1001 and the second mounting substrate 1002 are mounted. With such a hardware configuration, since the power circuit and the control circuit are separated, the safety can be improved and the power supply wiring can be simplified. FIG. 13 is a diagram schematically showing a circuit configuration according to a modified example in which the configuration of the neutral point relay circuit is different. *
図13に示された変形例では、第1中性点スイッチ132が、第1インバータ111における電源403側に位置する電源端E1Hと、第1インバータ111におけるグランド側に位置するグランド端E1Lとに接続される。第1中性点スイッチ132は、電源端E1Hとグランド端E1Lとの接続・非接続を切替える第1中性点リレー回路の一例として機能する。図13に示された変形例の第1中性点スイッチ132も、コイルに対する一端210側(第1系統側)と他端220側(第2系統側)とのうち一端210側における中性点の形成・非形成を切替えることが可能である。  In the modification shown in FIG. 13, the first neutral point switch 132 is connected to the power supply terminal E1H located on the power supply 403 side of the first inverter 111 and the ground terminal E1L located on the ground side of the first inverter 111. Connected. The first neutral point switch 132 functions as an example of a first neutral point relay circuit that switches connection / disconnection between the power supply terminal E1H and the ground terminal E1L. The first neutral point switch 132 of the modification shown in FIG. 13 also has a neutral point on the one end 210 side of the one end 210 side (first system side) and the other end 220 side (second system side) with respect to the coil. It is possible to switch between formation and non-formation. *
第1中性点リレー回路122における電源端E1Hとグランド端E1Lとの接続・非接続の切替えは、モータ200の相数(ここでは一例として3相)よりも少ない数のスイッチ素子によって実行可能であるため、従来の構造より回路規模は小さい。  The connection between the power supply terminal E1H and the ground terminal E1L in the first neutral point relay circuit 122 can be switched by a smaller number of switch elements than the number of phases of the motor 200 (here, three phases as an example). Therefore, the circuit scale is smaller than the conventional structure. *
具体的には、第1中性点スイッチ132は、第1インバータ111について3個のハイサイドスイッチ素子113H、114Hおよび115Hの電源側と3個のローサイドスイッチ素子113L、114Lおよび115Lのグランド側との接続・非接続を1素子で切替えることができる。  Specifically, the first neutral point switch 132 includes three power supply sides of the high- side switch elements 113H, 114H, and 115H and a ground side of the three low- side switch elements 113L, 114L, and 115L with respect to the first inverter 111. Can be switched with one element. *
第2中性点スイッチ131は、第2インバータ112における電源404側に位置する電源端E2Hと、第2インバータ112におけるグランド側に位置するグランド端E2Lとに接続される。第2中性点スイッチ131は、電源端E2Hとグランド端E2Lとの接続・非接続を切替える第2中性点リレー回路の一例として機能する。図13に示された変形例の第2中性点スイッチ131も、コイルに対する一端210側(第1系統側)と他端220側(第2系統側)とのうち他端220側における中性点の形成・非形成を切替えることが可能である。  The second neutral point switch 131 is connected to the power supply terminal E2H located on the power supply 404 side in the second inverter 112 and the ground terminal E2L located on the ground side in the second inverter 112. The second neutral point switch 131 functions as an example of a second neutral point relay circuit that switches connection / disconnection between the power supply terminal E2H and the ground terminal E2L. The second neutral point switch 131 of the modification shown in FIG. 13 is also neutral on the other end 220 side of the one end 210 side (first system side) and the other end 220 side (second system side) with respect to the coil. It is possible to switch the formation / non-formation of points. *
第2中性点リレー回路121における電源端E2Hとグランド端E2Lとの接続・非接続の切替えは、モータ200の相数(ここでは一例として3相)よりも少ない数のスイッチ素子によって実行可能であるため、従来の構造より回路規模は小さい。  Switching between connection / disconnection of the power supply terminal E2H and the ground terminal E2L in the second neutral point relay circuit 121 can be performed by a smaller number of switch elements than the number of phases of the motor 200 (here, three phases as an example). Therefore, the circuit scale is smaller than the conventional structure. *
具体的には、第2中性点スイッチ131は、第2インバータ112について3個のハイサイドスイッチ素子116H、117Hおよび118Hの電源側と3個のローサイドスイッチ素子116L、117Lおよび118Lのグランド側との接続・非接続を1素子で切替えることができる。  Specifically, the second neutral point switch 131 includes three high- side switch elements 116H, 117H, and 118H on the power source side and three low- side switch elements 116L, 117L, and 118L on the ground side of the second inverter 112. Can be switched with one element. *
図13に示された変形例では、コイル103、104とインバータ111、112との間には、分離スイッチ106、107が備えられる。分離スイッチ106、107は、電源403、404とインバータ111、112との接続・非接続を切替えることができる。制御回路301、302は、異常時には、相手側の系統について中性点スイッチ131、132をオンする。なお、制御回路301、302は、異常時以外の特定の場合にも中性点スイッチ131、132をオンしてもよい。また、分離スイッチ106、107は、制御信号が停止した状態では自ずとオフする。このため、制御回路301、302が動作不能となった場合などは、動作不能になった系統の分離スイッチ106、107がオフする。  In the modification shown in FIG. 13, separation switches 106 and 107 are provided between the coils 103 and 104 and the inverters 111 and 112. The separation switches 106 and 107 can switch connection / disconnection between the power supplies 403 and 404 and the inverters 111 and 112. When an abnormality occurs, the control circuits 301 and 302 turn on the neutral point switches 131 and 132 for the counterpart system. Note that the control circuits 301 and 302 may turn on the neutral point switches 131 and 132 even in a specific case other than when an abnormality occurs. The separation switches 106 and 107 are automatically turned off when the control signal is stopped. For this reason, when the control circuits 301 and 302 become inoperable, the separation switches 106 and 107 of the system incapable of operating are turned off. *
例えば第1の制御回路301が異常を検知した場合には、第1の制御回路301が第2中性点スイッチ131をオンする。また、第2系統側の分離スイッチ107は、第2の制御回路302がオフするか自ずとオフする。  For example, when the first control circuit 301 detects an abnormality, the first control circuit 301 turns on the second neutral point switch 131. In addition, the separation switch 107 on the second system side is turned off as a result of whether the second control circuit 302 is turned off. *
第2中性点スイッチ131がオンすると、第2インバータ112における電源端E2Hとグランド端E2Lとが接続される。その結果、3個のハイサイドスイッチ素子116H、117Hおよび118Hの電源側と3個のローサイドスイッチ素子116L、117Lおよび118Lのグランド側とが接続される。  When the second neutral point switch 131 is turned on, the power supply terminal E2H and the ground terminal E2L in the second inverter 112 are connected. As a result, the power supply sides of the three high side switch elements 116H, 117H and 118H and the ground side of the three low side switch elements 116L, 117L and 118L are connected. *
