JP7435953B2 - High pressure hydrogen generation method - Google Patents

High pressure hydrogen generation method Download PDF

Info

Publication number
JP7435953B2
JP7435953B2 JP2020028331A JP2020028331A JP7435953B2 JP 7435953 B2 JP7435953 B2 JP 7435953B2 JP 2020028331 A JP2020028331 A JP 2020028331A JP 2020028331 A JP2020028331 A JP 2020028331A JP 7435953 B2 JP7435953 B2 JP 7435953B2
Authority
JP
Japan
Prior art keywords
pressure
hydrogen
pressure hydrogen
electrolysis
formic acid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2020028331A
Other languages
Japanese (ja)
Other versions
JP2021130600A (en
Inventor
和彦 森
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
CURRENT DYNAMICS INCORPORATED
Original Assignee
CURRENT DYNAMICS INCORPORATED
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by CURRENT DYNAMICS INCORPORATED filed Critical CURRENT DYNAMICS INCORPORATED
Priority to JP2020028331A priority Critical patent/JP7435953B2/en
Publication of JP2021130600A publication Critical patent/JP2021130600A/en
Application granted granted Critical
Publication of JP7435953B2 publication Critical patent/JP7435953B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Description

本発明は、ギ酸化学反応の発生圧力を利用し、機械的圧縮なしで高圧水素を発生させる高圧水素発生方法及び高圧水素供給システムに関する。 The present invention relates to a high-pressure hydrogen generation method and high-pressure hydrogen supply system that utilizes the pressure generated by a formic acid chemical reaction to generate high-pressure hydrogen without mechanical compression.

水素を燃料として利用する「水素社会」のアイデアは以前から提案されており、例えば、燃料電池車両に水素を簡単かつ経済的に供給する方法が日々研究・開発されている。 The idea of a ``hydrogen society'' that uses hydrogen as fuel has been proposed for some time, and, for example, methods for easily and economically supplying hydrogen to fuel cell vehicles are being researched and developed on a daily basis.

例えば、特許文献1には、水を電気分解して高圧水素を発生させる水電解装置と、前記水電解装置から送られる前記水素を燃料電池車両に供給するために貯蔵する水素供給タンクとを備える水素供給システムにおいて、前記水素を前記燃料電池車両の車載水素タンクに供給する水素供給方法が記載されている。 For example, Patent Document 1 includes a water electrolysis device that electrolyzes water to generate high-pressure hydrogen, and a hydrogen supply tank that stores the hydrogen sent from the water electrolysis device in order to supply it to a fuel cell vehicle. In the hydrogen supply system, a hydrogen supply method for supplying the hydrogen to an on-board hydrogen tank of the fuel cell vehicle is described.

水素は重量当たりのエネルギーは他の物質より格段に高いが、体積当たりのエネルギーは小さい。そのため、輸送機器の推進エネルギーとして利用するためには、搭載体積を小さくするために、水素を高圧に圧縮する必要がある。水素充填ステーションでは、そのために全体額の内、多大なる割合の費用を圧縮設備のために必要としているのが現状である。 Hydrogen has much more energy per weight than other substances, but less energy per volume. Therefore, in order to use hydrogen as propulsion energy for transportation equipment, it is necessary to compress hydrogen to high pressure in order to reduce the onboard volume. At present, hydrogen filling stations require a large proportion of the total cost for compression equipment.

すでに、水の電気分解を行って、発生する水素を高圧にする方法は存在する(特許文献2、3など)。しかしながら、水を電気分解する際には、同時に発生する酸素を排除することが安全上欠くべからざる要件であり、簡単にそれを確保することは容易ではない。また、材料の耐久性やコストに関しても改良の余地が多い。 There already exists a method of electrolyzing water to generate high pressure hydrogen (Patent Documents 2, 3, etc.). However, when water is electrolyzed, it is essential for safety to eliminate the oxygen generated at the same time, and it is not easy to ensure this. There is also much room for improvement in terms of material durability and cost.

このような状況から、安全にかつ低コストな方法で、高圧水素を発生させることが、燃料電池車等の普及の上で渇望されている状況にある。 Under these circumstances, there is a strong desire to generate high-pressure hydrogen in a safe and low-cost manner in order to popularize fuel cell vehicles and the like.

特開2007-489599号公報Japanese Patent Application Publication No. 2007-489599 特開2015-86424号公報JP2015-86424A 特開2019-112658号公報JP 2019-112658 Publication 特開2019-1760号公報JP 2019-1760 Publication 特開2018-126737号公報Japanese Patent Application Publication No. 2018-126737 特開2016-124730号公報Japanese Patent Application Publication No. 2016-124730

そこで、本発明は、このような従来の実情に鑑みて提案されたものであり、機械的圧縮なしで安全かつ効率的に高圧水素を発生させ、供給することのできる高圧水素発生方法及び高圧水素供給システムを提供することを目的とする。 Therefore, the present invention has been proposed in view of such conventional circumstances, and provides a high-pressure hydrogen generation method and high-pressure hydrogen that can safely and efficiently generate and supply high-pressure hydrogen without mechanical compression. The purpose is to provide a supply system.

上述した目的を達成する本発明の一態様は、水素を発生させて高圧下で供給する高圧水素発生方法であって、少なくとも、ギ酸を含む溶液を密閉容器内で電気分解することによって高圧水素ガスを発生する方法である。 One aspect of the present invention that achieves the above-mentioned object is a high-pressure hydrogen generation method for generating hydrogen and supplying it under high pressure, the method comprising: generating high-pressure hydrogen gas by electrolyzing a solution containing at least formic acid in a closed container. This is a method of generating

この発明で得られた水素発生方法を自動化し、繰り返し間欠的に高圧水素を発生・供給可能なシステムを構成するために、ギ酸を含む原料溶液を供給する原料供給部と、ギ酸を含む原料溶液を密閉下で電気分解する電気分解部と、電気分解部で生じた気体から高圧水素を分離して供給する分離供給部を有する。 In order to automate the hydrogen generation method obtained in this invention and configure a system capable of repeatedly and intermittently generating and supplying high-pressure hydrogen, a raw material supply section that supplies a raw material solution containing formic acid and a raw material solution containing formic acid are provided. It has an electrolysis section that electrolyzes hydrogen under closed conditions, and a separation supply section that separates and supplies high-pressure hydrogen from the gas generated in the electrolysis section.

