JP7424350B2 - 溶鋼の脱窒方法および鋼の製造方法 - Google Patents

溶鋼の脱窒方法および鋼の製造方法 Download PDF

Info

Publication number
JP7424350B2
JP7424350B2 JP2021098118A JP2021098118A JP7424350B2 JP 7424350 B2 JP7424350 B2 JP 7424350B2 JP 2021098118 A JP2021098118 A JP 2021098118A JP 2021098118 A JP2021098118 A JP 2021098118A JP 7424350 B2 JP7424350 B2 JP 7424350B2
Authority
JP
Japan
Prior art keywords
molten steel
slag
concentration
gas
mass
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2021098118A
Other languages
English (en)
Other versions
JP2022189505A (ja
Inventor
秀光 根岸
令 山田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to JP2021098118A priority Critical patent/JP7424350B2/ja
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to CN202280041132.1A priority patent/CN117460847A/zh
Priority to KR1020237040116A priority patent/KR20230175266A/ko
Priority to PCT/JP2022/020007 priority patent/WO2022259805A1/ja
Priority to CA3219692A priority patent/CA3219692A1/en
Priority to EP22819989.9A priority patent/EP4353842A1/en
Priority to BR112023025883A priority patent/BR112023025883A2/pt
Priority to TW111120535A priority patent/TWI824546B/zh
Publication of JP2022189505A publication Critical patent/JP2022189505A/ja
Application granted granted Critical
Publication of JP7424350B2 publication Critical patent/JP7424350B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21CPROCESSING OF PIG-IRON, e.g. REFINING, MANUFACTURE OF WROUGHT-IRON OR STEEL; TREATMENT IN MOLTEN STATE OF FERROUS ALLOYS
    • C21C7/00Treating molten ferrous alloys, e.g. steel, not covered by groups C21C1/00 - C21C5/00
    • C21C7/04Removing impurities by adding a treating agent
    • C21C7/06Deoxidising, e.g. killing
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21CPROCESSING OF PIG-IRON, e.g. REFINING, MANUFACTURE OF WROUGHT-IRON OR STEEL; TREATMENT IN MOLTEN STATE OF FERROUS ALLOYS
    • C21C7/00Treating molten ferrous alloys, e.g. steel, not covered by groups C21C1/00 - C21C5/00
    • C21C7/04Removing impurities by adding a treating agent
    • C21C7/072Treatment with gases
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21CPROCESSING OF PIG-IRON, e.g. REFINING, MANUFACTURE OF WROUGHT-IRON OR STEEL; TREATMENT IN MOLTEN STATE OF FERROUS ALLOYS
    • C21C7/00Treating molten ferrous alloys, e.g. steel, not covered by groups C21C1/00 - C21C5/00
    • C21C7/0006Adding metallic additives
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21CPROCESSING OF PIG-IRON, e.g. REFINING, MANUFACTURE OF WROUGHT-IRON OR STEEL; TREATMENT IN MOLTEN STATE OF FERROUS ALLOYS
    • C21C7/00Treating molten ferrous alloys, e.g. steel, not covered by groups C21C1/00 - C21C5/00
    • C21C7/10Handling in a vacuum
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Treatment Of Steel In Its Molten State (AREA)