この接続状態になると、ハイサイドスイッチ素子およびローサイドスイッチ素子の状態がどのような状態であっても、ハイサイドスイッチ素子およびローサイドスイッチ素子の寄生ダイオードと第2中性点スイッチ131とを介して、モータ200の3相のコイルにおける他端220同士が接続される。従って、モータ200のコイルはY結線される。そして、第2中性点スイッチ131が中性点として機能することになる。中性点として機能する第2中性点スイッチ131は、第2系統側の分離スイッチ107がオフすることで電源404から絶縁される。 この接続状態で、第1の制御回路301は、第1インバータ111を三相通電制御することでモータ200のコイルを通電することができる。  In this connection state, regardless of the state of the high-side switch element and the low-side switch element, via the parasitic diodes of the high-side switch element and the low-side switch element and the second neutral point switch 131, The other ends 220 of the three-phase coils of the motor 200 are connected. Therefore, the coil of the motor 200 is Y-connected. Then, the second neutral point switch 131 functions as a neutral point. The second neutral point switch 131 functioning as a neutral point is insulated from the power supply 404 when the separation switch 107 on the second system side is turned off. In this connected state, the first control circuit 301 can energize the coil of the motor 200 by controlling the first inverter 111 with three-phase energization. *
第1の制御回路301が異常を検知した場合には、第2系統では異常が生じた状態である。そして、第2系統の異常が駆動系の異常である場合、第2の制御回路302は、第2インバータ112に対する制御を失った状態(第2の制御回路302が失陥した状態)になる。このような場合でも、第1の制御回路301が第2中性点スイッチ131を制御するので第2系統側で中性点が形成される。そして、第1系統側のインバータ111でモータ200に対する電力供給が継続される。  When the first control circuit 301 detects an abnormality, the second system is in an abnormal state. When the abnormality in the second system is an abnormality in the drive system, the second control circuit 302 is in a state where it has lost control of the second inverter 112 (a state where the second control circuit 302 has failed). Even in such a case, since the first control circuit 301 controls the second neutral point switch 131, a neutral point is formed on the second system side. Then, power supply to the motor 200 is continued by the inverter 111 on the first system side. *
図13に示された変形例で第2の制御回路302が異常を検知した場合には、第2の制御回路302は第1中性点スイッチ132をオンする。また第1系統側の分離スイッチ106は、第2の制御回路302がオフするか自ずとオフする。  When the second control circuit 302 detects an abnormality in the modification shown in FIG. 13, the second control circuit 302 turns on the first neutral point switch 132. Also, the separation switch 106 on the first system side is turned off, or the second control circuit 302 is turned off. *
第1中性点スイッチ132がオンすると、第1インバータ111における電源端E1Hとグランド端E1Lとが接続される。その結果、3個のハイサイドスイッチ素子113H、114Hおよび115Hの電源側と3個のローサイドスイッチ素子113L、114Lおよび115Lのグランド側とが接続される。  When the first neutral point switch 132 is turned on, the power supply terminal E1H and the ground terminal E1L of the first inverter 111 are connected. As a result, the power supply sides of the three high side switch elements 113H, 114H and 115H and the ground side of the three low side switch elements 113L, 114L and 115L are connected. *
この接続状態になると、ハイサイドスイッチ素子およびローサイドスイッチ素子の状態がどのような状態であっても、ハイサイドスイッチ素子およびローサイドスイッチ素子の寄生ダイオードと第1中性点スイッチ132とを介して、モータ200の3相のコイルにおける一端210同士が接続される。従って、モータ200のコイルはY結線される。そして、第1中性点スイッチ132が中性点として機能することになる。中性点として機能する第1中性点スイッチ132は、第1系統側の分離スイッチ106がオフすることで電源403から絶縁される。  In this connection state, regardless of the state of the high-side switch element and the low-side switch element, the parasitic diodes of the high-side switch element and the low-side switch element and the first neutral point switch 132 are used. One ends 210 of the three-phase coils of the motor 200 are connected to each other. Therefore, the coil of the motor 200 is Y-connected. Then, the first neutral point switch 132 functions as a neutral point. The first neutral point switch 132 that functions as a neutral point is insulated from the power source 403 when the separation switch 106 on the first system side is turned off. *
第2の制御回路302が異常を検知した場合には、第1系統では異常が生じた状態である。そして、第1系統の異常が駆動系の異常である場合、第1の制御回路301は、第1インバータ111に対する制御を失った状態(第1の制御回路301が失陥した状態)になる。このような場合でも、第2の制御回路302が第1中性点スイッチ132を制御するので第1系統側で中性点が形成される。そして、第2系統側のインバータ112でモータ200に対する電力供給が継続される。 この接続状態で、第2の制御回路302は、第2インバータ112を三相通電制御することでモータ200のコイルを通電することができる。 図14は、中性点リレー回路の構成が異なる別の変形例による回路構成を模式的に示す図である。  When the second control circuit 302 detects an abnormality, the first system is in an abnormal state. When the abnormality in the first system is an abnormality in the drive system, the first control circuit 301 is in a state where it has lost control over the first inverter 111 (the state where the first control circuit 301 has failed). Even in such a case, since the second control circuit 302 controls the first neutral point switch 132, a neutral point is formed on the first system side. Then, power supply to the motor 200 is continued by the inverter 112 on the second system side. In this connected state, the second control circuit 302 can energize the coil of the motor 200 by controlling the second inverter 112 by three-phase energization. FIG. 14 is a diagram schematically showing a circuit configuration according to another modified example in which the configuration of the neutral point relay circuit is different. *
図14に示された変形例では、第1中性点リレー回路122は、第1インバータ111における電源403側に位置する電源端E1Hと、第1インバータ111におけるグランド側に位置するグランド端E1Lとに接続される。第1中性点リレー回路122は、電源端E1Hとグランド端E1Lとの接続・非接続を切替えることができる。 第1中性点リレー回路122は、第1中性点リレー123とバックアップリレー124とを備える。  In the modification shown in FIG. 14, the first neutral point relay circuit 122 includes a power supply terminal E1H located on the power supply 403 side in the first inverter 111 and a ground terminal E1L located on the ground side in the first inverter 111. Connected to. The first neutral point relay circuit 122 can switch connection / disconnection between the power supply terminal E1H and the ground terminal E1L. The first neutral point relay circuit 122 includes a first neutral point relay 123 and a backup relay 124. *
第1中性点リレー123は、第1インバータ111について3個のハイサイドスイッチ素子113H、114Hおよび115Hの電源側と3個のローサイドスイッチ素子113L、114Lおよび115Lのグランド側との接続・非接続を1素子で切替えることができる。  The first neutral point relay 123 is connected to or disconnected from the power supply side of the three high- side switch elements 113H, 114H and 115H and the ground side of the three low- side switch elements 113L, 114L and 115L with respect to the first inverter 111. Can be switched by one element. *
バックアップリレー124は、第1中性点リレー123に対して並列に接続される。第1中性点リレー123のオフ故障時にはバックアップリレー124によってスイッチ動作がバックアップされるので第1中性点リレー回路122は正常な動作を継続することができる。  The backup relay 124 is connected in parallel to the first neutral point relay 123. Since the switch operation is backed up by the backup relay 124 when the first neutral point relay 123 is in an OFF failure, the first neutral point relay circuit 122 can continue normal operation. *
第1インバータ111および第1中性点リレー回路122の各回路におけるハイサイドスイッチ素子113H、114H、115H、ローサイドスイッチ素子113L、114L、115Lおよび第1中性点リレー123は、還流ダイオードを有する半導体スイッチ素子である。そして、第1インバータ111と第1中性点リレ
ー123とでは還流ダイオードが逆方向を向く。このような向きで接続される第1中性点リレー123を備えた第1中性点リレー回路122は、中性点の形成・非形成を切替えることができる。


