JP7443859B2 - 電力変換装置 - Google Patents

電力変換装置 Download PDF

Info

Publication number
JP7443859B2
JP7443859B2 JP2020048243A JP2020048243A JP7443859B2 JP 7443859 B2 JP7443859 B2 JP 7443859B2 JP 2020048243 A JP2020048243 A JP 2020048243A JP 2020048243 A JP2020048243 A JP 2020048243A JP 7443859 B2 JP7443859 B2 JP 7443859B2
Authority
JP
Japan
Prior art keywords
case
plate
reactor unit
flow path
recess
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2020048243A
Other languages
English (en)
Other versions
JP2021151073A (ja
Inventor
和広 小坂
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
Denso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp filed Critical Denso Corp
Priority to JP2020048243A priority Critical patent/JP7443859B2/ja
Publication of JP2021151073A publication Critical patent/JP2021151073A/ja
Application granted granted Critical
Publication of JP7443859B2 publication Critical patent/JP7443859B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Inverter Devices (AREA)

Description

本開示は、電力変換を行う電力変換装置に関する。
DC-DCコンバータ等の第1電力変換器と、インバータ等の第2電力変換器と、
を備え、これら2つの電力変換器を1つのケースに収容した電力変換装置が知られている(下記特許文献1参照)。
特開2015-73401号公報
この種の電力変換装置は一層の小型化が望まれている。
この事情に基づき、本開示の目的は、小型化しやすい電力変換装置を提供することにある。
その目的を達成するための本開示の一態様における電力変換装置は、第1昇圧モジュール(111)のスイッチング動作に伴い、直流電源の直流電圧を昇圧するために用いられる第1リアクトルユニット(20)と、第2昇圧モジュール(40)のスイッチング動作に伴い、直流電源の直流電圧を昇圧するために用いられる第2リアクトルユニット(30)と、第1リアクトルユニットを収容し、板状のケース底部(714)を有するケース(70)と、ケース底部との間で冷媒流路(80)を形成する板状のプレート(60)と、を備え、ケース底部は、平坦なケース平坦部(715)と、ケース平坦部からプレートの側に向けてくぼんでいるケース凹部(716)と、を有し、プレートは、ケース平坦部と平行なプレート平坦部(61)と、プレート平坦部からケース凹部と同一の向きにくぼんでいるプレート凹部(63)と、を有し、ケース凹部およびプレート凹部は、ケース平坦部に対して垂直な方向であるZ方向に並んで配置されており、ケース平坦部とプレート平坦部との間、および、ケース凹部とプレート凹部との間に冷媒流路が形成されており、第1リアクトルユニットは、ケースを介して冷媒流路へ放熱するよう、ケース凹部と接しており、第2リアクトルユニットは、プレートを介して冷媒流路へ放熱するよう、プレート平坦部と接しており、第2リアクトルユニットをZ方向に投影した範囲の外に、第1リアクトルユニットの全体が含まれている、電力変換装置である。
第1リアクトルユニットはケース凹部に接している。また、第2リアクトルユニットはプレート平坦部に接している。そのため、ケース凹部およびプレート凹部を有さない場合と比べ、ケース凹部のくぼみの深さの分、第1リアクトルユニットの最上端から、第2リアクトルユニットの最下端までのZ方向の大きさを小さくすることができる。よって、電力変換装置をケース平坦部に対して垂直な方向、すなわちZ方向に小型化できる。
第1実施形態における、電力変換装置の構成部品の位置関係を模式的に示す断面図である。 図1の矢印IIから見た上面図である。 第2実施形態における、電力変換装置の構成部品の位置関係を模式的に示す下面図である。 第2実施形態における、電力変換装置の構成部品の位置関係を模式的に示す上面図である。 他の実施形態における、電力変換装置の構成部品の位置関係を模式的に示す断面図である。
以下、本開示の複数の実施形態を図面に基づいて説明する。なお、各実施形態において対応する構成要素には同一の符号を付すことにより、重複する説明を省略する場合がある。各実施形態において構成の一部分のみを説明している場合、当該構成の他の部分については、先行して説明した他の実施形例の構成を適用することができる。また、各実施形態の説明において明示している構成の組み合わせばかりではなく、特に組み合わせに支障が生じなければ、明示していなくても複数の実施形態の構成同士を部分的に組み合わせることができる。そして、複数の実施形態および変形例に記述された構成同士の明示されていない組み合わせも、以下の説明によって開示されているものとする。
(第1実施形態)
図1および図2に基づいて、電力変換装置1について説明する。電力変換装置1は、例えばハイブリッド自動車や電気自動車といった車両に搭載され、電力変換装置1の外部の直流電源(図示略)の直流電流を、走行用モータとしての三相交流モータ(図示略)に通電する交流電流(U相、V相、W相)を生成する。