Description

本発明は、取鍋などの反応容器に充填された溶鋼と、溶鋼上に添加・形成されたスラグと、スラグに吹き付けられる酸素含有ガスと、による反応により溶鋼中の窒素を除去する方法、および、その方法により溶製された鋼の製造方法に関する。
窒素は金属材料にとって有害成分であり、従来の製鋼プロセスでは主に溶銑の脱炭処理時に発生する一酸化炭素の気泡表面に溶鉄中の窒素[N]を吸着させて除去している。そのため炭素濃度が低い溶鋼に関しては、一酸化炭素の発生量が限られているため、同様の手法では窒素を低濃度まで除去することができない。
一方で、CO排出量低減のためには、製鋼プロセスは従来の高炉、転炉を用いる方法から、スクラップや還元鉄を溶解させる方法へと転換する必要がある。その場合、得られる溶融鉄は炭素濃度が低くなり、前記理由で低窒素鋼を溶製できないおそれがある。
そこでスラグを用いた溶鋼からの脱窒方法がいくつか提案されている。たとえば、特許文献1には、VOD炉にて溶鋼中Al濃度を0.7mass%以上の濃度に少なくとも5分間保持し、アルミナイトライド(以下AlN)の生成により脱窒する方法が示されている。
また、特許文献2には、電気炉で鉄スクラップを主鉄源として溶鋼を溶製し、別の精錬容器に出鋼、保持した後、Al含有物質を含む脱窒用のフラックスを添加して、AlNをスラグに移行させてから、溶鋼に酸素含有ガスを吹き付けて脱窒する方法が示されている。
また、特許文献3には、ガス上吹き機能を有する精錬容器に溶融金属を装入し、この溶融金属の表面を、CaOおよびAlを主成分とするスラグで覆ったのち、この被覆スラグ面に対し酸化性ガスを、該ガスが溶融金属と直接接触しない程度に吹き付けることにより脱窒する方法が示されている。
特開平5-320733号公報 特開2007-211298号公報 特開平8-246024号公報
上野ら:鉄と鋼,101(2015),74
しかしながら、前記従来技術には以下の問題点がある。
すなわち、特許文献1や2に記載の技術は、脱窒のためにAlNの生成を利用しており、生成したAlNの一部が溶鋼中に残存し、後工程の鋳造時に割れの起点になってしまうという課題がある。
また、AlNの生成を使用した脱窒方法を用いて、数十massppm程度の低窒素鋼を溶製するためにはAlとNの溶解度積から考えて少なくともAl濃度が数mass%~10mass%程度必要である。もしくは、脱窒反応を有効に利用するためには数百massppm程度の初期窒素濃度が必要である。特許文献1や2に記載の技術は、低窒素鋼を溶製するには工程的に用いるコストが非常に高くなりすぎ、ステンレス鋼等の溶解窒素量の高い鋼種にしか適用できないという課題がある。
特許文献3に記載の技術は、溶鋼を酸化性ガスから遮断するための条件として、
(1)スラグ量を少なくとも溶鋼1トンあたり15kg確保すること
(2)スラグ量、底吹きガス量、上吹きガス組成やその流量、ランス高さ及び雰囲気圧力などを適当な範囲に制御すること
を挙げているが、条件(1)は溶鋼を充填する容器のサイズによってスラグ量が増大すること、条件(2)は具体的な制御手段、制御範囲の記載がなく、ガスと溶鋼の遮断を確認する方法が明らかでないことから、適合条件が明確でない。特許文献3に記載の適合例と同一範囲で試験を行っても、実際は酸化性ガスによりスラグ-メタル界面のみかけの酸素分圧が増加することによるスラグ-メタル間での窒素移動抑制によって、脱窒速度が遅くなり、操業上実用的でないことを発明者らは確認している。
本発明は、このような事情に鑑みてなされたものであって、その目的とするところは、スラグを用いた溶鋼の脱窒処理を行うにあたり、安定して高速で極低窒素濃度域まで到達し得る溶鋼の脱窒方法を提案することにある。さらに、その溶鋼の脱窒方法で溶製した溶鋼を用いた鋼の製造方法を提案する。
発明者らはこれらの問題に鑑み鋭意研究を重ねた結果、酸素含有ガスをスラグに吹き付け、スラグを介して溶鋼中の窒素を除去する脱窒処理において、大きな脱窒速度を得るためには処理後のスラグ中T.Fe濃度を一定値以下に抑える必要があることを見出した。
上記課題を有利に解決する本発明にかかる溶鋼の脱窒方法は、溶鋼に金属Al含有物質を添加して脱酸しAl含有溶鋼とするAl添加ステップと、前記溶鋼にCaO含有物質を添加するCaO添加ステップと、を組み合わせてCaOおよびAlを含有するスラグを形成したのちに、前記スラグ上から酸素含有ガスを吹き付けて脱窒処理を実施する溶鋼の脱窒方法であって、前記脱窒処理後のスラグ中のT.Feを3.0mass%以下にすることを特徴とする。
また、本発明にかかる溶鋼の脱窒方法は、
(a)前記脱窒処理において、前記酸素含有ガスを供給する際、前記スラグの厚みLS0と酸素含有ガス吹き付けにより生じるスラグの凹み深さLとの比L/LS0を0.9以下にすること、
(b)前記脱窒処理において、前記酸素含有ガスが、OガスをNガス以外の不活性ガスで希釈したものであること、
(c)前記Al添加ステップにおいて、溶鋼中のAl濃度[Al]を0.1mass%以上1.0mass%以下にすること、
(d)前記脱窒処理は、前記Al含有溶鋼およびスラグの表面を減圧雰囲気にすること、
(e)前記スラグ中のMgO濃度(MgO)が1.0mass%増加するごとに、前記脱窒処理中の溶鋼温度Tを5℃以上増加させること、
などが、より好ましい解決手段になり得るものと考えられる。
上記課題を有利に解決する本発明にかかる鋼の製造方法は、上記溶鋼の脱窒方法のいずれかで溶製した溶鋼に対し、任意に成分調整したのち、鋳造することを特徴とする。
本発明によれば、スラグを用いた溶鋼の脱窒処理を行うにあたり、安定して高速で極低窒素濃度域まで窒素を除去できるようになる。