The high- side switch elements 113H, 114H, and 115H, the low- side switch elements 113L, 114L, and 115L, and the first neutral-point relay 123 in each circuit of the first inverter 111 and the first neutral point relay circuit 122 are semiconductors having a freewheeling diode. It is a switch element. And in the 1st inverter 111 and the 1st neutral point relay 123, a free-wheeling diode turns to a reverse direction. The first neutral point relay circuit 122 including the first neutral point relay 123 connected in such a direction can switch the formation / non-formation of the neutral point.


第2中性点リレー回路121は、第2インバータ112における電源404側に位置する電源端E2Hと、第2インバータ112におけるグランド側に位置するグランド端E2Lとに接続される。第2中性点リレー回路121は、電源端E2Hとグランド端E2Lとの接続・非接続を切替えることができる。 第2中性点リレー回路121は、第2中性点リレー125とバックアップリレー126とを備える。  The second neutral point relay circuit 121 is connected to the power supply terminal E2H located on the power supply 404 side in the second inverter 112 and the ground terminal E2L located on the ground side in the second inverter 112. The second neutral point relay circuit 121 can switch connection / disconnection between the power supply terminal E2H and the ground terminal E2L. The second neutral point relay circuit 121 includes a second neutral point relay 125 and a backup relay 126. *
第2中性点リレー125は、第2インバータ112について3個のハイサイドスイッチ素子116H、117Hおよび118Hの電源側と3個のローサイドスイッチ素子116L、117Lおよび118Lのグランド側との接続・非接続を1素子で切替えることができる。  The second neutral point relay 125 is connected to or disconnected from the power supply side of the three high side switch elements 116H, 117H and 118H and the ground side of the three low side switch elements 116L, 117L and 118L with respect to the second inverter 112. Can be switched by one element. *
バックアップリレー126は、第2中性点リレー125に対して並列に接続される。第2中性点リレー125のオフ故障時にはバックアップリレー126によってスイッチ動作がバックアップされるので第2中性点リレー回路121は正常な動作を継続することができる。  The backup relay 126 is connected in parallel to the second neutral point relay 125. Since the switch operation is backed up by the backup relay 126 when the second neutral point relay 125 is in an off failure, the second neutral point relay circuit 121 can continue normal operation. *
第2インバータ112および第2中性点リレー回路121の各回路におけるハイサイドスイッチ素子116H、117H、118H、ローサイドスイッチ素子116L、117L、118Lおよび第2中性点リレー125は、還流ダイオードを有する半導体スイッチ素子である。そして、第2インバータ112と第2中性点リレー125とでは還流ダイオードが逆方向を向く。このような向きで接続される第2中性点リレー125を備えた第2中性点リレー回路121は、中性点の形成・非形成を切替えることができる。 図15は、中性点リレー回路の構成が異なる更に別の変形例による回路構成を模式的に示す図である。  The high- side switch elements 116H, 117H, and 118H, the low- side switch elements 116L, 117L, and 118L, and the second neutral-point relay 125 in each circuit of the second inverter 112 and the second neutral point relay circuit 121 are semiconductors having a freewheeling diode. It is a switch element. And in the 2nd inverter 112 and the 2nd neutral point relay 125, a free-wheeling diode turns to a reverse direction. The second neutral point relay circuit 121 including the second neutral point relay 125 connected in such a direction can switch the formation / non-formation of the neutral point. FIG. 15 is a diagram schematically showing a circuit configuration according to still another modified example in which the configuration of the neutral point relay circuit is different. *
図15に示された変形例では、バックアップリレーが中性点リレーに対して直列に接続される。具体的には、第1中性点リレー回路122のバックアップリレー124は、第1中性点リレー123と並列に電源端E1Hとグランド端E1Lに接続される。また、第2中性点リレー回路121のバックアップリレー126は、第2中性点リレー125と並列に電源端E2Hとグランド端E2Lに接続される。  In the modification shown in FIG. 15, the backup relay is connected in series to the neutral point relay. Specifically, the backup relay 124 of the first neutral point relay circuit 122 is connected to the power supply terminal E1H and the ground terminal E1L in parallel with the first neutral point relay 123. The backup relay 126 of the second neutral point relay circuit 121 is connected to the power supply terminal E2H and the ground terminal E2L in parallel with the second neutral point relay 125. *
中性点リレー123、125のオン故障時にはバックアップリレー124、126によって電流が遮断される。なお、中性点リレー123、125の故障時に中性点の形成が必要になった場合は、インバータ111、112の制御によってインバータ111、112内に中性点が形成される。 図16は、図3に示された変形例に対する別の変形例を示す図である。  When the neutral relays 123 and 125 are turned on, the backup relays 124 and 126 cut off the current. In addition, when the neutral point needs to be formed when the neutral point relays 123 and 125 fail, the neutral point is formed in the inverters 111 and 112 by the control of the inverters 111 and 112. FIG. 16 is a diagram showing another modification example of the modification example shown in FIG. *
図16に示された変形例では、2つの電源403、404は互いに独立であるがグランドが共通となる。このように電源403、404のグランドが共通する場合には、インバータ111、112とグランドとの間に分離スイッチ108、109が備えられる。そして、上述した異常時には、異常が生じた系統の分離スイッチ108、109がオフされて、中性点からグランドへの電流経路が遮断される。このような遮断により、異常が生じた系統での中性点が形成され、正常な系統による三相通電制御が可能となる。  In the modification shown in FIG. 16, the two power supplies 403 and 404 are independent of each other but have a common ground. Thus, when the grounds of the power supplies 403 and 404 are common, the separation switches 108 and 109 are provided between the inverters 111 and 112 and the ground. At the time of the abnormality described above, the separation switches 108 and 109 of the system in which the abnormality has occurred are turned off, and the current path from the neutral point to the ground is interrupted. By such interruption, a neutral point is formed in the system in which an abnormality has occurred, and three-phase energization control by a normal system becomes possible. *
図16では、一例として、第1インバータ111用の第1電源403および第2インバータ112用の第2電源404が示される。インバータ111、112とグランドとの間に分離スイッチ108、109が備えられるので、モータ駆動ユニット1000は、第1インバータ111および第2インバータ112に共通の単一電源に接続されてもよい。