図1に示すごとく、電力変換装置1は、半導体ユニット10、第1電力変換器、第2電力変換器、第3電力変換器、基板50、フィルタコンデンサ51、平滑コンデンサ52、およびプレート60を備える。また、電力変換装置1は、これらを収容するケース70を備える。
ケース70はケース底部714を有する。ケース底部714とプレート60は、冷媒を流す冷媒流路80を形成する。
半導体ユニット10は、図示しないスイッチング素子が樹脂封止された半導体モジュール11と、半導体モジュール11の冷却を行う冷却器12と、を有する。半導体ユニット10は、複数の半導体モジュール11と複数の冷却器12とが積層されて形成される。ここで、複数の半導体と複数の冷却器12とが積層される方向をX方向とする。半導体モジュール11はX方向において2つの冷却器12と接している。すなわち、半導体モジュール11は、X方向に垂直な2面のうち、両面から冷却される。
スイッチング素子は電流が流されることで、オンオフが切り替わる。これによって、半導体モジュール11は直流電源から入力された直流電流を、交流電流へ変換し、三相交流モータへ出力する。スイッチング素子は、IGBT(Insulated Gate Bipolar Transistor)やMOSFET(Metal-Oxide-Semiconductor Field-Effect Transistor)といった半導体素子が用いられる。
第1電力変換器は、電力変換装置1の電力変換を行う電子部品である。本実施形態において、第1電力変換器は、第1リアクトルユニット20である。よって、以下では、第1電力変換器のことを、第1リアクトルユニット20として記載する。
第1リアクトルユニット20は、金属線を巻いた図示しないコイル、コイルを樹脂封止した第1リアクトルケース21、およびケース底部714と第1リアクトルケース21とを接続する第1接続部22を有する。第1リアクトルユニット20は、半導体モジュール11としての第1昇圧モジュール111のスイッチング動作に伴い、直流電源の直流電圧を昇圧するために用いられる。
第1接続部22は、樹脂部材によってシート状に形成される。第1接続部22によって、第1リアクトルユニット20からケース底部714および冷媒への放熱が促進される。
第2電力変換器は、電力変換装置1の電力変換を行う電子部品である。本実施形態において、第2電力変換器は、第2リアクトルユニット30である。よって、以下では、第2電力変換器のことを、第2リアクトルユニット30として記載する。
第2リアクトルユニット30は、金属線を巻いた図示しないコイル、コイルを樹脂封止した第2リアクトルケース31、およびプレート60と第2リアクトルケース31とを接続する第2接続部32を有する。第2リアクトルユニット30は、後述する第3電力変換器に含まれるスイッチング素子のスイッチング動作に伴い、直流電源の直流電圧を昇圧するために用いられる。
第2接続部32は、樹脂部材によって形成される。第2接続部32によって、第2リアクトルユニット30からプレート60および冷媒への放熱が促進される。
第3電力変換器は、電力変換装置1の電力変換を行う電子部品である。本実施形態において、第3電力変換器は、スイッチング素子が樹脂封止された第2昇圧モジュール40である。よって、以下では、第3電力変換器のことを、第2昇圧モジュール40として記載する。スイッチング素子は、IGBTやMOSFETといった半導体素子が用いられる。
第2昇圧モジュール40とプレート60とは、直に接している。第2昇圧モジュール40はプレート60を介して冷媒流路80内を流れる冷媒へ放熱を行う。ここで、基板50に垂直な方向をZ方向とする。第2昇圧モジュール40は、Z方向に垂直な2面のうち、プレート60と接している片面から冷却される。
基板50は、第1昇圧モジュール111および第2昇圧モジュール40に内蔵されたスイッチング素子と電気的に接続される。また、基板50は、電力変換装置1の外部に配置された電子制御装置(ECU)とも電気的に接続される。すなわち、基板50は、ECUから入力されるトルク要求や各種センサにて検出された信号に基づいて、スイッチング素子へ駆動信号を出力する。
フィルタコンデンサ51は、直流電源から入力された直流電圧を平滑化する。
平滑コンデンサ52は、第1リアクトルユニット20と第1昇圧モジュール111、および第2リアクトルユニット30と第2昇圧モジュール40を用いて昇圧された直流電圧を平滑化する。
X方向に垂直かつZ方向に垂直な方向をY方向とする。プレート60は、金属によって形成されている。また、プレート60は、基板50と平行なプレート平坦部61と、プレート平坦部61に対してZ方向にくぼんでいるプレート凹部63と、を有する。
プレート凹部63は、プレート平坦部61と平行なプレート凹底部631、およびプレート凹底部631とプレート平坦部61とをつなぐプレート凹側部632を有する。
プレート凹側部632は、プレート平坦部61から垂直な方向かつ冷媒流路80と反対側に延出するプレート延出部62を有する。
プレート延出部62は、第2接続部32および第2リアクトルユニット30を固定するために配置される。Z方向から見た際、プレート延出部62は長方形状である(図示略)。プレート延出部62は、第2リアクトルユニット30をX方向およびY方向から取り囲むように配置される。本実施形態において、第2接続部32は、材料となる樹脂がプレート延出部62に流し込まれた後、第2リアクトルユニット30がプレート延出部62にはめ込まれることで、形成される。
プレート60は、冷媒流路80を形成する面として、プレート流路面640を有する。プレート平坦部61、プレート凹底部631、およびプレート凹側部632は、プレート流路面640を構成する面として、それぞれ、プレート流路平坦面634、プレート流路底面635、およびプレート流路側面636を有する。また、本実施形態においては、プレート凹側部632のうちプレート流路側面636と反対側の面は、プレート凹底部631のうちプレート流路底面635と反対側の面と、垂直に配置されている。
