JP7421608B1 - Metal particle-supported porous carbon material and its manufacturing method, precursor of metal particle-supported porous carbon material, and catalyst material and electrode material using metal particle-supported porous carbon material - Google Patents

Metal particle-supported porous carbon material and its manufacturing method, precursor of metal particle-supported porous carbon material, and catalyst material and electrode material using metal particle-supported porous carbon material Download PDF

Info

Publication number
JP7421608B1
JP7421608B1 JP2022122976A JP2022122976A JP7421608B1 JP 7421608 B1 JP7421608 B1 JP 7421608B1 JP 2022122976 A JP2022122976 A JP 2022122976A JP 2022122976 A JP2022122976 A JP 2022122976A JP 7421608 B1 JP7421608 B1 JP 7421608B1
Authority
JP
Japan
Prior art keywords
carbon material
porous carbon
metal
metal particles
precursor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2022122976A
Other languages
Japanese (ja)
Other versions
JP2024020082A (en
Inventor
成之 梅澤
剛 堂浦
幸治 吉川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiwa Electric Mfg Co Ltd
Original Assignee
Seiwa Electric Mfg Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiwa Electric Mfg Co Ltd filed Critical Seiwa Electric Mfg Co Ltd
Priority to JP2022122976A priority Critical patent/JP7421608B1/en
Application granted granted Critical
Publication of JP7421608B1 publication Critical patent/JP7421608B1/en
Publication of JP2024020082A publication Critical patent/JP2024020082A/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

【課題】多孔質炭素材料を得る際に、改めて金属粒子を担持させることなく、金属粒子の担持と担体の多孔質化とを同時に行うことで製造できる金属粒子担持多孔質炭素材料、当該金属粒子担持多孔質炭素材料の前駆体、当該金属粒子担持多孔質炭素材料の製造方法、ならびに当該金属粒子担持多孔質炭素材料を用いた触媒材料および電極材料を提供する。【解決手段】組成に、亜鉛と、1000℃を超える融点および沸点の金属元素と、を含む、炭素元素、亜鉛元素、金属元素、水素元素、酸素元素からなる有機化合物の前駆体を調製し、当該前駆体を900~1000℃の温度で焼成することにより、亜鉛を昇華させて細孔を作るとともに、金属元素を分散および粒子化させ、前駆体を多孔質炭素材料にすると同時に、当該多孔質炭素材料に分散および粒子化させた金属粒子を担持させる金属粒子担持多孔質炭素材料の製造方法。【選択図】図1[Problem] A metal particle-supported porous carbon material that can be produced by simultaneously supporting metal particles and making the carrier porous without having to support metal particles again when obtaining the porous carbon material, and the metal particles. A precursor of a supported porous carbon material, a method for manufacturing the metal particle supported porous carbon material, and a catalyst material and an electrode material using the metal particle supported porous carbon material are provided. [Solution] A precursor of an organic compound containing a carbon element, a zinc element, a metal element, a hydrogen element, and an oxygen element, which contains zinc and a metal element with a melting point and boiling point exceeding 1000°C, is prepared, By firing the precursor at a temperature of 900 to 1000°C, the zinc is sublimated to create pores, the metal element is dispersed and made into particles, and the precursor is made into a porous carbon material. A method for producing a metal particle-supported porous carbon material, which comprises supporting a carbon material with dispersed and granulated metal particles. [Selection diagram] Figure 1

Description

本発明は、金属粒子を担持しながら高い比表面積値を得ることができる金属粒子担持多孔質炭素材料およびその製造方法、その金属粒子担持多孔質炭素材料の前駆体、ならびにその金属粒子担持多孔質炭素材料を用いた触媒材料および電極材料に関するものである。 The present invention relates to a metal particle-supported porous carbon material that can obtain a high specific surface area value while supporting metal particles, a method for producing the same, a precursor of the metal particle-supported porous carbon material, and a metal particle-supported porous carbon material. The present invention relates to catalyst materials and electrode materials using carbon materials.

CO削減対策として燃料電池車(FCV)の開発が行われており、この燃料電池車は、発電時に水を放出するクリーンなエネルギー源として期待されている。 Fuel cell vehicles (FCVs) are being developed as a measure to reduce CO2 , and these fuel cell vehicles are expected to be a clean energy source that releases water when generating electricity.

従来より、この燃料電池の空気極の反応を促進する触媒材料としては、白金(Pt)が知られているが、この白金単体では触媒を作用させる面積を稼ぐことができないので、カーボンブラックを担体として、白金粒子を担持させたものが使用されている(例えば、特許文献1参照)。 Conventionally, platinum (Pt) has been known as a catalyst material that promotes the reaction at the air electrode of fuel cells, but platinum alone cannot provide enough area for the catalyst to act, so carbon black is used as a carrier. As such, a material carrying platinum particles is used (see, for example, Patent Document 1).

特開2012-038543号公報Japanese Patent Application Publication No. 2012-038543

しかし、上記従来の触媒材料のように、カーボンブラックを担体として用意しておいてから、後工程で白金粒子を担持させる場合、担体の製造工程と白金粒子の担持工程とが必要となり、これらを同時に行うことができない。また、担体に対して、後工程で白金粒子を担持させるため、白金粒子の分散状態に限界がある。したがって、理想的な分散状態から得られる出力特性からすると、改善の余地があり、本来の性能を発揮させるために幾つかの工夫をすることで、さらに空気極の酸素拡散を促進できることの知見を得て、本発明者等は新たな発明を完成するに至った。 However, when carbon black is prepared as a carrier and then platinum particles are supported in a subsequent process, as in the conventional catalyst material described above, a process for manufacturing the carrier and a process for supporting the platinum particles are required. cannot be done at the same time. Furthermore, since the platinum particles are supported on the carrier in a subsequent step, there is a limit to the dispersion state of the platinum particles. Therefore, considering the output characteristics obtained from an ideal dispersion state, there is room for improvement, and we have found that oxygen diffusion in the air electrode can be further promoted by making some efforts to achieve the original performance. As a result, the present inventors have completed a new invention.

本発明は、多孔質炭素材料を得る際に、改めて金属粒子を担持させることなく、金属粒子の担持と担体の多孔質化とを同時に行うことで製造できる金属粒子担持多孔質炭素材料、当該金属粒子担持多孔質炭素材料の前駆体、当該金属粒子担持多孔質炭素材料の製造方法、ならびに当該金属粒子担持多孔質炭素材料を用いた触媒材料および電極材料を提供することを目的としている。 The present invention relates to a metal particle-supported porous carbon material that can be produced by simultaneously carrying metal particles and making the carrier porous without having to support the metal particles again when obtaining the porous carbon material; The present invention aims to provide a precursor of a porous carbon material supported on particles, a method for manufacturing the porous carbon material supported on metal particles, and a catalyst material and an electrode material using the porous carbon material supported on metal particles.

上記課題を解決するための本発明の金属粒子担持多孔質炭素材料の製造方法は、テレフタル酸と、酢酸亜鉛および/または硝酸亜鉛と、銅、コバルト、ニッケル、鉄、白金の中から選択される少なくとも1種類以上の金属元素を有する酢酸金属塩とを、NMP(N-メチル-2-ピロリドン)に溶解させて混合し、合成反応により、組成に、亜鉛と、1000℃を超える融点および沸点の金属元素と、を含む、炭素元素、亜鉛元素、金属元素、水素元素、酸素元素からなる有機化合物の前駆体を調製し、当該前駆体を、室温から25℃/分で昇温して900~1000℃の温度で焼成することにより、亜鉛を昇華させて細孔を作るとともに、金属元素を分散および粒子化させ、前駆体を多孔質炭素材料にすると同時に、当該多孔質炭素材料に分散および粒子化させた金属粒子を担持させるものである。 In order to solve the above problems, the method for producing a porous carbon material supporting metal particles of the present invention uses terephthalic acid, zinc acetate and/or zinc nitrate, and copper, cobalt, nickel, iron, and platinum. A metal acetate having at least one metal element is dissolved in NMP (N-methyl-2-pyrrolidone) and mixed, and through a synthesis reaction, the composition contains zinc and a melting point and boiling point exceeding 1000°C. A precursor of an organic compound consisting of a metal element, a carbon element, a zinc element, a metal element, a hydrogen element, and an oxygen element is prepared, and the precursor is heated from room temperature at a rate of 25° C./min to 900° C. By firing at a temperature of 1000 degrees Celsius, zinc is sublimated to create pores, and the metal element is dispersed and made into particles, making the precursor into a porous carbon material, and at the same time dispersing and making particles into the porous carbon material. This is to support the metal particles.

上記課題を解決するための本発明の金属粒子担持多孔質炭素材料は、上記製造方法によって得られる金属粒子担持多孔質炭素材料であって、当該多孔質炭素材料に、分散および粒子化させた金属粒子を担持させてなり、比表面積が1124m /g以上となされ、メソ孔の比表面積が254m /g以上となされたものである。 The metal particle-supported porous carbon material of the present invention for solving the above-mentioned problems is a metal particle-supported porous carbon material obtained by the above-mentioned production method, in which metal particles are dispersed and made into particles in the porous carbon material. It is made by supporting particles and has a specific surface area of 1124 m 2 /g or more, and a mesopore specific surface area of 254 m 2 /g or more .

上記金属粒子担持多孔質炭素材料は、上記金属粒子担持多孔質炭素材料であって、金属元素がコバルト元素となされ、窒素吸脱着等温線より得られた結果をBJH法により算出して得られる、全比表面積に占めるメソ孔(2~50nm)の比表面積の割合が、65%以上となされたものであってもよい。 The metal particle-supported porous carbon material is the metal particle-supported porous carbon material in which the metal element is cobalt element, and is obtained by calculating the results obtained from the nitrogen adsorption/desorption isotherm using the BJH method. The ratio of the specific surface area of mesopores (2 to 50 nm) to the total specific surface area may be 65% or more.

上記金属粒子担持多孔質炭素材料は、上記金属粒子担持多孔質炭素材料であって、金属元素がニッケル元素となされ、窒素吸脱着等温線より得られた結果をBJH法により算出して得られる、全比表面積に占めるメソ孔(2~50nm)の比表面積の割合が、45%以上となされたものであってもよい。 The metal particle-supported porous carbon material is the metal particle-supported porous carbon material in which the metal element is nickel element, and is obtained by calculating the results obtained from the nitrogen adsorption/desorption isotherm using the BJH method. The ratio of the specific surface area of mesopores (2 to 50 nm) to the total specific surface area may be 45% or more.

上記金属粒子担持多孔質炭素材料は、上記金属粒子担持多孔質炭素材料であって、金属元素が鉄元素となされ、窒素吸脱着等温線より得られた結果をBJH法により算出して得られる、全比表面積に占めるメソ孔(2~50nm)の比表面積の割合が、30%以上となされたものであってもよい。 The metal particle-supported porous carbon material is the metal particle-supported porous carbon material in which the metal element is iron, and is obtained by calculating the results obtained from the nitrogen adsorption/desorption isotherm using the BJH method. The ratio of the specific surface area of mesopores (2 to 50 nm) to the total specific surface area may be 30% or more.