(変形例におけるモータ駆動ユニット1000のハードウェア構成)



 図7に示された変形例におけるモータ駆動ユニット1000のハードウェア構成について説明する。図17は、図13に示された変形例におけるモータ駆動ユニット1000のハードウェア構成を模式的に示す図である。 
In FIG. 16, as an example, a first power supply 403 for the first inverter 111 and a second power supply 404 for the second inverter 112 are shown. Since the separation switches 108 and 109 are provided between the inverters 111 and 112 and the ground, the motor drive unit 1000 may be connected to a single power source common to the first inverter 111 and the second inverter 112.



(Hardware configuration of motor drive unit 1000 in the modified example)



A hardware configuration of the motor drive unit 1000 in the modification shown in FIG. 7 will be described. FIG. 17 is a diagram schematically showing a hardware configuration of motor drive unit 1000 in the modification shown in FIG.
図17に示されたハードウェア構成では、モータ200から、コイルの一端210と他端220が突き出して実装基板1001、1002に向かって延びる。コイルの一端210は、第2実装基板1001に接続されるとともに第2実装基板1001を貫通して第1実装基板1001に接続される。また、コイルの他端220は、第2実装基板1001のみに接続される。  In the hardware configuration shown in FIG. 17, one end 210 and the other end 220 of the coil protrude from the motor 200 and extend toward the mounting boards 1001 and 1002. One end 210 of the coil is connected to the second mounting substrate 1001 and penetrates through the second mounting substrate 1001 and is connected to the first mounting substrate 1001. Further, the other end 220 of the coil is connected only to the second mounting substrate 1001. *
第1実装基板1001と第2実装基板1002とは基板面が互いに対向する。基板面が対向した方向に、モータ200の回転軸が延びる。第1実装基板1001と第2実装基板1002とモータ200は、ハウジング1003内に収容されることで互いの位置が固定される。  The first mounting substrate 1001 and the second mounting substrate 1002 face each other. The rotation axis of the motor 200 extends in the direction in which the substrate surfaces face each other. The first mounting substrate 1001, the second mounting substrate 1002, and the motor 200 are housed in the housing 1003 so that their positions are fixed. *
第1実装基板1001には、第1電源403からの電源コードが接続されるコネクタ1004が取り付けられる。第2実装基板1002には、第2電源404からの電源コードが接続されるコネクタ1005が取り付けられる。図18は、図17に示されたハードウェア構成における第1実装基板1001および第2実装基板1002のハードウェア構成を模式的に示す図である。  A connector 1004 to which a power cord from the first power supply 403 is connected is attached to the first mounting board 1001. A connector 1005 to which a power cord from the second power supply 404 is connected is attached to the second mounting board 1002. FIG. 18 is a diagram schematically showing the hardware configuration of the first mounting board 1001 and the second mounting board 1002 in the hardware configuration shown in FIG. *
第1実装基板1001には、第1インバータ111および第2中性点スイッチ131が実装される。また、第1実装基板1001とは別の第2実装基板1002には、第2インバータ112および第1中性点スイッチ132が実装される。第1系統と第2系統とに冗長化された各系統の回路が2枚の実装基板に振り分けられるので、2枚の実装基板について回路規模が同程度の効率的な素子配置が可能となる。  A first inverter 111 and a second neutral point switch 131 are mounted on the first mounting board 1001. Further, the second inverter 112 and the first neutral point switch 132 are mounted on a second mounting board 1002 different from the first mounting board 1001. Since the circuits of each system made redundant in the first system and the second system are distributed to the two mounting boards, efficient element arrangement with the same circuit scale is possible for the two mounting boards. *
図18に示されたハードウェア構成では、DCバー230、240が備えられる。DCバー230は、第1実装基板1001と第2実装基板1002との間を渡り、第1中性点スイッチ132に接続される。DCバー240は、第1実装基板1001と第2実装基板1002との間を渡り、第2中性点スイッチ131に接続される。なお、DCバーに替えてバスバー、ピンなどが備えられてもよい。  In the hardware configuration shown in FIG. 18, DC bars 230 and 240 are provided. The DC bar 230 passes between the first mounting board 1001 and the second mounting board 1002 and is connected to the first neutral point switch 132. The DC bar 240 passes between the first mounting board 1001 and the second mounting board 1002 and is connected to the second neutral point switch 131. A bus bar, a pin, or the like may be provided instead of the DC bar. *
第1実装基板1001には、第1の制御回路301も実装される。第2実装基板1002には、第2の制御回路302も実装される。各制御回路301、302が、各制御回路301、302による制御対象のインバータ111、112および中性点スイッチ131、132と同一の実装基板上に実装されるので制御のための配線が同一基板内に納まる。よって効率的な素子配置が可能となる。図19は、図18とは基板構成が異なる変形例を示す図である。  A first control circuit 301 is also mounted on the first mounting substrate 1001. A second control circuit 302 is also mounted on the second mounting substrate 1002. Since the control circuits 301 and 302 are mounted on the same mounting board as the inverters 111 and 112 and the neutral point switches 131 and 132 to be controlled by the control circuits 301 and 302, the wiring for control is on the same board. Fits in. Therefore, efficient element arrangement is possible. FIG. 19 is a diagram showing a modification example in which the substrate configuration is different from that in FIG. *
図19に示された基板構成では、第1実装基板1001と第2実装基板1002とに加えて第3実装基板1007が備えられる。第3実装基板1007は、第1実装基板1001と第2実装基板1002の間に位置する。制御回路301、302が第3実装基板1007上に実装されるとともに、インバータ111、112および中性点スイッチ131、132は図18に示されたハードウェア構成と同様に第1実装基板1001と第2実装基板1002に実装される。このようなハードウェア構成により、パワー回路と制御回路とが分離されるので安全性の向上および電源配線の簡素化が可能となる。