図2は、プレート60、第2リアクトルユニット30、および第2昇圧モジュール40を、基板50側からZ方向に見た際の模式図である。ただし、図2では、ケース延長部75および延長蓋部76は省略されている。Z方向においてプレート60よりも基板50側に配置される冷媒流入部712、冷媒流出部713、および第1リアクトルユニット20は、図2中では仮想線で示されている。図2に示すごとく、プレート流路平坦面634には、直方体形状のフィン637が設けられている。複数のフィン637は、冷媒の流れを妨げぬよう配置される。すなわち、X方向に延びた直線状に配置される。また、フィン637はY方向に並んで配置される。第2リアクトルユニット30をZ方向に投影した範囲内に、複数のフィン637のすべてが含まれる。
フィン637が設けられることで、冷媒流路80と冷媒の接触面積が増え、プレート平坦部61を介した第2リアクトルユニット30の放熱がより促進される。さらに、フィン637が設けられることで、冷媒流路80のX方向に垂直な方向の断面積が小さくなるため、冷媒の流速がより大きくなる。よって、第2リアクトルユニット30の放熱がさらに促進される。
図1に示すごとく、ケース70は、半導体ユニット10、第1リアクトルユニット20、平滑コンデンサ52、およびフィルタコンデンサ51を収容するケース本体71を有する。ケース本体71は、Z方向に開口した本体開口部711を備える。また、ケース70は、プレート60、第2リアクトルユニット30、および第2昇圧モジュール40を収容するケース延長部75と、を有する。
電力変換装置1は、ケース本体71に収容された第1昇圧回路としての第1リアクトルユニット20および第1昇圧モジュール111を備える。また、電力変換装置1は、第1昇圧回路に加え、ケース延長部75に収容された第2昇圧回路としての第2リアクトルユニット30および第2昇圧モジュール40を備える。
本実施形態における電力変換装置1は、PHV(プラグインハイブリッドカー)に用いられるものである。PHVは、HV(ハイブリッドカー)と比べ、直流電源の直流電圧を、より昇圧する必要がある。そこで、直流電源に第1昇圧回路が並列接続されることに加え、第2昇圧回路も並列に接続されることで、直流電源の直流電圧がより昇圧される。
電力変換装置1の作動の概略を説明する。直流電源から入力された直流電圧は、フィルタコンデンサ51によって平滑化される。平滑化された直流電圧は、第1リアクトルユニット20と第1昇圧モジュール111、および第2リアクトルユニット30と第2昇圧モジュール40を用いて昇圧される。昇圧された直流電圧は、平滑コンデンサ52によって平滑化される。平滑化された昇圧後の直流電圧は、半導体ユニット10によって交流電流へ変換され、三相交流モータへ出力される。
ケース延長部75は、ケース本体71のうち、本体開口部711と反対側の側面がZ方向に延長されることで形成される。ケース延長部75は、本体開口部711と反対の向きに開口した延長開口部751を有する。
また、ケース70は、本体開口部711の開口に取り付けられる本体蓋部74と、延長開口部751の開口に取り付けられる延長蓋部76と、を有する。本体蓋部74および延長蓋部76は金属によって形成される。具体的には、鉄系金属によって板状に形成される。
図2に示すごとく、ケース本体71は、外部から冷媒を流入させる冷媒流入部712と、冷媒を流出させる冷媒流出部713と、を有する。
図1に示すごとく、ケース本体71は基板50と平行な板状部材である。ケース底部714は、ケース本体71とケース延長部75とを仕切る。ケース底部714は、プレート平坦部61と平行なケース平坦部715と、ケース平坦部715に対してZ方向にくぼんだケース凹部716と、を有する。
ケース底部714とプレート60とは冷媒流路80を形成している。第1リアクトルユニット20、第2リアクトルユニット30、および第2昇圧モジュール40から発生する熱は、ケース底部714もしくはプレート60を介して冷媒流路80内を流れる冷媒に放熱される。これにより、第1リアクトルユニット20、第2リアクトルユニット30、および第2昇圧モジュール40に熱がこもることを抑制できる。
ケース凹部716は、ケース平坦部715と平行なケース凹底部717と、ケース凹底部717とケース平坦部715とをつなぐケース凹側部718と、を有する。
ケース凹部716は、ケース平坦部715と比べて、Z方向において延長蓋部76に近い位置に存在する。ケース凹部716およびプレート凹部63はZ方向に同一の向きにくぼんでいる。プレート凹部63をZ方向に投影した範囲内にケース凹部716の全体が存在する。また、プレート凹底部631をZ方向に投影した範囲内にケース凹底部717の全体が存在する。
ケース底部714は、冷媒流路80を形成する面として、ケース流路面730を有する。ケース平坦部715、ケース凹底部717、およびケース凹側部718は、ケース流路面730を構成する面として、それぞれ、ケース流路平坦面719、ケース流路底面720、およびケース流路側面721を有する。また、本実施形態においては、ケース凹側部718のうちケース流路側面721と反対側の面は、ケース凹底部717のうちケース流路底面720と反対側の面と、垂直に配置されている。
図2に示すごとく、プレート60にはボルト穴95が設けられている。プレート60は、ボルト穴95にボルトが挿入されることで、ケース70に締結される。プレート60がケース70に対してボルト締結されることで、電力変換装置1の冷媒流路80が形成される。
本実施形態においては、冷媒流路80を、プレート60およびケース70によって形成している。具体的には、ケース70に対してZ方向からプレート60を取り付けることで、冷媒流路80が形成される。そのため、たとえば冷媒流路80内に異物が混入した場合でも、プレート60を取り外し、あるいは交換することで冷媒流路80内の異物を取り除くことができる。よって、ケース70およびプレート60によって冷媒流路80を形成することで、電力変換装置1のメンテナンスが行いやすくなる。
プレート60は、冷媒流入部712から流入する冷媒と、冷媒流出部713から流出する冷媒と、を仕切る、X方向に延出するプレート仕切部638を有する。プレート仕切部638は、プレート仕切面639を有する。また、プレート60は、ケース底部714と直に接するプレート側接触面642を有する。プレート仕切面639およびプレート側接触面642は、Z方向に垂直な面である。プレート仕切面639およびプレート側接触面642は、ケース底部714に密着される。その上で、プレート60がケース底部714に締結されることで、水密性の保たれた冷媒流路80が形成される。