上記金属粒子担持多孔質炭素材料は、上記金属粒子担持多孔質炭素材料であって、金属元素が白金元素となされ、窒素吸脱着等温線より得られた結果をBJH法により算出して得られる、全比表面積に占めるメソ孔(2~50nm)の比表面積の割合が、45%以上となされたものであってもよい。 The metal particle-supported porous carbon material is the metal particle-supported porous carbon material in which the metal element is platinum, and is obtained by calculating the results obtained from the nitrogen adsorption/desorption isotherm using the BJH method. The ratio of the specific surface area of mesopores (2 to 50 nm) to the total specific surface area may be 45% or more.

上記金属粒子担持多孔質炭素材料は、上記金属粒子担持多孔質炭素材料であって、最大離隔間距離が50nmの金属粒子を形成したものであってもよい。 The metal particle-supported porous carbon material may be the metal particle-supported porous carbon material in which metal particles having a maximum separation distance of 50 nm are formed.

上記課題を解決するための本発明の触媒材料は、上記の金属粒子担持多孔質炭素材料を含むものである。 A catalyst material of the present invention for solving the above problems includes the above metal particle-supported porous carbon material.

上記課題を解決するための本発明の電極材料は、上記の金属粒子担持多孔質炭素材料を含むものである。 The electrode material of the present invention for solving the above problems includes the above metal particle-supported porous carbon material.

上記課題を解決するための本発明の金属粒子担持多孔質炭素材料の前駆体は、上記金属粒子担持多孔質炭素材料の前駆体であって、テレフタル酸と、酢酸亜鉛および/または硝酸亜鉛と、銅、コバルト、ニッケル、鉄、白金の中から選択される少なくとも1種類以上の金属元素を有する金属塩または金属錯体とを、NMP(N-メチル-2-ピロリドン)に溶解させて混合し、合成反応により調製されるものである。 A precursor of the metal particle-supported porous carbon material of the present invention for solving the above problems is a precursor of the metal particle-supported porous carbon material, which contains terephthalic acid, zinc acetate and/or zinc nitrate, Synthesis by dissolving and mixing in NMP (N-methyl-2-pyrrolidone) a metal salt or metal complex having at least one metal element selected from copper, cobalt, nickel, iron, and platinum. It is prepared by reaction.

上記金属粒子担持多孔質炭素材料の製造方法において、前駆体を合成する際のテレフタル酸の使用は、前駆体の合成や、合成された前駆体の元素比率を考慮すると、最も好ましいが、場合によっては、フタル酸、イソフタル酸等の他のベンゼンジカルボン酸、または、安息香酸、または、1,3,5-ベンゼントリカルボン酸、1,2,4-ベンゼントリカルボン酸、1,2,3-ベンゼントリカルボン酸、または、1,2,4,5-ベンゼンテトラカルボン酸等を使用することができる。 In the above method for producing a porous carbon material supporting metal particles, the use of terephthalic acid when synthesizing the precursor is most preferable in consideration of the synthesis of the precursor and the element ratio of the synthesized precursor, but in some cases is phthalic acid, other benzenedicarboxylic acids such as isophthalic acid, or benzoic acid, or 1,3,5-benzenetricarboxylic acid, 1,2,4-benzenetricarboxylic acid, 1,2,3-benzenetricarboxylic acid Acid, 1,2,4,5-benzenetetracarboxylic acid, etc. can be used.

上記金属粒子担持多孔質炭素材料の製造方法において、亜鉛元素は、上記テレフタル酸や金属塩または金属錯体と亜鉛イオンを含む化合物とが配位結合して前駆体に取り込まれた形で合成される。この際、使用される亜鉛イオンを含む化合物としては、酢酸亜鉛、硝酸亜鉛、塩化亜鉛、亜鉛の錯体、亜鉛を含むその他の塩、の中から選択される1種以上を使用することができる。ここで、酢酸亜鉛は、当該酢酸亜鉛の他に、酢酸亜鉛二水和物、などを含む。酢酸亜鉛を用いた場合、当該酢酸亜鉛は、弱酸性であるため、前駆体を合成する際の反応が比較的遅くなり、粒子の核成長が緩やかに進行する効果がある。また、硝酸亜鉛などの強酸を用いてもよい。ここで、硝酸亜鉛は、当該硝酸亜鉛の他に、硝酸亜鉛六水和物、などを含む。この硝酸亜鉛を用いた場合、前駆体を合成する際の反応速度が速くなり、粒子の核成長が早く、粒子径を小さくすることができる。それに比べて酢酸亜鉛を用いた場合は、大きな粒子径の前駆体が取れる。また、酢酸亜鉛は、その組成に炭素元素が含まれているが、硝酸亜鉛は含まれていない。このように亜鉛元素に対して炭素元素が多いか少ないかによって、後に前駆体を焼成した際に、得られる細孔の量が変わることとなる。亜鉛元素に対して、炭素元素が少ない方が細孔の量が多く、炭素元素の量が多い方が細孔の量が少なくなる。このような理由から、目的とする細孔に応じて酢酸亜鉛と硝酸亜鉛とを使い分ける。 In the above method for producing a porous carbon material supporting metal particles, the zinc element is synthesized in a form in which the above terephthalic acid, metal salt, or metal complex and a compound containing zinc ions are coordinately bonded and incorporated into a precursor. . At this time, the compound containing zinc ions used may be one or more selected from zinc acetate, zinc nitrate, zinc chloride, zinc complexes, and other salts containing zinc. Here, zinc acetate includes zinc acetate dihydrate and the like in addition to the zinc acetate. When zinc acetate is used, since the zinc acetate is weakly acidic, the reaction when synthesizing the precursor is relatively slow, which has the effect of slowing down the growth of particle nuclei. Alternatively, a strong acid such as zinc nitrate may be used. Here, zinc nitrate includes zinc nitrate hexahydrate and the like in addition to the zinc nitrate. When this zinc nitrate is used, the reaction rate when synthesizing the precursor becomes faster, the nucleus of the particles grows faster, and the particle size can be reduced. In comparison, when zinc acetate is used, a precursor with a large particle size can be obtained. Furthermore, zinc acetate contains carbon element in its composition, but zinc nitrate does not. In this way, the amount of pores obtained when the precursor is later fired will change depending on whether the carbon element is large or small relative to the zinc element. The smaller the amount of carbon element than the zinc element, the larger the amount of pores, and the larger the amount of carbon element, the smaller the amount of pores. For these reasons, zinc acetate and zinc nitrate are used depending on the desired pore size.

上記金属粒子担持多孔質炭素材料の製造方法において、金属塩または金属錯体は、上記亜鉛イオンを含む化合物と同様に、上記テレフタル酸や亜鉛イオンを含む化合物と配位結合して前駆体を合成可能な化合物として用いられる。ここで、金属塩または金属錯体は、当該金属塩または金属錯体の他に、当該金属塩または金属錯体の水和物、などを含む。金属塩または金属錯体に使用される金属としては、1000℃を超える融点および沸点の金属元素を有するものであれば、特に限定されるものではなく、例えば、銅(融点1084.62℃、沸点2562℃)、コバルト(融点1495℃、沸点2927℃)、ニッケル(融点1455℃、沸点2913℃)、鉄(融点1538℃、沸点2862℃)、白金(融点1768.3℃、沸点3825℃)、などが挙げられる。具体的な酢酸金属塩としては、酢酸銅2水和物、酢酸コバルト4水和物、酢酸ニッケル2水和物、酢酸鉄、塩化テトラアミン白金水和物などが挙げられる。これらは、1種類で使用するものであってもよいし、2種類以上を組み合わせて使用するものであってもよい。 In the method for producing the metal particle-supported porous carbon material, the metal salt or metal complex can coordinate with the terephthalic acid or the compound containing zinc ions to synthesize a precursor, similar to the compound containing zinc ions. It is used as a chemical compound. Here, the metal salt or metal complex includes, in addition to the metal salt or metal complex, a hydrate of the metal salt or metal complex. The metal used in the metal salt or metal complex is not particularly limited as long as it has a metal element with a melting point and boiling point of over 1000°C. For example, copper (melting point 1084.62°C, boiling point 2562°C ), cobalt (melting point 1495°C, boiling point 2927°C), nickel (melting point 1455°C, boiling point 2913°C), iron (melting point 1538°C, boiling point 2862°C), platinum (melting point 1768.3°C, boiling point 3825°C), etc. can be mentioned. Specific examples of the metal acetate include copper acetate dihydrate, cobalt acetate tetrahydrate, nickel acetate dihydrate, iron acetate, and tetraamine platinum chloride hydrate. These may be used alone or in combination of two or more types.

上記金属粒子担持多孔質炭素材料の製造方法において、上記したテレフタル酸、亜鉛イオンを含む化合物、金属塩または金属錯体、を溶解する有機溶媒としては、例えば、NMP(N-メチル-2-ピロリドン)、メタノール、エタノール、DMSO(ジメチルスルホキシド:CSO)、DMF(ジメチルホルムアミド:CNO)、DMA(ジメチルアセトアミド:CNO)、DEF(N,N-ジエチルホルムアミド)などを用いることができ、これらは、単独溶媒であってもよいし、複数種類を混合した混合溶媒であってもよい。これらの中でも特に、NMP(N-メチル-2-ピロリドン)を用いることが好ましい。 In the method for producing the porous carbon material supporting metal particles, examples of the organic solvent for dissolving the terephthalic acid, the compound containing zinc ion, the metal salt, or the metal complex include NMP (N-methyl-2-pyrrolidone). , methanol, ethanol, DMSO (dimethylsulfoxide: C 2 H 6 SO), DMF (dimethylformamide: C 3 H 7 NO), DMA (dimethylacetamide: C 4 H 9 NO), DEF (N,N-diethylformamide) These solvents may be used alone, or may be a mixed solvent of a plurality of solvents. Among these, it is particularly preferable to use NMP (N-methyl-2-pyrrolidone).

上記テレフタル酸と、亜鉛イオンを含む化合物と、金属塩または金属錯体とを有機溶媒に溶解して合成反応を行うことにより、前駆体が調製される。この際、合成に使用する、テレフタル酸、亜鉛イオンを含む化合物、金属塩または金属錯体、これらを溶解する有機溶媒、の各材料としては、合成反応によって得られる前駆体の,透過型電子顕微鏡(TEM)、およびエネルギー分散型X線分光法(EDX)測定より得られた元素分析の結果から酸素元素/炭素元素の比率が、0.25以上0.5以下となるものを使用する。この値が0.25未満の場合、後述する酸素含有官能基が脱離した跡に、十分な細孔を形成して多孔質化を図ることができなくなる。この値が0.5を超えるものは、物として実質的に確認できないが、あまりこの数値が高すぎると、酸素による賦活の程度が大きくなりすぎ、灰分が少なく回収が困難になる。 A precursor is prepared by dissolving the above terephthalic acid, a compound containing zinc ions, and a metal salt or metal complex in an organic solvent and performing a synthetic reaction. At this time, the materials used in the synthesis, including terephthalic acid, compounds containing zinc ions, metal salts or metal complexes, and organic solvents for dissolving these, are as follows: TEM) and energy dispersive X-ray spectroscopy (EDX), and the ratio of oxygen element/carbon element is 0.25 or more and 0.5 or less. If this value is less than 0.25, it becomes impossible to form sufficient pores at the sites where the oxygen-containing functional groups described below have been desorbed, thereby making it porous. If this value exceeds 0.5, it cannot be practically confirmed as a product, but if this value is too high, the degree of activation by oxygen becomes too large, and the ash content becomes small, making recovery difficult.

