JP2008259993A - Method for dispersing and fixing gold fine particle to carrier, gold fine particle-deposited carrier obtained thereby, catalyst and colorant - Google Patents

Method for dispersing and fixing gold fine particle to carrier, gold fine particle-deposited carrier obtained thereby, catalyst and colorant Download PDF

Info

Publication number
JP2008259993A
JP2008259993A JP2007106198A JP2007106198A JP2008259993A JP 2008259993 A JP2008259993 A JP 2008259993A JP 2007106198 A JP2007106198 A JP 2007106198A JP 2007106198 A JP2007106198 A JP 2007106198A JP 2008259993 A JP2008259993 A JP 2008259993A
Authority
JP
Japan
Prior art keywords
gold
carrier
fine particles
gold fine
catalyst
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007106198A
Other languages
Japanese (ja)
Other versions
JP4970120B2 (en
Inventor
Masaki Haruta
正毅 春田
Tamao Ishida
玉青 石田
Ippei Okuda
一平 奥田
Kyoko Kuroda
杏子 黒田
Naoto Kinoshita
直人 木下
Toshiya Suenaga
隼也 末永
Yusuke Yamaguchi
祐介 山口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokyo Metropolitan Public University Corp
Original Assignee
Tokyo Metropolitan Public University Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Metropolitan Public University Corp filed Critical Tokyo Metropolitan Public University Corp
Priority to JP2007106198A priority Critical patent/JP4970120B2/en
Publication of JP2008259993A publication Critical patent/JP2008259993A/en
Application granted granted Critical
Publication of JP4970120B2 publication Critical patent/JP4970120B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for easily depositing a nano-ordered gold fine particle or gold cluster on a carrier in a short time regardless of the material of the carrier. <P>SOLUTION: A sublimable gold precursor (a dimethyl-gold-acetylacetonate complex, a dimethyl-gold-trifluoroacetylacetonate complex, a chlorotrimethylphosphine-gold complex, a methyl(trimethylphosphine)-gold complex or the like) and the inorganic or organic carrier (a polymer, an inorganic oxide, activated carbon, a porous metal complex or the like) are mixed in a solid phase at room temperature under normal pressure while imparting mechanical friction to them and then the obtained mixture is deoxidized so that the gold fine particle is dispersed and fixed to the surface of the carrier. The obtained gold nanoparticle- or gold cluster-deposited carrier exhibits excellent characteristics when used as an oxidation catalyst for oxidizing glucose into a gluconic acid, or a colorant. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、金微粒子を担体に分散・固定する方法、この方法により形成された金微粒子担持担体、およびこの金微粒子担持担体からなる触媒ならびに着色剤に関する。   The present invention relates to a method for dispersing and fixing gold fine particles on a carrier, a gold fine particle-supported carrier formed by this method, a catalyst comprising the gold fine particle-supported carrier, and a colorant.

貴金属は、種々の装飾材料、歯科用材料、電子回路材料、触媒材料、例えば有機物の酸化あるいは還元反応触媒、自動車排気ガスの浄化触媒や、燃料電池用の触媒などとして広く用いられている。触媒として用いる場合、貴金属は高価なことと、その性能を最大限引き出すため、ナノ粒子として露出表面積を大きくする工夫がなされている。具体的には、比表面積が大きく、熱的、化学的安定性の高いシリカやアルミナ、チタニアなどの金属酸化物、あるいは活性炭、カーボンブラックなどの炭素材料を担体に用い、その表面に貴金属がナノ粒子として分散・固定された状態とされて用いられている。   Precious metals are widely used as various decorative materials, dental materials, electronic circuit materials, catalyst materials, for example, organic matter oxidation or reduction reaction catalysts, automobile exhaust gas purification catalysts, and fuel cell catalysts. When used as a catalyst, precious metals are expensive, and in order to maximize their performance, the invention has been devised to increase the exposed surface area as nanoparticles. Specifically, metal oxides such as silica, alumina, and titania with high specific surface area and high thermal and chemical stability, or carbon materials such as activated carbon and carbon black are used as a support, and noble metal is nano-sized on the surface. It is used in a dispersed and fixed state as particles.