ギ酸に外部から電力を与えると、その電気分解によって、ギ酸から水素ガスを得ることができる。その際、同時に発生する二酸化炭素は非可燃性であり、爆発等の危険性がない。また、ギ酸の電気分解では酸素のイオン濃度がギ酸より5桁ほど低く、たとえギ酸が水と混合された水溶液であっても、水の電気分解からの酸素発生は極めて少ないので、水の電気分解よりも安全であり、かつ、密閉下で電気分解を行うことにより発生する気体が高圧となり機械的圧縮なしで効率的に高圧水素を発生させることができる。 When power is applied externally to formic acid, hydrogen gas can be obtained from the formic acid through its electrolysis. At this time, the carbon dioxide generated at the same time is non-flammable and poses no risk of explosion. In addition, in the electrolysis of formic acid, the oxygen ion concentration is about 5 orders of magnitude lower than that of formic acid, and even if formic acid is an aqueous solution mixed with water, the amount of oxygen generated from water electrolysis is extremely small. Furthermore, by performing electrolysis under closed conditions, the gas generated becomes high pressure, and high-pressure hydrogen can be efficiently generated without mechanical compression.

このとき、本発明の一態様では、電気分解部では、プラチナあるいは炭素電極を用いて電気分解を行うとしてもよい。一態様として、プラチナを用いることも可能であるが、電気伝導度で劣る炭素電極を用いる方法をとることもできる。本発明は、特段の触媒等の劣化する材料を併用する必要がない特徴を有する。 At this time, in one aspect of the present invention, the electrolysis section may perform electrolysis using a platinum or carbon electrode. In one embodiment, it is possible to use platinum, but it is also possible to use a carbon electrode that has poor electrical conductivity. The present invention has a feature that there is no need to use a material that deteriorates, such as a special catalyst.

炭素電極を用いることにより、プラチナよりも安価に本発明の電気分解システムを構成することができる。電極材としてプラチナや炭素が望ましいがそれらは例示であって、本発明は腐食が少ない他の電極材料で行うこともできる。 By using a carbon electrode, the electrolysis system of the present invention can be constructed at a lower cost than using platinum. Although platinum and carbon are preferable as electrode materials, these are just examples, and the present invention can also be carried out using other electrode materials that are less corrosive.

また、本発明の一態様では、分離供給部では、複数のバルブを有し、シーケンス制御により複数のバルブを開閉することで繰り返し間欠的に高圧水素を発生させることとしてもよい。 Further, in one aspect of the present invention, the separation supply section may include a plurality of valves, and high-pressure hydrogen may be repeatedly and intermittently generated by opening and closing the plurality of valves through sequence control.

高圧ガス容器内では、ギ酸から主として水素と二酸化炭素が発生する。水素と同時に発生する二酸化炭素は別途バルブに接続され、二酸化炭素は水や水酸化ナトリウム等のCO吸収溶液によって吸収され、水溶液として分離することによって、水素を単独で得ることが出来る。 In the high-pressure gas container, mainly hydrogen and carbon dioxide are generated from formic acid. Carbon dioxide generated simultaneously with hydrogen is connected to a separate valve, and carbon dioxide is absorbed by a CO 2 absorption solution such as water or sodium hydroxide, and hydrogen can be obtained independently by separating it as an aqueous solution.

このようにすることにより、全自動で安全かつ効率的に高圧水素を分離、供給することができる。 By doing so, high-pressure hydrogen can be separated and supplied fully automatically, safely and efficiently.

また、本発明の一態様では、発生した水素を燃料電池車に供給するようにしてもよい。 Further, in one aspect of the present invention, the generated hydrogen may be supplied to a fuel cell vehicle.

本発明の一態様に係る高圧水素供給システムにより発生させた高圧水素は、燃料電池車の燃料源として好ましく用いることができる。 High-pressure hydrogen generated by the high-pressure hydrogen supply system according to one embodiment of the present invention can be preferably used as a fuel source for a fuel cell vehicle.

以上説明したように本発明によれば、機械的圧縮なしで安全かつ効率的に高圧水素を発生させ、供給することのできる高圧水素発生方法及び高圧水素供給システムを提供することができる。 As explained above, according to the present invention, it is possible to provide a high-pressure hydrogen generation method and a high-pressure hydrogen supply system that can safely and efficiently generate and supply high-pressure hydrogen without mechanical compression.