また、亜鉛イオンを含む化合物に関しては、EDX測定による元素分析の結果から、亜鉛元素/炭素元素の比率が0.1<Zn/Cとすることで、後述する亜鉛元素が離脱した跡に、十分な細孔を形成して多孔質化を図ることができる。 Regarding compounds containing zinc ions, from the results of elemental analysis by EDX measurement, by setting the ratio of zinc element/carbon element to 0.1<Zn/C, the traces of zinc element detachment, which will be described later, are sufficiently removed. It is possible to form pores to make the material porous.

同様に、前駆体の金属元素、炭素元素、酸素元素、亜鉛元素に関しては、EDX測定による、これら元素分析の結果から、各元素の定性、定量を行うことができる。例えば、図1ないし図4に示すように、各元素の容量比や各元素の比率を得ることができる。ただし、金属元素については、添加量が少なくて、かつ、良好な分散状態が得られているような場合には、前駆体の状態では、検出限界を下回って定量されない場合がある(図4のニッケル元素)。しかし、このような定量されなかった金属元素であっても、元素マッピングした画像には、金属元素の存在が確認できるので、当該金属元素の存在を定性することができる。仮に、元素マッピングした画像からの定性が不明確であるような場合であっても、焼成した後の焼成体の状態であれば、定性、定量を行うことができる場合があるので、このような場合には、焼成後の焼成体の状態で各元素の定性、定量を行うことができる。 Similarly, regarding the precursor metal elements, carbon elements, oxygen elements, and zinc elements, each element can be qualitatively and quantitatively determined from the results of elemental analysis by EDX measurement. For example, as shown in FIGS. 1 to 4, the capacity ratio of each element and the ratio of each element can be obtained. However, for metal elements, if the amount added is small and a good dispersion state is obtained, the precursor state may fall below the detection limit and cannot be quantified (see Figure 4). elemental nickel). However, even for such a metal element that has not been quantified, the presence of the metal element can be confirmed in the element-mapped image, so the presence of the metal element can be qualitatively determined. Even if the qualitative results from the elemental mapping images are unclear, it may be possible to perform qualitative and quantitative determinations of the condition of the fired body after firing. In some cases, each element can be qualitatively and quantitatively determined in the state of the fired body after firing.

上記前駆体は、焼成することによって多孔質炭素材料とされる。この際、焼成は、前駆体を1000℃で焼成した際に、酸化亜鉛元素のX線回折測定(XRD)の回折角度のピークが検出されなくなるまで、当該前駆体を高温で焼成する。すなわち、上記前駆体は、亜鉛イオンを含む化合物を用いて合成しているので、当該前駆体を700℃程度の温度で焼成すると、前駆体の構成要素である亜鉛元素が、焼成中に酸化亜鉛となり、残存してしまい、酸化亜鉛が炭素によって還元される温度907度に達しないため、長時間焼成しても、酸化亜鉛の回折角度のピークが検出される。XRDによって確認されたピークは、31.7°、34.3°、36.2°、47.45°、56.5°(何れのピークも誤差±0.3)である。しかし、亜鉛の沸点である907℃以上の温度で焼成させると、酸化亜鉛を分解し、亜鉛を蒸発させることができるので、前駆体が炭素化された炭素に含まれる酸化亜鉛や亜鉛を消失させ、上記のピークも無くなり、当該酸化亜鉛や亜鉛が入り込んでいた跡に、細孔が形成され多孔質になる。この際、亜鉛の沸点である907℃以上で焼成すれば、確実に細孔を形成して多孔質にすることができる。したがって、1000℃で焼成すれば、前駆体に入り込んでいた酸化亜鉛や亜鉛を消失させることができる。また、1000℃で焼成すれば、前駆体の酸素含有官能基が脱離して、さらに細孔が形成されてより一層多孔質になる。したがって、焼成条件としては、907℃以上1000℃以下で行えば良いが、亜鉛の沸点以上の1000℃の温度であっても、残存している亜鉛が蒸発するためには1000℃到達後、1時間程度の保持時間を設けてもよい。酸化亜鉛や亜鉛の消失と、金属元素の良好な分散とを得ることを考えると、可能な限り昇温速度を上げて昇温し、1000℃に到達したら直ぐに自然冷却するか、1000℃で1時間以下の時間で保持時間を取った後、自然冷却する条件で焼成することが好ましい。 The above precursor is made into a porous carbon material by firing. At this time, the firing is performed at a high temperature until the peak of the diffraction angle of the zinc oxide element in X-ray diffraction measurement (XRD) is no longer detected when the precursor is fired at 1000°C. That is, since the above precursor is synthesized using a compound containing zinc ions, when the precursor is fired at a temperature of about 700°C, the zinc element, which is a component of the precursor, is converted to zinc oxide during firing. Since the zinc oxide remains and does not reach the temperature of 907 degrees at which zinc oxide is reduced by carbon, the peak of the diffraction angle of zinc oxide is detected even after long firing. The peaks confirmed by XRD are 31.7°, 34.3°, 36.2°, 47.45°, and 56.5° (all peaks have an error of ±0.3). However, when fired at a temperature higher than 907°C, which is the boiling point of zinc, zinc oxide can be decomposed and zinc can be evaporated, so the precursor can disappear zinc oxide and zinc contained in carbonized carbon. , the above peak also disappears, and pores are formed where the zinc oxide or zinc had entered, making it porous. At this time, by firing at 907° C. or higher, which is the boiling point of zinc, it is possible to reliably form pores and make it porous. Therefore, by firing at 1000°C, zinc oxide and zinc that have entered the precursor can be eliminated. Furthermore, if it is fired at 1000° C., the oxygen-containing functional groups of the precursor will be eliminated and pores will be formed, making it even more porous. Therefore, the firing conditions should be 907°C or higher and 1000°C or lower, but even if the temperature is 1000°C, which is higher than the boiling point of zinc, it takes 100°C after reaching 1000°C in order for the remaining zinc to evaporate. A holding time of approximately 1 hour may be provided. Considering the disappearance of zinc oxide and zinc and good dispersion of metal elements, the temperature should be raised as fast as possible, and as soon as it reaches 1000°C, it should be naturally cooled, or it should be heated at 1000°C for 1 hour. It is preferable to carry out the firing under conditions of natural cooling after a holding time of less than 2 hours.

また、上記前駆体は、1000℃を超える融点および沸点の金属元素を有する金属塩または金属錯体を用いているので、上記907℃以上1000℃以下で焼成しても、これらの金属元素は消失せずに残る。例えば、前駆体の焼成後に得られた各多孔質炭素材料には、XRDによるX線回折データを見ると、これら各金属酸化物(酸化亜鉛)(元素のピークを全て含むものが確認できる。また、図5ないし図14に示すように、各多孔質炭素材料は、EDX測定より得られる元素分析による、当該多孔質炭素材料を構成する各元素の元素マッピングの構成を見ても、亜鉛が消失しているが、各金属元素は消失せずに分散して存在していることが確認できた。ただし、図5および図8に示すように、各元素マッピングでは金属元素の存在を確認して定性分析が出来ているが、定量分析では検出限界以下となって表示が「0」になる場合があるが、これは当該金属元素が含まれていないのではなく、単に検出限界以下で検出されなかっただけであるため、このような微量の金属元素が含まれたものであっても、各金属元素が担持された多孔質炭素材料として有効に使用することができる。 In addition, since the above precursor uses a metal salt or metal complex having a metal element with a melting point and boiling point exceeding 1000°C, these metal elements will not disappear even if fired at the above-mentioned temperature of 907°C or more and 1000°C or less. remain without For example, in each porous carbon material obtained after firing the precursor, when looking at the X-ray diffraction data by XRD, it can be confirmed that each of the metal oxides (zinc oxide) contains all the peaks of the element. As shown in FIGS. 5 to 14, the elemental mapping of each element constituting the porous carbon material through elemental analysis obtained through EDX measurement shows that zinc has disappeared. However, it was confirmed that each metal element did not disappear but existed in a dispersed manner.However, as shown in Figures 5 and 8, the existence of each metal element was confirmed in the element mapping. Qualitative analysis has been performed, but quantitative analysis may be below the detection limit and the display will be "0". This does not mean that the metal element in question is not contained, but simply that it is detected below the detection limit. Therefore, even if such a trace amount of metal elements is contained, it can be effectively used as a porous carbon material supporting each metal element.

焼成は、不活性ガス雰囲気(窒素ガスもしくはアルゴンガス雰囲気)にて行うものであってもよい。この際、不活性ガス雰囲気は、0.1~1.0リットル/分のガス流量で焼成雰囲気を置換しながら行うものであってもよい。また、焼成時に所定の温度から2~25℃/分程度の昇温速度で昇温して所定温度にして焼成を行うものであってもよい。さらに、焼成は、減圧雰囲気下で行うものであってもよい。焼成後は、所定温度に昇温後、直ぐに冷却するものであってもよいし、所定時間維持した後冷却するものであってもよい。冷却は自然冷却するものであってもよいし、送風などによって強制冷却するものであってもよい。焼成する炉は、炉心管タイプ、ボックス炉、ロータリーキルン炉などを用いることができる。この焼成の際、可能な限り昇温速度を上げると、焼成後の多孔質炭素材料に残る金属元素のナノ粒子化を促進することができることとなる。 The firing may be performed in an inert gas atmosphere (nitrogen gas or argon gas atmosphere). At this time, the inert gas atmosphere may be replaced with the firing atmosphere at a gas flow rate of 0.1 to 1.0 liter/min. Further, during firing, the temperature may be increased from a predetermined temperature at a rate of about 2 to 25° C./min to reach the predetermined temperature. Furthermore, the firing may be performed under a reduced pressure atmosphere. After firing, the temperature may be raised to a predetermined temperature and then cooled immediately, or the temperature may be maintained for a predetermined time and then cooled. Cooling may be natural cooling or forced cooling by blowing air or the like. As the furnace for firing, a tube furnace type, a box furnace, a rotary kiln furnace, etc. can be used. During this firing, if the heating rate is increased as much as possible, it is possible to promote the formation of nanoparticles of the metal elements remaining in the porous carbon material after firing.

