JPH04311585A - System for producing ozone-containing gas - Google Patents

System for producing ozone-containing gas

Info

Publication number
JPH04311585A
JPH04311585A JP3103858A JP10385891A JPH04311585A JP H04311585 A JPH04311585 A JP H04311585A JP 3103858 A JP3103858 A JP 3103858A JP 10385891 A JP10385891 A JP 10385891A JP H04311585 A JPH04311585 A JP H04311585A
Authority
JP
Japan
Prior art keywords
raw water
purity
ozone
containing gas
electrolytic cell
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3103858A
Other languages
Japanese (ja)
Inventor
Isao Sawamoto
勲 澤本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
De Nora Permelec Ltd
Original Assignee
Permelec Electrode Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Permelec Electrode Ltd filed Critical Permelec Electrode Ltd
Priority to JP3103858A priority Critical patent/JPH04311585A/en
Publication of JPH04311585A publication Critical patent/JPH04311585A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/36Hydrogen production from non-carbon containing sources, e.g. by water electrolysis

Landscapes

  • Electrolytic Production Of Non-Metals, Compounds, Apparatuses Therefor (AREA)

Abstract

PURPOSE:To provide the system capable of stably producing an ozone-contg. gas by electrolysis even if an electrode is contaminated as the purity of raw water is lowered or the temp. of the electrolyte is increased. CONSTITUTION:This system is composed of a raw water storage tank 1, a device 3 for removing impurities from the raw water and producing high-purity water, an electrolytic cell 8 for producing an ozone-contg. gas and hydrogen gas from the high-purity water, separators 5 and 14 for separating both gases and an electrolyte cooler 16. The purity of the high-purity water is detected, the high-purity water is supplied to the electrolytic cell 8 when its purity is higher than the set value, and the high-purity water is circulated to the device 3 when the purity is lower than the set value.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】本発明はオゾン含有ガス製造シス
テムに関し、より詳細にはプール水の殺菌や半導体製造
時の洗浄用等として好適なオゾン水調製のため等に使用
されるオゾン含有ガスを水道水等の比較的低濃度の原料
水から効率良く製造するためのシステムに関する。
[Industrial Application Field] The present invention relates to an ozone-containing gas production system, and more specifically to an ozone-containing gas production system that is used to prepare ozone water suitable for sterilizing pool water, cleaning during semiconductor manufacturing, etc. The present invention relates to a system for efficiently producing raw water from relatively low concentration raw water such as tap water.

【0002】0002

【従来技術とその問題点】オゾンは強力でクリーンな酸
化剤として注目され、特にその分解生成物が酸素であり
従来から使用されている塩素系の酸化剤のものと比較し
て残留物が被処理水中に残留しないこと、分解速度が速
くオゾンがそれ自身残留せず二次公害の問題も全くない
こと等の理由から水処理用としての使用が増加している
。このように酸化剤として有用なオゾンを含むオゾン含
有ガスを発生させるために従来から主として放電法及び
電解法が採用されているが、生成物の純度や操作の容易
性から現在では電解法が主流となっている。この電解法
により発生したオゾン含有ガスを使用して水処理等を行
うには気液混合状態で得られるオゾン水をそのまま被処
理水と接触させたり、前記電解槽の陽極室に被処理水を
直接送り込んでオゾンと接触させたりしているが、前者
ではオゾンが気泡状で存在するため被処理水との接触効
率が悪くかつ電解槽で生ずるオゾン水に電極物質等が混
入し該物質が被処理水を汚染することがあり、又後者の
場合にも被処理水中の不純物により電極が汚染されると
いった問題点がある。
[Prior art and its problems] Ozone has attracted attention as a strong and clean oxidizing agent, and its decomposition product is oxygen, so compared to the conventionally used chlorine-based oxidizing agents, ozone is less exposed to residue. Its use in water treatment is increasing because it does not remain in the treated water, its decomposition rate is fast, ozone itself does not remain, and there is no problem of secondary pollution. In order to generate ozone-containing gas containing ozone, which is useful as an oxidizing agent, discharge methods and electrolytic methods have traditionally been mainly used, but electrolytic methods are currently mainstream due to the purity of the product and ease of operation. It becomes. In order to perform water treatment using the ozone-containing gas generated by this electrolysis method, the ozonated water obtained in a gas-liquid mixed state may be directly brought into contact with the water to be treated, or the water to be treated may be placed in the anode chamber of the electrolytic cell. However, in the former method, the ozone exists in the form of bubbles, so the contact efficiency with the water to be treated is poor, and the ozone water generated in the electrolytic tank is contaminated with electrode materials, etc., and the materials are exposed to the ozone. There is a problem that the treated water may be contaminated, and in the latter case, the electrodes may be contaminated by impurities in the water to be treated.