(パワーステアリング装置の実施形態)


In the substrate configuration shown in FIG. 19, a third mounting substrate 1007 is provided in addition to the first mounting substrate 1001 and the second mounting substrate 1002. The third mounting substrate 1007 is located between the first mounting substrate 1001 and the second mounting substrate 1002. The control circuits 301 and 302 are mounted on the third mounting board 1007, and the inverters 111 and 112 and the neutral point switches 131 and 132 are connected to the first mounting board 1001 and the first mounting board 1001 as in the hardware configuration shown in FIG. 2 mounted on a mounting substrate 1002. With such a hardware configuration, since the power circuit and the control circuit are separated, the safety can be improved and the power supply wiring can be simplified.



(Embodiment of power steering device)


自動車等の車両は一般的に、パワーステアリング装置を備える。パワーステアリング装置は、運転者がステアリングハンドルを操作することによって発生するステアリング系の操舵トルクを補助するための補助トルクを生成する。補助トルクは、補助トルク機構によって生成され、運転者の操作の負担を軽減することができる。例えば、補助トルク機構は、操舵トルクセンサ、ECU、モータおよび減速機構などから構成される。操舵トルクセンサは、ステアリング系における操舵トルクを検出する。ECUは、操舵トルクセンサの検出信号に基づいて駆動信号を生成する。モータは、駆動信号に基づいて操舵トルクに応じた補助トルクを生成し、減速機構を介してステアリング系に補助トルクを伝達する。  A vehicle such as an automobile generally includes a power steering device. The power steering device generates an auxiliary torque for assisting a steering torque of a steering system that is generated when a driver operates a steering wheel. The auxiliary torque is generated by the auxiliary torque mechanism, and the burden on the operation of the driver can be reduced. For example, the auxiliary torque mechanism includes a steering torque sensor, an ECU, a motor, a speed reduction mechanism, and the like. The steering torque sensor detects steering torque in the steering system. The ECU generates a drive signal based on the detection signal of the steering torque sensor. The motor generates auxiliary torque corresponding to the steering torque based on the drive signal, and transmits the auxiliary torque to the steering system via the speed reduction mechanism. *
上記実施形態のモータ駆動ユニット1000は、パワーステアリング装置に好適に利用される。図20は、本実施形態によるパワーステアリング装置2000の構成を模式的に示す図である。 電動パワーステアリング装置2000は、ステアリング系520および補助トルク機構540を備える。  The motor drive unit 1000 of the above embodiment is suitably used for a power steering apparatus. FIG. 20 is a diagram schematically showing the configuration of the power steering apparatus 2000 according to the present embodiment. The electric power steering device 2000 includes a steering system 520 and an auxiliary torque mechanism 540. *
ステアリング系520は、例えば、ステアリングハンドル521、ステアリングシャフト522(「ステアリングコラム」とも称される。)、自在軸継手523A、523B、および回転軸524(「ピニオン軸」または「入力軸」とも称される。)を備える。  The steering system 520 is also referred to as, for example, a steering handle 521, a steering shaft 522 (also referred to as “steering column”), universal joints 523A, 523B, and a rotating shaft 524 (“pinion shaft” or “input shaft”). Provided.) *
また、ステアリング系520は、例えば、ラックアンドピニオン機構525、ラック軸526、左右のボールジョイント552A、552B、タイロッド527A、527B、ナックル528A、528B、および左右の操舵車輪(例えば左右の前輪)529A、529Bを備える。  The steering system 520 includes, for example, a rack and pinion mechanism 525, a rack shaft 526, left and right ball joints 552A and 552B, tie rods 527A and 527B, knuckle 528A and 528B, and left and right steering wheels (for example, left and right front wheels) 529A, 529B. *
ステアリングハンドル521は、ステアリングシャフト522と自在軸継手523A、523Bとを介して回転軸524に連結される。回転軸524にはラックアンドピニオン機構525を介してラック軸526が連結される。ラックアンドピニオン機構525は、回転軸524に設けられたピニオン531と、ラック軸526に設けられたラック532とを有する。ラック軸526の右端には、ボールジョイント552A、タイロッド527Aおよびナックル528Aをこの順番で介して右の操舵車輪529Aが連結される。右側と同様に、ラック軸526の左端には、ボールジョイント552B、タイロッド527Bおよびナックル528Bをこの順番で介して左の操舵車輪529Bが連結される。ここで、右側および左側は、座席に座った運転者から見た右側および左側にそれぞれ一致する。  The steering handle 521 is connected to the rotating shaft 524 via a steering shaft 522 and universal shaft joints 523A and 523B. A rack shaft 526 is connected to the rotation shaft 524 via a rack and pinion mechanism 525. The rack and pinion mechanism 525 includes a pinion 531 provided on the rotation shaft 524 and a rack 532 provided on the rack shaft 526. The right steering wheel 529A is connected to the right end of the rack shaft 526 through a ball joint 552A, a tie rod 527A, and a knuckle 528A in this order. Similarly to the right side, the left steering wheel 529B is connected to the left end of the rack shaft 526 via a ball joint 552B, a tie rod 527B, and a knuckle 528B in this order. Here, the right side and the left side correspond to the right side and the left side as viewed from the driver sitting on the seat, respectively. *
ステアリング系520によれば、運転者がステアリングハンドル521を操作することによって操舵トルクが発生し、ラックアンドピニオン機構525を介して左右の操舵車輪529A、529Bに伝わる。これにより、運転者は左右の操舵車輪529A、529Bを操作することができる。  According to the steering system 520, a steering torque is generated by the driver operating the steering handle 521, and is transmitted to the left and right steering wheels 529A and 529B via the rack and pinion mechanism 525. Accordingly, the driver can operate the left and right steering wheels 529A and 529B. *
補助トルク機構540は、例えば、操舵トルクセンサ541、ECU542、モータ543、減速機構544および電力供給装置545を備える。補助トルク機構540は、ステアリングハンドル521から左右の操舵車輪529A、529Bに至るステアリング系520に補助トルクを与える。なお、補助トルクは「付加トルク」と称されることがある。  The auxiliary torque mechanism 540 includes, for example, a steering torque sensor 541, an ECU 542, a motor 543, a speed reduction mechanism 544, and a power supply device 545. The auxiliary torque mechanism 540 gives auxiliary torque to the steering system 520 from the steering handle 521 to the left and right steering wheels 529A and 529B. The auxiliary torque may be referred to as “additional torque”. *
