JPH09176885A - Hydrogen and oxygen generator and its operation - Google Patents

Hydrogen and oxygen generator and its operation

Info

Publication number
JPH09176885A
JPH09176885A JP7333743A JP33374395A JPH09176885A JP H09176885 A JPH09176885 A JP H09176885A JP 7333743 A JP7333743 A JP 7333743A JP 33374395 A JP33374395 A JP 33374395A JP H09176885 A JPH09176885 A JP H09176885A
Authority
JP
Japan
Prior art keywords
hydrogen
pure water
path
water
oxygen gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP7333743A
Other languages
Japanese (ja)
Other versions
JP3037124B2 (en
Inventor
Akihiko Hougetsu
章彦 宝月
Takashi Sasaki
隆 佐々木
Hiromichi Oda
博通 小田
Seiji Hirai
清司 平井
Hiroko Kobayashi
宏子 小林
Shinichi Yasui
信一 安井
Mamoru Nagao
衛 長尾
Michiyuki Harada
宙幸 原田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shinko Pantec Co Ltd
Original Assignee
Shinko Pantec Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shinko Pantec Co Ltd filed Critical Shinko Pantec Co Ltd
Priority to JP7333743A priority Critical patent/JP3037124B2/en
Publication of JPH09176885A publication Critical patent/JPH09176885A/en
Application granted granted Critical
Publication of JP3037124B2 publication Critical patent/JP3037124B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/36Hydrogen production from non-carbon containing sources, e.g. by water electrolysis

Landscapes

  • Electrolytic Production Of Non-Metals, Compounds, Apparatuses Therefor (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a hydrogen and oxygen generator capable of delivering high-pressure and high-purity gaseous hydrogen and oxygen without using a power source such as a high-pressure pump in which impurities are liable to mix while keeping the inside of a pure water vessel at a high pressure and to furnish its operation. SOLUTION: This hydrogen and oxygen generator consists of a hydrogen and oxygen generating device 1 provided with a water electrolytic cell 2 set in a pure water vessel 3, a makeup water tank 14 connected to the vessel through a makeup water line 13 to replenish pure water to the vessel 3 and a pure water feeder 21 connected through a pure water feed line 20 to supply pure water to the makeup water tank 14. A bypass 22 leading to the makeup water tank from a gaseous oxygen discharge line 5 and a pressure imparting line 26 are furnished, a degassing line 15 communicated with the makeup water tank is provided, and stop valves A to F are furnished to the respective lines.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、固体高分子電解質
膜を隔膜として用い、陽極側に純水を供給しながら電気
分解して、陽極側から酸素ガスを、陰極側から水素ガス
を発生させるための水素・酸素発生装置に関し、特に半
導体製造分野、原子力発電分野などにおいて必要とされ
る高純度の水素ガス、酸素ガスを発生するための装置及
びその運転方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention uses a solid polymer electrolyte membrane as a diaphragm and electrolyzes it while supplying pure water to the anode side to generate oxygen gas from the anode side and hydrogen gas from the cathode side. TECHNICAL FIELD The present invention relates to a hydrogen / oxygen generator for use in the field, and more particularly to a device for generating high-purity hydrogen gas and oxygen gas required in the fields of semiconductor manufacturing, nuclear power generation, and the like, and an operating method thereof.

【0002】[0002]

【従来の技術】従来より、例えば、半導体製造工場など
水素ガス、酸素ガスを消費する工場では、固体高分子電
解質膜等の電解質膜を隔膜として用いて、陽極側と陰極
側とに分離して、純水を陽極側に供給しながら純水を電
気分解して、陽極側から酸素ガスを、陰極側から水素ガ
スをそれぞれ発生するように構成した水電解セルからな
る水素・酸素発生装置を設置することが行われている。
2. Description of the Related Art Conventionally, for example, in a factory that consumes hydrogen gas and oxygen gas such as a semiconductor manufacturing factory, an electrolyte membrane such as a solid polymer electrolyte membrane is used as a diaphragm to separate the anode side and the cathode side. Install a hydrogen / oxygen generator consisting of a water electrolysis cell configured to electrolyze pure water while supplying pure water to the anode side to generate oxygen gas from the anode side and hydrogen gas from the cathode side. Is being done.

【0003】このような水素・酸素発生装置では、その
発生ガス圧力が低いために、発生したガスをコンプレッ
サーなどのガス圧縮機を用いて加圧して使用する必要が
あるが、圧縮機の潤滑オイル等による不純物が混入する
おそれがあり、そのため、高純度の水素ガス、酸素ガス
を必要とする半導体製造分野においては好ましくなかっ
た。
In such a hydrogen / oxygen generator, since the generated gas pressure is low, it is necessary to pressurize the generated gas using a gas compressor such as a compressor. Therefore, it is not preferable in the field of semiconductor manufacturing that requires high-purity hydrogen gas and oxygen gas.

【0004】このコンプレッサーによる不純物の混入が
なく、高純度でしかも高圧の水素ガス、酸素ガスを供給
することの可能な水素・酸素発生装置として、純水を満
たした容器内に水電解セルを収納した構成の水素・酸素
発生装置が、特表昭63-502908号「水の電気分解方法及
びその装置」、特公平1-247591号「水素製造装置」、特
開平6-33283号「水素発生装置」に開示されている。
As a hydrogen / oxygen generator capable of supplying high-purity and high-pressure hydrogen gas and oxygen gas without the inclusion of impurities by the compressor, a water electrolysis cell is housed in a container filled with pure water. A hydrogen / oxygen generator having the above-mentioned configuration is disclosed in Japanese Patent Publication No. 63-502908 “Water electrolysis method and its equipment”, Japanese Patent Publication No. 1-247591 “Hydrogen production equipment”, Japanese Patent Laid-Open No. 6-33283 “Hydrogen generator”. ].

【0005】このコンプレッサーによる不純物の混入が
なく、高純度でしかも高圧の水素ガス、酸素ガスを供給
することの可能な水素・酸素発生装置として 本発明者
等は、既に特願平7-24737号「水素・酸素ガス発生装
置」において、図3に示したように、純水容器103に水
電解セル102を浸漬するとともに、その酸素ガス気液分
離室104及び水素ガス気液分離室107の水面とガス圧力を
制御できるようにして、酸素側と水素側のガス圧力の差
圧を所定の小さい値にするように構成したものである。
そして、これにより、水電解セルの陽極室と陰極室とを
分離している固体高分子電解質膜などの隔膜に作用する
差圧を小さくでき、隔膜の破損の防止、水電解セルのシ
ール部からのガスの漏洩の防止が可能で、その結果発生
ガス圧力を高くすることができる技術を開示した。
As a hydrogen / oxygen generator capable of supplying high-purity and high-pressure hydrogen gas and oxygen gas without the inclusion of impurities by the compressor, the present inventors have already filed Japanese Patent Application No. 7-24737. In the “hydrogen / oxygen gas generator”, as shown in FIG. 3, the water electrolysis cell 102 is immersed in a pure water container 103, and the water surfaces of the oxygen gas gas-liquid separation chamber 104 and the hydrogen gas gas-liquid separation chamber 107 are The gas pressure can be controlled so that the differential pressure between the gas pressures on the oxygen side and the hydrogen side is set to a predetermined small value.
And thereby, the pressure difference acting on the diaphragm such as the solid polymer electrolyte membrane separating the anode chamber and the cathode chamber of the water electrolysis cell can be reduced, the damage of the membrane can be prevented, and the sealing portion of the water electrolysis cell can be reduced. It has been disclosed a technique capable of preventing the leakage of the gas, and consequently increasing the generated gas pressure.