また、冷媒流路80は略U字形状に形成されており、冷媒流路80のうちターンして折り返す部分をターン部81とする。ターン部81には、プレート仕切部638の一端が存在する。
本実施形態において、冷媒は、冷媒流入部712から冷媒流路80へと流入した後、冷媒流出部713へと流出する。その後図示しない連結ホースを通って、半導体ユニット10の冷却器12へと流入する。すなわち、冷媒は、冷媒流路80、および冷却器12内を循環する。
電力変換装置1をZ方向から見た際、第2リアクトルユニット30は、第1リアクトルユニット20および第2昇圧モジュール40と比べ、冷媒流入部712および冷媒流出部713に近い位置に配置される。また、第2昇圧モジュール40は、冷媒流路80のうち、冷媒流出部713よりも冷媒流入部712に近い位置に配置される。第1リアクトルユニット20は、ターン部81に配置される。
ここで、前述の通り、第2昇圧モジュール40は、Z方向に垂直な2面のうち片面のみから冷却される。また、冷媒は冷媒流入部712に近ければ温度はより低く、冷媒流出部713に近ければ温度はより高くなる。そのため、本実施形態において、第2昇圧モジュール40は、冷媒流出部713よりも冷媒流入部712に近い位置に配置される。よって、第2昇圧モジュール40から冷媒への放熱がより促進される。
第2リアクトルユニット30をZ方向に投影した範囲の外に、第1リアクトルユニット20および第2昇圧モジュール40の全体が含まれる。また、第1リアクトルユニット20をZ方向に投影した範囲内に、第2昇圧モジュール40の一部が含まれる。
また、ターン部81をZ方向に投影した範囲内に、プレート凹部63の全体が存在する。
また、冷媒流路80のY方向における幅は、ターン部81よりも冷媒流入部712に近い部分のほうが、冷媒流出部713に近い部分よりも大きい。
また、冷媒流路80のうち、X方向において冷媒流入部712と第2リアクトルユニット30との間に位置する領域と、冷媒流出部713と第2リアクトルユニット30との間に位置する領域では、前者のほうがX方向に垂直な平面における断面積が大きい。
図1に示すごとく、第1リアクトルユニット20は、ケース凹底部717およびケース凹側部718の両方と接している。具体的には、第1リアクトルケース21とケース凹側部718とが直に接しており、第1接続部22とケース凹底部717とが直に接している。
また、第2リアクトルユニット30は、プレート平坦部61およびプレート凹側部632の両方と接している。具体的には、第2接続部32とプレート延出部62とが直に接しており、第2接続部32とプレート平坦部61とが直に接している。
Y方向から電力変換装置1を見た際、ケース流路底面720とケース流路側面721とがなす角は、90度よりも大きい。ここで、上述したケース流路底面720とケース流路側面721とがなす角とは、Y方向から見た際に、ケース底部714側の角度、すなわち図1中にA1で示される劣角である。また、同じくY方向から電力変換装置1を見た際、プレート流路底面635とプレート流路側面636とがなす角は、90度よりも大きい。ここで、上述したプレート流路底面635とプレート流路側面636とがなす角とは、Y方向から見た際に、冷媒流路80側の角度、すなわち図1中にA2で示される劣角である。
また、Y方向から電力変換装置1を見た際、ケース流路平坦面719とケース流路側面721とがなす角度は、90度よりも大きい。ここで、上述したケース流路平坦面719とケース流路側面721とがなす角とは、Y方向から見た際に、冷媒流路80側の角度、すなわち図1中にA3で示される劣角である。また、同じくY方向から電力変換装置1を見た際、プレート流路平坦面634とプレート流路側面636とがなす角度は、90度よりも大きい。ここで、上述したプレート流路平坦面634とプレート流路側面636とがなす角とは、Y方向から見た際に、プレート60側の角度、すなわち図1中にA4で示される劣角である。
また、Z方向の距離を考えると、ケース流路底面720は、プレート流路平坦面634よりも第1リアクトルユニット20に近い位置に配置される。よって、電力変換装置1をY方向から見た際、冷媒流路80には、X方向の一端から他端まで、冷媒流路80を形成するプレート流路平坦面634およびケース流路底面720に重複せずに、仮想直線90をひくことができる。
第1リアクトルユニット20のうち、Z方向において本体蓋部74に最も近い位置を第1リアクトル最上端23とする。また、第2リアクトルユニット30のうち、Z方向において延長蓋部76に最も近い位置を第2リアクトル最下端33とする。また、第2昇圧モジュール40のうち、Z方向において延長蓋部76と最も近い位置を第2昇圧最下端41とする。
第2リアクトルユニット30をZ方向に垂直な方向に投影した範囲に、第2昇圧モジュール40の全体が位置する。すなわち、第2リアクトル最下端33と、第2昇圧最下端41とを比べると、前者のほうが、Z方向において延長蓋部76により近い位置に配置されている。
本実施形態における効果を以下に示す。第1リアクトルユニット20はケース凹部716に接している。また、第2リアクトルユニット30はプレート平坦部61に接している。そのため、ケース凹部716およびプレート凹部63を有さない場合と比べ、ケース凹部716のくぼみの深さの分、第1リアクトル最上端23から、第2リアクトル最下端33までのZ方向の大きさを小さくすることができる。よって、電力変換装置1をZ方向に小型化できる。
例えば、第1リアクトルユニット20がケース底部714のうち、ケース凹底部717のみに接している場合と比較して、第1リアクトルユニット20がケース凹底部717およびケース凹側部718の両方に接している場合の効果を以下に説明する。第1リアクトルユニット20がケース凹底部717およびケース凹側部718の両方に接している場合、第1リアクトルユニット20から、ケース底部714への放熱経路がより多くなる。よって、第1リアクトルユニット20の熱をケース底部714へと放熱しやすい。第2リアクトルユニット30についても、同様の効果を得ることができる。なお、上述した効果は、第1リアクトルユニット20がケース凹底部717およびケース凹側部718と接し、かつ、第2リアクトルユニット30がプレート平坦部61およびプレート凹側部632と接している場合により向上する。