【0003】従って多くの場合、気液混合状態で電解槽
の陽極室で生成するオゾンを一旦例えばフィルターを通
して混合槽に供給し該フィルターで不純物を除去すると
ともに該フィルターで前記気液混合状態のオゾンを前記
混合槽中に分散させてオゾンをほぼ完全に混合槽の水に
溶解させてガス状のオゾンを含まない均一濃度のオゾン
水を生成したり、気液混合状態で得られるオゾン含有水
から一旦完全にオゾン含有ガスとして単離し、その後所
定用途に使用するようにしている。このような電解法に
よるオゾン含有ガス製造では、電解槽に供給する高純度
純水の純度の低下による電極の汚染、電解液の液温上昇
等の放電法等の他のオゾン製造法にはない独特の問題点
があり、得られるオゾン含有ガスの純度やコスト面で大
きな利点のある電解法のネックになっている。
Therefore, in many cases, ozone generated in the anode chamber of an electrolytic cell in a gas-liquid mixed state is once supplied to the mixing tank through a filter, and impurities are removed by the filter, and the ozone in the gas-liquid mixed state is is dispersed in the mixing tank to almost completely dissolve ozone in the water in the mixing tank to generate ozone water with a uniform concentration that does not contain gaseous ozone, or from ozone-containing water obtained in a gas-liquid mixed state. Once completely isolated as an ozone-containing gas, it is then used for specific purposes. Ozone-containing gas production using this type of electrolytic method has problems that other ozone production methods such as discharge methods do not have, such as contamination of the electrodes due to a decrease in the purity of the high-purity water supplied to the electrolytic tank and an increase in the temperature of the electrolyte. This unique problem is a bottleneck for electrolytic methods, which have great advantages in terms of the purity of the ozone-containing gas obtained and cost.

【0004】0004

【発明の目的】本発明は、前述した原料水の純度低下に
よる電極の汚染や電解液の液温上昇等によるオゾン製造
条件の変動に考慮することなく、自動的にオゾン含有ガ
スを単離状態で製造し得るオゾン含有ガス製造システム
を提供することを目的とする。
[Object of the Invention] The present invention automatically isolates ozone-containing gas without considering changes in ozone production conditions due to electrode contamination due to a decrease in the purity of raw water or an increase in the temperature of the electrolyte. The purpose of the present invention is to provide an ozone-containing gas production system that can produce ozone-containing gas.

【0005】[0005]

【問題点を解決するための手段】本発明は、原料水を貯
留する貯留タンク、該貯留タンクに連結され前記原料水
から不純物を除去し高純度原料水に変換するための高純
度原料水製造器、該高純度原料水を供給してその陽極室
及び陰極室にそれぞれオゾン含有ガス及び水素ガスを発
生させるための電解槽、該電解槽の陽極室で生成するオ
ゾン含有ガスを含む陽極液を循環させてオゾン含有ガス
を前記陽極液から分離するためのオゾン含有ガス分離器
、前記電解槽の陰極室で生成する水素ガスを含む陰極液
を循環させて水素ガスを分離する水素ガス分離器及び前
記陰極液を接触させて熱交換による陰極液の冷却を行う
冷却器を含んで成り、前記高純度原料水製造器から取り
出される高純度原料水の純度を検出し、該純度が所定の
設定値以上である場合に前記高純度原料水を前記電解槽
に供給し、前記純度が設定値未満である場合に前記高純
度原料水を前記高純度原料水製造器に循環させ又は系外
へ排出することを特徴とするオゾン含有ガス製造システ
ムである。
[Means for Solving the Problems] The present invention provides a storage tank for storing raw water, and a high-purity raw water production system connected to the storage tank for removing impurities from the raw water and converting it into high-purity raw water. an electrolytic cell for supplying the high-purity raw water to generate ozone-containing gas and hydrogen gas in the anode chamber and cathode chamber, respectively, and an anolyte containing ozone-containing gas generated in the anode chamber of the electrolytic cell. an ozone-containing gas separator for circulating and separating ozone-containing gas from the anolyte; a hydrogen gas separator for circulating a catholyte containing hydrogen gas generated in the cathode chamber of the electrolytic cell and separating hydrogen gas; The device includes a cooler that cools the catholyte through heat exchange by bringing the catholyte into contact with the catholyte, detects the purity of the high-purity raw water taken out from the high-purity raw water generator, and determines whether the purity is at a predetermined set value. If the purity is above, the high-purity raw water is supplied to the electrolytic cell, and if the purity is less than a set value, the high-purity raw water is circulated to the high-purity raw water production device or discharged to the outside of the system. This is an ozone-containing gas production system characterized by the following.