本発明の一実施形態に係る高圧水素供給システムの概略構成を示すブロック図である。1 is a block diagram showing a schematic configuration of a high-pressure hydrogen supply system according to an embodiment of the present invention. 本発明の一実施形態に係る高圧水素供給システムに係る電気分解部の構成を説明するための断面図である。FIG. 1 is a cross-sectional view for explaining the configuration of an electrolysis section in a high-pressure hydrogen supply system according to an embodiment of the present invention. 本発明の別の実施形態に係る高圧水素供給システムに係る電気分解部の構成を説明するための一部断面図である。FIG. 3 is a partial cross-sectional view for explaining the configuration of an electrolysis section in a high-pressure hydrogen supply system according to another embodiment of the present invention. (A)は、本発明の一実施形態に係る高圧水素供給システムに係る分離供給部の構成を説明するための概略図であり、(B)は、本発明の一実施形態における発生した高圧水素と高圧炭酸ガスを分離して、水素ガスだけを取り出すためのシーケンス制御の一例を表す概略図である。(A) is a schematic diagram for explaining the configuration of a separation supply unit related to a high-pressure hydrogen supply system according to an embodiment of the present invention, and (B) is a diagram illustrating the generated high-pressure hydrogen in an embodiment of the present invention. FIG. 2 is a schematic diagram showing an example of sequence control for separating hydrogen gas and high-pressure carbon dioxide gas and extracting only hydrogen gas. ギ酸溶液の電気分解に伴う圧力、温度、電流、電圧の経時変化を計測した一例の図である。FIG. 2 is a diagram showing an example of measuring changes in pressure, temperature, current, and voltage over time during electrolysis of a formic acid solution. ギ酸の水溶液濃度を変えて電気分解を行った際に発生するガス成分の圧力依存を分析した図である。FIG. 2 is a diagram analyzing the pressure dependence of gas components generated when electrolysis is performed by changing the concentration of an aqueous solution of formic acid. 交流電流(AC電流)によりギ酸溶液を電気分解したときの発生高圧気体の成分分析結果を示した図である。FIG. 2 is a diagram showing the results of component analysis of high-pressure gas generated when a formic acid solution is electrolyzed by alternating current (AC current).

以下、本発明の好適な実施の形態について図面を参照しながら詳細に説明する。なお、以下に説明する本実施形態は、特許請求の範囲に記載された本発明の内容を不当に限定するものではなく、本実施形態で説明される構成の全てが本発明の解決手段として必須であるとは限らない。 Hereinafter, preferred embodiments of the present invention will be described in detail with reference to the drawings. Note that this embodiment described below does not unduly limit the content of the present invention described in the claims, and all of the configurations described in this embodiment are essential as a solution to the present invention. Not necessarily.

上述したように、従来、水素を発生させる方法としては、水の電気分解が一般的に用いられていた。しかしながら、水の電気分解では水素の他に酸素が発生し、水素と酸素の混合気体は反応性が高く、火花等により爆発的に反応するため注意を要するものであった。 As mentioned above, water electrolysis has conventionally been commonly used as a method for generating hydrogen. However, in the electrolysis of water, oxygen is generated in addition to hydrogen, and a mixed gas of hydrogen and oxygen is highly reactive and reacts explosively with sparks, so caution is required.

近年、ギ酸(HCOOH)を水素源として生成し、貯蔵する技術が研究されている。例えば、特許文献4には、基板の表面に形成した酸化チタン微粒子による多孔質層に少なくとも色素及びビオローゲン化合物を担持させてなるギ酸生成デバイスが開示されており、光エネルギーにより水を分解し、その際得られた電子と上記ギ酸生成デバイスを用いて二酸化炭素と水からギ酸を生成する人工光合成による方法が研究されている。 In recent years, research has been conducted into technologies for producing and storing formic acid (HCOOH) as a hydrogen source. For example, Patent Document 4 discloses a formic acid generating device in which at least a dye and a viologen compound are supported on a porous layer of titanium oxide fine particles formed on the surface of a substrate. A method using artificial photosynthesis to produce formic acid from carbon dioxide and water using the obtained electrons and the above-mentioned formic acid production device is being researched.

一方で、得られギ酸から水素を得る手段としては、遷移金属を含む錯体による脱水素化反応などが知られているが(特許文献5、6など)、触媒の資源性、コスト面での課題があった。 On the other hand, a dehydrogenation reaction using a complex containing a transition metal is known as a means of obtaining hydrogen from the obtained formic acid (Patent Documents 5, 6, etc.), but there are problems in terms of resource efficiency and cost of the catalyst. was there.

図1は、本発明の一実施形態に係る高圧水素供給システムの概略構成を示すブロック図である。本発明の一態様は、水素を発生させて高圧下で供給する高圧水素供給システム100であって、少なくとも、ギ酸を含む溶液を供給する原料供給部10と、ギ酸を含む溶液を密閉下で電気分解する電気分解部20と、電気分解部20で生じた気体から高圧水素を分離して供給する分離供給部30を有する。 FIG. 1 is a block diagram showing a schematic configuration of a high-pressure hydrogen supply system according to an embodiment of the present invention. One aspect of the present invention is a high-pressure hydrogen supply system 100 that generates hydrogen and supplies it under high pressure, which includes at least a raw material supply section 10 that supplies a solution containing formic acid, and an electric supply system that supplies the solution containing formic acid in a sealed manner. It has an electrolysis section 20 that decomposes, and a separation supply section 30 that separates and supplies high-pressure hydrogen from the gas generated in the electrolysis section 20.

従来の水の電気分解による水素発生の代わりに、本発明の一実施形態に係る高圧水素発生方法ではギ酸を用いることにより、ギ酸の電気分解では酸素がほとんど生じないため、水の電気分解よりも安全に水素を発生させることができる。ギ酸の電気分解では酸素のイオン濃度がギ酸より5桁ほど低く、たとえギ酸が水と混合された水溶液であっても、水の電気分解からの酸素は極めて少ないためである。また、密閉下で電気分解を行うことにより発生する気体が高圧となるため、コンプレッサーなどによる機械的圧縮なしで効率的に高圧水素を発生させることができる。 Instead of conventional hydrogen generation by electrolysis of water, the high-pressure hydrogen generation method according to an embodiment of the present invention uses formic acid, which is more effective than electrolysis of water because the electrolysis of formic acid produces almost no oxygen. Hydrogen can be generated safely. This is because the oxygen ion concentration in electrolysis of formic acid is about five orders of magnitude lower than that of formic acid, and even if formic acid is an aqueous solution mixed with water, the amount of oxygen from electrolysis of water is extremely small. Furthermore, since the gas generated by performing electrolysis under closed conditions has a high pressure, high-pressure hydrogen can be efficiently generated without mechanical compression using a compressor or the like.