Y方向から見て、ケース流路底面720とケース流路側面721のなす角度は90度より大きく、またプレート流路底面635とプレート流路側面636がなす角度は90度より大きい。そのため、ケース流路底面720とケース流路側面721のなす角度が90度であり、プレート流路底面635とプレート流路側面636のなす角度が90度である場合と比べ、冷媒流路80内でX方向へ冷媒が流れる際の、冷媒の圧損増加を抑制できる。
Z方向の距離を考えると、ケース流路底面720は、プレート流路平坦面634よりも、第1リアクトルユニット20側に位置する。そのため、冷媒流路80のX方向の一端から他端まで、冷媒流路80を形成するケース70およびプレート60に重複することなく、仮想直線90をひくことができる。すなわち、冷媒流路80のX方向の一端から他端まで冷媒が流れる際、冷媒の圧損増加を抑制できる。
第2昇圧モジュール40は、プレート凹部63に接している。また、第2リアクトルユニット30をZ方向に垂直な方向に投影した範囲に、第2昇圧モジュール40の全体が位置する。そのため、第1リアクトル最上端23から第2リアクトル最下端33のZ方向の範囲内に第2昇圧モジュール40を配置することができる。よって、電力変換装置1をZ方向に小型化したままで、第2昇圧モジュール40を配置することができる。
(第2実施形態)
図3および図4に基づいて、本実施形態を説明する。第2実施形態で特に説明しない構成、作用、効果については第1実施形態と同様である。図3は、ケース底部714、および第1リアクトルユニット20を、延長蓋部76側からZ方向に見た際の模式図である。Z方向においてケース底部714よりも延長蓋部76側に配置される第2リアクトルユニット30、および第2昇圧モジュール40は、図3中では仮想線で示されている。図4は、プレート60、第2リアクトルユニット30、および第2昇圧モジュール40を、基板50側からZ方向に見た際の模式図である。ただし、図4では、ケース延長部75および延長蓋部76は省略されている。Z方向においてプレート60よりも基板50側に配置される冷媒流入部712、冷媒流出部713、および第1リアクトルユニット20は、図4中では仮想線で示されている。
図3に示すごとく、ケース70は、冷媒流入部712から流入する冷媒と、冷媒流出部713から流出する冷媒と、を仕切る、X方向に延出するケース仕切部722を有する。ケース仕切部722は、ケース仕切面732を有する。また、ケース底部714は、プレート側接触面642と直に接するケース側接触面733を有する。ケース仕切面732およびケース側接触面733は、Z方向に垂直な面である。ケース仕切面732およびプレート仕切面639は密着して接しており、ケース側接触面733およびプレート側接触面642は密着して接している。
また、ケース底部714は、ボルト穴95を有する。ケース底部714に設けられたボルト穴95およびプレート60に設けられたボルト穴95に、ボルトが挿入されることで、ケース底部714とプレート60とが締結される。
第1実施形態においては、図2に示すごとく、ケース凹部716およびプレート凹部63は、プレート仕切部638にまたがって配置されていた。一方、本実施形態においては、図3および図4に示すごとく、ケース凹部716およびプレート凹部63は、プレート仕切部638およびケース仕切部722にまたがらずに配置されている。
また、第1実施形態においては、図2に示すごとく、プレート凹部63をZ方向に投影した範囲に第2昇圧モジュール40が配置されていた。一方、本実施形態においては、図4に示すごとく、プレート凹部63をZ方向に投影した範囲の外に、第2昇圧モジュール40が配置される。すなわち、第1リアクトルユニット20、第2リアクトルユニット30、第2昇圧モジュール40は、それぞれZ方向に重複せずに配置されている。
図3に示すごとく、ケース流路底面720のうち、第1リアクトルユニット20をZ方向に投影した範囲には、フィンとしてのケース側フィン731が設けられている。ケース側フィン731は、冷媒の流れを妨げぬよう配置される。すなわち、X方向に延びた直線状に配置される。また、ケース側フィン731はY方向に並んで配置される。第1リアクトルユニット20をZ方向に投影した範囲内に、ケース側フィン731のすべてが含まれる。ケース側フィン731は金属によって形成される。
ケース側フィン731が設けられることで、冷媒流路80と冷媒の接触面積が増え、ケース凹部716を介した第1リアクトルユニット20の放熱がより促進される。さらに、ケース側フィン731が設けられることで、冷媒流路80のX方向に垂直な方向の断面積が小さくなるため、冷媒の流速がより大きくなる。よって、第1リアクトルユニット20の放熱がさらに促進される。
図4に示すごとく、プレート流路平坦面634のうち、Z方向に第2昇圧モジュール40を投影した範囲には、フィンとしてのプレート側フィン641が設けられている。プレート側フィン641は、冷媒の流れを妨げぬよう配置される。すなわち、X方向に延びた直線状に配置される。また、プレート側フィン641はY方向に並んで配置される。第2昇圧モジュール40をZ方向に投影した範囲内に、プレート側フィン641のすべてが含まれる。プレート側フィン641は金属によって形成されている。
プレート側フィン641が設けられることで、冷媒流路80と冷媒の接触面積が増え、プレート平坦部61を介した第2昇圧モジュール40の放熱がより促進される。さらに、プレート側フィン641が設けられることで、冷媒流路80のX方向に垂直な方向の断面積が小さくなるため、冷媒の流速がより大きくなる。よって、第2昇圧モジュール40の放熱がさらに促進される。
図3および図4に示すごとく、フィン637、プレート側フィン641、ケース側フィン731は、それぞれZ方向において重複せずに配置されている。図4に示すごとく、フィン637、プレート側フィン641、ケース側フィン731は、Z方向に垂直な同一平面上に存在する。
本実施形態における効果を以下に示す。プレート流路面640もしくはケース流路面730にフィンを設けると、プレート流路面640もしくはケース流路面730の表面積を大きくすることができる。よって、冷媒からプレート60もしくはケース底部714への熱伝導が促進される。一方、プレート流路面640に設けられるフィンおよびケース流路面730に設けられるフィンがZ方向に重なる位置に配置されると、フィン同士が接触してしまう可能性がある。そのため、冷媒流路80のZ方向の幅を大きくする必要があり、電力変換装置1がZ方向に大型化する恐れがある。