本発明の一実施形態にかかる溶鋼の脱窒方法に適した装置の一例を示す模式図である。 脱窒処理後のスラグ中の全鉄濃度(T.Fe)fと溶鋼中の到達窒素濃度[N]の関係を示すグラフである。 脱窒処理後のスラグのX線回折分析結果を示すグラフであって、(a)は溶鋼中の到達窒素濃度[N]>35massppmの場合のスラグを表し、(b)は溶鋼中の到達窒素濃度[N]≦35massppmの場合のスラグを表す。 初期スラグ厚みLS0と酸素含有ガスによるスラグの凹み深さLとの比L/LS0と脱窒処理後のスラグ中の全鉄濃度(T.Fe)の関係を示すグラフである。 初期スラグ厚みLS0と酸素含有ガスによるスラグの凹み深さLとの比L/LS0と溶鋼中の到達窒素濃度[N]の関係に与える酸素含有ガス種の影響示すグラフである。 初期スラグ厚みLS0と酸素含有ガスによるスラグの凹み深さLとの比L/LS0と確保すべき溶鋼中Al濃度[Al]の関係に与える酸素含有ガス種の影響示すグラフである。 炉内圧力Pと溶鋼中の到達窒素濃度バラツキの上限Max[N]との関係に与える酸素含有ガス種の影響示すグラフである。 スラグ中のMgO濃度(MgO)と、同一到達窒素濃度を得るための溶鋼温度Tの関係を示すグラフである。
以下、本発明の実施の形態について具体的に説明する。なお、各図面は模式的なものであって、現実のものとは異なる場合がある。また、以下の実施形態は、本発明の技術的思想を具体化するための装置や方法を例示するものであり、構成を下記のものに特定するものでない。すなわち、本発明の技術的思想は、特許請求の範囲に記載された技術的範囲内において、種々の変更を加えることができる。
図1に本発明を実施するにあたり好適な装置構成を示す。耐火物2が内張りされた取鍋などの容器1に溶鋼3を充填し、その上にCaOおよびAlを含有するスラグ4を形成する。排気系統11と合金添加系統12を有する真空容器13中で溶鋼3およびスラグ4表面を減圧雰囲気とした状態で、ガス配管9に接続されたガス上吹き用ランス6からO含有ガスをスラグ4に吹き付ける。溶鋼3は、ガス配管9に接続された底吹きノズル8から攪拌用不活性ガス10を吹込むことで攪拌を行う。攪拌用不活性ガス10としては、窒素ガスを含まないArガスなどが好ましい。
溶鋼3に金属Al含有物質を添加して脱酸しAl含有溶鋼とする工程(Al添加ステップ)、溶鋼3にCaO含有物質を添加する工程(CaO添加ステップ)は、合金添加系統12を用いて行ってもよいし、真空容器13に入る前工程で行っても良い。溶鋼3を脱酸する工程(脱酸ステップ)をAl添加ステップから分離して行ってもよい。CaO添加ステップは任意の時期に実施することができる。CaO添加ステップは、脱酸ステップ後に実施すれば、脱酸反応による溶鋼温度の上昇をスラグの滓化に利用できるので好ましい。CaO添加ステップは、Al添加ステップの後に実施すれば、添加したAl含有物質が厚みのあるスラグに阻害されて溶鋼に到達しないことによる脱酸不良またはスラグ組成のバラツキを抑制することができるためさらに好ましい。
CaOおよびAl含有スラグ4の形成は、CaO含有物質の添加および溶鋼の脱酸で生じるAlを利用する。たとえばCaO含有物質としてプリメルトもしくはプレミックス品のカルシウムアルミネートを用いて行っても良い。スラグ組成は、スラグが溶融している割合(以下、滓化率という)が高いほど脱窒反応に有利であり、CaOとAlの質量比C/Aが0.4~1.8の範囲にあることが好ましく、さらに0.7~1.7の範囲にあることがより好ましい。
攪拌用ガス10の溶鋼中への供給は、前記の方法以外にも、例えば不活性ガス吹込み用のインジェクションランスを介して溶鋼にインジェクションする形式でも良い。
次に、本発明の好適な実施形態について、経緯を交え詳細に説明する。
(第1実施形態)
第1の実施形態は、特許文献3の適合例の範囲で試験を実施しても脱窒が安定せず、到達窒素濃度も下がらないため、脱窒に有利な条件を明確かつ定量的に示す必要性から行われたものである。図1の構成要件を満たす小型高周波真空誘導溶解炉にて15kgの溶鋼3に対し15kg/t以上のCaOおよびAl含有スラグ4を溶鋼面が肉眼で確認できない程度の量で形成しOガスをスラグに吹き付けた。そうしたところ、図2に示すように処理後のスラグ中T.Fe濃度(T.Fe)が3.0mass%を境に到達窒素濃度が急激に低下することを発明者らは見出した。このとき、炉内雰囲気圧Pは4×10Pa、溶鋼中の初期窒素濃度[N]は、50massppm、Al濃度[Al]は、0.7mass%、スラグ組成はCaOとAlの質量比C/Aで1.2、スラグ中のMgO濃度(MgO)は、10mass%、溶鋼温度Tは、1650℃、処理時間tは30分であった。
また、前記試験中、スラグ中T.Fe濃度(T.Fe)が15mass%以上であった試験では、酸素ガスがスラグ層を貫通して溶鋼表面が露出しているのが明確に肉眼で確認できた。一方、15%未満の試験においては、酸素ガス吹き付け面を含むどの箇所にも、明確な溶鋼表面露出は確認されなかった。このことから、特許文献3記載の内容では低窒素濃度域までの脱窒が困難であることも判明した。第1の実施形態、つまり、溶鋼に金属Al含有物質を添加して脱酸しAl含有溶鋼とするAl添加ステップと、前記溶鋼にCaO含有物質を添加するCaO添加ステップと、を組み合わせてCaOおよびAlを含有するスラグを形成したのちに、前記スラグ上から酸素含有ガスを吹き付けて脱窒処理を実施する溶鋼の脱窒方法であって、前記脱窒処理後のスラグ中のT.Feを3.0mass%以下にする溶鋼の脱窒方法は、上記のような調査結果から得られたものである。スラグ中のT.Feの下限は、0mass%であってもよい。なお、本明細書中で、[M]は、元素Mが溶鋼中に溶存含有している状態を表し、(R)は、化学物質Rがスラグ中に溶存含有している状態を表し、単位を付してそれぞれの組成比率を表すこととする。
(第2実施形態)