原料供給部10は、ギ酸を含む溶液を電気分解部20へ供給するための設備である。例えば、ギ酸を貯蔵するタンクや、上述したような人工光合成によるギ酸合成設備などである。原料供給部10から供給されるギ酸は必ずしも100%の濃度である必要はなく、0.1~100%程度の濃度のギ酸でもよい。また、高圧水素の生成プロセスに影響を及ぼさないものであれば、ギ酸を含む溶液にギ酸以外の成分や不純物が含まれていても良い。 The raw material supply section 10 is a facility for supplying a solution containing formic acid to the electrolysis section 20. Examples include tanks for storing formic acid and facilities for synthesizing formic acid using artificial photosynthesis as described above. The formic acid supplied from the raw material supply section 10 does not necessarily have to have a concentration of 100%, and may have a concentration of about 0.1 to 100%. Further, the solution containing formic acid may contain components or impurities other than formic acid as long as they do not affect the high-pressure hydrogen production process.

電気分解部20では、ギ酸を含む溶液を密閉下で電気分解する。図2は、本発明の一実施形態に係る高圧水素供給システムに係る電気分解部の構成を説明するための断面図である。電気分解部20は、ギ酸を含む溶液を保持する電解槽21と、外部電源に接続された陰極22及び陽極23等から構成される。陰極22及び陽極23には、プラチナ(Pt)や炭素(C)など、ギ酸によって腐食されがたい電極が用いられる。電気分解部20では、例えば、図2に示すような電流の流れFが生じ、ギ酸を電気分解することにより、陰極からは水素が発生し、陽極からは二酸化炭素が発生する。なお、電極間には直流あるいは交流電圧のいずれを印加しても良い。電極間に交流を印加し、電気分解により高圧発生させる場合、水の電解による酸素発生が一層少なくできる。その際、効率低下を防ぐため、1~60ヘルツ(Hz)の交流が望ましいが、印加周波数がそれより高くとも電解は可能である。 In the electrolysis section 20, a solution containing formic acid is electrolyzed under closed conditions. FIG. 2 is a cross-sectional view for explaining the configuration of an electrolysis section in a high-pressure hydrogen supply system according to an embodiment of the present invention. The electrolyzer 20 includes an electrolytic cell 21 that holds a solution containing formic acid, a cathode 22 and an anode 23, etc., which are connected to an external power source. The cathode 22 and the anode 23 are made of platinum (Pt), carbon (C), or other electrodes that are resistant to corrosion by formic acid. In the electrolyzer 20, for example, a current flow F as shown in FIG. 2 occurs, and by electrolyzing formic acid, hydrogen is generated from the cathode and carbon dioxide is generated from the anode. Note that either direct current or alternating current voltage may be applied between the electrodes. When alternating current is applied between the electrodes and high pressure is generated by electrolysis, oxygen generation due to water electrolysis can be further reduced. At this time, in order to prevent a decrease in efficiency, an alternating current of 1 to 60 hertz (Hz) is preferable, but electrolysis is possible even if the applied frequency is higher than that.

本発明の一実施形態に係る高圧水素供給システム100では、電気分解部20は高圧容器蓋26や絶縁締め付け具等(図示せず)により密閉とし、内部で電気分解を行う。電気分解部20を構成する高圧容器24は、高圧に耐えることができる圧力容器である必要があり、例えばステンレス等の部材で構成され、内部が高圧になった場合でも外部に気体が漏れないように密閉される。また、陰極22と陽極23の境界面付近はテフロン等の絶縁スペーサ(ガスケット等)25を設けることにより絶縁しておく。陰極22と陽極23の電極は、例えば、電極取付ねじ27等により高圧容器24や高圧容器蓋26に固定される。また、電気分解部20には、原料となるギ酸を導入し、あるいは、発生した高圧ガスを排出するためのパイプ28が設けられる。 In the high-pressure hydrogen supply system 100 according to an embodiment of the present invention, the electrolysis unit 20 is sealed with a high-pressure container lid 26, an insulating fastener, etc. (not shown), and electrolysis is performed inside. The high-pressure vessel 24 that constitutes the electrolysis unit 20 must be a pressure vessel that can withstand high pressure, and must be made of a material such as stainless steel, and must be made of a material such as stainless steel to prevent gas from leaking to the outside even if the inside becomes high pressure. will be sealed. Further, the vicinity of the interface between the cathode 22 and the anode 23 is insulated by providing an insulating spacer (gasket or the like) 25 made of Teflon or the like. The cathode 22 and anode 23 are fixed to the high-pressure container 24 or the high-pressure container lid 26 using, for example, electrode mounting screws 27 or the like. Further, the electrolysis section 20 is provided with a pipe 28 for introducing formic acid as a raw material or for discharging generated high-pressure gas.