【0006】[0006]

【発明が解決しようとする課題】ところで、このような
従来の水素・酸素発生装置に用いる水電解セルの構造と
しては、本発明者等が既に特開平5-287570号において、
図2に示したように、固体高分子電解質128、例えば、
カチオン交換膜(フッ素樹脂系スルフォン酸カチオン交
換膜、例えば、デュポン社製「ナフィオン117」)の両
面に白金属族金属等からなる多孔質の陽極122及び陰極1
23を接合した構造の固体高分子電解質膜121を隔膜とし
て用いることで、陽極室124と陰極室125とに分離した構
造の水電解セル116を形成し、該水電解セル116の陽極室
124に純水を供給しながら電気分解を行い、陽極室124か
ら酸素ガスを、陰極室125から水素ガスをそれぞれ発生
するように構成したものである。すなわち、この場合、
水を陽極側に供給しながら電気分解することにより、陽
極側では、2H2O→O2+4H++4e-のような反応が起こり
酸素ガスが発生し、陰極側では、4H++4e-→2H2の反
応が起こり水素ガスが発生するものである。
By the way, as the structure of the water electrolysis cell used in such a conventional hydrogen / oxygen generator, the present inventors have already disclosed in JP-A-5-287570.
As shown in FIG. 2, the solid polymer electrolyte 128, for example,
Both sides of the cation exchange membrane (fluororesin sulfonic acid cation exchange membrane, for example, “Nafion 117” manufactured by DuPont) are porous anode 122 and cathode 1 made of a white metal group metal or the like.
By using the solid polymer electrolyte membrane 121 having a structure in which 23 is joined as a diaphragm, a water electrolysis cell 116 having a structure in which the anode chamber 124 and the cathode chamber 125 are separated is formed, and the anode chamber of the water electrolysis cell 116 is formed.
Electrolysis is performed while supplying pure water to 124, and oxygen gas is generated from the anode chamber 124 and hydrogen gas is generated from the cathode chamber 125. That is, in this case,
By electrolyzing while supplying water to the anode side, a reaction such as 2H 2 O → O 2 + 4H + + 4e occurs on the anode side to generate oxygen gas, and 4H + + 4e → 2H on the cathode side. The reaction of 2 occurs and hydrogen gas is generated.

【0007】この場合、水電解セルを純水容器内に浸し
た構造であり、電気分解反応が進むにしたがって、純水
容器内の純水が消費されていくので、補充水を補充する
必要があるが、この場合、高圧で操業しているので、純
水容器内も10〜30kg/cm2程度の圧力を有するため、通常
は、純水補充タンクからの純水を高圧ポンプなどで予め
昇圧する必要がある。しかしながら、このように高圧ポ
ンプなどを用いた場合には、高圧ポンプなどの構成部品
の潤滑オイル等による不純物が混入するおそれがあり、
そのため、高純度の水素ガス、酸素ガスを必要とする半
導体製造分野においては好ましくなかった。
In this case, the water electrolysis cell is soaked in a pure water container, and the pure water in the pure water container is consumed as the electrolysis reaction progresses. Therefore, it is necessary to supplement the replenishing water. However, in this case, since the operation is performed at a high pressure, the pressure in the pure water container also has a pressure of about 10 to 30 kg / cm 2. There is a need to. However, when a high-pressure pump or the like is used as described above, impurities such as lubricating oil of components such as the high-pressure pump may be mixed,
Therefore, it is not preferable in the field of semiconductor manufacturing, which requires high-purity hydrogen gas and oxygen gas.

【0008】本発明は、このような実情を考慮して、構
成部品の潤滑オイル等による不純物が混入するおそれの
ある高圧ポンプなどの動力源を用いることなく、純水容
器内の高圧を維持したまま、純水容器内の純水のガス発
生に消費された純水を、補充水として容易に補充可能
で、さらに、純水容器内へ補充する純水の流量が、予め
設定した所定の流量を下回る場合には、純水の補充流量
を増加させることができて、しかも高圧、高純度の水素
ガス、酸素ガスを得ることのできる水素・酸素発生装置
及びその運転方法を提供することを目的とする。
In consideration of such circumstances, the present invention maintains the high pressure in the pure water container without using a power source such as a high pressure pump which may contain impurities such as lubricating oil of the components. As it is, pure water consumed to generate pure water gas in the pure water container can be easily replenished as replenishing water. When it is below the range, it is an object of the present invention to provide a hydrogen / oxygen generator capable of increasing the replenishment flow rate of pure water and capable of obtaining high-pressure, high-purity hydrogen gas and oxygen gas, and an operating method thereof. And

【0009】[0009]

【課題を解決するための手段】本発明は、前述したよう
な従来技術における課題及び目的を達成するために発明
なされたものであって、下記の(1)〜(6)を、その
構成要旨とするものである。
The present invention has been made in order to achieve the problems and objects in the prior art as described above. The following (1) to (6) are summarized as follows. It is what

【0010】(1) 固体高分子電解質膜を隔膜として
用いて、陽極側と陰極側とに分離して、純水を陽極側に
供給しながら純水を電気分解して、陽極側から酸素ガス
を、陰極側から水素ガスをそれぞれ発生するように構成
され、且つ純水容器内に収容された水電解セルを備えた
水素・酸素発生器と、水素・酸素発生器の純水容器内に
純水を補給するために補給水経路を介して水素・酸素発
生器の純水容器に接続された補給水タンクと、補給水タ
ンクに純水を供給するために、純水供給経路を介して補
給水タンクに接続された純水供給装置とから構成した水
素・酸素発生装置において、水素・酸素発生器の純水容
器に接続された酸素ガス取出し経路から、補給水タンク
に至るバイパス経路を設け、補給水タンクの上部から大
気側に連通するガス抜き経路を設けるとともに、純水供
給経路、補給水経路、酸素ガス取出し経路、バイパス経
路、及びガス抜き経路にそれぞれ、開閉バルブを設け、
更に、前記バイパス経路に、付加的に圧縮酸素ガスを導
入するための圧力付加経路を設けたことを特徴とする水
素・酸素発生装置。
(1) A solid polymer electrolyte membrane is used as a diaphragm to separate the anode side and the cathode side, and while pure water is supplied to the anode side, the pure water is electrolyzed and oxygen gas is supplied from the anode side. A hydrogen / oxygen generator equipped with a water electrolysis cell that is configured to generate hydrogen gas from the cathode side and is housed in a pure water container, and a pure water container of the hydrogen / oxygen generator. A make-up water tank connected to the pure water container of the hydrogen / oxygen generator via the make-up water path to replenish water, and a replenishment via the pure water supply path to supply pure water to the make-up water tank In the hydrogen / oxygen generator configured with the pure water supply device connected to the water tank, a bypass route from the oxygen gas extraction route connected to the pure water container of the hydrogen / oxygen generator to the makeup water tank is provided, Gas that communicates from the top of the makeup water tank to the atmosphere side In addition to providing a vent path, an on-off valve is provided in each of the pure water supply path, makeup water path, oxygen gas extraction path, bypass path, and gas vent path,
Further, the hydrogen / oxygen generating apparatus is characterized in that a pressure applying path for additionally introducing compressed oxygen gas is provided in the bypass path.

【0011】(2) 前記圧力付加経路を介して、前記
バイパス経路に圧縮酸素ガスを導入するための圧縮酸素
ガス供給装置を接続したことを特徴とする前述の(1)
に記載の水素・酸素発生装置。
(2) A compressed oxygen gas supply device for introducing compressed oxygen gas is connected to the bypass path via the pressure application path, and the above-mentioned (1) is provided.
The hydrogen / oxygen generator described in.