第2の実施形態は、脱窒処理後のスラグ中T.Fe濃度(T.Fe)をいかにして3.0mass%以下に制御するかという課題に対し、前記小型高周波真空誘導溶解炉で試験した際に見出されたものである。まず、酸素ガスが明確にスラグ層を貫通しており処理後の溶鋼中窒素濃度[N]が35massppmよりも高かった試験と、試験中溶鋼表面が露出しておらず、35massppm以下まで低下した試験それぞれの脱窒処理後スラグのXRD(X線回折)分析を行った。結果、図3に示すように、酸素ガスが明確にスラグ層を貫通した試験(図3(a))のスラグには鉄酸化物(FeO、Feやフェライト-アルミナ(FA))や鉄(Fe)そのもののピークが高強度で確認された。一方、十分に到達窒素濃度[N]が低下した試験(図3(b))のスラグは鉄酸化物や鉄のピー
クがないか、微弱であり、カルシウムアルミネート(CAやCA2)のピークのみ観察された。この結果を受け、発明者らは、脱窒処理前のCaOおよびAl含有スラグが溶融した段階でのスラグの厚みLS0(m)の測定結果と、非特許文献1に記載の式中の諸パラメータ、具体的には液体密度やガス密度、ジェット速度などを実験条件に適合する値に変えたスラグの凹み深さLS(m)との比であるL/LS0(-)と脱窒処理後のスラグ中のT.Fe濃度(T.Fe)(mass%)との関係を調査した。その結果、図4に示すように、L/LS0を0.9以下にすれば、安定してラグ中のT.Fe濃度(T.Fe)を3.0mass%以下に制御できることを見出した。このとき、炉内雰囲気圧Pは4×103Pa、溶鋼中の初期窒素濃度[N]は、50massppm、Al濃度[Al]は、0.7mass%、スラグ組成はCaOとAlの質量比C/Aで1.2、スラグ中のMgO濃度(MgO)は、10mass%、溶鋼温度Tfは、1650℃、処理時間tは30分であった。第2の実施形態、つまり、上記第1の実施形態に加え、脱窒処理において、前記酸素含有ガスを供給する際、前記スラグの厚みLS0と酸素含有ガス吹き付けにより生じるスラグの凹み深さLとの比L/LS0を0.9以下にする溶鋼の脱窒方法は、上記のような調査結果から得られたものである。なお、L/LS0の下限は特に限定するものではないが、有効に酸素含有ガスを吹き付ける観点から、0.1以上が望ましい。
スラグ凹み深さ比L/LS0の制御においては、ランス高さやガス流量を増減する方法や、ガス上吹き用ランスのノズル先端を適当な形状にするなど、さまざまな方法を取り得るが、例えばランス高さを変更した際のL/LS0と、ガス流量を変更した際のL/LS0の値が同じであれば、スラグ中のT.Fe濃度(T.Fe)は同程度であり、制御手段が異なることによる差は生じないことを発明者らは確認している。また、装置のスケールによっては、スラグの一部が耐火物に浸潤したり、溶鋼の攪拌によって溶鋼中に巻き込まれたりする等の理由により、処理中のスラグ厚みが減少する可能性はある。しかし、本技術思想を基に適時、スラグ凹み深さ比L/LS0の上限値を0.9未満に調整すればよい。
(第3実施形態)
第3の実施形態は、上吹きランスの昇降が段数制御である等のなんらかの理由によりスラグ凹み深さ比L/LS0でのスラグ中T.Fe濃度制御が困難な設備でも適用できるよう、検討を行った際に見出されたものである。具体的には、酸素含有ガス中の酸素ガス濃度を低下させるものである。前記小型高周波真空誘導炉を用いた試験において、スラグへ吹き付けるガスの酸素濃度を、ガス配管9から不活性ガスを供給し1.5mass%(工業用粗Arレベル)から0.1massppm(工業用Arレベル)まで希釈して脱窒処理を行った。ここで、不活性ガスには窒素が含まれないものを用いる。その結果、図5に示すように、希釈ガスを吹き付けることにより、スラグ凹み深さ比Ls/LS0が0.9よりも大きい条件においても到達窒素濃度[N]を35massppm以下にすることが可能であった。このとき、炉内雰囲気圧P、溶鋼中の初期窒素濃度[N]、Al濃度[Al]、スラグ組成のC/A、スラグ中MgO濃度(MgO)、溶鋼温度Tおよび処理時間tは上記第1実施形態とおなじであった。この原因は明確に判明していないが、スラグ相からガス相への脱窒においては、十分に低い酸素分圧であっても化学反応速度が確保できること、または、スラグを介した溶鋼からガス相への脱窒反応の律速工程が、化学反応速度ではなくスラグ側もしくはメタル側あるいはその両方の窒素の物質移動律速になっていること等の理由が考えられる。第3の実施形態、つまり、上記第1の実施形態または第2の実施形態に加え、脱窒処理において、前記酸素含有ガスが、OガスをNガス以外の不活性ガスで希釈したものである、溶鋼の脱窒方法は、上記のような調査結果から得られたものである。
(第4実施形態)
特許文献3ではスラグ-メタル間の窒素分配比を高めるために必要な溶鋼中Al濃度[Al]が0.3mass%から2mass%という濃度を要求されるため、普通鋼を溶製するにあたってはコスト高となってしまう。第4の実施形態は、この問題を解決するために、溶鋼中Al濃度[Al]を更に低い濃度に抑えて脱窒ができないか検討を行った際に見出されたものである。前記小型高周波真空誘導溶解炉にて、溶鋼中窒素[N]を25massppmまで低下させるために最低限必要なAl濃度[Al]を調査した所、図6に示すようにスラグ凹み深さ比L/LS0(-)に応じて必要なAl濃度[Al]は低下する傾向であること、第3の実施形態で記載した酸素希釈ガス(ガス中酸素濃度0.1ppm~1.5mass%)をCaOおよびAl含有スラグに吹き付けた場合は、同一スラグ凹み深さ比L/LS0(-)において酸素ガスを吹き付けた場合よりも必要な溶鋼中Al濃度[Al]が低下することを見出した。ここで、試験条件は、炉雰囲気圧Pを4×10Pa、溶鋼中の初期窒素濃度[N]を50massppm、スラグ組成のC/Aを1.2、スラグ中のMgO濃度(MgO)を10mass%、溶鋼温度を1650℃、処理時間を30分とした。この原因として、酸素を相応に含むガスの場合は、スラグ-メタル界面の見かけの酸素活量が増加してしまうことで、脱窒速度が低下すると考えられる。そのため、それを補うためにAlを添加してその分の酸素活量を低下させる必要があると考えられる。溶鋼中窒素濃度[N]=25massppm到達のために必要だった最低限のAl濃度[Al]は、酸素ガスを吹き付ける場合で0.3mass%、酸素希釈ガスを吹き付ける場合で0.1mass%であった。第4の実施形態、つまり、第1~3の実施形態のいずれかに加えて、溶鋼に金属Al含有物質を添加しAl含有溶鋼とするAl添加ステップにおいて、溶鋼中のAl濃度[Al]を0.1mass%以上1.0mass%以下にする、溶鋼の脱窒方法は、上記のような調査結果から得られたものである。