図3は、本発明の別の実施形態に係る高圧水素供給システムに係る電気分解部の構成を説明するための一部断面図である。なお、図2に示す電気分解部20と同様の構成については同一の符号を付してある。電気分解部20は、例えば、図3に示すように陰極22と陽極23をそれぞれ、上部電極取出し部31、及び、下部電極取出し部32に固定して高圧容器24上に積層するようにしてもよい。このような構成とすることで、電極の取り換えが容易となる。また、上部電極取出し部31、及び、下部電極取出し部32に陰極22と陽極23を交互に複数取り付けて、複数の電極で電気分解を行うようにしてもよい。高圧容器24、上部電極取出し部31、及び、下部電極取出し部32の境界にはそれぞれテフロン等の絶縁スペーサ(ガスケット等)25が設けられる。また、高圧容器24、上部電極取出し部31、及び、下部電極取出し部32の積層体は、一例として、上部電極押さえ板33及び下部電極押さえ板34で挟み、電極締め付けねじ35により締め付けることで容器全体を固定するとともに密閉度を高める。 FIG. 3 is a partial cross-sectional view for explaining the configuration of an electrolysis section in a high-pressure hydrogen supply system according to another embodiment of the present invention. In addition, the same code|symbol is attached|subjected about the structure similar to the electrolysis part 20 shown in FIG. For example, the electrolyzer 20 may be stacked on the high-pressure vessel 24 with the cathode 22 and anode 23 fixed to the upper electrode extraction part 31 and the lower electrode extraction part 32, respectively, as shown in FIG. good. With such a configuration, the electrodes can be easily replaced. Further, a plurality of cathodes 22 and anodes 23 may be alternately attached to the upper electrode extraction portion 31 and the lower electrode extraction portion 32, and electrolysis may be performed using the plurality of electrodes. Insulating spacers (gaskets, etc.) 25 made of Teflon or the like are provided at the boundaries of the high-pressure container 24, the upper electrode extraction portion 31, and the lower electrode extraction portion 32, respectively. In addition, the laminate of the high-pressure container 24, the upper electrode take-out part 31, and the lower electrode take-out part 32 can be assembled into a container by, for example, sandwiching the upper electrode holding plate 33 and the lower electrode holding plate 34 and tightening them with the electrode tightening screws 35. It fixes the whole thing and increases the degree of airtightness.

このような密閉した構成にすることにより、電気分解部20では、電気分解による気体の発生により次第に圧力が上昇し、最終的に一定以上の気圧を有する高圧水素とすることができるため、コンプレッサー等による機械的圧縮を必要とせず、水素供給システムの設備費用を大幅に低減することができる。 With such a sealed configuration, in the electrolyzer 20, the pressure gradually increases due to the generation of gas by electrolysis, and finally high-pressure hydrogen having a pressure above a certain level can be produced, so that it can be used with a compressor, etc. There is no need for mechanical compression, and the equipment cost of the hydrogen supply system can be significantly reduced.

分離供給部30では、電気分解部20で生じた気体から高圧水素を分離して供給する。図4(A)は、本発明の一実施形態に係る高圧水素供給システムに係る分離供給部の構成を説明するための概略図である。分離供給部30は、一例として、複数のバルブVA~VFから構成される。これらのバルブVA~VFは、高圧にも耐える電磁弁であることが好ましい。 The separation supply section 30 separates and supplies high-pressure hydrogen from the gas generated in the electrolysis section 20 . FIG. 4(A) is a schematic diagram for explaining the configuration of a separation supply section related to a high-pressure hydrogen supply system according to an embodiment of the present invention. The separation supply unit 30 includes, for example, a plurality of valves VA to VF. These valves VA to VF are preferably electromagnetic valves that can withstand high pressure.

間欠的に高圧水素を連続生成するシステムについて述べる。まず、電気分解部(ギ酸電解部分)20内部を真空ポンプあるいは不活性ガス等による空気パージ等によってクリーンにし、全てのバルブVA~VFを閉じた後、バルブVFを開いて電気分解部20にギ酸溶液を投入する。その後、バルブVFを閉じ、電気分解部20内の電極に外部から電力を印加し、電気分解を行う。また、このとき、バルブVD及びバルブVBを開いて、水酸化ナトリウム、アミンや、水(純水または水道水)などのCO吸収溶液をCO吸収用タンク41に充填し、その後、バルブVDを閉じる。 We will describe a system that continuously generates high-pressure hydrogen intermittently. First, the inside of the electrolysis section (formic acid electrolysis section) 20 is cleaned by a vacuum pump or air purge using an inert gas, etc., and after closing all valves VA to VF, open valve VF to supply formic acid to the electrolysis section 20. Pour in the solution. Thereafter, the valve VF is closed, and electric power is applied from the outside to the electrodes in the electrolysis section 20 to perform electrolysis. At this time, the valve VD and the valve VB are opened to fill the CO 2 absorption solution such as sodium hydroxide, amine, or water (pure water or tap water) into the CO 2 absorption tank 41, and then the valve VD is opened. Close.

電気分解部20内の圧力測定により、容器内が所定の圧力に達した時点で、電気分解部20により生成した高圧の水素と二酸化炭素の混合気体は、バルブVAを開くことでCO吸収用タンク41へと送られる。水素と二酸化炭素の混合気体がCO吸収用タンク41へと送られた後、バルブVAを閉じる。 When the pressure inside the electrolysis unit 20 reaches a predetermined pressure by measuring the pressure inside the electrolysis unit 20, the high-pressure hydrogen and carbon dioxide mixture gas generated by the electrolysis unit 20 is released for CO 2 absorption by opening the valve VA. It is sent to tank 41. After the mixed gas of hydrogen and carbon dioxide is sent to the CO 2 absorption tank 41, the valve VA is closed.

電気分解部20で発生した高圧気体は、CO吸収用タンク41内において、あらかじめ導入された水あるいは水酸化ナトリウム水溶液等のCO吸収溶液と接触する。その結果、ほとんどの二酸化炭素だけがこのCO吸収溶液に吸収される。水素はその溶解特性上、ほとんどCO吸収溶液に吸収されない。この操作を介することにより、水素と二酸化炭素の混合気体中から二酸化炭素(CO)を分離することができる。二酸化炭素を吸収する際には、CO吸収用タンク41の冷却等の操作により吸収速度を速めても良いが、必須の構成ではない。 The high-pressure gas generated in the electrolysis section 20 comes into contact with a CO 2 absorption solution such as water or an aqueous sodium hydroxide solution introduced in advance in the CO 2 absorption tank 41 . As a result, only most of the carbon dioxide is absorbed into this CO 2 absorption solution. Due to its solubility properties, hydrogen is hardly absorbed into the CO 2 absorption solution. Through this operation, carbon dioxide (CO 2 ) can be separated from a mixed gas of hydrogen and carbon dioxide. When absorbing carbon dioxide, the absorption rate may be increased by cooling the CO 2 absorption tank 41, but this is not an essential configuration.