【0006】以下本発明を詳細に説明する。本発明に係
わるオゾン含有ガス製造システムは、水道水等の比較的
低純度の原料水を使用して、電解槽の電極等を汚染する
ことなく安定した電解条件でオゾン含有ガスを製造する
ことを可能にしたことを特徴とする。本発明システムに
おける貯留タンクは水道水等を供給して一旦貯留する機
能と必要に応じて後述する高純度原料水製造器で製造さ
れ純度が設定値に達しない高純度原料水を高純度原料水
製造器に循環させる前に貯留しておく機能を有している
The present invention will be explained in detail below. The ozone-containing gas production system according to the present invention is capable of producing ozone-containing gas under stable electrolytic conditions without contaminating the electrodes of the electrolytic cell using relatively low-purity raw water such as tap water. It is characterized by being made possible. The storage tank in the system of the present invention has the function of supplying tap water, etc. and temporarily storing it, and, if necessary, storing high-purity raw water that is produced by a high-purity raw water production device described later and whose purity does not reach the set value. It has the function of storing it before circulating it to the manufacturing equipment.

【0007】高純度原料水製造器は水道水等の原料水中
の不純物を除去して高純度原料水を製造する装置で、例
えばイオン交換樹脂等が充填された円筒状の塔体とする
ことができる。水道水は通常150 μS/cm程度の
電気伝導度を有し、前記高純度原料水製造器により該水
道水中の不純物を除去して前記電気伝導度を1μS/c
mまでに減少させることが望ましい。イオン交換樹脂等
により純度を向上させる場合でも、開始当初は十分に不
純物が除去されて純度の高い原料水を製造できるが、イ
オン交換樹脂等が消耗してくると十分に純度を向上させ
られなくなる。この減少した電気伝導度を有するつまり
十分な純度を有しない高純度原料水を電解槽に供給する
と電極の汚染等が生ずる。従って本発明では前記高純度
原料水製造器から取り出された前記高純度原料水の電気
伝導度を計測するようにする。この電気伝導度が例えば
1μS/cmを下回る十分低い値つまり該原料水の純度
が十分高ければ後述する電解槽に直接又は後述するオゾ
ン含有ガス分離器を通して供給する。又この電気伝導度
が前記値を上回る場合つまり該原料水の純度が低い場合
は該原料水の全部又は一部をドレンとして系外に排出す
るかあるいは再度直接前記高純度原料水製造器に又は前
記貯留タンクを通して該高純度原料水製造器に循環させ
て原料水の電気伝導度を前記設定値以下につまり該原料
水の純度を高くした後に前記電解槽に供給するようにす
る。
[0007] A high-purity raw water production device is a device for producing high-purity raw water by removing impurities from raw water such as tap water, and may be a cylindrical column filled with, for example, ion exchange resin. can. Tap water normally has an electrical conductivity of about 150 μS/cm, and the impurities in the tap water are removed by the high-purity raw water generator to reduce the electrical conductivity to 1 μS/cm.
It is desirable to reduce it to m. Even when improving purity using ion exchange resin, etc., impurities are sufficiently removed at the beginning and highly pure raw water can be produced, but once the ion exchange resin etc. are used up, the purity cannot be improved sufficiently. . If high-purity raw water with reduced electrical conductivity, that is, without sufficient purity, is supplied to the electrolytic cell, electrode contamination will occur. Therefore, in the present invention, the electrical conductivity of the high-purity raw water taken out from the high-purity raw water producing device is measured. If this electrical conductivity is sufficiently low, for example below 1 μS/cm, that is, if the purity of the raw water is sufficiently high, it is supplied directly to the electrolytic cell described later or through an ozone-containing gas separator described later. If the electrical conductivity exceeds the above value, that is, if the purity of the raw water is low, all or part of the raw water is drained out of the system, or directly poured into the high-purity raw water generator or The raw water is circulated through the storage tank to the high-purity raw water producer to lower the electric conductivity of the raw water to the set value or less, that is, to increase the purity of the raw water, and then to be supplied to the electrolytic cell.

【0008】前記電解槽はイオン交換膜等により陽極室
と陰極室に区画され、前記高純度原料水はいずれの極室
に供給してもよいが陽極室に供給することが好ましい。 この電解槽を構成する部材は従来の電解法によるオゾン
製造に使用する部材をそのまま使用すればよく、例えば
電極としては二酸化鉛電極やニッケル電極等を単独で陽
極及び陰極として使用しても、パーフルオロカーボンス
ルホン酸系のイオン交換膜の両面に陽極物質及び陰極物
質を被覆した固体電解質型電極としてもよい。この電解
槽の陽極室で発生するオゾン含有ガスつまり酸素ガスと
オゾンガスの混合ガスは陽極液と共存し陽極室内では気
液混合状態で存在する。この気液混合物はオゾン含有ガ
ス分離器に循環して該分離器内で気液分離が行われてオ
ゾン含有ガスが陽極液から分離され系外に取り出される
。オゾン含有ガスが分離された陽極液は前記電解槽の陽
極室へ循環される。
[0008] The electrolytic cell is divided into an anode chamber and a cathode chamber by an ion exchange membrane or the like, and the high-purity raw water may be supplied to either electrode chamber, but is preferably supplied to the anode chamber. The members constituting this electrolytic cell may be those used for ozone production by conventional electrolytic methods. For example, lead dioxide electrodes, nickel electrodes, etc. may be used alone as the anode and cathode, or A solid electrolyte electrode may be used, in which both sides of a fluorocarbon sulfonic acid-based ion exchange membrane are coated with an anode material and a cathode material. Ozone-containing gas, that is, a mixed gas of oxygen gas and ozone gas generated in the anode chamber of this electrolytic cell coexists with the anolyte and exists in a gas-liquid mixed state in the anode chamber. This gas-liquid mixture is circulated to an ozone-containing gas separator, where gas-liquid separation is performed, and the ozone-containing gas is separated from the anolyte and taken out of the system. The anolyte from which the ozone-containing gas has been separated is circulated to the anode chamber of the electrolytic cell.