これらの点を鑑み、本実施形態においては、プレート側フィン641をZ方向に投影した範囲の外にケース側フィン731が配置される。よって、第1リアクトルユニット20および第2昇圧モジュール40の直下にフィンを設けても、冷媒流路80の断面積を変えることなく、プレート側フィン641およびケース側フィン731を配置できる。すなわち、冷媒流路80のZ方向の幅を変えずにプレート側フィン641およびケース側フィン731を配置できる。よって、電力変換装置1をZ方向に小型化しつつ、冷媒による第1リアクトルユニット20および第2昇圧モジュール40の冷却効率を向上できる。
(他の実施形態)
以上、本開示の実施形態を説明したが、本開示は上述の実施形態に限定されるものではなく、次の実施形態も本開示の技術的範囲に含まれ、さらに、下記以外にも要旨を逸脱しない範囲内で種々変更して実施することができる。
第1実施形態において、第1リアクトルユニット20は、ケース凹底部717およびケース凹側部718の両方と接している。また、第2リアクトルユニット30は、プレート平坦部61およびプレート凹側部632の両方と接している。しかし、本開示はこれに限るものではない。第1リアクトルユニット20は、ケース凹底部717のみに接していてもよい。また、第2リアクトルユニット30は、プレート平坦部61のみに接していてもよい。
第1実施形態において、第1リアクトルユニット20は、第1接続部22を介してケース凹底部717と接しているが、本開示はこれに限るものではない。第1リアクトルユニット20のうち、第1リアクトルケース21とケース凹底部717とが直に接していてもよい。
第1実施形態において、第2リアクトルユニット30は、第2接続部32を介してプレート平坦部61およびプレート延出部62と接している。しかし、本開示はこれに限るものではない。第2リアクトルケース31と、プレート平坦部61および/もしくはプレート延出部62と、が直に接していてもよい。
第1実施形態において、Y方向から電力変換装置1を見た際、ケース流路底面720とケース流路側面721とがなす角は、90度よりも大きい。しかし、本開示はこれに限るものではない。ケース流路底面720とケース流路側面721とがなす角は、90度以下であってもよい。同様に、プレート流路底面635とプレート流路側面636がなす角、ケース流路平坦面719とケース流路側面721とがなす角、およびプレート流路平坦面634とプレート流路側面636とがなす角が90度以下であってもよい。
第1実施形態において、Z方向の距離を考えると、ケース流路底面720は、プレート流路平坦面634よりも、第1リアクトルユニット20側に位置する。しかし、本開示はこれに限るものではない。Z方向の距離を考えると、ケース流路底面720が、プレート流路平坦面634よりも、第1リアクトルユニット20側に位置してもよい。
第1実施形態において、第2リアクトルユニット30をZ方向に垂直な方向に投影した範囲に、第2昇圧モジュール40の全体が位置するが、本開示はこれに限るものではない。第2リアクトルユニット30をZ方向に垂直な方向に投影した範囲の外に、第2昇圧モジュール40の一部が位置してもよい。
第1実施形態においては、第1リアクトルユニット20をZ方向に投影した範囲内に第2昇圧モジュール40が配置されている。しかし、本開示はこれに限るものではない。第1リアクトルユニット20をZ方向に投影した範囲の外に第2昇圧モジュール40が配置されてもよい。
第1実施形態において、プレート凹部63をZ方向に投影した範囲内にケース凹部716の全体が含まれるが、本開示はこれに限るものではない。プレート凹部63をZ方向に投影した範囲内に、ケース凹部716の一部が含まれればよい。同様に、プレート凹底部631をZ方向に投影した範囲内に、ケース凹底部717の一部が含まれればよい。
第1実施形態において、第1電力変換器は第1リアクトルユニット20、第2電力変換器は第2リアクトルユニット30、第3電力変換器は第2昇圧モジュール40であるが、本開示はこれに限るものではない。第1電力変換器、第2電力変換器、第3電力変換器は、それぞれ、昇圧に用いられるリアクトル、スイッチング素子を内蔵したモジュール、電圧変換を行うトランス等であってもよい。
第1実施形態において、冷媒流路80は、ケース底部714およびプレート60によって形成されるが、本開示はこれに限るものではない。冷媒流路80は、ケース70のみによって形成されてもよい。
第1実施形態において、ケース凹部716はケース本体71と離間している。しかし、本開示はこれに限るものではなく、図5に示すごとく、ケース凹部716とケース本体71とが隣接していてもよい。また、第1実施形態において、ケース凹部716は、ケース平坦部715に全周を囲まれている。しかし、本開示はこれに限るものではなく、ケース凹部716の全周のうち一部とケース平坦部715とが接していればよい。
第1実施形態において、プレート凹部63はケース延長部75と離間している。しかし、本開示はこれに限るものではなく、図5に示すごとく、プレート凹部63とケース延長部75とが隣接していてもよい。また、第1実施形態において、プレート凹部63は、プレート平坦部61に全周を囲まれている。しかし、本開示はこれに限るものではなく、プレート凹部63の全周のうち一部とプレート平坦部61とが接していればよい。
20 第1電力変換器、 30 第2電力変換器、 40 第3電力変換器、 60 プレート、 61 プレート平坦部、 63 プレート凹部、 631 プレート凹底部、 632 プレート凹側部、 634 プレート流路平坦面、 635 プレート流路底面、 636 プレート流路側面、 641 プレート側フィン、 70 ケース、 712 冷媒流入部、 713 冷媒流出部、 714 ケース底部、 715 ケース平坦部、 716 ケース凹部、 717 ケース凹底部、 718 ケース凹側部、 720 ケース流路底面、 721 ケース流路側面、 731 ケース側フィン、 80 冷媒流路。