ECU542としては、例えば図1などに示された制御回路301、302が用いられる。電力供給装置545としては、例えば図1などに示された電力供給装置101、102が用いられる。また、モータ543としては、例えば図1などに示されたモータ200が用いられる。ECU542、モータ543および電力供給装置545が、一般的に「機電一体型モータ」と称されるユニットを構成する場合には、当該ユニットとしては、例えば図4あるいは図17に示されたハードウェア構成のモータ駆動ユニット1000が好適に用いられる。図20に示された各要素のうち、ECU542、モータ543および電力供給装置545を除いた要素で構成された機構は、モータ543によって駆動されるパワーステアリング機構の一例に相当する。  As the ECU 542, for example, control circuits 301 and 302 shown in FIG. As the power supply device 545, for example, the power supply devices 101 and 102 shown in FIG. As the motor 543, for example, the motor 200 shown in FIG. When the ECU 542, the motor 543, and the power supply device 545 constitute a unit generally referred to as a “mechanical and integrated motor”, the hardware configuration shown in FIG. 4 or FIG. The motor drive unit 1000 is preferably used. A mechanism including elements other than the ECU 542, the motor 543, and the power supply device 545 among the elements illustrated in FIG. 20 corresponds to an example of a power steering mechanism driven by the motor 543. *
操舵トルクセンサ541は、ステアリングハンドル521によって付与されたステアリング系520の操舵トルクを検出する。ECU542は、操舵トルクセンサ541からの検出信号(以下「トルク信号」と表記する。)に基づいてモータ543を駆動するための駆動信号を生成する。モータ543は、操舵トルクに応じた補助トルクを駆動信号に基づいて発生する。補助トルクは、減速機構544を介してステアリング系520の回転軸524に伝達される。減速機構544は例えばウォームギヤ機構である。補助トルクはさらに、回転軸524からラックアンドピニオン機構525に伝達される。  The steering torque sensor 541 detects the steering torque of the steering system 520 applied by the steering handle 521. The ECU 542 generates a drive signal for driving the motor 543 based on a detection signal from the steering torque sensor 541 (hereinafter referred to as “torque signal”). The motor 543 generates an auxiliary torque corresponding to the steering torque based on the drive signal. The auxiliary torque is transmitted to the rotating shaft 524 of the steering system 520 via the speed reduction mechanism 544. The speed reduction mechanism 544 is, for example, a worm gear mechanism. The auxiliary torque is further transmitted from the rotating shaft 524 to the rack and pinion mechanism 525. *
パワーステアリング装置2000は、補助トルクがステアリング系520に付与される箇所によって、ピニオンアシスト型、ラックアシスト型、およびコラムアシスト型等に分類される。図14には、ピニオンアシスト型のパワーステアリング装置2000が示される。ただし、パワーステアリング装置2000は、ラックアシスト型、コラムアシスト型等にも適用される。  The power steering device 2000 is classified into a pinion assist type, a rack assist type, a column assist type, and the like depending on a place where an assist torque is applied to the steering system 520. FIG. 14 shows a pinion assist type power steering apparatus 2000. However, the power steering device 2000 is also applied to a rack assist type, a column assist type, and the like. *
ECU542には、トルク信号だけでなく、例えば車速信号も入力され得る。ECU542のマイクロコントローラは、トルク信号や車速信号などに基づいてモータ543をベクトル制御することができる。  The ECU 542 can receive not only a torque signal but also a vehicle speed signal, for example. The microcontroller of the ECU 542 can vector-control the motor 543 based on a torque signal, a vehicle speed signal, or the like. *
ECU542は、少なくともトルク信号に基づいて目標電流値を設定する。ECU542は、車速センサによって検出された車速信号を考慮し、さらに角度センサによって検出されたロータの回転信号を考慮して、目標電流値を設定することが好ましい。ECU542は、電流センサ(図1参照)によって検出された実電流値が目標電流値に一致するように、モータ543の駆動信号、つまり、駆動電流を制御することができる。  The ECU 542 sets a target current value based on at least the torque signal. The ECU 542 preferably sets the target current value in consideration of the vehicle speed signal detected by the vehicle speed sensor and the rotor rotation signal detected by the angle sensor. The ECU 542 can control the drive signal of the motor 543, that is, the drive current so that the actual current value detected by the current sensor (see FIG. 1) matches the target current value. *
パワーステアリング装置2000によれば、運転者の操舵トルクにモータ543の補助トルクを加えた複合トルクを利用してラック軸526によって左右の操舵車輪529A、529Bを操作することができる。特に、上述した機電一体型モータに、上記実施形態のモータ駆動ユニット1000が利用されることにより、正常時および異常時のいずれにおいても適切な電流制御が可能となる。この結果、正常時および異常時のいずれにおいてもパワーステアリング装置におけるパワーアシストが継続される。また、上記実施形態のモータ駆動ユニット1000が利用されることにより、角度センサの冗長性が実現されるので、パワーステアリング装置の堅牢性が向上する。 According to the power steering apparatus 2000, the left and right steering wheels 529A and 529B can be operated by the rack shaft 526 using the combined torque obtained by adding the assist torque of the motor 543 to the steering torque of the driver. In particular, by using the motor drive unit 1000 of the above-described embodiment for the above-described electromechanical integrated motor, appropriate current control can be performed at both normal and abnormal times. As a result, the power assist in the power steering device is continued both in the normal time and in the abnormal time. Moreover, since the redundancy of an angle sensor is implement | achieved by utilizing the motor drive unit 1000 of the said embodiment, the robustness of a power steering apparatus improves.
101、102:電力供給装置 106、107、108、109:分離スイッチ 111:第1インバータ 112:第2インバータ 121:第2中性点リレー回路 122:第1中性点リレー回路 131:第2中性点スイッチ 132:第1中性点スイッチ 124、126:バックアップリレー 200:モータ 230、240:DCバス 250:シャフト 301、302:制御回路 311,312:電源回路 321、322:角度センサ 323、324:センサマグネット 331、332:入力回路 341、342:マイクロコントローラ 351、352:駆動回路 361、362:ROM 401、402:電流センサ 403、404:電源 411、412:電圧センサ 1000:モータ駆動ユニット 1001、1002、1007:実装基板 1010:ヒートシンク 2000:パワーステアリング装置  101, 102: power supply devices 106, 107, 108, 109: separation switch 111: first inverter 112: second inverter 121: second neutral point relay circuit 122: first neutral point relay circuit 131: second medium Sex point switch 132: First neutral point switch 124, 126: Backup relay 200: Motor 230, 240: DC bus 250: Shaft 301, 302: Control circuit 311, 312: Power supply circuit 321, 322: Angle sensor 323, 324 : Sensor magnet 331, 332: Input circuit 341, 342: Microcontroller 351, 352: Drive circuit 361, 362: ROM 401, 402: Current sensor 403, 404: Power supply 411, 412: Voltage sensor 1000: Motor drive uni Doo 1001,1002,1007: the mounting substrate 1010: The heat sink 2000: power steering system