【0012】(3) 前記圧縮酸素ガス供給装置が圧縮
酸素ボンベであることを特徴とする前述の(2)に記載
の水素・酸素発生装置。
(3) The hydrogen / oxygen generator according to the above (2), wherein the compressed oxygen gas supply device is a compressed oxygen cylinder.

【0013】(4) 前記圧縮酸素ガス供給装置が、固
体高分子電解質膜を隔膜として用いた水電解セルを備え
た水素・酸素発生装置であることを特徴とする前述の
(2)に記載の水素・酸素発生装置。
(4) The compressed oxygen gas supply device is a hydrogen / oxygen generator equipped with a water electrolysis cell using a solid polymer electrolyte membrane as a diaphragm. Hydrogen / oxygen generator.

【0014】(5) 前述の(1)から(4)のいずれ
かに記載の水素・酸素発生装置の運転方法であって、 通常の電気分解時において、酸素ガス取出し経路に
配設した開閉バルブAのみを開放して電気分解を行い、 電気分解の進行に伴って、純水容器内の水位が予め
設定されたレベルを下回った場合に、酸素ガス取出し経
路に配設した開閉バルブAを開放したまま、ガス抜き経
路に配設した開閉バルブD及び純水供給経路に配設した
開閉バルブEを開放して、純水供給装置から補給水タン
クに純水を供給し、 補給水タンク内の純水が、補給水タンク上部に気体
が存在する予め設定されたレベルを超えた場合に、ガス
抜き経路に配設した開閉バルブD及び純水供給経路に配
設した開閉バルブEを閉止し、 電気分解の進行に伴って、純水容器内の水位が予め
設定された最低レベルを下回った場合に、酸素ガス取出
し経路に配設した開閉バルブAを閉止するとともに、バ
イパス経路に配設した開閉バルブCを開放して、電気分
解で発生する酸素ガスを補給水タンクに供給して、補給
水タンクの圧力を上昇させ、 純水容器内と補給水タンク内の圧力が所定圧力以上
になった場合に、バイパス経路に配設した開閉バルブC
を閉止するととともに、酸素ガス取出し経路に配設した
開閉バルブAを開放して、純水容器内の圧力が補給水タ
ンク内の圧力よりも低くなるようにし、 その後、酸素ガス取出し経路に配設した開閉バルブ
Aを閉止するとともに、補給水経路に配設した開閉バル
ブBを開放して、補給水タンク内と純水容器内の圧力差
によって、補給水タンクより純水を純水容器に供給し、 その際、補給水タンクより純水容器に供給する純水
の流量が、所定の流量よりも不足する場合に、前記圧力
付加経路より前記バイパス経路を介して圧縮酸素ガスを
補給水タンクに導入して圧力を付加して、純水の供給流
量を増加させることを特徴とする水素・酸素発生装置の
運転方法。
(5) The method for operating the hydrogen / oxygen generator according to any one of (1) to (4) above, wherein the opening / closing valve is arranged in the oxygen gas extraction path during normal electrolysis. When only A is opened, electrolysis is performed, and when the water level in the pure water container falls below a preset level as the electrolysis progresses, the opening / closing valve A arranged in the oxygen gas extraction path is opened. As it is, open the opening / closing valve D provided in the degassing path and the opening / closing valve E provided in the pure water supply path, and supply pure water from the pure water supply device to the makeup water tank. When the pure water exceeds a preset level at which gas is present in the upper portion of the makeup water tank, the on-off valve D arranged on the gas vent passage and the on-off valve E arranged on the pure water supply passage are closed, Pure water container as electrolysis progresses When the water level falls below a preset minimum level, the on-off valve A arranged on the oxygen gas extraction path is closed and the on-off valve C arranged on the bypass path is opened to cause electrolysis. When the oxygen gas is supplied to the makeup water tank to increase the pressure of the makeup water tank and the pressures in the deionized water container and the makeup water tank exceed a predetermined pressure, the opening / closing valve C arranged in the bypass path
Is closed, and the on-off valve A arranged in the oxygen gas extraction path is opened so that the pressure in the pure water container becomes lower than the pressure in the makeup water tank. The open / close valve A provided in the makeup water path is opened while the opening / closing valve A is closed, and pure water is supplied from the makeup water tank to the pure water container by the pressure difference between the makeup water tank and the pure water container. However, at that time, when the flow rate of the pure water supplied from the makeup water tank to the pure water container is less than the predetermined flow rate, the compressed oxygen gas is supplied to the makeup water tank from the pressure applying path through the bypass path. A method for operating a hydrogen / oxygen generator, which comprises introducing and applying pressure to increase the supply flow rate of pure water.

【0015】(6) 前記工程における所定圧力が、
10kg/cm2であることを特徴とする前述の(5)に記載
の水素・酸素発生装置の運転方法。
(6) The predetermined pressure in the above step is
The method for operating the hydrogen / oxygen generator according to the above (5), which is 10 kg / cm 2 .

【0016】[0016]

【発明の実施の形態】本発明では、上記水素・酸素発生
装置において、水素・酸素発生器の純水容器に接続され
た酸素ガス取出し経路から、補給水タンクに至るバイパ
ス経路を設けており、更に、バイパス経路には圧縮酸素
ガスを導入するための圧力付加経路を接続している。ま
た、圧力付加経路には、圧縮酸素ガスを導入するための
圧縮酸素ガス供給装置を接続している。
BEST MODE FOR CARRYING OUT THE INVENTION In the present invention, in the above hydrogen / oxygen generator, a bypass route from an oxygen gas extraction route connected to a pure water container of a hydrogen / oxygen generator to a makeup water tank is provided, Further, a pressure applying path for introducing compressed oxygen gas is connected to the bypass path. In addition, a compressed oxygen gas supply device for introducing compressed oxygen gas is connected to the pressure applying path.

【0017】そして、電気分解の進行に伴って、電気分
解で発生する純水容器内の酸素ガスを、バイパス経路を
介して補給水タンクに供給して、補給水タンクの圧力を
上昇させ、純水容器内と補給水タンク内の圧力が所定圧
力以上になった場合に、バイパス経路に配設した開閉バ
ルブCを閉止するととともに、酸素ガス取出し経路に配
設した開閉バルブAを開放して、補給水タンク内の圧力
が、純水容器内の圧力よりも高くなるようにする。
As the electrolysis proceeds, the oxygen gas in the pure water container generated by the electrolysis is supplied to the makeup water tank through the bypass path to increase the pressure of the makeup water tank, When the pressures in the water container and the makeup water tank become equal to or higher than a predetermined pressure, the on-off valve C arranged on the bypass path is closed, and the on-off valve A arranged on the oxygen gas extraction path is opened. The pressure in the makeup water tank should be higher than the pressure in the pure water container.

【0018】その後、酸素ガス取出し経路に配設した開
閉バルブAを閉止するとともに、補給水経路に配設した
開閉バルブBを開放して、補給水タンク内と純水容器内
の圧力差によって、その圧力差に対応する分だけ、補給
水タンク内の空気が膨張して、その体積分だけ補給水タ
ンクより純水を純水容器に供給する。
After that, the on-off valve A arranged on the oxygen gas take-out path is closed, and the on-off valve B arranged on the makeup water path is opened, so that the pressure difference between the makeup water tank and the deionized water container causes The air in the makeup water tank expands by the amount corresponding to the pressure difference, and pure water is supplied from the makeup water tank to the pure water container by the volume.

【0019】その際、予め設定した流量よりも、補給水
タンクより純水容器に供給する純水の流量が不足する場
合には、前記圧力付加経路に配設した開閉バルブFを開
放して、前記バイパス経路に接続された圧縮酸素ガス供
給装置から圧縮酸素ガスを補給水タンクに導入して、補
給水タンクから純水容器へ流れる純水の流量を増加させ
る。
At that time, when the flow rate of the pure water supplied from the makeup water tank to the pure water container is less than the preset flow rate, the opening / closing valve F arranged in the pressure applying path is opened, Compressed oxygen gas is introduced into the makeup water tank from the compressed oxygen gas supply device connected to the bypass path to increase the flow rate of pure water flowing from the makeup water tank to the pure water container.