【0009】前記電解槽の陰極室では水素ガスが発生し
該水素ガスは陰極液と共存し陰極室内では気液混合状態
で存在する。この気液混合物は水素ガス分離器に循環し
て該分離器内で気液分離が行われて水素が陰極液から分
離され燃焼により分解されあるいは系外に取り出されて
所定用途に使用される。水素ガス分離が行われた陰極液
は次いで冷却水が供給されている冷却器に循環され、熱
交換により該陰極液を冷却した後、該陰極液の全部又は
一部が前記電解槽の陰極室に循環され、電解液全体の冷
却が行われる。該陰極液の水素ガス分離と冷却は冷却効
率の面から、ガス分離→冷却の順にすることが望ましい
が、冷却→ガス分離の順で行ってもよい。
[0009] Hydrogen gas is generated in the cathode chamber of the electrolytic cell, and the hydrogen gas coexists with the catholyte and exists in a gas-liquid mixed state in the cathode chamber. This gas-liquid mixture is circulated to a hydrogen gas separator, where gas-liquid separation is performed, and hydrogen is separated from the catholyte and decomposed by combustion, or taken out of the system and used for a specified purpose. The catholyte from which hydrogen gas has been separated is then circulated to a cooler supplied with cooling water, and after cooling the catholyte through heat exchange, all or part of the catholyte is transferred to the cathode chamber of the electrolytic cell. The entire electrolyte is cooled. From the standpoint of cooling efficiency, it is desirable that the hydrogen gas separation and cooling of the catholyte be performed in the order of gas separation->cooling, but they may be performed in the order of cooling->gas separation.

【0010】このような構成から成るオゾン含有ガス製
造システムによると、電解槽特にその陽極室に常に所定
値以上の高純度原料水が供給されるため、電極の劣化等
が殆ど生ずることなくオゾン含有ガス発生を長期間継続
することができ、更に循環する陰極液の熱交換による冷
却が確実に行われるため、電解液の液温が過度に上昇す
ることがなく、電解条件がほぼ一定に維持されて、安定
した電解条件で上記オゾン含有ガス発生を行うことがで
きる。
[0010] According to the ozone-containing gas production system having such a configuration, high purity raw water of a predetermined value or higher is always supplied to the electrolytic tank, especially its anode chamber, so that the ozone-containing gas can be produced without causing almost any deterioration of the electrodes. Gas generation can be continued for a long period of time, and the circulating catholyte is reliably cooled by heat exchange, so the temperature of the electrolyte does not rise excessively and the electrolytic conditions are maintained almost constant. Therefore, the ozone-containing gas can be generated under stable electrolytic conditions.

【0011】次に本発明に係わるオゾン含有ガス製造シ
ステムの一例を添付図面に基づいて説明するが、本発明
のシステムは図示のシステムに限定されるものではない
。図1は、本発明に係わるオゾン含有ガス製造システム
の一例を示すフローチャートである。
Next, an example of the ozone-containing gas production system according to the present invention will be explained based on the attached drawings, but the system of the present invention is not limited to the illustrated system. FIG. 1 is a flowchart showing an example of an ozone-containing gas production system according to the present invention.