貴金属中、金は他の貴金属に比べれば安価であるものの、触媒活性が極めて乏しいと従来考えられていた。これに対し、発明者は、金を好ましくは直径10nm以下の超微粒子(ナノ粒子)として種々の金属酸化物担体上に分散・固定することにより、高い触媒活性が発現されること、さらに金ナノ粒子触媒は、低温CO酸化、HCHO酸化、プロピレンの気相一段エポキシ化、低温水性ガスシフト反応、酸素と水素からの直接過酸化水素合成、炭化水素類の部分酸化など、多くの反応に対して、他の貴金属より優れた触媒活性を発現することを見出している(例えば、特許文献1、非特許文献1参照)。また、その他にも、金ナノ粒子は、不飽和化合物の水添、アルコールの酸化、NOxの還元、エポキシドやアミンのカルボニル化などの触媒活性を有することも報告されている。さらに、本発明者は、金の粒子径が2nm以下、原子数で300個以内のクラスターになると、触媒特性がさらに激変する場合があることも見出した。   Among noble metals, gold has been conventionally considered to have very poor catalytic activity, although it is cheaper than other noble metals. On the other hand, the inventor preferably exhibits high catalytic activity by dispersing and fixing gold on various metal oxide supports as ultrafine particles (nanoparticles) preferably having a diameter of 10 nm or less. Particle catalysts are used for many reactions such as low-temperature CO oxidation, HCHO oxidation, gas-phase one-stage epoxidation of propylene, low-temperature water gas shift reaction, direct hydrogen peroxide synthesis from oxygen and hydrogen, and partial oxidation of hydrocarbons. It has been found that it exhibits catalytic activity superior to other noble metals (see, for example, Patent Document 1 and Non-Patent Document 1). In addition, gold nanoparticles have been reported to have catalytic activities such as hydrogenation of unsaturated compounds, oxidation of alcohols, reduction of NOx, carbonylation of epoxides and amines. Furthermore, the present inventor has also found that when the gold particle diameter is 2 nm or less and the number of atoms is within 300 clusters, the catalyst characteristics may be further drastically changed.

金属酸化物に金微粒子を分散・固定化する方法としては、従来、含浸法、共沈法、析出沈殿法等、種々の方法が知られているが、これらの方法は、水などの溶媒を用いることが必要とされる上、高温での焼成が必要とされることから、担体として有機高分子を用いる場合には採用できない。また、炭素材料上に金微粒子を分散固定する方法として、例えば塩基前処理した活性炭を用い、含浸法でナノサイズに粒径を揃えた活性炭担持白金触媒の粉体と、フェロセンあるいはルテノセンの粉体を固相混合し水素還元することにより、活性炭担持Ru−Pt、Pt−Feバイメタリック触媒を調製する方法が知られている(例えば、非特許文献2参照)。この方法では、一段階目の白金担持の際含浸法を用いており、含浸法では水溶液としてPt前駆体を活性炭に含浸させることが必要とされ、比表面積の小さい高分子担体に対してはこのような含浸法は採用できない。また、この方法では、固相混合も高温、不活性気体中で行うことが必要とされる。   As a method for dispersing and fixing gold fine particles in a metal oxide, various methods such as an impregnation method, a coprecipitation method, and a precipitation method are known. However, these methods use a solvent such as water. Since it is required to be used and firing at a high temperature is required, it cannot be employed when an organic polymer is used as a carrier. Also, as a method for dispersing and fixing gold fine particles on a carbon material, for example, activated carbon pretreated with a base, and activated carbon-supported platinum catalyst powder having a nano-sized particle size by impregnation method, and ferrocene or ruthenocene powder A method for preparing activated carbon-supported Ru—Pt and Pt—Fe bimetallic catalysts by solid-phase mixing and hydrogen reduction is known (see, for example, Non-Patent Document 2). In this method, an impregnation method is used for loading platinum in the first stage. In the impregnation method, it is necessary to impregnate activated carbon with a Pt precursor as an aqueous solution. Such an impregnation method cannot be adopted. In this method, it is also necessary to perform solid phase mixing in a high temperature and inert gas.