【0020】[0020]

【実施例】以下、本発明の実施例を図面に基づいてより
詳細に説明する。
Embodiments of the present invention will be described below in detail with reference to the drawings.

【0021】図1は、本発明の水素・酸素発生装置の全
体の概略図である。
FIG. 1 is a schematic view of the entire hydrogen / oxygen generator of the present invention.

【0022】図1において、1は全体で水素・酸素発生
器を示しており、水素・酸素発生器1は、水電解セル2
を備え、この水電解セル2は純水容器3内に収納されて
おり、純水容器3内には純水が充填されており、水電解
セル2の陽極側に通じる開口24から水電解セル2内に純
水が供給されて、純水容器3の外部に設けられた電源
(図示せず)から、陽極側と陰極側に電圧が印可され
て、電気分解が行われ、陽極側から酸素ガスが、陰極側
から水素ガスがそれぞれ発生するようになっている。な
お、水電解セル2の内部構造は図示を省略するが、これ
は図2に示したように、固体高分子電解質膜を隔膜とし
て用いて、陽極側と陰極側とに分離して、純水を陽極側
に供給しながら純水を電気分解して、陽極側から酸素ガ
スを、陰極側から水素ガスをそれぞれ発生するように構
成されたものである。このような水電解セルの構造とし
て、本発明者等が既に出願した特願平7-24737号「水素
・酸素ガス発生装置」に開示したものが使用可能であ
る。
In FIG. 1, reference numeral 1 denotes a hydrogen / oxygen generator as a whole, and the hydrogen / oxygen generator 1 is a water electrolysis cell 2
This water electrolysis cell 2 is housed in a pure water container 3, and the pure water container 3 is filled with pure water. The water electrolysis cell 2 is opened through an opening 24 communicating with the anode side of the water electrolysis cell 2. 2 is supplied with pure water, a voltage is applied to the anode side and the cathode side from a power source (not shown) provided outside the pure water container 3, electrolysis is performed, and oxygen is supplied from the anode side. Hydrogen gas is generated from the cathode side. Although the internal structure of the water electrolysis cell 2 is not shown in the drawing, as shown in FIG. 2, it uses a solid polymer electrolyte membrane as a diaphragm to separate the anode side and the cathode side into pure water. Is supplied to the anode side to electrolyze pure water to generate oxygen gas from the anode side and hydrogen gas from the cathode side. As the structure of such a water electrolysis cell, the one disclosed in Japanese Patent Application No. 7-24737 “Hydrogen / oxygen gas generator” already applied by the present inventors can be used.

【0023】そして、水電解セル2の陽極側から発生し
た酸素ガスは、純水容器3の上方に形成された酸素ガス
気液分離室4に溜まり、図示しない圧力制御装置の制御
によって、酸素ガス気液分離室4から所定の圧力になっ
た際に、酸素ガス取り出し経路5を介して、貯蔵タンク
などのユースポイントに供給されるようになっている。
なお、酸素ガス取り出し経路5には、酸素ガス取り出し
経路開閉バルブAが配設されている。
Then, the oxygen gas generated from the anode side of the water electrolysis cell 2 collects in the oxygen gas gas-liquid separation chamber 4 formed above the pure water container 3 and is controlled by a pressure control device (not shown). When a predetermined pressure is reached from the gas-liquid separation chamber 4, the oxygen gas is supplied to a point of use such as a storage tank via an oxygen gas extraction path 5.
An oxygen gas extraction passage opening / closing valve A is arranged in the oxygen gas extraction passage 5.

【0024】一方、水電解セル2の陰極側から発生した
水素ガスは、水素取り出し管6を介して、純水容器3の
外部に配設された水素ガス気液分離装置7に導入されて
気液分離された後、図示しない圧力制御装置の制御によ
って、水素ガス気液分離装置7から所定の圧力になった
際に、水素ガス取り出しライン8を介して、貯蔵タンク
などのユースポイントに供給されるようになっている。
On the other hand, the hydrogen gas generated from the cathode side of the water electrolysis cell 2 is introduced into the hydrogen gas gas-liquid separation device 7 arranged outside the pure water container 3 via the hydrogen take-out pipe 6 and vaporized. After the liquid separation, under the control of a pressure control device (not shown), when the hydrogen gas vapor-liquid separation device 7 reaches a predetermined pressure, it is supplied to a use point such as a storage tank via a hydrogen gas extraction line 8. It has become so.

【0025】さらに、純水容器3には、酸素ガス気液分
離室4の液面位置を検出するための純水容器液面検知装
置9が設けられており、この純水容器液面検知装置9
は、酸素ガス気液分離室4の側部に配設された水面計10
と水面センサ11と水面検出制御装置12とから構成されて
いる。
Further, the pure water container 3 is provided with a pure water container liquid level detection device 9 for detecting the liquid surface position of the oxygen gas gas liquid separation chamber 4. 9
Is a water level gauge 10 arranged on the side of the oxygen gas gas-liquid separation chamber 4.
It is composed of a water surface sensor 11 and a water surface detection control device 12.

【0026】さらに、電気分解反応が進むにしたがっ
て、純水容器内の純水が消費されていくので、補給水タ
ンク14は、補給水経路13を介して純水容器3に接続され
ている。なお、補給水経路13には補給水経路開閉バルブ
Bが設けられており、補給水タンク14の上部には、ガス
抜き経路15が設けられ、ガス抜き開閉バルブDが配設さ
れている。また、補給水タンク14には、補給水タンク14
の液面位置を検出するための補給水タンク液面検知装置
16が設けられており、この補給水タンク液面検知装置16
は、補給水タンク14の側部に配設された水面計17と水面
センサ18と水面検出制御装置19とから構成されている。
Further, since the pure water in the pure water container is consumed as the electrolysis reaction proceeds, the makeup water tank 14 is connected to the pure water container 3 via the makeup water path 13. A make-up water passage opening / closing valve B is provided in the make-up water passage 13, a gas vent passage 15 is provided above the make-up water tank 14, and a gas vent opening / closing valve D is provided. In addition, the makeup water tank 14
Water level detector for replenishment water tank to detect liquid level position
16 is provided, and this makeup water tank liquid level detection device 16
Is composed of a water level gauge 17, a water level sensor 18, and a water level detection control device 19 arranged on the side of the makeup water tank 14.

【0027】一方、補給水タンク14上部と純水容器3の
酸素ガス気液分離室4の上部は、酸素ガス取出し経路5
から、補給水タンク14に至るバイパス経路22を介して連
通されるとともに、バイパス経路22にはバイパス経路開
閉バルブCが設けられている。
On the other hand, the upper part of the makeup water tank 14 and the upper part of the oxygen gas gas-liquid separation chamber 4 of the pure water container 3 are provided with the oxygen gas extraction path 5
To the makeup water tank 14 through the bypass path 22, and the bypass path 22 is provided with a bypass path opening / closing valve C.