このようにして構成された多孔質炭素材料は、組成に、亜鉛と、1000℃を超える融点および沸点の金属元素と、を含む、炭素元素、亜鉛元素、金属元素、水素元素、酸素元素からなる有機化合物の前駆体を調製し、当該前駆体を900~1000℃の温度で焼成することにより、亜鉛を昇華させて細孔を作り、金属元素を分散および粒子化させているので、亜鉛や酸素が入り込んでいた跡に、細孔を形成して多孔質化を図ることができる。しかも、酸化亜鉛や亜鉛や酸素を消失させることができる高温で焼成するため、余計な不純物等も同時に消失させることができるので、焼成後の水洗の必要も無くすことができ、焼成工程後に得られた焼成体をそのまま使用することができることとなり、簡単な作業工程で多孔質炭素材料を得ることができる。また、1000℃を超える融点および沸点の金属元素は、焼成中に昇華することなく粒子化し易くなり、これら金属元素が分散した状態の多孔質炭素材料が得られることとなる。この際得られるナノ粒子としては、最大離隔間距離が50nm以下の粒子となるように分散したものが得られることとなる。また、金属元素は、前駆体の所定位置にドープした状態またはイオン化して付着した状態になっており、均等に分散した状態であるので、この前駆体を焼成して金属元素を粒子化して付着させた多孔質炭素材料は、隣接する金属元素の粒子同士の距離も均等に分散した状態となる。したがって、この多孔質炭素材料を燃料電池の触媒として使用を繰り返すうちに、金属粒子が凝集して出力特性が悪くなるといった触媒の劣化が起こり難い多孔質炭素材料とすることができる。 The porous carbon material constructed in this way is composed of carbon element, zinc element, metal element, hydrogen element, and oxygen element, including zinc and a metal element with a melting point and boiling point exceeding 1000°C. By preparing a precursor of an organic compound and firing the precursor at a temperature of 900 to 1000°C, the zinc is sublimated and pores are created, and the metal elements are dispersed and made into particles. It is possible to form pores in the place where the particles have penetrated, making it porous. Moreover, since the firing is performed at a high temperature that can eliminate zinc oxide, zinc, and oxygen, unnecessary impurities can also be eliminated at the same time, eliminating the need for washing with water after the firing process. The fired body can be used as it is, and a porous carbon material can be obtained through simple work steps. Further, metal elements having melting points and boiling points exceeding 1000° C. do not sublime during firing and are easily formed into particles, resulting in a porous carbon material in which these metal elements are dispersed. The nanoparticles obtained at this time are dispersed so that the maximum separation distance is 50 nm or less. In addition, the metal element is doped or ionized and attached to a predetermined position of the precursor, and is evenly dispersed, so the precursor is fired to form particles of the metal element and attached. In this porous carbon material, the distances between adjacent metal element particles are evenly dispersed. Therefore, as this porous carbon material is repeatedly used as a catalyst in a fuel cell, it is possible to obtain a porous carbon material that is unlikely to suffer deterioration of the catalyst, such as agglomeration of metal particles and deterioration of output characteristics.

しかも、このようにして構成された多孔質炭素材料は、元々、三次元網目構造で骨格形成された前駆体から、酸化亜鉛や亜鉛や酸素の部分を消失させて、当該酸化亜鉛や亜鉛や酸素が入り込んでいた跡に、細孔を形成し、かつ、電解液に水系電解液を用いた場合は、金属ナノ粒子が電解と酸化還元反応し、疑似容量を発現する高性能な電気二重層キャパシタ電極材料とすることができる。また、このようにして形成される細孔は、上記酸化亜鉛や亜鉛や酸素が抜けた跡に形成されるものが多くなるため、IUPACで定義されるメソ孔(2~50nm)を多く形成できることとなり、全比表面積に占めるメソ孔の比表面積の割合を30%以上にすることができる。さらに、このメソ孔は、多孔質ではない前駆体の状態から、酸化亜鉛、亜鉛、そして酸素の部分を消失させる1000℃の高温で、かつ、上記した長時間の焼成を行うことで、指数関数的またはn次関数(n>1)的に酸化亜鉛や亜鉛や酸素を消失させて、その跡に細孔を形成することができるので、比表面積を1124m/g以上としたり、メソ孔の比表面積を254m/g以上としたり、超高性能な多孔質炭素材料を得ることができる。特に、メソ孔を多く形成できることに加えて当該多孔質化と同時に金属粒子を分散させて担持させているため、金属粒子の分散状態にも優れており、酸素分子と金属粒子との触媒反応とが行われ易い優れた効果が得られることとなる。したがって、電極材料や触媒材料の他にも、例えば、グローブボックスに使用される銅触媒として、メソ孔や連通孔子に、酸素を拡散させ、銅粒子に効率よく酸素を吸着させ、酸化銅にする効果に優れることとなるので、単なるバルクの銅よりも優れた効果を得ることができる。その他にも、ガス吸着と当該ガスとの触媒反応とを行うような各種触媒に好適に使用することができる。 Moreover, the porous carbon material constructed in this way is created by eliminating the zinc oxide, zinc, and oxygen parts from the precursor, which originally had a skeleton formed in a three-dimensional network structure. If a water-based electrolyte is used, the metal nanoparticles undergo a redox reaction with electrolysis, creating a high-performance electric double layer capacitor that develops pseudocapacitance. It can be used as an electrode material. In addition, many of the pores formed in this way are formed at the sites where the above-mentioned zinc oxide, zinc, and oxygen have escaped, so it is possible to form many mesopores (2 to 50 nm) as defined by IUPAC. Therefore, the ratio of the specific surface area of mesopores to the total specific surface area can be increased to 30% or more. Furthermore, this mesopore can be created from the non-porous precursor state by firing at a high temperature of 1000°C, which eliminates zinc oxide, zinc, and oxygen, and for a long time as described above, resulting in an exponential function. Since it is possible to eliminate zinc oxide, zinc, and oxygen in a linear or n-order function (n > 1) and form pores in their wake, the specific surface area can be set to 1124 m 2 /g or more, and the mesopores can be It is possible to obtain an ultrahigh-performance porous carbon material with a specific surface area of 254 m 2 /g or more. In particular, in addition to being able to form a large number of mesopores, the metal particles are dispersed and supported at the same time as the porosity is made, so the dispersion state of the metal particles is excellent, and the catalytic reaction between oxygen molecules and metal particles is excellent. This results in excellent effects that are easy to carry out. Therefore, in addition to electrode materials and catalyst materials, for example, as a copper catalyst used in glove boxes, oxygen is diffused into mesopores and communicating pores, and oxygen is efficiently adsorbed into copper particles to form copper oxide. Since the effect is excellent, it is possible to obtain an effect superior to that of mere bulk copper. In addition, it can be suitably used in various catalysts that perform gas adsorption and catalytic reaction with the gas.

また、このようにして構成された多孔質炭素材料に分散される金属元素は、焼成によって昇華することなく粒子化することで、最大離隔間距離が50nm以下にナノ粒子化した金属元素が分散した状態で付着した多孔質炭素材料となる。したがって、多孔質化とナノ粒子化した金属元素の分散とにより、触媒材料として好適に使用することができることとなる。例えば、白金元素を分散させた多孔質炭素材料は、多孔質化により良好に白金元素を接触ささせる面積を稼ぐことができるとともに、白金元素の良好な分散状態が得られるので、燃料電池の空気極の触媒材料として好適に使用することができることとなる。 In addition, the metal elements dispersed in the porous carbon material configured in this way are made into particles without being sublimated by firing, so that the metal elements are dispersed into nanoparticles with a maximum separation distance of 50 nm or less. It becomes a porous carbon material attached in a state. Therefore, by making it porous and dispersing the metal element in the form of nanoparticles, it can be suitably used as a catalyst material. For example, a porous carbon material in which platinum element is dispersed can increase the area for good contact with the platinum element by making it porous, and can also obtain a good dispersion state of the platinum element. This means that it can be suitably used as a catalyst material for electrodes.

以上述べたように、本発明によると、テレフタル酸と、酢酸亜鉛および/または硝酸亜鉛と、銅、コバルト、ニッケル、鉄、白金の中から選択される少なくとも1種類以上の金属元素を有する酢酸金属塩とを、NMP(N-メチル-2-ピロリドン)に溶解させて混合し、合成反応により、組成に、亜鉛と、1000℃を超える融点および沸点の金属元素と、を含む、炭素元素、亜鉛元素、金属元素、水素元素、酸素元素からなる有機化合物の前駆体を調製し、当該前駆体を、室温から25℃/分で昇温して900~1000℃の温度で焼成することにより、酸化亜鉛を還元させ、同時に亜鉛を昇華させて細孔を作るとともに、金属元素を分散および粒子化させ、前駆体を多孔質炭素材料にすると同時に、当該多孔質炭素材料に分散および粒子化させているので、亜鉛や酸素が入り込んでいた跡に、細孔を形成して多孔質化を図ることができると同時に金属元素を粒子化して分散した状態にすることができる。酸化亜鉛や亜鉛や酸素を消失させることができる高温で焼成するため、余計な不純物等も同時に消失させることができるので、焼成後の酸処理、およびそれに伴う二次廃液の処理の必要も無くすことができ、焼成工程後に得られた焼成体をそのまま使用することができることとなり、簡単な作業工程で多孔質炭素材料を得ることができる。また、1000℃を超える融点および沸点の金属元素は、焼成中に昇華することなくナノ粒子化し易くなり、これら金属元素が分散した状態の多孔質炭素材料が得られることとなるため、当該金属元素との接触を効率良く行うことができる高性能な触媒材料とすることができる。また、電極材料としては、金属元素を粒子化して分散させているので、疑似容量を発現する高性能な電気二重層キャパシタ電極材料とすることができる。 As described above, according to the present invention, a metal acetate containing terephthalic acid, zinc acetate and/or zinc nitrate, and at least one metal element selected from copper, cobalt, nickel, iron, and platinum is provided. Salt is dissolved in NMP (N-methyl-2-pyrrolidone) and mixed, and through a synthesis reaction, a carbon element, zinc, whose composition includes zinc and a metal element with a melting point and boiling point exceeding 1000 ° C. A precursor of an organic compound consisting of an element, a metal element, a hydrogen element, and an oxygen element is prepared, and the precursor is heated at a rate of 25°C/min from room temperature and fired at a temperature of 900 to 1000°C. Zinc is reduced, and at the same time zinc is sublimated to create pores, and the metal element is dispersed and granulated to make the precursor into a porous carbon material, and at the same time, it is dispersed and granulated in the porous carbon material. Therefore, it is possible to form pores in the places where zinc and oxygen have entered, making it porous, and at the same time, it is possible to make the metal elements into particles and make them dispersed. Because it is fired at a high temperature that can eliminate zinc oxide, zinc, and oxygen, unnecessary impurities can also be eliminated at the same time, eliminating the need for post-calcination acid treatment and associated secondary waste liquid treatment. Therefore, the fired body obtained after the firing process can be used as it is, and a porous carbon material can be obtained with a simple work process. In addition, metal elements with melting points and boiling points exceeding 1000°C tend to become nanoparticles without sublimating during firing, resulting in a porous carbon material in which these metal elements are dispersed. It can be made into a high-performance catalyst material that can efficiently contact with. Further, since the electrode material is made of a metal element that is dispersed in particles, it can be used as a high-performance electric double layer capacitor electrode material that exhibits pseudocapacitance.