Claims (7)

  1. 電源からの電力を、n相(nは3以上の整数)の巻線を有するモータに供給する電力に変換する電力変換装置であって、



     前記巻線の一端に接続される第1インバータと、



     前記第1インバータが実装された第1実装基板と、



     前記一端に対する他端に接続される第2インバータと、



     前記第2インバータが実装され、前記第1実装基板と基板面同士が対向した第2実装基板と、



     前記第2基板上に実装され、かつ、前記巻線に対する前記一端側と前記他端側とのうち前記一端側における中性点の形成・非形成を切替える第1中性点リレー回路と、



     前記第1基板上に実装され、かつ、前記巻線に対する前記一端側と前記他端側とのうち前記他端側における中性点の形成・非形成を切替える第2中性点リレー回路と、を備え、



     前記第1インバータと前記第1中性点リレー回路が、前記第1実装基板と前記第2実装基板との対向方向で見た場合に互いに重なり合う位置に実装され、



     前記第2インバータと前記第2中性点リレー回路が、前記対向方向で見た場合に互いに重なり合う位置に実装される電力変換装置。
    A power conversion device that converts power from a power source into power supplied to a motor having an n-phase (n is an integer of 3 or more) winding,



    A first inverter connected to one end of the winding;



    A first mounting board on which the first inverter is mounted;



    A second inverter connected to the other end with respect to the one end;



    A second mounting board on which the second inverter is mounted and the first mounting board and the board surfaces face each other;



    A first neutral point relay circuit that is mounted on the second substrate and that switches formation / non-formation of a neutral point on the one end side of the one end side and the other end side with respect to the winding;



    A second neutral point relay circuit that is mounted on the first substrate and that switches formation / non-formation of a neutral point on the other end side of the one end side and the other end side with respect to the winding; With



    The first inverter and the first neutral relay circuit are mounted at positions that overlap each other when viewed in the opposing direction of the first mounting board and the second mounting board,



    The power converter mounted in a position where the second inverter and the second neutral relay circuit overlap each other when viewed in the facing direction.
  2. 前記第1実装基板上に実装され、前記第1インバータおよび前記第2中性点リレー回路を制御する第1制御回路と、



     前記第2実装基板上に実装され、前記第2インバータおよび前記第1中性点リレー回路を制御する第2制御回路と、を備え、



     前記電源が、互いに独立な第1電源と第2電源とを備え、



     前記第1制御回路および前記第1インバータは、前記第1電源から電力を供給され、



     前記第2制御回路および前記第2インバータは、前記第2電源から電力を供給される請求項1に記載の電力変換装置。
    A first control circuit mounted on the first mounting substrate and controlling the first inverter and the second neutral relay circuit;



    A second control circuit mounted on the second mounting substrate and controlling the second inverter and the first neutral relay circuit;



    The power source comprises a first power source and a second power source independent of each other;



    The first control circuit and the first inverter are supplied with power from the first power source,



    The power converter according to claim 1, wherein the second control circuit and the second inverter are supplied with power from the second power source.
  3. 前記第1実装基板と前記第2実装基板との間を渡り前記第1中性点リレー回路に接続された第1導線と、



     前記第1実装基板と前記第2実装基板との間を渡り前記第2中性点リレー回路に接続された第2導線と、を備え、



     前記第1中性点リレー回路は、前記第1導線を介して前記第1インバータにおける電源側に位置する電源端と、前記第1インバータにおけるグランド側に位置するグランド端とに接続され、かつ、それら電源端とグランド端との接続・非接続を切替え、



     前記第2中性点リレー回路は、前記第2導線を介して前記第2インバータにおける電源側に位置する電源端と、前記第2インバータにおけるグランド側に位置するグランド端とに接続され、かつ、それら電源端とグランド端との接続・非接続を切替える請求項1または2に記載の電力変換装置。
    A first conductor connected between the first mounting board and the second mounting board and connected to the first neutral relay circuit;



    A second conductor connected between the first mounting board and the second mounting board and connected to the second neutral relay circuit;



    The first neutral point relay circuit is connected to the power supply end located on the power supply side in the first inverter and the ground end located on the ground side in the first inverter via the first conductor, and Switching between connecting and disconnecting the power supply end and the ground end,



    The second neutral point relay circuit is connected to the power supply end located on the power supply side of the second inverter and the ground end located on the ground side of the second inverter via the second conductor, and The power converter according to claim 1 or 2, wherein connection / disconnection between the power supply terminal and the ground terminal is switched.
  4. 前記巻線の前記一端および前記他端の双方が前記第1実装基板と前記第2実装基板との間を渡り、