【0028】更に、バイパス経路22には、バイパス経路
開閉バルブCよりも補給水タンク14側に、付加的に圧縮
酸素ガスを導入するための圧力付加経路26が接続され、
該圧力付加経路を介して圧縮酸素ガス供給装置28がバイ
パス経路22に接続されている。 この圧力付加経路26に
は、圧力付加経路開閉バルブFおよび図示しない圧力検
知装置が設けられており、この圧力付加経路26を介して
圧縮酸素ガス供給装置28から圧縮酸素ガスをバイパス経
路22に導入し、補給水タンク14へ供給することができ
る。
Further, a pressure adding path 26 for additionally introducing compressed oxygen gas is connected to the bypass path 22 closer to the makeup water tank 14 than the bypass path opening / closing valve C,
The compressed oxygen gas supply device 28 is connected to the bypass path 22 via the pressure applying path. The pressure application path 26 is provided with a pressure application path opening / closing valve F and a pressure detection device (not shown). The compressed oxygen gas supply device 28 introduces compressed oxygen gas into the bypass path 22 via the pressure application path 26. However, it can be supplied to the makeup water tank 14.

【0029】なお、上記圧縮酸素ガス供給装置28として
は、圧縮酸素ボンベを用いることが可能であり、また、
その他にも、本発明の水素・酸素発生装置とは別体の固
体高分子電解質膜を隔膜とする水電解セルを備えた水素
・酸素発生装置を用いて、該水素酸素発生装置から発生
した圧縮酸素ガスを圧力付加経路26から補給水タンク14
に供給すればよい。
It is possible to use a compressed oxygen cylinder as the compressed oxygen gas supply device 28, and
In addition, using a hydrogen / oxygen generator equipped with a water electrolysis cell having a solid polymer electrolyte membrane separate from the hydrogen / oxygen generator of the present invention, compression generated from the hydrogen / oxygen generator is performed. Oxygen gas is supplied from the pressure applying path 26 to the makeup water tank 14
Can be supplied to

【0030】また、純水タンク21は、補給水タンク14に
純水を供給するために、純水供給経路20を介して補給水
タンク14に接続される。また、純水供給経路20には純水
供給経路開閉弁Eが設けられている。
Further, the pure water tank 21 is connected to the makeup water tank 14 via the pure water supply path 20 in order to supply pure water to the makeup water tank 14. Further, a pure water supply passage opening / closing valve E is provided in the pure water supply passage 20.

【0031】このように構成される本発明の水素・酸素
発生装置において、その運転操作方法について、以下に
説明する。なお、以下の場合、水電解セル2での水電解
は継続されている。
A method of operating the hydrogen / oxygen generator of the present invention having the above-described structure will be described below. In the following cases, water electrolysis in the water electrolysis cell 2 is continued.

【0032】(1) 通常の電気分解時においては、酸素
ガス取出し経路5に配設した酸素ガス取出し経路開閉バ
ルブAのみを開放して電気分解を行う。なお、この際、
発生した酸素ガスは、酸素ガス取り出し経路5を介し
て、貯蔵タンクなどのユースポイントに供給される。
(1) During normal electrolysis, only the oxygen gas extraction passage opening / closing valve A provided in the oxygen gas extraction passage 5 is opened to perform electrolysis. In this case,
The generated oxygen gas is supplied to a point of use such as a storage tank via the oxygen gas extraction path 5.

【0033】(2) 水電解セル2の電気分解反応が進む
にしたがって、純水容器3内の純水が消費されていくの
で、純水容器3の上方に形成された酸素ガス気液分離室
4の液面位置は低くなる。この液面位置が、純水容器液
面検知装置9の水面計10と水面センサ11によって所定の
レベル位置を下回ったと検出された場合に、水面検出制
御装置12から制御信号が出される。この制御信号によっ
て、補給水経路13の補給水経路開閉バルブB及びバイパ
ス経路22のバイパス経路開閉バルブCを閉止した状態
で、純水供給経路20の純水供給経路開閉バルブE及びガ
ス抜き経路15のガス抜き開閉バルブDを開放する制御が
行われる。この結果、補給水は純水タンク21より補給水
タンク14に供給される。なお、この際、酸素ガス取出し
経路5に配設した開閉バルブAは開放状態で電気分解が
行なわれ、発生した酸素ガスは、酸素ガス取り出し経路
5を介して、貯蔵タンクなどのユースポイントに供給さ
れている。
(2) Since the pure water in the pure water container 3 is consumed as the electrolysis reaction of the water electrolysis cell 2 progresses, the oxygen gas gas-liquid separation chamber formed above the pure water container 3 The liquid level position of 4 becomes low. When it is detected by the water level gauge 10 and the water level sensor 11 of the pure water container liquid level detection device 9 that this liquid level position is below a predetermined level position, the water level detection control device 12 outputs a control signal. With this control signal, with the make-up water passage opening / closing valve B of the make-up water passage 13 and the bypass passage opening / closing valve C of the bypass passage 22 closed, the pure water supply passage opening / closing valve E of the pure water supply passage 20 and the degassing passage 15 The control for opening the gas venting on-off valve D is performed. As a result, the makeup water is supplied from the pure water tank 21 to the makeup water tank 14. At this time, the on-off valve A arranged in the oxygen gas extraction path 5 is electrolyzed in the open state, and the generated oxygen gas is supplied to the use point such as a storage tank through the oxygen gas extraction path 5. Has been done.

【0034】(3) そして、補給水タンク液面検知装置1
6の水面計17と水面センサ18によって検知された補給水
タンクの液面位置が、補給水タンク上部に気体が存在す
る予め設定されたレベルよりも高くなると、水面検出制
御装置19から制御信号が発信される。この制御信号によ
って、純水供給経路20の純水供給経路開閉バルブE及び
ガス抜き経路15のガス抜き開閉バルブDが閉止される。
なお、この際も、酸素ガス取出し経路5に配設した開閉
バルブAは開放状態で電気分解が行なわれ、発生した酸
素ガスは、酸素ガス取り出し経路5を介して、貯蔵タン
クなどのユースポイントに供給されている。
(3) Then, the makeup water tank liquid level detection device 1
When the liquid level position of the makeup water tank detected by the water level gauge 17 and the water level sensor 18 of 6 becomes higher than a preset level at which gas is present in the upper portion of the makeup water tank, a control signal is sent from the water level detection control device 19. Sent. By this control signal, the deionized water supply passage opening / closing valve E of the deionized water supply passage 20 and the degassing opening / closing valve D of the degassing passage 15 are closed.
At this time as well, the on-off valve A arranged in the oxygen gas extraction path 5 is electrolyzed in the open state, and the generated oxygen gas is passed through the oxygen gas extraction path 5 to a use point such as a storage tank. Is being supplied.

【0035】(4) さらに水電解セル2の電気分解反応
が進むにしたがって、純水容器3内の純水が消費されて
いくので、純水容器3の上方に形成された酸素ガス気液
分離室4の液面位置はさらに低くなる。この液面位置
が、純水容器液面検知装置9の水面計10と水面センサ11
によって所定の最低レベル位置を下回ったと検出された
場合に、水面検出制御装置12から制御信号が出される。
この制御信号によって、酸素ガス取出し経路5に配設し
た開閉バルブAが閉止されるとともに、バイパス経路22
のバイパス経路開閉バルブCを開放する弁の制御が行わ
れる。その結果、電気分解で発生する酸素ガスが補給水
タンク14に供給され、補給水タンクの圧力が上昇して、
補給水タンク14内と純水容器3内の圧力が同圧力にな
る。
(4) As the electrolysis reaction of the water electrolysis cell 2 further progresses, the pure water in the pure water container 3 is consumed, so that the oxygen gas gas-liquid separation formed above the pure water container 3 is performed. The liquid surface position of the chamber 4 is further lowered. This liquid level position is the water level gauge 10 and the water level sensor 11 of the pure water container liquid level detection device 9.
When it is detected by the water level detection control unit 12 that the position is below the predetermined minimum level position, the water surface detection control device 12 outputs a control signal.
This control signal closes the on-off valve A arranged in the oxygen gas extraction path 5 and also causes the bypass path 22 to be closed.
The control of the valve for opening the bypass passage opening / closing valve C is performed. As a result, oxygen gas generated by electrolysis is supplied to the makeup water tank 14, the pressure of the makeup water tank rises,
The pressures in the makeup water tank 14 and the pure water container 3 become the same.