(a)は本発明の金属粒子担持多孔質炭素材料の製造方法の実施例2に係る前駆体のEDX測定による各元素マッピングデータ、(b)は当該データからの定量結果を示す表である。(a) is a table showing each element mapping data obtained by EDX measurement of a precursor according to Example 2 of the method for producing a porous carbon material supporting metal particles of the present invention, and (b) is a table showing quantitative results from the data. (a)は本発明の金属粒子担持多孔質炭素材料の製造方法の実施例8に係る前駆体のEDX測定による各元素マッピングデータ、(b)は当該データからの定量結果を示す表である。(a) is a table showing each element mapping data obtained by EDX measurement of a precursor according to Example 8 of the method for producing a porous carbon material supporting metal particles of the present invention, and (b) is a table showing quantitative results from the data. (a)は本発明の金属粒子担持多孔質炭素材料の製造方法の実施例9に係る前駆体のEDX測定による各元素マッピングデータ、(b)は当該データからの定量結果を示す表である。(a) is a table showing each element mapping data obtained by EDX measurement of a precursor according to Example 9 of the method for producing a porous carbon material supporting metal particles of the present invention, and (b) is a table showing quantitative results from the data. (a)は本発明の金属粒子担持多孔質炭素材料の製造方法の実施例10に係る前駆体のEDX測定による各元素マッピングデータ、(b)は当該データからの定量結果を示す表である。(a) is a table showing each element mapping data obtained by EDX measurement of a precursor according to Example 10 of the method for producing a porous carbon material supporting metal particles of the present invention, and (b) is a table showing quantitative results from the data. (a)は本発明の金属粒子担持多孔質炭素材料の製造方法の実施例1に係る焼成体のEDX測定による各元素マッピングデータ、(b)は当該データからの定量結果を示す表、(c)は同焼成体のTEM写真の画像データである。(a) is each element mapping data obtained by EDX measurement of the fired body according to Example 1 of the method for producing a porous carbon material supporting metal particles of the present invention, (b) is a table showing quantitative results from the data, (c ) is image data of a TEM photograph of the fired body. (a)は本発明の金属粒子担持多孔質炭素材料の製造方法の実施例2に係る焼成体のEDX測定による各元素マッピングデータ、(b)は当該データからの定量結果を示す表、(c)は同焼成体のTEM写真の画像データである。(a) is each element mapping data obtained by EDX measurement of the fired body according to Example 2 of the method for producing a porous carbon material supporting metal particles of the present invention, (b) is a table showing quantitative results from the data, (c ) is image data of a TEM photograph of the fired body. (a)は本発明の金属粒子担持多孔質炭素材料の製造方法の実施例3に係る焼成体のEDX測定による各元素マッピングデータ、(b)は当該データからの定量結果を示す表、(c)は同焼成体のTEM写真の画像データである。(a) is each element mapping data obtained by EDX measurement of the fired body according to Example 3 of the method for producing a porous carbon material supporting metal particles of the present invention, (b) is a table showing quantitative results from the data, (c ) is image data of a TEM photograph of the fired body. (a)は本発明の金属粒子担持多孔質炭素材料の製造方法の実施例5に係る焼成体のEDX測定による各元素マッピングデータ、(b)は当該データからの定量結果を示す表、(c)は同焼成体のTEM写真の画像データである。(a) is each element mapping data obtained by EDX measurement of the fired body according to Example 5 of the method for producing a porous carbon material supporting metal particles of the present invention, (b) is a table showing quantitative results from the data, (c ) is image data of a TEM photograph of the fired body. (a)は本発明の金属粒子担持多孔質炭素材料の製造方法の実施例6に係る焼成体のEDX測定による各元素マッピングデータ、(b)は当該データからの定量結果を示す表、(c)は同焼成体のTEM写真の画像データである。(a) is each element mapping data obtained by EDX measurement of the fired body according to Example 6 of the method for producing a porous carbon material supporting metal particles of the present invention, (b) is a table showing quantitative results from the data, (c ) is image data of a TEM photograph of the fired body. (a)は本発明の金属粒子担持多孔質炭素材料の製造方法の実施例7に係る焼成体のEDX測定による各元素マッピングデータ、(b)は当該データからの定量結果を示す表、(c)は同焼成体のTEM写真の画像データである。(a) is each element mapping data obtained by EDX measurement of the fired body according to Example 7 of the method for producing a porous carbon material supporting metal particles of the present invention, (b) is a table showing quantitative results from the data, (c ) is image data of a TEM photograph of the fired body. (a)は本発明の金属粒子担持多孔質炭素材料の製造方法の実施例8に係る焼成体のEDX測定による各元素マッピングデータ、(b)は当該データからの定量結果を示す表、(c)は同焼成体のTEM写真の画像データである。(a) is each element mapping data obtained by EDX measurement of the fired body according to Example 8 of the method for producing a porous carbon material supporting metal particles of the present invention, (b) is a table showing quantitative results from the data, (c ) is image data of a TEM photograph of the fired body. (a)は本発明の金属粒子担持多孔質炭素材料の製造方法の実施例9に係る焼成体のEDX測定による各元素マッピングデータ、(b)は当該データからの定量結果を示す表、(c)は同焼成体のTEM写真の画像データである。(a) is each element mapping data obtained by EDX measurement of the fired body according to Example 9 of the method for producing a porous carbon material supporting metal particles of the present invention, (b) is a table showing quantitative results from the data, (c ) is image data of a TEM photograph of the fired body. (a)は本発明の金属粒子担持多孔質炭素材料の製造方法の実施例10に係る焼成体のEDX測定による各元素マッピングデータ、(b)は当該データからの定量結果を示す表、(c)は同焼成体のTEM写真の画像データである。(a) is each element mapping data obtained by EDX measurement of the fired body according to Example 10 of the method for producing a porous carbon material supporting metal particles of the present invention, (b) is a table showing quantitative results from the data, (c ) is image data of a TEM photograph of the fired body. (a)は本発明の金属粒子担持多孔質炭素材料の製造方法の実施例11に係る焼成体のEDX測定による各元素マッピングデータ、(b)は当該データからの定量結果を示す表、(c)は同焼成体のTEM写真の画像データである。(a) is each element mapping data obtained by EDX measurement of the fired body according to Example 11 of the method for producing a porous carbon material supporting metal particles of the present invention, (b) is a table showing quantitative results from the data, (c ) is image data of a TEM photograph of the fired body. (a)は本発明の金属粒子担持多孔質炭素材料の製造方法の実施例1に係る焼成体のTEM写真の画像データ、(b)は同実施例12に係る焼成体のTEM写真の画像データである。(a) is image data of a TEM photograph of a fired body according to Example 1 of the method for producing a porous carbon material supporting metal particles of the present invention, and (b) is image data of a TEM photograph of a fired body according to Example 12. It is. (a)は本発明の金属粒子担持多孔質炭素材料の製造方法の実施例1に係る焼成体の窒素吸脱着等温線を示すグラフ、(b)は同焼成体の平均細孔径分布を示すグラフである。(a) is a graph showing the nitrogen adsorption/desorption isotherm of the fired body according to Example 1 of the method for producing a porous carbon material supporting metal particles of the present invention, and (b) is a graph showing the average pore size distribution of the fired body. It is. (a)は本発明の金属粒子担持多孔質炭素材料の製造方法の実施例2に係る焼成体の窒素吸脱着等温線を示すグラフ、(b)は同焼成体の平均細孔径分布を示すグラフである。(a) is a graph showing the nitrogen adsorption/desorption isotherm of the fired body according to Example 2 of the method for producing a porous carbon material supporting metal particles of the present invention, and (b) is a graph showing the average pore size distribution of the fired body. It is. (a)は本発明の金属粒子担持多孔質炭素材料の製造方法の実施例3に係る焼成体の窒素吸脱着等温線を示すグラフ、(b)は同焼成体の平均細孔径分布を示すグラフである。(a) is a graph showing the nitrogen adsorption/desorption isotherm of the fired body according to Example 3 of the method for producing a porous carbon material supporting metal particles of the present invention, and (b) is a graph showing the average pore size distribution of the fired body. It is. (a)は本発明の金属粒子担持多孔質炭素材料の製造方法の実施例4に係る焼成体の窒素吸脱着等温線を示すグラフ、(b)は同焼成体の平均細孔径分布を示すグラフである。(a) is a graph showing the nitrogen adsorption/desorption isotherm of the fired body according to Example 4 of the method for producing a porous carbon material supporting metal particles of the present invention, and (b) is a graph showing the average pore size distribution of the fired body. It is. (a)は本発明の金属粒子担持多孔質炭素材料の製造方法の実施例5に係る焼成体の窒素吸脱着等温線を示すグラフ、(b)は同焼成体の平均細孔径分布を示すグラフである。(a) is a graph showing the nitrogen adsorption/desorption isotherm of the fired body according to Example 5 of the method for producing a porous carbon material supporting metal particles of the present invention, and (b) is a graph showing the average pore size distribution of the fired body. It is. (a)は本発明の金属粒子担持多孔質炭素材料の製造方法の実施例6に係る焼成体の窒素吸脱着等温線を示すグラフ、(b)は同焼成体の平均細孔径分布を示すグラフである。(a) is a graph showing the nitrogen adsorption/desorption isotherm of the fired body according to Example 6 of the method for producing a porous carbon material supporting metal particles of the present invention, and (b) is a graph showing the average pore size distribution of the fired body. It is. (a)は本発明の金属粒子担持多孔質炭素材料の製造方法の実施例7に係る焼成体の窒素吸脱着等温線を示すグラフ、(b)は同焼成体の平均細孔径分布を示すグラフである。(a) is a graph showing the nitrogen adsorption/desorption isotherm of the fired body according to Example 7 of the method for producing a porous carbon material supporting metal particles of the present invention, and (b) is a graph showing the average pore size distribution of the fired body. It is. (a)は本発明の金属粒子担持多孔質炭素材料の製造方法の実施例8に係る焼成体の窒素吸脱着等温線を示すグラフ、(b)は同焼成体の平均細孔径分布を示すグラフである。(a) is a graph showing the nitrogen adsorption/desorption isotherm of the fired body according to Example 8 of the method for producing a porous carbon material supporting metal particles of the present invention, and (b) is a graph showing the average pore size distribution of the fired body. It is. (a)は本発明の金属粒子担持多孔質炭素材料の製造方法の実施例9に係る焼成体の窒素吸脱着等温線を示すグラフ、(b)は同焼成体の平均細孔径分布を示すグラフである。(a) is a graph showing the nitrogen adsorption/desorption isotherm of the fired body according to Example 9 of the method for producing a porous carbon material supporting metal particles of the present invention, and (b) is a graph showing the average pore size distribution of the fired body. It is. (a)は本発明の金属粒子担持多孔質炭素材料の製造方法の実施例10に係る焼成体の窒素吸脱着等温線を示すグラフ、(b)は同焼成体の平均細孔径分布を示すグラフである。(a) is a graph showing the nitrogen adsorption/desorption isotherm of the fired body according to Example 10 of the method for producing a porous carbon material supporting metal particles of the present invention, and (b) is a graph showing the average pore size distribution of the fired body. It is. (a)は本発明の金属粒子担持多孔質炭素材料の製造方法の実施例11に係る焼成体の窒素吸脱着等温線を示すグラフ、(b)は同焼成体の平均細孔径分布を示すグラフである。(a) is a graph showing the nitrogen adsorption/desorption isotherm of the fired body according to Example 11 of the method for producing a porous carbon material supporting metal particles of the present invention, and (b) is a graph showing the average pore size distribution of the fired body. It is.

以下、本発明に係る実施の形態について説明する。 Embodiments according to the present invention will be described below.