一定時間が経過すると、CO吸収用タンク41内に存在する気体がほぼ水素だけの状態となるため、その時点でバルブCを開くことで、ほぼ高圧水素(H)のみとなった気体を高圧水素容器50へと送ることができ、安全に高圧の水素ガスを生成貯蔵可能となる。 After a certain period of time has passed, the gas present in the CO 2 absorption tank 41 becomes almost exclusively hydrogen, so by opening valve C at that point, the gas that is almost exclusively high-pressure hydrogen (H 2 ) is removed. It can be sent to the high-pressure hydrogen container 50, making it possible to safely generate and store high-pressure hydrogen gas.

その後、バルブVCを閉じ、バルブVEを開くことによって、例えば水道水42を介して溶液に吸収されていた二酸化炭素を系外に排出する。あるいは、一例としてCO吸収用タンク41を加熱することでバルブVDを開いて発生した二酸化炭素だけを放出してもよい。または、これらの二酸化炭素を回収して、人工光合成や他の化学反応によって再度、ギ酸を合成する用途に活用することもできる。 Thereafter, by closing the valve VC and opening the valve VE, the carbon dioxide that has been absorbed in the solution is discharged to the outside of the system via, for example, the tap water 42. Alternatively, as an example, only the generated carbon dioxide may be released by heating the CO 2 absorption tank 41 and opening the valve VD. Alternatively, these carbon dioxides can be recovered and used to synthesize formic acid again through artificial photosynthesis or other chemical reactions.

これらのバルブの開閉操作は、制御部(図示せず)等により設定水素発生圧力等を決めて行うシーケンス制御で行うことが好ましい。図4(B)は、本発明の一実施形態におけるシーケンス制御の一例を表す概略図である。高圧の気体を扱うため、人力でのバルブの開閉を避け、また、自動で開閉操作を行うことによって効率的に高圧水素の分離供給を行う方が好ましい。 The opening and closing operations of these valves are preferably performed by sequence control in which a set hydrogen generation pressure and the like are determined by a control unit (not shown) or the like. FIG. 4(B) is a schematic diagram showing an example of sequence control in an embodiment of the present invention. Since high-pressure gas is handled, it is preferable to avoid opening and closing valves manually and to perform the opening and closing operations automatically to efficiently separate and supply high-pressure hydrogen.

このように電気分解、一連のバルブの開閉操作、CO吸収用タンク等の容器の冷却・加熱操作をシーケンシャルに行うことによって、最終的に得られる気体のほとんどを水素(H)ガスだけにすることが可能である。さらにシーケンサ等による制御を繰り返し行い得る、一連のバルブ操作の自動化によって、高圧の水素ガスが安全な反応の下で得られ、所定の圧力で、高圧水素を自動化して水素容器に貯蔵することが可能である。 In this way, by sequentially performing electrolysis, opening and closing a series of valves, and cooling and heating containers such as CO 2 absorption tanks, most of the gas finally obtained is reduced to only hydrogen (H 2 ) gas. It is possible to do so. Furthermore, by automating a series of valve operations that can be repeatedly controlled by a sequencer, high-pressure hydrogen gas can be obtained under a safe reaction, and high-pressure hydrogen can be automatically stored in a hydrogen container at a predetermined pressure. It is possible.

このようにして生成貯蔵された高圧水素は、例えば燃料電池車などに用いられ、水素エンジンや燃料電池の燃料源として搭載される。本発明の一実施形態に係る高圧水素供給システムは、輸送機や場所をとらない据え置き反応装置として、広い産業機器分野での活用が期待できる。 The high-pressure hydrogen generated and stored in this manner is used, for example, in a fuel cell vehicle, and is installed as a fuel source for a hydrogen engine or fuel cell. The high-pressure hydrogen supply system according to an embodiment of the present invention can be expected to be used in a wide range of industrial equipment fields, such as on transport vehicles and as stationary reaction devices that do not take up much space.

以下に示す実施例によって本発明を更に詳細に説明するが、本発明は、これらの実施例によって何ら限定されるものではない。 The present invention will be explained in more detail with reference to Examples shown below, but the present invention is not limited to these Examples in any way.

75%のギ酸溶液を図3に示したような電気分解装置で分解し、発生気圧(気圧)、容器温度(℃)、電流(A)、印加電圧(V)の経時変化を計測した。なお、電極はプラチナ電極(50mm×25mm、厚さ0.5mm)を用いた。結果を図5に示す。 A 75% formic acid solution was decomposed using an electrolyzer as shown in FIG. 3, and changes over time in generated atmospheric pressure (atmospheric pressure), container temperature (° C.), current (A), and applied voltage (V) were measured. Note that a platinum electrode (50 mm x 25 mm, thickness 0.5 mm) was used as the electrode. The results are shown in Figure 5.

図5に示すように、時間の経過とともに圧力が上昇し、約6時間後には、約140気圧の高圧ガスとなった。したがって、本発明の一実施形態に係る高圧水素供給システムを用いることにより、機械的圧縮なしで安全かつ効率的に高圧水素を発生させることができることが確認できた。 As shown in FIG. 5, the pressure increased over time and reached a high pressure gas of about 140 atmospheres after about 6 hours. Therefore, it was confirmed that high-pressure hydrogen can be generated safely and efficiently without mechanical compression by using the high-pressure hydrogen supply system according to an embodiment of the present invention.