【0036】(5) 次に、図示しない圧力検知装置によ
り、補給水タンク14内と純水容器3内の圧力が同圧力
で、10kg/cm2以上と検知された後に、バイパス経路22
に配設したバイパス経路開閉バルブCを閉止するととと
もに、酸素ガス取出し経路5に配設した酸素ガス取出し
経路開閉バルブAを開放して、純水容器3内の圧力が補
給水タンク14内の圧力よりも低くなるようにする。すな
わち、補給水タンク14内の圧力の方が純水容器3内の圧
力よりも高くなる。
(5) Next, after the pressure in the makeup water tank 14 and the pressure in the pure water container 3 are detected to be 10 kg / cm 2 or more by the pressure detection device (not shown), the bypass route 22
The bypass passage opening / closing valve C arranged in the above is closed, and the oxygen gas extraction passage opening / closing valve A arranged in the oxygen gas extraction passage 5 is opened so that the pressure in the pure water container 3 becomes equal to the pressure in the makeup water tank 14. Lower than That is, the pressure in the makeup water tank 14 becomes higher than the pressure in the pure water container 3.

【0037】(6)その後、酸素ガス取出し経路5に配設
した酸素ガス取出し経路開閉バルブAを閉止するととも
に、補給水経路13に配設した補給水経路開閉バルブBを
開放して、補給水タンク内と純水容器3内の圧力差によ
って、その圧力差に対応する分だけ、補給水タンク14内
の空気が膨張して、その体積分だけ補給水タンク14より
純水が純水容器3に供給される。
(6) Thereafter, the oxygen gas extraction passage opening / closing valve A arranged in the oxygen gas extraction passage 5 is closed, and the makeup water passage opening / closing valve B arranged in the makeup water passage 13 is opened to make up the makeup water. Due to the pressure difference between the tank and the deionized water container 3, the air in the makeup water tank 14 expands by an amount corresponding to the pressure difference, and pure water is purified from the makeup water tank 14 by the volume. Is supplied to.

【0038】(7)このとき、酸素ガス気液分離室4の液
面位置が、純水容器液面検知装置9の水面計10と水面セ
ンサ11によって、所定のレベル位置を上回らなかったと
検知された場合には、前記圧力付加経路26に配設した開
閉バルブFを開放して、圧縮供給装置28からの圧縮酸素
ガスをバイパス経路22を介して補給水タンク14に導入し
て、圧力を付加し、補給水タンク14から純水容器へ流れ
る純水の流量を増加させる。
(7) At this time, the liquid surface position of the oxygen gas gas-liquid separation chamber 4 is detected by the water level gauge 10 and the water surface sensor 11 of the pure water container liquid surface detection device 9 as not exceeding a predetermined level position. In this case, the on-off valve F provided in the pressure applying path 26 is opened, and the compressed oxygen gas from the compression supply device 28 is introduced into the makeup water tank 14 via the bypass path 22 to apply the pressure. Then, the flow rate of pure water flowing from the makeup water tank 14 to the pure water container is increased.

【0039】(8) そして、酸素ガス気液分離室4の液
面位置が、純水容器液面検知装置9の水面計10と水面セ
ンサ11によって所定のレベル位置を上回ったと検出され
た場合に、水面検出制御装置12から制御信号が出され
て、補給水経路13の補給水経路開閉バルブBと、圧力付
加経路26に配設した開閉バルブFとが閉止されて純水容
器3内への補給水の供給が完了し、通常運転である上記
工程(1)へ戻り、次の補給水供給サイクルが順次繰り返
し行われるようになっている。
(8) When it is detected by the water level gauge 10 and the water level sensor 11 of the pure water container liquid level detection device 9 that the liquid level position of the oxygen gas gas-liquid separation chamber 4 exceeds the predetermined level position. A control signal is output from the water surface detection control device 12 to close the makeup water passage opening / closing valve B of the makeup water passage 13 and the opening / closing valve F arranged in the pressure applying passage 26, so that the deionized water container 3 is supplied with the control signal. After the supply of makeup water is completed, the process returns to step (1) which is the normal operation, and the next makeup water supply cycle is sequentially repeated.

【0040】[0040]

【発明の効果】本発明の水素・酸素発生装置によれば、
水素・酸素発生器の純水容器に接続された酸素ガス取出
し経路から、補給水タンクに至るバイパス経路を設けた
ことにより、電気分解によって発生した酸素ガスを利用
して、高圧ポンプなどの動力源を用いることなく、純水
容器内の高圧を維持したまま、純水容器内でガス発生に
消費された純水を、補給水タンクから補充することが可
能である。
According to the hydrogen / oxygen generator of the present invention,
By providing a bypass path from the oxygen gas extraction path connected to the deionized water container of the hydrogen / oxygen generator to the makeup water tank, the oxygen gas generated by electrolysis is used to power the power source such as a high-pressure pump. It is possible to replenish the pure water consumed for gas generation in the pure water container from the replenishing water tank while maintaining the high pressure in the pure water container without using.

【0041】そのため、純水容器内に高圧ポンプなどの
構成部品の潤滑オイル等による不純物が混入するおそれ
がなくなり、高純度で且つ高圧の酸素ガス、水素ガスを
提供することができる。
Therefore, there is no fear that impurities such as lubricating oil of components such as a high-pressure pump will be mixed in the pure water container, and high-purity and high-pressure oxygen gas and hydrogen gas can be provided.

【0042】更に、バイパス経路に接続した圧力付加経
路を介して、圧縮酸素ガス供給装置から付加的に圧縮酸
素ガスを補給水タンクに供給することによって、補給水
タンクより純水容器に供給する純水の流量が、所定の流
量よりも不足する場合に、圧縮酸素ガスを補給水タンク
に導入して圧力を付加し、補給水タンクから純水容器へ
流れる純水の流量を増加させて、短時間で純水容器へ純
水を補給することができる。
Furthermore, the compressed oxygen gas is additionally supplied from the compressed oxygen gas supply device to the makeup water tank through the pressure addition passage connected to the bypass passage, so that the pure water is supplied from the makeup water tank to the pure water container. When the flow rate of water is less than the prescribed flow rate, compressed oxygen gas is introduced into the makeup water tank to apply pressure to increase the flow rate of pure water flowing from the makeup water tank to the pure water container. Pure water can be supplied to the pure water container in time.

【0043】また、上記圧縮酸素ガス供給装置として
は、圧縮酸素ガスボンベおよび本発明の水素・酸素発生
装置とは別体の固体高分子電解質膜を隔膜とする水電解
セルを備えた水素・酸素発生装置等を用いることが可能
である。
As the compressed oxygen gas supply device, hydrogen / oxygen generation is provided with a compressed oxygen gas cylinder and a water electrolysis cell having a solid polymer electrolyte membrane as a diaphragm separate from the hydrogen / oxygen generation device of the present invention. A device or the like can be used.

【図面の簡単な説明】[Brief description of the drawings]

【図1】図1は、本発明の水素・酸素発生装置の全体の
概略図である。
FIG. 1 is a schematic view of the entire hydrogen / oxygen generator of the present invention.

【図2】図2は、水電解セルの構成を示す概略図であ
る。
FIG. 2 is a schematic diagram showing a configuration of a water electrolysis cell.

【図3】図3は、従来の水浸漬式の水素・酸素発生装置
の概略図である。
FIG. 3 is a schematic view of a conventional water immersion type hydrogen / oxygen generator.