【0012】貯留タンク1には水道水等の低純度原料水
が供給され、該貯留タンク1内の原料水はポンプ2によ
り配管を介して円筒状の高純度原料水製造器3に導入さ
れ、該高純度原料水製造器3内で前記原料水中の不純物
がイオン交換樹脂等により除去されて、該高純度原料水
製造器3から高純度原料水が取り出される。取り出され
た高純度原料水の純度は前記高純度原料水製造器3から
後述する電解槽に向かう配管に設置された電気伝導度測
定器4により測定される。該電気伝導度測定器4を有す
る配管はその後2本に分岐し、一方は円筒状で内部に後
述する電解槽の陽極液とほぼ同一組成の液が満たされた
オゾン含有ガス分離器5に、他方は前記貯留タンク1に
それぞれ接続され、前記オゾン含有ガス分離器5に向か
う配管には第1バルブ6が、又貯留タンク1に向かう配
管には第2バルブ7がそれぞれ設置されている。純度測
定後の前記高純度原料水の純度が設定値以上であるとき
は、前記第1バルブ6を開き第2バルブ7を閉じること
により該高純度原料水は前記オゾン含有ガス分離器5に
供給される。又前記純度が設定値未満であるときは、前
記第1バルブ6を閉じ第2バルブ7を開くと該高純度原
料水は前記オゾン含有ガス分離器5には供給されず、前
記貯留タンク1に循環し、所定値未満の純度の原料水が
電解槽へ導入されて電解液や電解槽の部品を汚染するこ
とを抑制する。なお前記第1バルブ6が設置された配管
はオゾン含有ガス分離器5ではなく、後述する電解槽に
接続してもよい。
Low-purity raw water such as tap water is supplied to the storage tank 1, and the raw water in the storage tank 1 is introduced by a pump 2 through piping into a cylindrical high-purity raw water producer 3. Impurities in the raw water are removed by an ion exchange resin or the like in the high-purity raw water producer 3, and high-purity raw water is taken out from the high-purity raw water producer 3. The purity of the extracted high-purity raw water is measured by an electrical conductivity measuring device 4 installed in a pipe leading from the high-purity raw water producing device 3 to an electrolytic cell, which will be described later. The pipe containing the electrical conductivity measuring device 4 then branches into two, one of which is cylindrical and filled with a liquid having approximately the same composition as the anolyte of the electrolytic cell, which will be described later. The other end is connected to the storage tank 1, and a first valve 6 is installed in the pipe leading to the ozone-containing gas separator 5, and a second valve 7 is installed in the pipe leading to the storage tank 1. When the purity of the high-purity raw water after the purity measurement is equal to or higher than the set value, the first valve 6 is opened and the second valve 7 is closed, thereby supplying the high-purity raw water to the ozone-containing gas separator 5. be done. Further, when the purity is less than the set value, when the first valve 6 is closed and the second valve 7 is opened, the high-purity raw water is not supplied to the ozone-containing gas separator 5, but is supplied to the storage tank 1. This prevents raw water having a purity lower than a predetermined value from being introduced into the electrolytic cell and contaminating the electrolytic solution and parts of the electrolytic cell. Note that the pipe in which the first valve 6 is installed may be connected not to the ozone-containing gas separator 5 but to an electrolytic cell described later.

【0013】前記オゾン含有ガス分離器5は配管により
電解槽8と連結され、該電解槽8はイオン交換膜等の隔
膜の両面に陽極物質9及び陰極物質10が被覆されて成
る固体電解質11により陽極室12と陰極室13とに区
画されている。高純度原料水が供給された該陽極室12
にはオゾンと酸素の混合物であるオゾン含有ガスが発生
し、該オゾン含有ガスは陽極液と気液混合状態で前記オ
ゾン含有ガス分離器5に循環されてオゾン含有ガスが陽
極液から分離されて系外に取り出され、陽極液は陽極室
12に循環される。又電解槽8の陰極液は配管により水
素ガスとともに気液混合物として水素ガス分離器14に
供給され、該分離器14内で気液分離された後の陰極液
のみがポンプ15により冷却器16へ導入され、該冷却
器16内に供給される冷却水との熱交換により冷却され
た後、前記電解槽8の陰極室13へ循環される。図示の
システムでは、貯留タンク1へ水道水を供給し電解槽8
への通電を行うのみで自動的にオゾン含有ガスをオゾン
含有ガス分離器5から得ることが可能になる。
The ozone-containing gas separator 5 is connected to an electrolytic cell 8 by piping, and the electrolytic cell 8 is made of a solid electrolyte 11 comprising a diaphragm such as an ion exchange membrane, both sides of which are coated with an anode material 9 and a cathode material 10. It is divided into an anode chamber 12 and a cathode chamber 13. The anode chamber 12 supplied with high-purity raw water
An ozone-containing gas, which is a mixture of ozone and oxygen, is generated, and the ozone-containing gas is circulated in a gas-liquid mixed state with the anolyte to the ozone-containing gas separator 5, where the ozone-containing gas is separated from the anolyte. The anolyte is taken out of the system and circulated to the anode chamber 12. Further, the catholyte in the electrolytic cell 8 is supplied along with hydrogen gas as a gas-liquid mixture to a hydrogen gas separator 14 through piping, and only the catholyte after being separated into gas and liquid in the separator 14 is sent to a cooler 16 by a pump 15. After being cooled by heat exchange with the cooling water supplied into the cooler 16, it is circulated to the cathode chamber 13 of the electrolytic cell 8. In the illustrated system, tap water is supplied to the storage tank 1 and the electrolytic tank 8
It becomes possible to automatically obtain ozone-containing gas from the ozone-containing gas separator 5 by simply energizing the ozone-containing gas separator 5.