     前記第1中性点リレー回路が、前記巻線の前記一端に前記第1インバータと並列に接続され、かつ、前記一端同士の接続・非接続を切替え、



     前記第2中性点リレー回路が、前記巻線の前記他端に前記第2インバータと並列に接続され、かつ、前記他端同士の接続・非接続を切替える請求項1または2に記載の電力変換装置。
    Both the one end and the other end of the winding cross between the first mounting substrate and the second mounting substrate,



    The first neutral point relay circuit is connected to the one end of the winding in parallel with the first inverter, and the connection / disconnection of the one end is switched;



    3. The electric power according to claim 1, wherein the second neutral point relay circuit is connected to the other end of the winding in parallel with the second inverter and switches connection / disconnection between the other ends. Conversion device.
  5. 前記対向方向で見た場合に、前記第1インバータと前記第2インバータとが互いに対称な配置であり、前記第1中性点リレー回路と前記第2中性点リレー回路とが互いに対称な配置である請求項1から4のいずれか1項に記載の電力変換装置。 When viewed in the facing direction, the first inverter and the second inverter are symmetrically arranged, and the first neutral point relay circuit and the second neutral point relay circuit are symmetrically arranged. The power converter according to any one of claims 1 to 4.
  6. 請求項1から5のいずれか1項に記載の電力変換装置と、



     前記電力変換装置に接続され、前記電力変換装置によって変換された電力が供給されるモータと、



    を備えた駆動装置。
    The power conversion device according to any one of claims 1 to 5,



    A motor connected to the power converter and supplied with power converted by the power converter;



    A drive device comprising:
  7. 請求項1から5のいずれか1項に記載の電力変換装置と、



     前記電力変換装置によって変換された電力が供給されるモータと、



     前記モータにより駆動されるパワーステアリング機構と、



    を備えるパワーステアリング装置。
    The power conversion device according to any one of claims 1 to 5,



    A motor to which power converted by the power converter is supplied;



    A power steering mechanism driven by the motor;



    A power steering apparatus comprising:
PCT/JP2019/000631 2018-02-02 2019-01-11 Power conversion device, driving device, and power steering device WO2019150912A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019568964A JPWO2019150912A1 (en) 2018-02-02 2019-01-11 Power converter, drive and power steering

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2018-017686 2018-02-02
JP2018017686 2018-02-02
JP2018132014 2018-07-12
JP2018-132014 2018-07-12

Publications (1)

Publication Number Publication Date
WO2019150912A1 true WO2019150912A1 (en) 2019-08-08

Family

ID=67478956

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/000631 WO2019150912A1 (en) 2018-02-02 2019-01-11 Power conversion device, driving device, and power steering device

Country Status (2)

Country Link
JP (1) JPWO2019150912A1 (en)
WO (1) WO2019150912A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20210158817A (en) * 2020-06-24 2021-12-31 주식회사 만도 Steering control apparatus

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013529055A (en) * 2010-06-14 2013-07-11 イスパノ・シユイザ Voltage inverter and method for controlling such an inverter
JP2014204574A (en) * 2013-04-05 2014-10-27 株式会社日本自動車部品総合研究所 Power converter
CN104167975A (en) * 2014-08-18 2014-11-26 华中科技大学 Multiphase permanent magnet motor speed regulating system based on phase switching and speed regulating method thereof
WO2017150639A1 (en) * 2016-03-04 2017-09-08 日本電産株式会社 Power conversion device, motor drive unit, electric power steering device, and relay module

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013529055A (en) * 2010-06-14 2013-07-11 イスパノ・シユイザ Voltage inverter and method for controlling such an inverter
JP2014204574A (en) * 2013-04-05 2014-10-27 株式会社日本自動車部品総合研究所 Power converter
CN104167975A (en) * 2014-08-18 2014-11-26 华中科技大学 Multiphase permanent magnet motor speed regulating system based on phase switching and speed regulating method thereof
WO2017150639A1 (en) * 2016-03-04 2017-09-08 日本電産株式会社 Power conversion device, motor drive unit, electric power steering device, and relay module

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20210158817A (en) * 2020-06-24 2021-12-31 주식회사 만도 Steering control apparatus
KR102555273B1 (en) * 2020-06-24 2023-07-13 에이치엘만도 주식회사 Steering control apparatus

Also Published As

Publication number Publication date
JPWO2019150912A1 (en) 2021-02-12

Similar Documents

Publication Publication Date Title
JP6888609B2 (en) Power converter, motor drive unit and electric power steering device
WO2018173424A1 (en) Power conversion device, motor drive unit, and electric power steering device
JP7010281B2 (en) Power converter, motor drive unit and electric power steering device
JP6874758B2 (en) Power converter, motor drive unit, electric power steering device and relay module
WO2018123849A1 (en) Power conversion device, motor driving unit, and electric power steering device
JP7088200B2 (en) Motor control method, power converter, motor module and electric power steering device
US11114969B2 (en) Power converter, motor driving unit, and electric power steering device
WO2019150913A1 (en) Driving device and power steering device
US11095233B2 (en) Electric power conversion apparatus, motor drive unit and electric motion power steering apparatus
CN111713002B (en) Power conversion device, driving device, and power steering device
CN110463024B (en) Power conversion device, motor drive unit, and electric power steering device
WO2019151308A1 (en) Power conversion device, driving device, and power steering device
JPWO2018180238A1 (en) Power conversion device, motor drive unit and electric power steering device
JP7151432B2 (en) Power converters, drives and power steering devices
WO2019150912A1 (en) Power conversion device, driving device, and power steering device
WO2019150911A1 (en) Power conversion device, drive device, and power steering device
WO2019159836A1 (en) Power conversion device, drive device, and power steering device
WO2019021647A1 (en) Power conversion device, motor module, and electric power steering device
CN113169545B (en) Power conversion device, driving device, and power steering device
JP2021013209A (en) Power conversion device, driving apparatus, and power steering apparatus
WO2019159835A1 (en) Power conversion device, drive device, and power steering device
JP7400735B2 (en) Drive control equipment, drive equipment and power steering equipment
WO2019053974A1 (en) Power conversion device, motor module, and electric power steering device
WO2019049449A1 (en) Electric power converting device, motor module, and electric power steering device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19746805

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019568964

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19746805

Country of ref document: EP

Kind code of ref document: A1