[実施例1~12]
(前駆体の調製)
テレフタル酸を160mlのNMP(N-メチル-2-ピロリドン)に混合し、60℃で30分撹拌して溶解した。酢酸亜鉛2水和物と、酢酸コバルト4水和物とを、80mlのNMP(N-メチル-2-ピロリドン)に混合し、60℃で30分撹拌して溶解した。これら二つの溶液を80℃で6時間撹拌した後、上澄み液を除去後、乾燥させて実施例1に係る前駆体を得た。テレフタル酸と酢酸亜鉛2水和物と酢酸コバルト4水和物との比率は、6.2mmol:3.2mmol:0.02mmolとした。
[Examples 1 to 12]
(Preparation of precursor)
Terephthalic acid was mixed with 160 ml of NMP (N-methyl-2-pyrrolidone) and dissolved by stirring at 60° C. for 30 minutes. Zinc acetate dihydrate and cobalt acetate tetrahydrate were mixed in 80 ml of NMP (N-methyl-2-pyrrolidone) and dissolved by stirring at 60° C. for 30 minutes. After stirring these two solutions at 80° C. for 6 hours, the supernatant was removed and dried to obtain a precursor according to Example 1. The ratio of terephthalic acid, zinc acetate dihydrate, and cobalt acetate tetrahydrate was 6.2 mmol:3.2 mmol:0.02 mmol.

上記実施例1のテレフタル酸と酢酸亜鉛2水和物と酢酸コバルト4水和物との比率を、6.4mmol:3.2mmol:0.02mmolに変更して同様に合成反応により実施例2に係る前駆体を得た。 Example 2 was prepared by the same synthesis reaction except that the ratio of terephthalic acid, zinc acetate dihydrate, and cobalt acetate tetrahydrate in Example 1 was changed to 6.4 mmol: 3.2 mmol: 0.02 mmol. Such a precursor was obtained.

上記実施例2の酢酸亜鉛2水和物を硝酸亜鉛6水和物に変更し、酢酸コバルト4水和物を硝酸コバルト6水和物に変更して同様に合成反応により実施例3に係る前駆体を得た。テレフタル酸と硝酸亜鉛6水和物と硝酸コバルト6水和物との比率は6.4mmol:3.2mmol:0.02mmolとした。 The precursor according to Example 3 was obtained by changing the zinc acetate dihydrate of Example 2 to zinc nitrate hexahydrate, and changing the cobalt acetate tetrahydrate to cobalt nitrate hexahydrate, and carrying out the same synthesis reaction. I got a body. The ratio of terephthalic acid, zinc nitrate hexahydrate, and cobalt nitrate hexahydrate was 6.4 mmol:3.2 mmol:0.02 mmol.

上記実施例1のテレフタル酸の使用量を160mlから320mlに変更し、NMP(N-メチル-2-ピロリドン)の使用量を80mlから160mlに変更して同様に合成反応により実施例4に係る前駆体を得た。テレフタル酸と酢酸亜鉛2水和物と酢酸コバルト4水和物との比率は6.2mmol:3.2mmol:0.02mmolとした。 The precursor according to Example 4 was produced by the same synthesis reaction except that the amount of terephthalic acid used in Example 1 was changed from 160 ml to 320 ml, and the amount of NMP (N-methyl-2-pyrrolidone) used was changed from 80 ml to 160 ml. I got a body. The ratio of terephthalic acid, zinc acetate dihydrate, and cobalt acetate tetrahydrate was 6.2 mmol:3.2 mmol:0.02 mmol.

上記実施例2の酢酸コバルト4水和物を酢酸ニッケル2水和物に変更して同様に合成反応により実施例5に係る前駆体を得た。テレフタル酸と酢酸亜鉛2水和物と酢酸ニッケル2水和物との比率は、6.4mmol:3.2mmol:0.02mmolとした。 A precursor according to Example 5 was obtained by the same synthesis reaction except that cobalt acetate tetrahydrate in Example 2 was changed to nickel acetate dihydrate. The ratio of terephthalic acid, zinc acetate dihydrate, and nickel acetate dihydrate was 6.4 mmol:3.2 mmol:0.02 mmol.

上記実施例2の酢酸コバルト4水和物を酢酸鉄に変更して同様に合成反応により実施例6に係る前駆体を得た。テレフタル酸と酢酸亜鉛2水和物と酢酸鉄との比率は、6.4mmol:3.2mmol:0.02mmolとした。 A precursor according to Example 6 was obtained by the same synthesis reaction except that cobalt acetate tetrahydrate in Example 2 was replaced with iron acetate. The ratio of terephthalic acid, zinc acetate dihydrate, and iron acetate was 6.4 mmol:3.2 mmol:0.02 mmol.

上記実施例2の酢酸コバルト4水和物を塩化テトラアンミン白金水和物に変更して同様に合成反応により実施例7に係る前駆体を得た。テレフタル酸と酢酸亜鉛2水和物と塩化テトラアミン白金との比率は、6.4mmol:3.2mmol:0.02mmolとした。 A precursor according to Example 7 was obtained by the same synthesis reaction except that cobalt acetate tetrahydrate in Example 2 was replaced with tetraammine platinum chloride hydrate. The ratio of terephthalic acid, zinc acetate dihydrate, and tetraamine platinum chloride was 6.4 mmol:3.2 mmol:0.02 mmol.

上記実施例2の酢酸コバルト4水和物を硝酸白金に変更して同様に合成反応により実施例8に係る前駆体を得た。テレフタル酸と酢酸亜鉛2水和物と硝酸白金との比率は、6.4mmol:3.2mmol:0.02mmolとした。 A precursor according to Example 8 was obtained by the same synthesis reaction except that cobalt acetate tetrahydrate in Example 2 was replaced with platinum nitrate. The ratio of terephthalic acid, zinc acetate dihydrate, and platinum nitrate was 6.4 mmol:3.2 mmol:0.02 mmol.

上記実施例2の酢酸コバルト4水和物を酢酸銅4水和物に変更して同様に合成反応により実施例9に係る前駆体を得た。テレフタル酸と酢酸亜鉛2水和物と硝酸白金との比率は、6.4mmol:3.2mmol:0.02mmolとした。 A precursor according to Example 9 was obtained by the same synthesis reaction except that cobalt acetate tetrahydrate in Example 2 was replaced with copper acetate tetrahydrate. The ratio of terephthalic acid, zinc acetate dihydrate, and platinum nitrate was 6.4 mmol:3.2 mmol:0.02 mmol.

上記実施例2の酢酸コバルト4水和物を、酢酸コバルト4水和物と酢酸ニッケル2水和物との混合物に変更して同様に合成反応により実施例10に係る前駆体を得た。テレフタル酸と酢酸亜鉛2水和物と酢酸コバルト4水和物と酢酸ニッケル2水和物との比率は、6.4mmol:3.2mmol:0.02mmol:0.02mmolとした。 A precursor according to Example 10 was obtained by the same synthesis reaction except that cobalt acetate tetrahydrate in Example 2 was replaced with a mixture of cobalt acetate tetrahydrate and nickel acetate dihydrate. The ratio of terephthalic acid, zinc acetate dihydrate, cobalt acetate tetrahydrate, and nickel acetate dihydrate was 6.4 mmol:3.2 mmol:0.02 mmol:0.02 mmol.

上記実施例2の酢酸コバルト4水和物を、酢酸コバルト4水和物と酢酸ニッケル2水和物と酢酸鉄との混合物に変更して同様に合成反応により実施例11に係る前駆体を得た。テレフタル酸と酢酸亜鉛2水和物と酢酸コバルト4水和物と酢酸ニッケル2水和物と酢酸鉄との比率は、6.4mmol:3.2mmol:0.02mmol:0.02mmol:0.02mmolとした。 The precursor according to Example 11 was obtained by the same synthesis reaction by changing the cobalt acetate tetrahydrate of Example 2 to a mixture of cobalt acetate tetrahydrate, nickel acetate dihydrate, and iron acetate. Ta. The ratio of terephthalic acid, zinc acetate dihydrate, cobalt acetate tetrahydrate, nickel acetate dihydrate, and iron acetate is 6.4 mmol: 3.2 mmol: 0.02 mmol: 0.02 mmol: 0.02 mmol And so.

上記実施例1の塩化テトラアミン白金水和物を使用せず、同様に合成反応により実施例12に係る前駆体を得た。テレフタル酸と酢酸亜鉛との比率は、6.4mmol:6.4mmolとした。 A precursor according to Example 12 was obtained by the same synthetic reaction without using the tetraamine chloride platinum hydrate of Example 1 above. The ratio of terephthalic acid and zinc acetate was 6.4 mmol:6.4 mmol.

(前駆体の分析)
上記した実施例1~実施例12の各前駆体を、下記装置によりEDX測定を行った。その元素分析の結果、各前駆体は、各元素マッピングに元素の存在が確認できた。図1~図4には、その一例として、実施例2,8,9,10の各前駆体の各元素マッピングと定量データを示す。図4のニッケルの元素マッピングに示すように、定性的にはニッケル元素の存在が確認できても、装置の検出限界以下であるため、定量的には定量データに反映されていない場合もあるが、定性で確認できれば、前駆体としては有効である。
測定機種:JEM-2100F(日本電子株式会社製)
測定条件:加速電圧200kV
(Precursor analysis)
Each of the precursors of Examples 1 to 12 described above was subjected to EDX measurement using the following apparatus. As a result of the elemental analysis, the presence of elements in each element mapping was confirmed for each precursor. As an example, each element mapping and quantitative data of each precursor of Examples 2, 8, 9, and 10 are shown in FIGS. 1 to 4. As shown in the elemental mapping of nickel in Figure 4, even if the presence of nickel element can be confirmed qualitatively, it may not be quantitatively reflected in the quantitative data because it is below the detection limit of the equipment. If it can be confirmed qualitatively, it is effective as a precursor.
Measurement model: JEM-2100F (manufactured by JEOL Ltd.)
Measurement conditions: acceleration voltage 200kV

(前駆体の焼成)
上記の方法で調製した実施例1~実施例12の各前駆体を、それぞれ焼成して金属粒子担持多孔質炭素材料を得た。
(Calcination of precursor)
Each of the precursors of Examples 1 to 12 prepared by the above method was fired to obtain a porous carbon material supporting metal particles.

上記前駆体の焼成条件は、3種類実施した。
昇温条件(1)は、窒素ガス雰囲気にて、ガス流量0.2リットル/分、室温25℃から昇温速度25℃/分で昇温し、1000℃到達後、その温度で1時間の焼成行い、その後、焼成を停止して自然冷却した。
昇温条件(2)は、窒素ガス雰囲気にて、ガス流量0.2リットル/分、室温25℃から昇温速度25℃/分で昇温し、1000℃到達後、焼成を停止して自然冷却した。
昇温条件(3)は、窒素ガス雰囲気にて、ガス流量0.2リットル/分、室温25℃から昇温速度2℃/分で昇温し、1000℃到達後、焼成を停止して自然冷却した。
実施例1,5,6,7,11に係る前駆体は昇温条件(1)で焼成して同実施例1,5,6,7,11の焼成体とした。実施例2,3,4,8,9,10に係る前駆体は昇温条件(2)で焼成して同実施例2,3,4,8,9,10の焼成体とした。また、実施例1に係る前駆体を昇温条件(3)で焼成したものを実施例12の焼成体とした。
Three types of firing conditions were used for the precursor.
Temperature increase condition (1) is to raise the temperature from room temperature 25℃ at a temperature increase rate of 25℃/min in a nitrogen gas atmosphere with a gas flow rate of 0.2L/min, and after reaching 1000℃, the temperature is maintained at that temperature for 1 hour. After firing, the firing was stopped and the product was naturally cooled.
Temperature increase condition (2) is to raise the temperature from room temperature 25℃ at a temperature increase rate of 25℃/min in a nitrogen gas atmosphere with a gas flow rate of 0.2 liters/min, and after reaching 1000℃, stop firing and let the temperature rise naturally. Cooled.
Temperature increase condition (3) is to raise the temperature from room temperature 25℃ at a temperature increase rate of 2℃/min in a nitrogen gas atmosphere with a gas flow rate of 0.2 liters/minute, and after reaching 1000℃, stop firing and let the temperature rise naturally. Cooled.
The precursors according to Examples 1, 5, 6, 7, and 11 were fired under the elevated temperature condition (1) to obtain the fired bodies of Examples 1, 5, 6, 7, and 11. The precursors of Examples 2, 3, 4, 8, 9, and 10 were fired under elevated temperature conditions (2) to produce fired bodies of Examples 2, 3, 4, 8, 9, and 10. In addition, the fired body of Example 12 was obtained by firing the precursor according to Example 1 under the elevated temperature condition (3).