高分子表面への金微粒子の分散・固定化方法として、表面析出還元法が知られている。しかしこの方法においても溶媒中での処理が必要とされるし、無機酸化物ではナノオーダーの小さな粒径の金微粒子は得られない。これ以外にも、高分子結晶と硝酸銀水溶液もしくは硝酸銀メタノール溶液とをメノウ乳鉢で混合し、光還元することにより平均粒径5nm程度の銀ナノ粒子を調製する方法が知られている(例えば、非特許文献3、4参照)。しかし、この方法では、ポリムコン酸のカルボキシレートを銀イオンに交換すること、および担体は層状高分子結晶であることが必須である。さらには、NaOH水溶液で前処理した第四級アンモニウム基を官能基として有するイオン交換樹脂を加熱乾燥後金前駆体水溶液で処理し、150℃で6時間加熱することにより金ナノ粒子を担持させる方法(非特許文献5参照)、陽イオン交換樹脂に金微粒子を担持する方法(非特許文献6参照)も知られているが、これらの方法は、特定のイオン交換樹脂を用いる、水溶液中で処理する、加熱処理するあるいは還元剤を用いるなどの必要性がある。   A surface precipitation reduction method is known as a method for dispersing and fixing gold fine particles on a polymer surface. However, even in this method, treatment in a solvent is required, and gold fine particles having a small particle size of nano order cannot be obtained with inorganic oxides. In addition to this, there is known a method of preparing silver nanoparticles having an average particle diameter of about 5 nm by mixing polymer crystals and an aqueous silver nitrate solution or an aqueous silver nitrate methanol solution in an agate mortar and photoreducing (for example, non- (See Patent Documents 3 and 4). However, in this method, it is essential that the carboxylate of polymuconic acid is exchanged for silver ions and that the carrier is a layered polymer crystal. Further, a method of supporting gold nanoparticles by treating an ion exchange resin having a quaternary ammonium group pre-treated with an aqueous NaOH solution as a functional group after heat drying with an aqueous gold precursor solution and heating at 150 ° C. for 6 hours. (See Non-Patent Document 5), and methods of supporting gold fine particles on a cation exchange resin (see Non-Patent Document 6) are also known, but these methods are performed in an aqueous solution using a specific ion exchange resin. There is a need for heat treatment or use of a reducing agent.

さらには、金微粒子の担体への分散・固定化法として、気相蒸着法が知られている(例えば、非特許文献7〜9参照)。この方法は無機酸化物、高分子担体両方に適用でき、従来法の中では最も汎用性は高いが、上述の方法に比べ得られる金微粒子の粒径が比較的大きくなる欠点がある。また、有機金錯体減圧吸着法も知られている(例えば、特許文献2参照)が、この方法では減圧装置を用いることが必要とされ、また金前駆体による担体処理方法も煩雑である。   Further, a vapor deposition method is known as a method for dispersing and immobilizing gold fine particles on a carrier (see, for example, Non-Patent Documents 7 to 9). This method can be applied to both inorganic oxides and polymer carriers, and is the most versatile among the conventional methods, but has the disadvantage that the particle size of the gold fine particles obtained is relatively large compared to the above method. An organic gold complex vacuum adsorption method is also known (see, for example, Patent Document 2), but this method requires the use of a vacuum device, and the carrier treatment method using a gold precursor is also complicated.