【0014】[0014]

【実施例】次に本発明のシステムによるオゾン含有ガス
製造の実施例を記載するが、該実施例は本発明を限定す
るものではない。図1に示すシステムを使用してオゾン
含有ガスの製造を行った。固体電解質として、一方面に
陽極物質であるβ−二酸化鉛、他面に陰極物質である白
金を被覆した縦10cm、横10cm、厚さ0.18m
mでイオン交換容量が0.9ミリ当量/gのナフィオン
(商品名)117 を使用して電極面積を1dm2 と
した。該固体電解質により電解槽を容積がそれぞれ10
0 cm3 及び200 cm3 である陽極室及び陰
極室に区画した。前記陽極物質及び陰極物質のそれぞれ
にメッシュ状チタン微細繊維焼結体である陽極給電エレ
メント及びステンレス微細繊維焼結体である陰極給電エ
レメントを接続した。該電解槽の側方には純水を収容し
た直径5cm、高さ30cmの円筒状のオゾン含有ガス
分離器を設置した。
EXAMPLES Next, examples of producing ozone-containing gas using the system of the present invention will be described, but these examples are not intended to limit the present invention. Ozone-containing gas was produced using the system shown in FIG. As a solid electrolyte, one side is coated with β-lead dioxide, which is an anode material, and the other side is coated with platinum, which is a cathode material, and is 10 cm long, 10 cm wide, and 0.18 m thick.
Nafion (trade name) 117 having an ion exchange capacity of 0.9 meq/g was used, and the electrode area was set to 1 dm2. The solid electrolyte makes the electrolytic cells each have a volume of 10
It was divided into an anode chamber and a cathode chamber of 0 cm3 and 200 cm3. An anode power supply element made of a mesh-like titanium fine fiber sintered body and a cathode power supply element made of a stainless steel fine fiber sintered body were connected to the anode material and the cathode material, respectively. A cylindrical ozone-containing gas separator with a diameter of 5 cm and a height of 30 cm containing pure water was installed on the side of the electrolytic cell.

【0015】該オゾン含有ガス分離器に近接してイオン
交換樹脂を充填した直径8cm、高さ50cmの円筒状
の高純度原料水製造器を設置し、かつ該高純度原料水製
造器には容量1リットルで原料水である水道水が収容さ
れた貯留タンクを接続し、該貯留タンクから原料水を1
リットル/分の割合で前記高純度原料水製造器に供給し
た。該高純度原料水製造器と前記オゾン含有ガス分離器
の間の配管に電気伝導度測定器を設置し、該配管内の原
料水の電気伝導度が1μS/cm未満のときにオゾン含
有ガス分離器へ向かう配管の第1バルブを開きかつ前記
貯留タンクに向かう第2バルブを閉じて高純度原料水製
造器中の原料水をオゾン含有ガス分離器に導き、かつ前
記配管内の原料水の電気伝導度が1μS/cm以上にな
ったときに前記第1バルブを閉じかつ前記第2バルブを
開いて高純度原料水製造器中の原料水を貯留タンクへ戻
すようにした。
[0015] A cylindrical high-purity raw water producing device with a diameter of 8 cm and a height of 50 cm filled with ion exchange resin is installed near the ozone-containing gas separator, and the high-purity raw water producing machine has a capacity of Connect a storage tank containing 1 liter of tap water, which is raw material water, and collect 1 liter of raw water from the storage tank.
The water was supplied to the high-purity raw water maker at a rate of liters/minute. An electrical conductivity measuring device is installed in the piping between the high-purity raw water producer and the ozone-containing gas separator, and when the electrical conductivity of the raw water in the piping is less than 1 μS/cm, the ozone-containing gas is separated. The raw water in the high-purity raw water generator is guided to the ozone-containing gas separator by opening the first valve on the pipe leading to the container and closing the second valve leading to the storage tank, and the raw water in the pipe is electrically charged. When the conductivity reached 1 μS/cm or more, the first valve was closed and the second valve was opened to return the raw water in the high purity raw water generator to the storage tank.