Claims (5)

  1. 第1昇圧モジュール(111)のスイッチング動作に伴い、直流電源の直流電圧を昇圧するために用いられる第1リアクトルユニット(20)と、
    第2昇圧モジュール(40)のスイッチング動作に伴い、直流電源の直流電圧を昇圧するために用いられる第2リアクトルユニット(30)と、
    前記第1リアクトルユニットを収容し、板状のケース底部(714)を有するケース(70)と、
    前記ケース底部との間で冷媒流路(80)を形成する板状のプレート(60)と、を備え、
    前記ケース底部は、平坦なケース平坦部(715)と、前記ケース平坦部から前記プレートの側に向けてくぼんでいるケース凹部(716)と、を有し、
    前記プレートは、前記ケース平坦部と平行なプレート平坦部(61)と、前記プレート平坦部から前記ケース凹部と同一の向きにくぼんでいるプレート凹部(63)と、を有し、
    前記ケース凹部および前記プレート凹部は、前記ケース平坦部に対して垂直な方向であるZ方向に並んで配置されており、前記ケース平坦部と前記プレート平坦部との間、および、前記ケース凹部と前記プレート凹部との間に前記冷媒流路が形成されており、
    前記第1リアクトルユニットは、前記ケースを介して前記冷媒流路へ放熱するよう、前記ケース凹部と接しており、
    前記第2リアクトルユニットは、前記プレートを介して前記冷媒流路へ放熱するよう、前記プレート平坦部と接しており、
    前記第2リアクトルユニットを前記Z方向に投影した範囲の外に、前記第1リアクトルユニットの全体が含まれている、電力変換装置。
  2. 前記ケース底部のうち、前記第1リアクトルユニット(20)を前記Z方向に投影した範囲内には、前記冷媒流路に配置されて前記第1リアクトルユニットを冷却するケース側フィン(731)が設けられている、請求項1に記載の電力変換装置。
  3. さらに、前記第2昇圧モジュール(40)を有し、
    前記第2昇圧モジュールは、前記プレート凹部と接しており、
    前記Z方向に垂直な方向に前記第2リアクトルユニット(30)を投影した範囲に、前記第2昇圧モジュール(40)の全体が位置している、請求項1に記載の電力変換装置。
  4. 前記プレートのうち、前記第2昇圧モジュール(40)を前記Z方向に投影した範囲内には、前記冷媒流路に配置されて前記第2昇圧モジュール(40)を冷却するプレート側フィン(641)が設けられている、請求項2に記載の電力変換装置。
  5. 前記ケース側フィンを前記Z方向に投影した範囲の外に、前記プレート側フィンの全体が位置する、請求項4に記載の電力変換装置。
JP2020048243A 2020-03-18 2020-03-18 電力変換装置 Active JP7443859B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020048243A JP7443859B2 (ja) 2020-03-18 2020-03-18 電力変換装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2020048243A JP7443859B2 (ja) 2020-03-18 2020-03-18 電力変換装置