図6は、ギ酸の水溶液濃度を50%、75%、90%と変えて電気分解を行った際に発生するガス成分の圧力依存を分析した結果である。いずれのギ酸濃度及び圧力においても、発生気体のうちほぼ50%が水素成分であることが確認できた。また、残りの成分はほぼ二酸化炭素であった。 FIG. 6 shows the results of analyzing the pressure dependence of gas components generated when electrolysis was performed by changing the concentration of formic acid aqueous solution to 50%, 75%, and 90%. At any formic acid concentration and pressure, it was confirmed that approximately 50% of the generated gas was a hydrogen component. Moreover, the remaining component was mostly carbon dioxide.

図7は、交流電流(AC電流)により、条件1(5Hz、3A、28℃)、条件2(5Hz、5A、47℃)、条件3(60Hz、5A、46℃)で75%ギ酸溶液を電気分解したときの発生高圧気体の成分分析結果を示した図である。図7に示されているように、ギ酸の電気分解により発生した高圧気体の成分は、水素と二酸化炭素がおおよそ50%ずつであり、一酸化炭素や酸素の発生は微量であることが分かった。 Figure 7 shows the flow of 75% formic acid solution under conditions 1 (5Hz, 3A, 28℃), conditions 2 (5Hz, 5A, 47℃), and conditions 3 (60Hz, 5A, 46℃) using alternating current (AC current). FIG. 3 is a diagram showing the results of component analysis of high-pressure gas generated during electrolysis. As shown in Figure 7, the components of the high-pressure gas generated by the electrolysis of formic acid were approximately 50% each hydrogen and carbon dioxide, and the generation of carbon monoxide and oxygen was found to be trace amounts. .

以上の通り、本発明の各実施形態及び各実施例について詳細に説明したが、本発明の新規事項及び効果から実体的に逸脱しない多くの変形が可能であることは、当業者には、容易に理解できるであろう。従って、このような変形例は、全て本発明の範囲に含まれるものとする。 As described above, each embodiment and each example of the present invention has been described in detail, but those skilled in the art will easily understand that many modifications are possible without substantially departing from the novelty and effects of the present invention. It will be easy to understand. Therefore, all such modifications are included within the scope of the present invention.

例えば、明細書又は図面において、少なくとも一度、より広義又は同義な異なる用語と共に記載された用語は、明細書又は図面のいかなる箇所においても、その異なる用語に置き換えることができる。また、高圧水素発生方法及び高圧水素供給システムの構成も本発明の各実施形態及び各実施例で説明したものに限定されず、種々の変形実施が可能である。 For example, a term that appears at least once in the specification or drawings together with a different term with a broader or synonymous meaning may be replaced by that different term anywhere in the specification or drawings. Furthermore, the configurations of the high-pressure hydrogen generation method and the high-pressure hydrogen supply system are not limited to those described in each embodiment and each example of the present invention, and various modifications can be made.

10 原料供給部、20 電気分解部、21 電解槽、22 陰極、23 陽極、24 高圧容器、25 絶縁スペーサ(ガスケット)、26 高圧容器蓋、27 電極取付ねじ、28 パイプ、30 分離供給部、31 上部電極取出し部、32 下部電極取出し部、33 上部電極押さえ板、34 下部電極押さえ板、35 電極締め付けねじ、40 CO回収・排出設備、41 CO吸収用タンク、42 水道水、50 高圧水素容器、100 高圧水素供給システム 10 raw material supply section, 20 electrolysis section, 21 electrolytic cell, 22 cathode, 23 anode, 24 high pressure container, 25 insulating spacer (gasket), 26 high pressure container lid, 27 electrode mounting screw, 28 pipe, 30 separation supply section, 31 Upper electrode extraction part, 32 Lower electrode extraction part, 33 Upper electrode holding plate, 34 Lower electrode holding plate, 35 Electrode tightening screw, 40 CO 2 recovery/discharge equipment, 41 CO 2 absorption tank, 42 Tap water, 50 High pressure hydrogen Container, 100 High pressure hydrogen supply system

Claims (7)

水素を発生させ高圧にして供給できる高圧水素発生方法であって、少なくとも、ギ酸を含む溶液を密閉した容器内で交流電流により電気分解を行うことにより、高圧の水素と二酸化炭素の混合気体を発生させることを特徴とする高圧水素発生方法。 A high-pressure hydrogen generation method that can generate hydrogen and supply it at high pressure, at least by electrolyzing a solution containing formic acid in a sealed container using alternating current to generate a high-pressure mixed gas of hydrogen and carbon dioxide. A high-pressure hydrogen generation method characterized by: 前記発生した高圧の水素と二酸化炭素の混合気体を、炭酸ガス吸収能を有する溶液に通すことで高圧の水素を分離して得ることを特徴とする請求項1に記載の高圧水素発生方法。 2. The high-pressure hydrogen generation method according to claim 1, wherein the high-pressure hydrogen is separated and obtained by passing the generated high-pressure mixed gas of hydrogen and carbon dioxide through a solution having carbon dioxide absorption ability. 前記電気分解から高圧水素の回収までの操作を複数のバルブを用いたシーケンス制御により行い、繰り返し間欠的に高圧水素を発生させることを特徴とする請求項2に記載の高圧水素発生方法。 3. The high-pressure hydrogen generation method according to claim 2, wherein the operations from electrolysis to recovery of high-pressure hydrogen are performed by sequence control using a plurality of valves, and high-pressure hydrogen is repeatedly and intermittently generated. 請求項1乃至請求項3のいずれか1項に記載の高圧水素発生方法により得た高圧水素を燃料電池車の燃料源として供給することを特徴とする高圧水素供給方法。 A high-pressure hydrogen supply method, characterized in that the high-pressure hydrogen obtained by the high-pressure hydrogen generation method according to any one of claims 1 to 3 is supplied as a fuel source for a fuel cell vehicle. 水素を発生させて高圧下で供給する高圧水素供給システムであって、
少なくとも、
ギ酸を含む溶液を供給する原料供給部と、
前記ギ酸を含む溶液を密閉下で交流電流により電気分解することで高圧の水素と二酸化炭素の混合気体を発生させる電気分解部と、
前記電気分解部で生じた気体から高圧水素を分離して供給する分離供給部を有することを特徴とする高圧水素供給システム。
A high-pressure hydrogen supply system that generates hydrogen and supplies it under high pressure,
at least,
a raw material supply section that supplies a solution containing formic acid;
an electrolysis unit that generates a high-pressure mixed gas of hydrogen and carbon dioxide by electrolyzing the formic acid-containing solution using an alternating current in a closed environment;
A high-pressure hydrogen supply system comprising a separation supply section that separates and supplies high-pressure hydrogen from the gas generated in the electrolysis section.
前記電気分解部では、炭素又はプラチナを素材とする電極を用いて電気分解を行うことを特徴とする請求項5に記載の高圧水素供給システム。 6. The high-pressure hydrogen supply system according to claim 5, wherein the electrolysis section performs electrolysis using an electrode made of carbon or platinum. 前記分離供給部では、複数のバルブを有し、シーケンス制御により前記複数のバルブを開閉することで繰り返し間欠的に高圧水素を発生させることを特徴とする請求項5又は請求項6に記載の高圧水素供給システム。 The high pressure according to claim 5 or 6, characterized in that the separation supply section has a plurality of valves and repeatedly and intermittently generates high pressure hydrogen by opening and closing the plurality of valves by sequence control. Hydrogen supply system.
JP2020028331A 2020-02-21 2020-02-21 High pressure hydrogen generation method Active JP7435953B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020028331A JP7435953B2 (en) 2020-02-21 2020-02-21 High pressure hydrogen generation method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2020028331A JP7435953B2 (en) 2020-02-21 2020-02-21 High pressure hydrogen generation method