(EDX測定による元素分析およびTEM写真)
上記焼成によって得られた焼成体である各金属粒子担持多孔質炭素材料についてTEM写真を撮影するとともに、EDX測定による元素分析を行った。測定機種、測定条件などは下記の通りである。結果を図5~図14に示す。各図(a)にはEDX測定の元素分析による画像マッピングデータを示し、各図(b)には同定量データを示し、各図(c)にはTEM写真を示す。なお、実施例4については、実施例2と略同じデータであるため省略する。また、昇温速度による金属粒子の違いを確認するため、実施例1に係る焼成体と、実施例12に係る焼成体とでTEM写真を比較した。結果を図15に示す。
測定機種:JEM-2100F(日本電子株式会社製)
測定条件:加速電圧200kV
(Elemental analysis by EDX measurement and TEM photo)
A TEM photograph was taken of each metal particle-supported porous carbon material, which was a fired body obtained by the above firing, and elemental analysis was performed by EDX measurement. The measurement model, measurement conditions, etc. are as follows. The results are shown in FIGS. 5 to 14. Each figure (a) shows image mapping data based on elemental analysis of EDX measurement, each figure (b) shows identified amount data, and each figure (c) shows a TEM photograph. Note that the data of Example 4 is substantially the same as that of Example 2, so a description thereof will be omitted. Furthermore, in order to confirm the difference in metal particles due to the temperature increase rate, TEM photographs of the fired body according to Example 1 and the fired body according to Example 12 were compared. The results are shown in FIG.
Measurement model: JEM-2100F (manufactured by JEOL Ltd.)
Measurement conditions: acceleration voltage 200kV

図5~図14の結果から、焼成によって得られた各金属粒子担持多孔質炭素材料は、亜鉛が昇華して無くなっていることが確認できるとともに、それ以外の炭素、酸素、金属元素の各元素の存在は、各元素マッピングデータから確認できた。ただし、実施例1および実施例5については、金属元素であるコバルトとニッケルとが定量されていないが、これは装置の検出限界以下の微量であるためで、元素マッピングデータには存在が確認されているので、金属粒子担持多孔質炭素材料としては有効である。 From the results shown in FIGS. 5 to 14, it can be confirmed that zinc sublimes and disappears in each metal particle-supported porous carbon material obtained by firing, and other elements such as carbon, oxygen, and metal elements The existence of this could be confirmed from the mapping data of each element. However, in Examples 1 and 5, the metal elements cobalt and nickel were not quantified, but this is because the amounts were below the detection limit of the equipment, and their presence was confirmed in the elemental mapping data. Therefore, it is effective as a porous carbon material supporting metal particles.

また、TEM写真から、銅以外の各金属元素については、合金も含めて、金属粒子担持多孔質炭素材料は、最大離隔間距離が50nm以下の粒子となるように、多孔質炭素材料中に金属粒子が良好に分散したものが得られることが確認できた。 In addition, from the TEM photograph, it was found that for each metal element other than copper, including alloys, the metal particle-supported porous carbon material has metal particles in the porous carbon material so that the particles have a maximum separation distance of 50 nm or less. It was confirmed that the particles were well dispersed.

さらに、図15の結果から、焼成によって得られた各金属粒子担持多孔質炭素材料は、同じ前駆体を使用していても、焼成条件の違いによって昇温速度が早いと金属粒子が小さくなり、昇温速度が遅いと金属粒子が大きくなることが確認できた。このことから、昇温速度をコントロールすることで、所望の金属粒子を有する金属粒子担持多孔質炭素材料を得ることができることが確認できた。 Furthermore, from the results in FIG. 15, even if the same precursor is used in each of the metal particle-supported porous carbon materials obtained by firing, the metal particles become smaller when the heating rate is faster due to differences in firing conditions. It was confirmed that the metal particles became larger when the heating rate was slow. From this, it was confirmed that a metal particle-supported porous carbon material having desired metal particles could be obtained by controlling the temperature increase rate.

(窒素吸脱着測定(比表面積/細孔分布測定))
上記の焼成によって得られた焼成体である各金属粒子担持多孔質炭素材料は、それぞれを300℃で24時間減圧乾燥させ、室温雰囲気中で当該金属粒子担持多孔質炭素材料に吸着した水分を脱着させた後、それぞれの粉末0.02gをサンプル管に入れ、液体窒素雰囲気下で比表面積/細孔分布測定装置(BELSORP-mini II:マイクロトラックベル株式会社製)によって窒素吸脱着等温曲線を測定した。また、同装置の解析プログラム(I型(ISO9277)BET自動解析)により比表面積を算出した。さらに、得られた窒素吸脱着等温線をBJH(Barrett-Joyner-Halenda)法により処理してIUPACで定義されているメソ孔(2~50nm)のサイズの比表面積を算出した。また、全比表面積に占めるメソ孔の比表面積の割合を算出した。結果を図16~図26、表1に示す。
(Nitrogen adsorption/desorption measurement (specific surface area/pore distribution measurement))
Each porous carbon material supporting metal particles, which is a fired body obtained by the above firing, is dried under reduced pressure at 300°C for 24 hours to desorb the water adsorbed to the porous carbon material supporting metal particles in a room temperature atmosphere. After that, 0.02 g of each powder was placed in a sample tube, and the nitrogen adsorption/desorption isotherm curve was measured using a specific surface area/pore distribution measuring device (BELSORP-mini II: manufactured by Microtrack Bell Co., Ltd.) under a liquid nitrogen atmosphere. did. In addition, the specific surface area was calculated using the analysis program (Type I (ISO9277) BET automatic analysis) of the same device. Further, the obtained nitrogen adsorption/desorption isotherm was processed by the BJH (Barrett-Joyner-Halenda) method to calculate the specific surface area of the mesopore size (2 to 50 nm) defined by IUPAC. Furthermore, the ratio of the specific surface area of mesopores to the total specific surface area was calculated. The results are shown in FIGS. 16 to 26 and Table 1.

Figure 0007421608000002
Figure 0007421608000002

以上の結果から、本発明に係る金属粒子担持多孔質炭素材料は、メソ孔の割合が非常に高く、全細孔容積に占めるメソ細孔容積の割合が非常に高い金属粒子担持多孔質炭素材料が得られることとなる。窒素吸脱着等温線の高圧部分の立ち上がりが良いことからも、酸素分子の拡散を容易にして担持させた金属元素との接触を容易に行うことができる金属粒子担持多孔質炭素材料とすることができる。 From the above results, the metal particle-supported porous carbon material according to the present invention has a very high proportion of mesopores, and the metal particle-supported porous carbon material has a very high proportion of mesopore volume to the total pore volume. will be obtained. Since the high-pressure part of the nitrogen adsorption/desorption isotherm has a good rise, it is possible to use a metal particle-supported porous carbon material that can facilitate the diffusion of oxygen molecules and make contact with the supported metal element. can.

なお、本発明は、その精神または主要な特徴から逸脱することなく、他のいろいろな形で実施することができる。そのため、上述の実施例はあらゆる点で単なる例示に過ぎず、限定的に解釈してはならない。本発明の範囲は特許請求の範囲によって示すものであって、明細書本文には、なんら拘束されない。さらに、特許請求の範囲に属する変形や変更は、全て本発明の範囲内のものである。 Note that the present invention may be embodied in various other forms without departing from its spirit or essential characteristics. Therefore, the above-mentioned embodiments are merely illustrative in all respects, and should not be interpreted in a limiting manner. The scope of the present invention is indicated by the claims, and is not restricted in any way by the main text of the specification. Furthermore, all modifications and changes that fall within the scope of the claims are intended to be within the scope of the present invention.

Claims (10)