特公平5−49338号公報Japanese Patent Publication No. 5-49338 特開平9−122478号公報Japanese Patent Laid-Open No. 9-122478 Haruta,M.Chem.Record,2003,3(2),75−87.Haruta, M .; Chem. Record, 2003, 3 (2), 75-87. Hodoshima,S.et al,Stud.Surf.Sci.Catal.2001,132、323−326.Hodoshima, S .; et al, Stud. Surf. Sci. Catal. 2001, 132, 323-326. Matsumoto,A.et al,Macromol.Chem.Phys.2006,207,361.Matsumoto, A .; et al, Macromol. Chem. Phys. 2006, 207, 361. Matsumoto,A.et al,Chem.Lett.2004,33,42.Matsumoto, A .; et al, Chem. Lett. 2004, 33, 42. Feng Shi他4名,J.Am.Chem.Soc.2005,127,21,4182−4183.Feng Shi and 4 others. Am. Chem. Soc. 2005, 127, 21, 4182-4183. Gitanjani Majumdar他4名,Langmuir,2005,21,5,1663−1667.Gitanjani Majumdar and 4 others, Langmuir, 2005, 21, 5, 1663-1667. Okumura,M.et al,“Chemical Vapor Deposition of Gold Nanoparticles on MCM−41 and Their Catalytic Activities for the Low−temperature Oxidation of CO and H2”,Chem.Lett.1998,315−316.Okumura, M .; et al, “Chemical Vapor Deposition of Gold Nanoparticulates on MCM-41 and Their Catalytic Activities for the Low-tempered Oxidation of CO2”. Lett. 1998, 315-316. Roland A.Fischer他4名、“Loading of porous metal−organic open frameworks with organometallic CVD precursors:inclusion compounds of the type[LnM]a@MOF−5”,J.Mater.Chem.2006,16,2464−2472.Roland A.R. Fischer et al., “Loading of porous metal-organic open frameworks with organic CVD precursors: inclusion compounds of the type [Mn-M5]”. Mater. Chem. 2006, 16, 2464-2472. Roland A. Fischer他7名、“Metal@MOF:Loading of Highly Porous Coordination Polymers Host Lattices by Metal Organic Chemical Vapor Deposition”,Angew.Chem.Int.Ed.2005,44,6237−6241.Roland A.R. Fischer et al., “Metal @ MOF: Loading of Highly Porous Coordination Polymers Host Lattice by Metal Organic Chemical Deposition”, Angew. Chem. Int. Ed. 2005, 44, 6237-6241.

このように、従来金微粒子を担体に担持させる方法として種々の方法が知られているが、従来知られた方法は、いずれも煩雑な処理が必要とされる上、担体上に金前駆体を析出または担持させるために、水系など溶液中での処理が必要とされる、後処理での高温処理の必要性がある、乾式での処理により金微粒子あるいは金前駆体の担持が可能となったとしても乾式処理のために特殊な装置が必要とされる、対象となる担体材料が特定のものに限定される、ナノオーダーの金微粒子を担体に分散・固定することができない、処理に長時間を要するなどの種々の問題を有するものであり、担体の材質に関係なく、短時間且つ簡便に金微粒子担持触媒を製造することができるものではなかった。   As described above, various methods are conventionally known as methods for supporting gold fine particles on a carrier. However, each of the conventionally known methods requires a complicated treatment, and a gold precursor is supported on the carrier. In order to deposit or support, it is necessary to perform treatment in a solution such as an aqueous system, there is a need for high temperature treatment in post-treatment, and it is possible to support gold fine particles or gold precursors by dry processing. However, special equipment is required for dry processing, the target carrier material is limited to a specific one, nano-order gold fine particles cannot be dispersed and fixed on the carrier, processing is long Therefore, regardless of the material of the carrier, it was not possible to produce the gold fine particle supported catalyst in a short time and simply.