【符号の説明】[Explanation of symbols]

1・・・水素・酸素発生器 2・・・水電解セル 3・・・純水容器 4・・・酸素ガス気液分離室 5・・・酸素ガス取り出し経路 6・・・水素取り出し管 7・・・水素ガス気液分離装置 8・・・水素ガス取り出しライン 9・・・純水容器液面検知装置 10・・・水面計 11・・・水面センサ 12・・・水面検出制御装置 13・・・補給水経路 14・・・補給水タンク 15・・・ガス抜き経路 16・・・補給水タンク液面検知装置 17・・・水面計 18・・・水面センサ 19・・・水面検出制御装置 20・・・純水供給経路 21・・・純水タンク 22・・・バイパス経路 24・・・開口 26…圧力付加経路 28…圧縮酸素ガス供給装置 A・・・酸素ガス取出し経路開閉バルブ B・・・補給水経路開閉バルブ C・・・バイパス経路開閉バルブ D・・・ガス抜き開閉バルブ E・・・純水供給経路開閉バルブ F…圧力付加経路開閉バルブ 1 ... Hydrogen / oxygen generator 2 ... Water electrolysis cell 3 ... Pure water container 4 ... Oxygen gas gas-liquid separation chamber 5 ... Oxygen gas extraction path 6 ... Hydrogen extraction pipe 7 ...・ ・ Hydrogen gas gas-liquid separator 8 ・ ・ ・ Hydrogen gas extraction line 9 ・ ・ ・ Pure water container liquid level detector 10 ・ ・ ・ Water level gauge 11 ・ ・ ・ Water level sensor 12 ・ ・ ・ Water level detection controller 13 ・ ・・ Replenishment water path 14 ・ ・ ・ Replenishment water tank 15 ・ ・ ・ Gas release path 16 ・ ・ ・ Replenishment water tank liquid level detection device 17 ・ ・ ・ Water level gauge 18 ・ ・ ・ Water level sensor 19 ・ ・ ・ Water level detection control device 20・ ・ ・ Pure water supply path 21 ・ ・ ・ Pure water tank 22 ・ ・ ・ Bypass path 24 ・ ・ ・ Opening 26 ・ ・ ・ Pressure application path 28 ・ ・ ・ Compressed oxygen gas supply device A ・ ・ ・ Oxygen gas extraction path Opening / closing valve B ・ ・・ Make-up water passage open / close valve C ... Bypass passage Close Valve D · · · venting off valve E · · · deionized water supply passage controlling valve F ... pressure additional passage controlling valve

───────────────────────────────────────────────────── フロントページの続き (72)発明者 小林 宏子 兵庫県神戸市長田区名倉町5丁目8番11号 (72)発明者 安井 信一 兵庫県加古郡播磨町野添4丁目108 タウ ニーS A202号 (72)発明者 長尾 衛 大阪府大阪市東淀川区井高野2丁目7番18 −102号 (72)発明者 原田 宙幸 東京都練馬区西大泉2−25−43 ─────────────────────────────────────────────────── ─── Continuation of front page (72) Hiroko Kobayashi 5-8-11 Nagura-cho, Nagata-ku, Kobe City, Hyogo Prefecture (72) Inventor Shin-ichi Yasui 4-chome Nozoe, Harima-cho, Kako-gun, Hyogo 108 Tawny S A202 No. (72) Inventor Mamoru Nagao 2-7-18-102, Itakano, Higashiyodogawa-ku, Osaka-shi, Osaka (72) Inventor Hiroyuki Harada 2-25-43 Nishioizumi, Nerima-ku, Tokyo

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 固体高分子電解質膜を隔膜として用い
て、陽極側と陰極側とに分離して、純水を陽極側に供給
しながら純水を電気分解して、陽極側から酸素ガスを、
陰極側から水素ガスをそれぞれ発生するように構成さ
れ、且つ純水容器内に収容された水電解セルを備えた水
素・酸素発生器と、 水素・酸素発生器の純水容器内に純水を補給するために
補給水経路を介して水素・酸素発生器の純水容器に接続
された補給水タンクと、 補給水タンクに純水を供給するために、純水供給経路を
介して補給水タンクに接続された純水供給装置とから構
成した水素・酸素発生装置において、 水素・酸素発生器の純水容器に接続された酸素ガス取出
し経路から、補給水タンクに至るバイパス経路を設け、 補給水タンクの上部から大気側に連通するガス抜き経路
を設けるとともに、純水供給経路、補給水経路、酸素ガ
ス取出し経路、バイパス経路、及びガス抜き経路にそれ
ぞれ、開閉バルブを設け、 更に、前記バイパス経路に、付加的に圧縮酸素ガスを導
入するための圧力付加経路を設けたことを特徴とする水
素・酸素発生装置。
1. A solid polymer electrolyte membrane is used as a diaphragm to separate the anode side and the cathode side, and while pure water is supplied to the anode side, the pure water is electrolyzed to generate oxygen gas from the anode side. ,
A hydrogen / oxygen generator equipped with a water electrolysis cell that is configured to generate hydrogen gas from the cathode side and housed in a deionized water container, and deionized water in the deionized water container of the hydrogen / oxygen generator. A make-up water tank connected to the deionized water container of the hydrogen / oxygen generator via a make-up water path for replenishment, and a make-up water tank via a deionized water supply path for supplying deionized water to the make-up water tank In the hydrogen / oxygen generator that is composed of the pure water supply device connected to, the bypass path from the oxygen gas extraction path connected to the pure water container of the hydrogen / oxygen generator to the makeup water tank is provided. A gas vent path communicating from the upper part of the tank to the atmosphere side is provided, and an opening / closing valve is provided in each of the pure water supply path, the makeup water path, the oxygen gas extraction path, the bypass path, and the gas vent path. The route, the hydrogen-oxygen generating apparatus characterized in that a pressure additional channel for introducing additional compressed oxygen gas.
【請求項2】 前記圧力付加経路を介して、前記バイパ
ス経路に圧縮酸素ガスを導入するための圧縮酸素ガス供
給装置を接続したことを特徴とする請求項1に記載の水
素・酸素発生装置。
2. The hydrogen / oxygen generator according to claim 1, wherein a compressed oxygen gas supply device for introducing compressed oxygen gas is connected to the bypass route via the pressure applying route.
【請求項3】 前記圧縮酸素ガス供給装置が圧縮酸素ボ
ンベであることを特徴とする請求項2に記載の水素・酸
素発生装置。
3. The hydrogen / oxygen generator according to claim 2, wherein the compressed oxygen gas supply device is a compressed oxygen cylinder.
【請求項4】 前記圧縮酸素ガス供給装置が、固体高分
子電解質膜を隔膜として用いた水電解セルを備えた水素
・酸素発生装置であることを特徴とする請求項2に記載
の水素・酸素発生装置。
4. The hydrogen / oxygen generator according to claim 2, wherein the compressed oxygen gas supply device is a hydrogen / oxygen generator equipped with a water electrolysis cell using a solid polymer electrolyte membrane as a diaphragm. Generator.
【請求項5】 請求項1から4のいずれかに記載の水素
・酸素発生装置の運転方法であって、(1) 通常の電気
分解時において、酸素ガス取出し経路に配設した開閉バ
ルブAのみを開放して電気分解を行い、(2) 電気分解
の進行に伴って、純水容器内の水位が予め設定されたレ
ベルを下回った場合に、酸素ガス取出し経路に配設した
開閉バルブAを開放したまま、ガス抜き経路に配設した
開閉バルブD及び純水供給経路に配設した開閉バルブE
を開放して、純水供給装置から補給水タンクに純水を供
給し、(3) 補給水タンク内の純水が、補給水タンク上
部に気体が存在する予め設定されたレベルを超えた場合
に、ガス抜き経路に配設した開閉バルブD及び純水供給
経路に配設した開閉バルブEを閉止し、(4) 電気分解
の進行に伴って、純水容器内の水位が予め設定された最
低レベルを下回った場合に、酸素ガス取出し経路に配設
した開閉バルブAを閉止するとともに、バイパス経路に
配設した開閉バルブCを開放して、電気分解で発生する
酸素ガスを補給水タンクに供給して、補給水タンクの圧
力を上昇させ、(5) 純水容器内と補給水タンク内の圧
力が所定圧力以上になった場合に、バイパス経路に配設
した開閉バルブCを閉止するととともに、酸素ガス取出
し経路に配設した開閉バルブAを開放して、純水容器内
の圧力が補給水タンク内の圧力よりも低くなるように
し、(6) その後、酸素ガス取出し経路に配設した開閉
バルブAを閉止するとともに、補給水経路に配設した開
閉バルブBを開放して、補給水タンク内と純水容器内の
圧力差によって、補給水タンクより純水を純水容器に供
給し、(7) その際、補給水タンクより純水容器に供給
する純水の流量が、所定の流量よりも不足する場合に、
前記圧力付加経路より前記バイパス経路を介して圧縮酸
素ガスを補給水タンクに導入して圧力を付加して、純水
の供給流量を増加させることを特徴とする水素・酸素発
生装置の運転方法。
5. The method for operating the hydrogen / oxygen generator according to claim 1, wherein (1) only the on-off valve A arranged in the oxygen gas extraction path during normal electrolysis. (2) When the water level in the pure water container falls below a preset level as the electrolysis progresses, the on-off valve A placed in the oxygen gas extraction path is opened. An open / close valve D installed in the degassing path and an open / close valve E installed in the deionized water supply path while kept open
When the deionized water is supplied from the deionized water supply device to the makeup water tank, and (3) the deionized water in the makeup water tank exceeds the preset level at which gas exists above the makeup water tank. Then, the on-off valve D provided in the degassing path and the on-off valve E provided in the pure water supply path were closed, and (4) the water level in the pure water container was preset as the electrolysis proceeded. When the temperature falls below the minimum level, the on-off valve A arranged on the oxygen gas extraction path is closed, and the on-off valve C arranged on the bypass path is opened, so that oxygen gas generated by electrolysis is supplied to the makeup water tank. (5) When the pressure in the deionized water tank and the pressure in the deionized water tank become equal to or higher than a predetermined pressure, the on-off valve C arranged in the bypass path is closed. Open / close valve installed in the oxygen gas extraction path So that the pressure in the pure water container becomes lower than the pressure in the makeup water tank. (6) After that, the on-off valve A arranged in the oxygen gas extraction route is closed and The on-off valve B provided is opened and pure water is supplied from the make-up water tank to the pure water container by the pressure difference between the make-up water tank and the pure water container. (7) At this time, pure water is supplied from the make-up water tank. When the flow rate of pure water supplied to the water container is less than the specified flow rate,
A method of operating a hydrogen / oxygen generator, wherein compressed oxygen gas is introduced into the makeup water tank from the pressure application path through the bypass path to apply pressure to increase the supply flow rate of pure water.
【請求項6】 前記工程(5)における所定圧力が、10kg
/cm2であることを特徴とする請求項5に記載の水素・
酸素発生装置の運転方法。
6. The predetermined pressure in the step (5) is 10 kg.
Hydrogen / cm 2 according to claim 5, characterized in that
Operating method of oxygen generator.
JP7333743A 1995-12-21 1995-12-21 Hydrogen / oxygen generator and operating method thereof Expired - Fee Related JP3037124B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7333743A JP3037124B2 (en) 1995-12-21 1995-12-21 Hydrogen / oxygen generator and operating method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7333743A JP3037124B2 (en) 1995-12-21 1995-12-21 Hydrogen / oxygen generator and operating method thereof