テレフタル酸と、酢酸亜鉛および/または硝酸亜鉛と、
銅、コバルト、ニッケル、鉄、白金の中から選択される少なくとも1種類以上の金属元素を有する酢酸金属塩とを、
NMP(N-メチル-2-ピロリドン)に溶解させて混合し、合成反応により、組成に、亜鉛と、1000℃を超える融点および沸点の金属元素と、を含む、炭素元素、亜鉛元素、金属元素、水素元素、酸素元素からなる有機化合物の前駆体を調製し、当該前駆体を、室温から25℃/分で昇温して900~1000℃の温度で焼成することにより、亜鉛を昇華させて細孔を作るとともに、金属元素を分散および粒子化させ、前駆体を多孔質炭素材料にすると同時に、当該多孔質炭素材料に分散および粒子化させた金属粒子を担持させることを特徴とする金属粒子担持多孔質炭素材料の製造方法。
Terephthalic acid, zinc acetate and/or zinc nitrate,
a metal acetate having at least one metal element selected from copper, cobalt, nickel, iron, and platinum;
Carbon element, zinc element, and metal element containing zinc and a metal element with a melting point and boiling point exceeding 1000 ° C. By preparing a precursor of an organic compound consisting of , hydrogen element, and oxygen element, and firing the precursor at a temperature of 900 to 1000 °C at a rate of 25 °C/min from room temperature , zinc is sublimed. A metal particle characterized by creating pores, dispersing and granulating a metal element, making a precursor into a porous carbon material, and at the same time making the porous carbon material support metal particles that have been dispersed and granulated. A method for producing a supported porous carbon material.
請求項1に記載の製造方法によって得られる金属粒子担持多孔質炭素材料であって、A metal particle-supported porous carbon material obtained by the manufacturing method according to claim 1, comprising:
当該多孔質炭素材料に、分散および粒子化させた金属粒子を担持させてなり、比表面積が1124mThe porous carbon material supports dispersed and granulated metal particles, and has a specific surface area of 1124 m. 2 /g以上となされ、メソ孔の比表面積が254m/g or more, and the specific surface area of mesopores is 254 m 2 /g以上となされた金属粒子担持多孔質炭素材料。/g or more of metal particle-supported porous carbon material.
請求項2に記載の金属粒子担持多孔質炭素材料であって、The porous carbon material supporting metal particles according to claim 2,
金属元素がコバルト元素となされ、窒素吸脱着等温線より得られた結果をBJH法により算出して得られる、全比表面積に占めるメソ孔(2~50nm)の比表面積の割合が、65%以上となされた金属粒子担持多孔質炭素材料。The metal element is cobalt element, and the ratio of the specific surface area of mesopores (2 to 50 nm) to the total specific surface area is 65% or more, which is obtained by calculating the results obtained from the nitrogen adsorption/desorption isotherm using the BJH method. Porous carbon material supporting metal particles.
請求項2に記載の金属粒子担持多孔質炭素材料であって、The porous carbon material supporting metal particles according to claim 2,
金属元素がニッケル元素となされ、窒素吸脱着等温線より得られた結果をBJH法により算出して得られる、全比表面積に占めるメソ孔(2~50nm)の比表面積の割合が、45%以上となされた金属粒子担持多孔質炭素材料。The metal element is nickel element, and the ratio of the specific surface area of mesopores (2 to 50 nm) to the total specific surface area is 45% or more, which is obtained by calculating the results obtained from the nitrogen adsorption/desorption isotherm using the BJH method. Porous carbon material supporting metal particles.
請求項2に記載の金属粒子担持多孔質炭素材料であって、The porous carbon material supporting metal particles according to claim 2,
金属元素が鉄元素となされ、窒素吸脱着等温線より得られた結果をBJH法により算出して得られる、全比表面積に占めるメソ孔(2~50nm)の比表面積の割合が、30%以上となされた金属粒子担持多孔質炭素材料。The metal element is an iron element, and the ratio of the specific surface area of mesopores (2 to 50 nm) to the total specific surface area is 30% or more, which is obtained by calculating the results obtained from the nitrogen adsorption/desorption isotherm using the BJH method. Porous carbon material supporting metal particles.
請求項2に記載の金属粒子担持多孔質炭素材料であって、
金属元素が白金元素となされ、窒素吸脱着等温線より得られた結果をBJH法により算出して得られる、全比表面積に占めるメソ孔(2~50nm)の比表面積の割合が、45%以上となされた金属粒子担持多孔質炭素材料。
The porous carbon material supporting metal particles according to claim 2,
The metal element is platinum element, and the ratio of the specific surface area of mesopores (2 to 50 nm) to the total specific surface area is 45% or more, which is obtained by calculating the results obtained from the nitrogen adsorption/desorption isotherm using the BJH method. Porous carbon material supporting metal particles.
請求項2に記載の金属粒子担持多孔質炭素材料であって、
最大離隔間距離が50nmの金属粒子を形成した金属粒子担持多孔質炭素材料。
The porous carbon material supporting metal particles according to claim 2,
A metal particle-supported porous carbon material in which metal particles with a maximum separation distance of 50 nm are formed .
請求項2に記載の金属粒子担持多孔質炭素材料を含む触媒材料。A catalyst material comprising the porous carbon material supporting metal particles according to claim 2. 請求項2に記載の金属粒子担持多孔質炭素材料を含む電極材料。An electrode material comprising the porous carbon material supporting metal particles according to claim 2. 請求項2に記載の金属粒子担持多孔質炭素材料の前駆体であって、A precursor of the metal particle-supported porous carbon material according to claim 2,
テレフタル酸と、酢酸亜鉛および/または硝酸亜鉛と、銅、コバルト、ニッケル、鉄、白金の中から選択される少なくとも1種類以上の金属元素を有する酢酸金属塩とを、NMP(N-メチル-2-ピロリドン)に溶解させて混合し、合成反応により調製されることを特徴とする金属粒子担持多孔質炭素材料の前駆体。NMP (N-methyl-2 A precursor of a porous carbon material supporting metal particles, characterized in that it is prepared by dissolving and mixing in (-pyrrolidone) and performing a synthesis reaction.
JP2022122976A 2022-08-01 2022-08-01 Metal particle-supported porous carbon material and its manufacturing method, precursor of metal particle-supported porous carbon material, and catalyst material and electrode material using metal particle-supported porous carbon material Active JP7421608B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2022122976A JP7421608B1 (en) 2022-08-01 2022-08-01 Metal particle-supported porous carbon material and its manufacturing method, precursor of metal particle-supported porous carbon material, and catalyst material and electrode material using metal particle-supported porous carbon material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2022122976A JP7421608B1 (en) 2022-08-01 2022-08-01 Metal particle-supported porous carbon material and its manufacturing method, precursor of metal particle-supported porous carbon material, and catalyst material and electrode material using metal particle-supported porous carbon material

Publications (2)

Publication Number Publication Date
JP7421608B1 true JP7421608B1 (en) 2024-01-24
JP2024020082A JP2024020082A (en) 2024-02-14

Family

ID=89616030

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2022122976A Active JP7421608B1 (en) 2022-08-01 2022-08-01 Metal particle-supported porous carbon material and its manufacturing method, precursor of metal particle-supported porous carbon material, and catalyst material and electrode material using metal particle-supported porous carbon material

Country Status (1)

Country Link
JP (1) JP7421608B1 (en)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004503456A (en) 2000-05-24 2004-02-05 ファインセル カンパニー リミテッド Medium porous carbon material, carbon / metal oxide composite material, and electrochemical capacitor using the material
JP2005154174A (en) 2003-11-21 2005-06-16 Nisshoku Corp Functional metal and/or functional metal compound-containing porous carbon material, and its manufacture method
JP2008259993A (en) 2007-04-13 2008-10-30 Tokyo Metropolitan Univ Method for dispersing and fixing gold fine particle to carrier, gold fine particle-deposited carrier obtained thereby, catalyst and colorant
WO2012020561A1 (en) 2010-08-10 2012-02-16 大学共同利用機関法人自然科学研究機構 Carbon nanostructure, metal-supported carbon nanostructure, lithium ion secondary battery, process for production of carbon nanostructure, and process for production of metal-supported carbon nanostructure
JP2012167400A (en) 2011-02-14 2012-09-06 Teijin Ltd Method for manufacturing flocculent substance of noble metal carrying ultrafine carbon fiber
JP2012532088A (en) 2009-07-01 2012-12-13 エナジーツー・テクノロジーズ・インコーポレイテッド Ultra high purity synthetic carbon material
JP2015151277A (en) 2014-02-10 2015-08-24 保土谷化学工業株式会社 Production method of gas phase method fine carbon fiber
JP2015182939A (en) 2014-03-25 2015-10-22 日産自動車株式会社 Metal-supporting carbon material and method for manufacturing the same

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004503456A (en) 2000-05-24 2004-02-05 ファインセル カンパニー リミテッド Medium porous carbon material, carbon / metal oxide composite material, and electrochemical capacitor using the material
JP2005154174A (en) 2003-11-21 2005-06-16 Nisshoku Corp Functional metal and/or functional metal compound-containing porous carbon material, and its manufacture method
JP2008259993A (en) 2007-04-13 2008-10-30 Tokyo Metropolitan Univ Method for dispersing and fixing gold fine particle to carrier, gold fine particle-deposited carrier obtained thereby, catalyst and colorant
JP2012532088A (en) 2009-07-01 2012-12-13 エナジーツー・テクノロジーズ・インコーポレイテッド Ultra high purity synthetic carbon material
WO2012020561A1 (en) 2010-08-10 2012-02-16 大学共同利用機関法人自然科学研究機構 Carbon nanostructure, metal-supported carbon nanostructure, lithium ion secondary battery, process for production of carbon nanostructure, and process for production of metal-supported carbon nanostructure
JP2012167400A (en) 2011-02-14 2012-09-06 Teijin Ltd Method for manufacturing flocculent substance of noble metal carrying ultrafine carbon fiber
JP2015151277A (en) 2014-02-10 2015-08-24 保土谷化学工業株式会社 Production method of gas phase method fine carbon fiber
JP2015182939A (en) 2014-03-25 2015-10-22 日産自動車株式会社 Metal-supporting carbon material and method for manufacturing the same

Also Published As

Publication number Publication date
JP2024020082A (en) 2024-02-14

Similar Documents

Publication Publication Date Title
JP7182604B2 (en) Carbon-coated transition metal nanocomposites, their manufacture and their applications
Im et al. Hollow-sphere Co-NC synthesis by incorporation of ultrasonic spray pyrolysis and pseudomorphic replication and its enhanced activity toward oxygen reduction reaction
Raoof et al. MOF-derived Cu/nanoporous carbon composite and its application for electro-catalysis of hydrogen evolution reaction
Qi et al. Conversion of confined metal@ ZIF-8 structures to intermetallic nanoparticles supported on nitrogen-doped carbon for electrocatalysis
Lee et al. Well-dispersed hollow porous carbon spheres synthesized by direct pyrolysis of core–shell type metal–organic frameworks and their sorption properties
KR101473319B1 (en) Hierarchical mesoporous carbon, manufacturing method thereof, and fuel cell using the same
KR101446116B1 (en) Metal catalyst for producing carbon nanotubes and method for preparing carbon nanotubes using thereof
CN112973758A (en) ZIFs-based high-dispersion Co-based bimetallic catalyst and preparation method thereof
JP5560572B2 (en) CATALYST FOR CARBON NANOTUBE PRODUCING, METHOD FOR PRODUCING THE SAME, METHOD FOR PRODUCING CARBON NANOTUBE-CONTAINING COMPOSITION, AND CARBON NANOTUBE-CONTAINING COMPOSITION
CN111974435B (en) Preparation method and application of high-stability Cu/N-doped carbon nanosheet catalyst
CN107597162A (en) A kind of nitrogen-doped carbon material rich in CNTs and Co particles with difunctional oxygen catalytic performance and its preparation method and application
Jiang et al. Metal–organic frameworks derived magnetic Fe3O4/C for catalytic transfer hydrogenation of furfural to furfuryl alcohol
KR101735337B1 (en) Three-dimensional mesoporous graphene derived from Ni(II) complexes and preparation method thereof
Abbasi et al. Efficient CO oxidation over palladium supported on various MOFs: synthesis, amorphization, and space velocity of hydrogen stream
JP7421608B1 (en) Metal particle-supported porous carbon material and its manufacturing method, precursor of metal particle-supported porous carbon material, and catalyst material and electrode material using metal particle-supported porous carbon material
JP7048693B1 (en) Porous carbon material and its manufacturing method, precursor of porous carbon material, and electrode material using porous carbon material
Uppara et al. The catalytic activity of Ce-Hf, Ce-Hf-Mg mixed oxides and RuO2/HfO2 deposited on CeO2: Role of superoxide/peroxide in soot oxidation reaction
JP7086152B2 (en) Porous carbon material and its manufacturing method, precursor of porous carbon material, and electrode material using porous carbon material
JP5758228B2 (en) Supported catalysts containing rhodium and gold
Pacuła et al. Preparation and characterization of the electroactive composites containing nickel nanoparticles and carbon nanotubes
Oh et al. Spray pyrolysis facilitated construction of carbon nanotube-embedded hollow CoFe electrocatalysts demonstrating excellent durability and activity for the oxygen reduction reaction
KR101815756B1 (en) Hollow Porous Carbon Composites Containing Metal Particles And Method For Preparing The Same
Salton et al. Lanthanoid coordination compounds as diverse self-templating agents towards hierarchically porous Fe–N–C electrocatalysts
Lu et al. Effects of the ratio of Cu/Co and metal precursors on the catalytic activity over Cu-Co/Al2O3 prepared using the polyol process
JP7293320B2 (en) Porous carbon material, method for producing the same, precursor of porous carbon material, and electrode material using porous carbon material

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220801

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20231003

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20231024

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20240109

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20240112

R150 Certificate of patent or registration of utility model

Ref document number: 7421608

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150