(第5実施形態)
第5の実施形態は、前記真空容器内の到達真空度Pが及ぼす到達窒素濃度[N]への影響を調査した際に見出されたものである。前記小型高周波真空誘導溶解炉にて、CaOおよびAl含有スラグに吹き付けるガスが酸素ガスの場合は、スラグ凹み深さ比L/LS0を0.9、希釈ガス(ガス中酸素濃度0.1ppm~1.5mass%)の場合は、スラグ凹み深さ比L/LS0を1.2として、異なるタイミングで複数回脱窒処理を行い、窒素到達濃度[N]を調査した。その結果、図7に示すように、低真空度、すなわち炉内圧力Pが0.67×10Paを境に、到達窒素濃度のバラツキが大きくなり、バラツキ上限の到達窒素濃度Max[N]は増加する傾向を示した。ここで、溶鋼中の初期窒素濃度[N]、溶鋼中Al濃度[Al]、スラグ組成のC/A、スラグ中のMgO濃度(MgO)、溶鋼温度を、処理時間は第1の実施形態と同様とした。バラツキ下限の到達窒素濃度[N]は25massppmのままであったことから、何らかの理由で溶鋼面が露出した際に雰囲気中の窒素が溶鋼に復窒したものと考えられる。減圧しない場合の雰囲気圧(10Pa)においても、溶鋼中窒素濃度[N]は35massppm以下であるので低窒素濃度域には到達している。図1の設備構成の場合、密閉空間内の温度上昇や上吹き酸素含有ガスの影響で雰囲気圧は外気より数%圧力上昇することになる。なお、復窒を抑制する必要がある場合は0.67×10Pa以下、更に好ましくは0.33×10Pa以下までスラグおよび溶鋼表面を減圧することが好ましい。第5の実施形態、つまり、第1~4の実施形態のいずれかに加えて、脱窒処理は、前記Al含有溶鋼およびスラグの表面を減圧雰囲気にする、溶鋼の脱窒方法は、上記のような調査結果から得られたものである。なお、過度の減圧は排気系など設備費の増加を招くので、炉雰囲気圧Pの下限は10Pa程度とすることが好ましい。
(第6実施形態)
第6の実施形態は、CaOおよびAl含有スラグ中のMgO濃度(MgO)の影響について調査した際に見出されたものである。前記小型高周波真空誘導溶解炉を用いて、CaOおよびAl含有スラグ中のMgO濃度(MgO)を0mass%から飽和濃度の範囲で変化させた際、溶鋼中窒素[N]を25massppmまで低下させるために必要な、溶鋼温度Tを調査した。その結果、図8に示すようにスラグ中のMgO濃度が1.0mass%増加するにしたがって、溶鋼温度を約5℃増加させる必要があった。調査の前提となる炉雰囲気圧Pを4×10Pa、Al濃度[Al]を0.7mass%とし、初期窒素濃度[N]を50massppm スラグ組成のC/Aを1.2、吹き付けガス種は酸素ガスおよびスラグ凹み深さ比L/LS0を0.8~0.9、処理時間tを30分とした。この調査により、MgO濃度が増加することによる脱窒反応の低下をリカバリーできる溶鋼温度の増加量が定量的に判明した。第6の実施形態、つまり、第1~5の実施形態のいずれかにに加えて、スラグ中のMgO濃度(MgO)が1.0mass%増加するごとに、溶鋼の温度Tを5℃以上増加させる、溶鋼の脱窒方法は、上記のような調査結果から得られたものである。なお、溶鋼温度Tは、脱窒処理後の溶鋼温度を用い、後工程である鋳造工程や搬送時間にもよるが、1600℃以上で脱窒処理を終了するようにすることが好ましい。
上記溶鋼の脱窒方法で溶製した溶鋼に対し、必要に応じて、その他所定の成分に調整し、介在物の形態制御や浮上分離したのちに鋳造を行うことが好ましい。低窒素鋼としたうえで、各種成分を調整した高級鋼を製造することができる。
以下に、発明の実施例について詳細に説明する。図1の構成の装置を用い、取鍋内の1600℃~1750℃の溶鋼に金属Alを添加して、溶鋼中Al濃度を0.1~1.0mass%にするとともに、CaOや耐火物保護用MgOを添加してCaO-Al2元系スラグ、またはCaO-Al-MgO3元系スラグを形成した後、スラグに酸素ガスまたは酸素含有希釈ガス(ガス中酸素濃度を0.1ppm~1.5%に希釈)を吹き付けた。溶鋼は、取鍋下部に取り付けられた底吹きプラグからArガスを、攪拌動力密度で500~1000kW/tとなるように供給した。溶鋼量は160tで試験を行った。
表1に試験条件および結果を示す。スラグ中のT.Fe濃度(T.Fe)が十分に低い処理No.1~7では、処理後N濃度[N]が35massppm以下となり良好な結果であった。一方、スラグ中のT.Fe濃度(T.Fe)が高い処理No.8は、同じ処理時間で脱窒が不十分であった。
Figure 0007424350000001
本発明にかかる溶鋼の脱窒方法は、電気炉等で低炭素のスクラップや還元鉄を溶解して溶鋼を製造する製鋼プロセスに適用して低窒素鋼を安定して量産できるので、CO削減に寄与し産業上有用である。
1 容器
2 耐火物
3 溶鋼
4 CaOおよびAl含有スラグ
5 ガス配管(酸素ガス)
6 ガス上吹き用ランス
7 O含有ガス
8 底吹きノズル
9 ガス配管(不活性ガス)
10 鋼浴攪拌用不活性ガス
11 排気系統
12 合金添加系統
13 真空容器