【0016】前記電解槽の陽極液は0.3 リットル/
分の割合でオゾン含有ガス分離器に導いてオゾン含有ガ
スを陽極液から分離し、分離した陽極液を前記陽極室へ
循環させるようにした。前記電解槽の陰極液は3リット
ル/分の割合で水素ガス分離器に導き、気液分離した陰
極液を3リットル/分の割合で冷却水が供給されている
冷却器に供給し、更に前記陰極室へ循環させた。前記電
解槽に100 A及び35Vの電解条件で通電し原料水
の電解を行ったところ、前記オゾン含有ガス分離器から
オゾンガス16重量%、酸素ガス84重量%の混合ガス
であるオゾン含有ガスが4.8 g/時の割合で得られ
た。又電解槽内の原料水の液温は25℃であった。18
0 日間同一条件でオゾン製造を継続した後のオゾン含
有ガスは、オゾンガス16重量%、酸素ガス84重量%
の混合ガスであった。又電解槽内の原料水の液温は25
℃であった。
[0016] The anolyte in the electrolytic cell is 0.3 liter/
The ozone-containing gas was separated from the anolyte by introducing it into an ozone-containing gas separator at a rate of 100 min, and the separated anolyte was circulated to the anolyte chamber. The catholyte of the electrolytic cell is led to a hydrogen gas separator at a rate of 3 liters/minute, the catholyte separated into gas and liquid is supplied to a cooler supplied with cooling water at a rate of 3 liters/minute, and further It was circulated to the cathode chamber. When electricity was applied to the electrolytic cell under electrolytic conditions of 100 A and 35 V to electrolyze the raw water, 4 ml of ozone-containing gas, which was a mixed gas of 16% by weight of ozone gas and 84% by weight of oxygen gas, was released from the ozone-containing gas separator. .8 g/h. Moreover, the liquid temperature of the raw water in the electrolytic cell was 25°C. 18
After continuing ozone production under the same conditions for 0 days, the ozone-containing gas was 16% by weight ozone gas and 84% by weight oxygen gas.
It was a mixture of gases. Also, the liquid temperature of the raw water in the electrolytic tank is 25
It was ℃.

【0017】[0017]

【発明の効果】本発明によるオゾン製造システムは、比
較的低濃度の原料水を高純度原料水製造器により純度を
高めかつ該純度を検出して所定純度を有する原料水のみ
を電解槽に供給し、電解槽で生成するオゾン含有ガスを
オゾン含有ガス分離器に循環させてオゾン含有ガスを気
液分離により分離し、更に電解槽の陰極室で生成する水
素ガスを含有する陰極液を水素ガス分離器と冷却器に循
環させることにより、水素ガスの分離と陰極液の冷却を
行うようにしている。
[Effects of the Invention] The ozone production system according to the present invention increases the purity of raw water with a relatively low concentration using a high-purity raw water maker, detects the purity, and supplies only raw water with a predetermined purity to the electrolytic cell. Then, the ozone-containing gas generated in the electrolytic cell is circulated to the ozone-containing gas separator to separate the ozone-containing gas by gas-liquid separation, and the catholyte containing hydrogen gas generated in the cathode chamber of the electrolytic cell is converted into hydrogen gas. The hydrogen gas is separated and the catholyte is cooled by circulating it through the separator and cooler.

【0018】従って水道水等の原料水を供給しかつ電解
槽に通電するのみで自動的に電解槽の寿命を過度に縮め
ることなく所定純度のオゾン含有ガスを製造することが
可能になる。高純度原料水製造器で製造された高純度原
料水は直接電解槽に供給しても、電解槽の陽極液が循環
されるオゾン含有ガス分離器に供給することにより間接
的に電解槽に供給するようにしてもよい。
[0018] Therefore, by simply supplying raw water such as tap water and energizing the electrolytic cell, it becomes possible to automatically produce ozone-containing gas of a predetermined purity without excessively shortening the life of the electrolytic cell. The high-purity raw water produced by the high-purity raw water generator can be supplied directly to the electrolytic cell, or indirectly by being supplied to the ozone-containing gas separator where the anolyte from the electrolytic cell is circulated. You may also do so.

【図面の簡単な説明】[Brief explanation of drawings]

【図1】本発明に係わるオゾン含有ガス製造システムを
例示するフローチャート。
FIG. 1 is a flowchart illustrating an ozone-containing gas production system according to the present invention.

【符号の説明】[Explanation of symbols]