Publications (2)

Publication Number Publication Date
JP2021151073A JP2021151073A (ja) 2021-09-27
JP7443859B2 true JP7443859B2 (ja) 2024-03-06

Family

ID=77849666

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020048243A Active JP7443859B2 (ja) 2020-03-18 2020-03-18 電力変換装置

Country Status (1)

Country Link
JP (1) JP7443859B2 (ja)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001163065A (ja) 1999-12-06 2001-06-19 Honda Motor Co Ltd 電子部品の冷却装置及び冷却ユニット
JP2003243865A (ja) 2002-02-19 2003-08-29 Toyota Industries Corp 電子機器及び電子部品の放熱方法
JP2019013111A (ja) 2017-06-30 2019-01-24 株式会社ケーヒン 電力変換装置
JP2019201527A (ja) 2018-05-18 2019-11-21 本田技研工業株式会社 電力変換装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001163065A (ja) 1999-12-06 2001-06-19 Honda Motor Co Ltd 電子部品の冷却装置及び冷却ユニット
JP2003243865A (ja) 2002-02-19 2003-08-29 Toyota Industries Corp 電子機器及び電子部品の放熱方法
JP2019013111A (ja) 2017-06-30 2019-01-24 株式会社ケーヒン 電力変換装置
JP2019201527A (ja) 2018-05-18 2019-11-21 本田技研工業株式会社 電力変換装置

Also Published As

Publication number Publication date
JP2021151073A (ja) 2021-09-27

Similar Documents

Publication Publication Date Title
JP5855899B2 (ja) Dc−dcコンバータ及び電力変換装置
JP6540496B2 (ja) 電力変換装置
JP5504219B2 (ja) 電力変換装置
JP6383408B2 (ja) コンバータ及び電力変換装置
WO2013065472A1 (ja) 一体型電力変換装置及びそれに用いられるdcdcコンバータ装置
US10847441B2 (en) Cooling system
US20150029666A1 (en) Power Conversion Apparatus
JP6161550B2 (ja) 電力変換装置
JP6055868B2 (ja) 電力変換装置
US20200068749A1 (en) Cooling structure of power conversion device
JP6971821B2 (ja) 電力変換装置
JP2010110066A (ja) 電力変換装置
JP6191371B2 (ja) 電力変換装置
JP7443859B2 (ja) 電力変換装置
JP7276554B2 (ja) 直流直流コンバータ装置
JP7379958B2 (ja) 電力変換装置
JP6809563B2 (ja) 電力変換装置
JP4396626B2 (ja) 電力変換装置
WO2019159666A1 (ja) 冷却器付き電子部品及びインバータ
JP7456532B2 (ja) リアクトル装置
JP7323001B2 (ja) 電力変換装置
JP7323002B2 (ja) 電力変換装置
JP7327211B2 (ja) 電力変換装置
WO2022070993A1 (ja) パワー半導体装置
JP2023084144A (ja) トランス

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220609

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20230228

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230404

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230525

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230912

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20231023

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20240123

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20240205

R151 Written notification of patent or utility model registration

Ref document number: 7443859

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151