Claims (7)

  1. 溶鋼に金属Al含有物質を添加して脱酸しAl含有溶鋼とするAl添加ステップと、前記溶鋼にCaO含有物質を添加するCaO添加ステップと、を組み合わせてCaOおよびAlを含有するスラグを形成したのちに、カーバイド系脱窒用フラックスを用いることなく前記スラグ上からスラグを介して酸素含有ガスを吹き付けて脱窒処理を実施する溶鋼の脱窒方法であって、
    前記Al添加ステップにおいてAl濃度を所定の範囲に調整し、前記脱窒処理中の炉内雰囲気圧を所定の範囲に調整し、スラグ組成はCaOとA1 の質量比C/Aを所定の範囲、かつ、MgO濃度を所定の範囲とし、MgO濃度を考慮して前記脱窒処理中の溶鋼温度を所定の範囲に調整したうえで、前記脱窒処理後のスラグ中のT.Feを3.0mass%以下にすることを特徴とする溶鋼の脱窒方法。
  2. 前記脱窒処理において、前記酸素含有ガスを供給する際、前記スラグの厚みLS0と酸素含有ガス吹き付けにより生じるスラグの凹み深さLとの比L/LS0を0.9以下にすることを特徴とする、請求項1に記載の溶鋼の脱窒方法。
  3. 前記脱窒処理において、前記酸素含有ガスが、OガスをNガス以外の不活性ガスで希釈したものであることを特徴とする、請求項1または2に記載の溶鋼の脱窒方法。
  4. 前記Al添加ステップにおいて、溶鋼中のAl濃度[Al]を0.1mass%以上1.0mass%以下にすることを特徴とする、請求項1~3のいずれか1項に記載の溶鋼の脱窒方法。
  5. 前記脱窒処理は、前記Al含有溶鋼およびスラグの表面を減圧雰囲気にすることを特徴とする、請求項1~4のいずれか1項に記載の溶鋼の脱窒方法。
  6. スラグ中にMgOを含まないときに溶鋼中窒素濃度を所定の値まで低下させるのに必要な前記脱窒処理中の溶鋼温度に対し、前記スラグ中のMgO濃度(MgO)が1.0mass%増加するごとに、前記脱窒処理中の溶鋼温度Tを5℃以上増加させることを特徴とする、請求項1~5のいずれか1項に記載の溶鋼の脱窒方法。
  7. 請求項1~6のいずれか1項に記載の溶鋼の脱窒方法で溶製した溶鋼に対し、任意に成分調整したのち、鋳造することを特徴とする、鋼の製造方法。
JP2021098118A 2021-06-11 2021-06-11 溶鋼の脱窒方法および鋼の製造方法 Active JP7424350B2 (ja)