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】  原料水を貯留する貯留タンク、該貯留
タンクに連結され前記原料水から不純物を除去し高純度
原料水に変換するための高純度原料水製造器、該高純度
原料水を供給してその陽極室及び陰極室にそれぞれオゾ
ン含有ガス及び水素ガスを発生させるための電解槽、該
電解槽の陽極室で生成するオゾン含有ガスを含む陽極液
を循環させてオゾン含有ガスを前記陽極液から分離する
ためのオゾン含有ガス分離器、前記電解槽の陰極室で生
成する水素ガスを含む陰極液を循環させて水素ガスを分
離する水素ガス分離器及び前記陰極液を接触させて熱交
換による陰極液の冷却を行う冷却器を含んで成り、前記
高純度原料水製造器から取り出される高純度原料水の純
度を検出し、該純度が所定の設定値以上である場合に前
記高純度原料水を前記電解槽に供給し、前記純度が設定
値未満である場合に前記高純度原料水を前記高純度原料
水製造器に循環させ又は系外へ排出することを特徴とす
るオゾン含有ガス製造システム。
1. A storage tank for storing raw water; a high-purity raw water production device connected to the storage tank for removing impurities from the raw water and converting it into high-purity raw water; and supplying the high-purity raw water. and an electrolytic cell for generating ozone-containing gas and hydrogen gas in the anode chamber and cathode chamber, respectively, and an anolyte containing ozone-containing gas generated in the anode chamber of the electrolytic cell is circulated to transfer the ozone-containing gas to the anode. an ozone-containing gas separator for separating the gas from the liquid; a hydrogen gas separator that circulates the catholyte containing hydrogen gas produced in the cathode chamber of the electrolytic cell to separate hydrogen gas; and a hydrogen gas separator for separating hydrogen gas by bringing the catholyte into contact for heat exchange. detects the purity of the high-purity raw water taken out from the high-purity raw water producing device, and when the purity is equal to or higher than a predetermined set value, the high-purity raw water Ozone-containing gas production characterized by supplying water to the electrolytic cell, and circulating the high-purity raw water to the high-purity raw water production device or discharging it to the outside of the system when the purity is less than a set value. system.
【請求項2】  高純度原料水製造器で製造された高純
度原料水をオゾン含有ガス分離器を経由して電解槽に供
給するようにした請求項1に記載のシステム。
2. The system according to claim 1, wherein the high-purity raw water produced by the high-purity raw water production device is supplied to the electrolytic cell via an ozone-containing gas separator.
JP3103858A 1991-04-09 1991-04-09 System for producing ozone-containing gas Pending JPH04311585A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3103858A JPH04311585A (en) 1991-04-09 1991-04-09 System for producing ozone-containing gas

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3103858A JPH04311585A (en) 1991-04-09 1991-04-09 System for producing ozone-containing gas

Publications (1)

Publication Number Publication Date
JPH04311585A true JPH04311585A (en) 1992-11-04

Family

ID=14365148

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3103858A Pending JPH04311585A (en) 1991-04-09 1991-04-09 System for producing ozone-containing gas

Country Status (1)

Country Link
JP (1) JPH04311585A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1112774A (en) * 1997-06-27 1999-01-19 Shinko Plant Kensetsu Kk Ozonized water producing device and production of ozonized water by the device
JP2008162815A (en) * 2006-12-27 2008-07-17 Sasakura Engineering Co Ltd Ozone generating apparatus
CN106191909A (en) * 2016-10-09 2016-12-07 深圳欧威奇科技有限公司 A kind of domestic ozone water generator being electrolysed water tank and using this electrolysis water tank

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1112774A (en) * 1997-06-27 1999-01-19 Shinko Plant Kensetsu Kk Ozonized water producing device and production of ozonized water by the device
JP2008162815A (en) * 2006-12-27 2008-07-17 Sasakura Engineering Co Ltd Ozone generating apparatus
CN106191909A (en) * 2016-10-09 2016-12-07 深圳欧威奇科技有限公司 A kind of domestic ozone water generator being electrolysed water tank and using this electrolysis water tank

Similar Documents

Publication Publication Date Title
US5205994A (en) Electrolytic ozone generator
Stucki et al. Performance of a pressurized electrochemical ozone generator
US5290406A (en) Method for producing ozone
US9890062B2 (en) Electrolytic enrichment method for heavy water
US5589052A (en) Method for electrolyzing water
JP3007137B2 (en) Electrolytic ozone generation method and apparatus
TWI247051B (en) Apparatus for generating fluorine gas
TW406059B (en) Method of water electrolysis
US5114549A (en) Method and apparatus for treating water using electrolytic ozone
TW201243109A (en) Apparatus for electrolyzing sulfuric acid and method for electrolyzing sulfuric acid
US4975171A (en) Bipolar electrolytic cell
JPH03154691A (en) Method and apparatus for making high concentration ozone water
JPH04311585A (en) System for producing ozone-containing gas
KR100533819B1 (en) Method and apparatus for generating electrolytic gas
JPH11267652A (en) Method of generating ozone water and hydrogen water, and device therefor
JP2007059196A (en) Power generating system
JP3748765B2 (en) Electrolytic gas generation method and electrolytic gas generator
JPH10265988A (en) Hydrogen and oxygen generator
JP3750802B2 (en) Water electrolyzer and its operation method
JP2002166279A (en) Method and device for generating gas by electrolysis
JPH11335882A (en) Production of gaseous nitrogen trifluoride
JPH04337095A (en) Method and apparatus for producing ozonized water
JPH10280180A (en) Apparatus for production of hydrogen peroxide water and method therefor
JPS59162284A (en) Method for generating hydrogen, oxygen and inert gas
JP2002326087A (en) Electrolytic reduction device for removing halogenated acid