Publications (2)

Publication Number Publication Date
JP2021130600A JP2021130600A (en) 2021-09-09
JP7435953B2 true JP7435953B2 (en) 2024-02-21

Family

ID=77552043

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020028331A Active JP7435953B2 (en) 2020-02-21 2020-02-21 High pressure hydrogen generation method

Country Status (1)

Country Link
JP (1) JP7435953B2 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030226763A1 (en) 1997-09-10 2003-12-11 California Institute Of Technology Hydrogen generation by electrolysis of aqueous organic solutions
CN102456903A (en) 2010-10-27 2012-05-16 中国科学院大连化学物理研究所 Method for electrolytically preparing hydrogen from formic acid
JP2013032271A (en) 2011-06-30 2013-02-14 Formic Acid-Hydrogen Energy Development Corp Hydrogen generation system, method for producing hydrogen that uses the same, moving body and electric power generating device
JP2016124730A (en) 2014-12-26 2016-07-11 国立研究開発法人産業技術総合研究所 High-pressure hydrogen production process and production system

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030226763A1 (en) 1997-09-10 2003-12-11 California Institute Of Technology Hydrogen generation by electrolysis of aqueous organic solutions
CN102456903A (en) 2010-10-27 2012-05-16 中国科学院大连化学物理研究所 Method for electrolytically preparing hydrogen from formic acid
JP2013032271A (en) 2011-06-30 2013-02-14 Formic Acid-Hydrogen Energy Development Corp Hydrogen generation system, method for producing hydrogen that uses the same, moving body and electric power generating device
JP2016124730A (en) 2014-12-26 2016-07-11 国立研究開発法人産業技術総合研究所 High-pressure hydrogen production process and production system

Also Published As

Publication number Publication date
JP2021130600A (en) 2021-09-09

Similar Documents

Publication Publication Date Title
US11220755B2 (en) Apparatus for alkaline water electrolysis, and gas production method
CA2915763C (en) Electrolytic enrichment method for heavy water
RU2718872C2 (en) Water treatment system using device for electrolysis of aqueous solution of alkali and alkaline fuel cell
EP1847634B1 (en) Electrolytic apparatus for producing fluorine or nitrogen trifluoride
TWI480425B (en) Divided electrochemical cell and low cost high purity hydride gas production process
EP0390158A2 (en) Electrolysis cell and method of use
AU2010316702B2 (en) The production of hydrocarbons
JP7435953B2 (en) High pressure hydrogen generation method
WO2019002841A1 (en) Hydrogen generator
US10818951B2 (en) Method and molten salt electrolytic cell for implementing a hydrogen fuel, sustainable, closed clean energy cycle on a large scale
Stern Novel Method and Molten Salt Electrolytic Cell for Implementing a Hydrogen Fuel, Sustainable, Closed Clean Energy Cycle on a Large Scale
KR100498234B1 (en) Electrolytic Hydrogen-Oxygen generator
Grigoriev et al. Hydrogen Safety Aspects Related to High Pressure-PEM Water Electrolysis
JPS6270203A (en) Removal of hydrogen gas
KR20160110622A (en) An appratus for making hydrogen gas and the method of making it
JP4068935B2 (en) Method for producing hydrogen
Paidar et al. 13 Membrane electrolysis
US984905A (en) Process and apparatus for the electrolytic decomposition of alkaline salts.
KR20240008580A (en) Blue hydrogen production, carbon dioxide capture, carbon resource conversion and reactant storage system through natural gas reforming, and method therefor
CN117328080A (en) Production system of tetramethyl ammonium hydroxide
JPH04311585A (en) System for producing ozone-containing gas
JPH09176885A (en) Hydrogen and oxygen generator and its operation
Ito Selected Topics of Molten Salt Electrochemistry
JP2006045033A (en) Hydrogen gas manufacturing method and hydrogen gas manufacturing apparatus
EP2060661A1 (en) Electrolyser for producing substances

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20230127

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20230831

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230912

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20231025

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20240116

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20240129

R150 Certificate of patent or registration of utility model

Ref document number: 7435953

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150