Priority Applications (8)

Application Number Priority Date Filing Date Title
JP2021098118A JP7424350B2 (ja) 2021-06-11 2021-06-11 溶鋼の脱窒方法および鋼の製造方法
KR1020237040116A KR20230175266A (ko) 2021-06-11 2022-05-12 용강의 탈질 방법 및 강의 제조 방법
PCT/JP2022/020007 WO2022259805A1 (ja) 2021-06-11 2022-05-12 溶鋼の脱窒方法および鋼の製造方法
CA3219692A CA3219692A1 (en) 2021-06-11 2022-05-12 Molten steel denitrification method and steel production method
CN202280041132.1A CN117460847A (zh) 2021-06-11 2022-05-12 钢液的脱氮方法及钢的制造方法
EP22819989.9A EP4353842A1 (en) 2021-06-11 2022-05-12 Molten steel denitrification method and steel production method
BR112023025883A BR112023025883A2 (pt) 2021-06-11 2022-05-12 Método de desnitrificação de aço fundido e método de produção de aço
TW111120535A TWI824546B (zh) 2021-06-11 2022-06-02 熔鋼之脫氮方法及鋼之製造方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2021098118A JP7424350B2 (ja) 2021-06-11 2021-06-11 溶鋼の脱窒方法および鋼の製造方法