Publications (2)

Publication Number Publication Date
JPH09176885A true JPH09176885A (en) 1997-07-08
JP3037124B2 JP3037124B2 (en) 2000-04-24

Family

ID=18269470

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7333743A Expired - Fee Related JP3037124B2 (en) 1995-12-21 1995-12-21 Hydrogen / oxygen generator and operating method thereof

Country Status (1)

Country Link
JP (1) JP3037124B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000070699A1 (en) * 1999-05-12 2000-11-23 Protegy Limited Energy production, storage and delivery system
WO2001077412A1 (en) * 2000-04-07 2001-10-18 Toyo Tanso Co., Ltd. Apparatus for generating fluorine gas
JP2002544395A (en) * 1999-05-12 2002-12-24 スチュアート エナーヂ システムズ コーポレーシヨン Water electrolysis tank pressure control system

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000070699A1 (en) * 1999-05-12 2000-11-23 Protegy Limited Energy production, storage and delivery system
JP2002544395A (en) * 1999-05-12 2002-12-24 スチュアート エナーヂ システムズ コーポレーシヨン Water electrolysis tank pressure control system
JP2003500319A (en) * 1999-05-12 2003-01-07 プロテジー リミテッド Energy production, storage and transport systems
US6866835B1 (en) 1999-05-12 2005-03-15 Protegy Limited Energy production, storage and delivery system
WO2001077412A1 (en) * 2000-04-07 2001-10-18 Toyo Tanso Co., Ltd. Apparatus for generating fluorine gas
US6818105B2 (en) 2000-04-07 2004-11-16 Toyo Tanso Co., Ltd. Apparatus for generating fluorine gas

Also Published As

Publication number Publication date
JP3037124B2 (en) 2000-04-24

Similar Documents

Publication Publication Date Title
KR102664170B1 (en) Gas production device and gas production method
JP3037121B2 (en) Hydrogen / oxygen generator
CN101802269B (en) High-pressure electrolysis installation and process for inerting such an installation
US20050072688A1 (en) Electrolyzer system to produce gas at high pressure
US20100206740A1 (en) Water electrolysis system and method of shutting down water electrolysis system
WO2001077412A1 (en) Apparatus for generating fluorine gas
JP3645495B2 (en) Fluorine gas generator
GB2582049A (en) Method for operating an electrolysis system and electrolysis system
JP2013249508A (en) Hydrogen-oxygen production apparatus and hydrogen-oxygen production method
US7351322B2 (en) Fluorine gas generator and method of electrolytic bath liquid level control
JPH09176885A (en) Hydrogen and oxygen generator and its operation
JP3169050B2 (en) Hydrogen / oxygen generator and operating method thereof
JP3487687B2 (en) Hydrogen / oxygen generator
AU2021279136B2 (en) Electrolytic cell, method for operating a cell of this type and electrolyser
US11629075B2 (en) Water electrolysis system and water level error calculation apparatus
JP3264893B2 (en) Hydrogen / oxygen generator
JP5421860B2 (en) Water electrolysis equipment shutdown method
MXPA01011402A (en) Pressure control system in a water electrolytic cell.
US6723220B2 (en) Protonic rate level sensing device for an electrolysis cell
KR100660176B1 (en) Hydrogen Generaton by electroysis of water
JP2006249496A (en) Apparatus for water electrolysis with solid polymer
RU2095474C1 (en) Electrolytic liquid-supply system in pressure electrolysis plant
KR102625513B1 (en) Separate type bop applied water electrolysis device
SG182889A1 (en) Method and device for generating and storing hydrogen
JPH0742355U (en) Oxygen gas Hydrogen gas supply device

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090225

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100225

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100225

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100225

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110225

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110225

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110225

Year of fee payment: 11

LAPS Cancellation because of no payment of annual fees