Publications (2)

Publication Number Publication Date
JP2022189505A JP2022189505A (ja) 2022-12-22
JP7424350B2 true JP7424350B2 (ja) 2024-01-30

Family

ID=84424855

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2021098118A Active JP7424350B2 (ja) 2021-06-11 2021-06-11 溶鋼の脱窒方法および鋼の製造方法

Country Status (8)

Country Link
EP (1) EP4353842A1 (ja)
JP (1) JP7424350B2 (ja)
KR (1) KR20230175266A (ja)
CN (1) CN117460847A (ja)
BR (1) BR112023025883A2 (ja)
CA (1) CA3219692A1 (ja)
TW (1) TWI824546B (ja)
WO (1) WO2022259805A1 (ja)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007211298A (ja) 2006-02-09 2007-08-23 Jfe Steel Kk 溶鋼の脱窒方法
CN108396094A (zh) 2017-02-05 2018-08-14 鞍钢股份有限公司 一种低氮低碳钢的冶炼方法

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61272313A (ja) * 1985-05-29 1986-12-02 Nippon Kokan Kk <Nkk> 真空精錬による溶鋼の脱窒方法
JPH0532073A (ja) 1991-08-01 1993-02-09 Dainippon Printing Co Ltd 多数回印字用熱転写シート
JPH05320733A (ja) 1991-12-27 1993-12-03 Sumitomo Metal Ind Ltd ステンレス溶鋼の脱窒方法
JP3333795B2 (ja) 1995-03-03 2002-10-15 川崎製鉄株式会社 溶融金属の脱窒方法および脱窒・脱炭方法
JPH09165615A (ja) * 1995-12-14 1997-06-24 Kawasaki Steel Corp 溶融金属の脱窒方法
CN112813228A (zh) * 2020-12-30 2021-05-18 河北震刚能源科技研发有限公司 一种多功能炼钢用预熔渣精炼剂及其制备方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007211298A (ja) 2006-02-09 2007-08-23 Jfe Steel Kk 溶鋼の脱窒方法
CN108396094A (zh) 2017-02-05 2018-08-14 鞍钢股份有限公司 一种低氮低碳钢的冶炼方法

Also Published As

Publication number Publication date
TWI824546B (zh) 2023-12-01
KR20230175266A (ko) 2023-12-29
WO2022259805A1 (ja) 2022-12-15
CA3219692A1 (en) 2022-12-15
CN117460847A (zh) 2024-01-26
BR112023025883A2 (pt) 2024-02-27
JP2022189505A (ja) 2022-12-22
EP4353842A1 (en) 2024-04-17
TW202313995A (zh) 2023-04-01

Similar Documents

Publication Publication Date Title
JP2011516720A (ja) 極低炭素フェライト系ステンレス鋼の製造方法
CN108148946A (zh) 一种lf炉精炼工艺
JP7424350B2 (ja) 溶鋼の脱窒方法および鋼の製造方法
JP2008169407A (ja) 溶鋼の脱硫方法
TWI824547B (zh) 熔鋼之脫氮方法、脫氮及脫硫同時處理方法暨鋼之製造方法
JP7480751B2 (ja) 溶鋼の脱窒方法および鋼の製造方法
JP7235070B2 (ja) 溶鋼の二次精錬方法および鋼の製造方法
JPH0153329B2 (ja)
JPH10298631A (ja) 清浄鋼の溶製方法
KR101119022B1 (ko) 저 철손 무 방향성 전기강판 및 제조방법
JP2002030330A (ja) 真空精錬炉における溶鋼の加熱方法
WO2022270346A1 (ja) 溶鋼の処理方法および鋼の製造方法
JPH08134528A (ja) 極低炭素鋼の製造方法
JP3127733B2 (ja) 高清浄性極低炭素鋼の製造方法
JP2009173994A (ja) Alレス極低炭素鋼の溶製方法
JPS6325047B2 (ja)
JPH0356614A (ja) 低酸素極低炭素鋼製造方法
JP2001316711A (ja) 溶銑の脱珪方法
KR20040055326A (ko) CaO-CaCN2 혼합 조성물에 의한 용강의탈황촉진방법
JP2001234229A (ja) スラグの改質方法

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20230126

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230926

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20231110

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20231219

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20240101

R150 Certificate of patent or registration of utility model

Ref document number: 7424350

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150