本発明は、このような状況に鑑みなされたもので、上記のごとき問題を有さない、すなわち、担体の材質に関係なく、短時間且つ簡便にナノオーダーの金微粒子あるいは金クラスターを担体上に担持させる方法を提供することである。
また、本発明は、上記方法で製造されたナノオーダーの金微粒子あるいは金クラスターが表面もしくは担体の細孔内部に分散・固定された担体を提供することである。
また、本発明は、前記方法で製造されたナノオーダーの金微粒子が表面もしくは担体の細孔内部に分散・固定された担体からなる高活性の触媒を提供することである。
また、本発明は、前記方法で製造されたナノオーダーの金微粒子が表面もしくは担体の細孔内部に分散・固定された担体からなる着色剤を提供することである。
The present invention has been made in view of such circumstances, and does not have the above-described problems. That is, regardless of the material of the carrier, nano-order gold fine particles or gold clusters can be easily and quickly formed on the carrier. It is to provide a method of carrying.
Another object of the present invention is to provide a carrier in which nano-order gold fine particles or gold clusters produced by the above method are dispersed and fixed on the surface or inside the pores of the carrier.
Another object of the present invention is to provide a highly active catalyst comprising a support in which nano-order gold fine particles produced by the above method are dispersed and fixed on the surface or inside the pores of the support.
Another object of the present invention is to provide a colorant comprising a carrier in which nano-order gold fine particles produced by the above method are dispersed and fixed on the surface or inside the pores of the carrier.

本発明者は、鋭意研究を行ったところ、金前駆体として昇華性の金前駆体を用い、これと担体とを固相で摩擦を加えながら混合するだけで、担体表面もしくは担体の細孔内部に金前駆体が担持され、これを還元処理することにより、担体の種類を問わず、また短時間に20nm以下の金ナノ粒子または金クラスターがその表面もしくは担体の細孔内部に分散・固定された触媒または着色剤が得られることを見出して、本発明をなしたものである。なお、以下において単に金微粒子あるいは金ナノ粒子という場合、これらには金クラスターをも包含するものとして使用される。   As a result of intensive research, the present inventor has used a sublimable gold precursor as a gold precursor, and this is mixed with the carrier while applying friction in the solid phase. The gold precursor is supported on the surface, and by reducing this, gold nanoparticles or gold clusters of 20 nm or less are dispersed and fixed in the surface or inside the pores of the support in a short time regardless of the type of support. The present invention has been made by finding that a catalyst or a colorant can be obtained. In the following, when simply referred to as gold fine particles or gold nanoparticles, these are used as including gold clusters.

本発明は次の(1)〜(11)に記載の担体表面もしくは担体の細孔内部に金微粒子を分散・固定する方法、この方法によって得られた金微粒子を担持する触媒または着色剤を包含する。   The present invention includes a method for dispersing and fixing gold fine particles on the surface of the carrier or the pores of the carrier as described in (1) to (11) below, and a catalyst or a colorant for carrying the gold fine particles obtained by this method. To do.

(1)昇華性の金前駆体と無機または有機担体とを機械的摩擦を加えながら固相混合した後、還元することを特徴とする担体表面もしくは担体の細孔内部に金微粒子を分散・固定する方法。 (1) A sublimable gold precursor and an inorganic or organic carrier are solid-phase mixed while applying mechanical friction and then reduced, and then the gold fine particles are dispersed and fixed on the carrier surface or inside the pores of the carrier. how to.

(2)前記無機または有機担体が、高分子、金属錯体、炭素系物質、金属酸化物、金属水酸化物および金属硫化物から選ばれた少なくとも一種であることを特徴とする上記(1)に記載の担体表面もしくは担体の細孔内部に金微粒子を分散・固定する方法。 (2) The above (1), wherein the inorganic or organic carrier is at least one selected from a polymer, a metal complex, a carbon-based material, a metal oxide, a metal hydroxide, and a metal sulfide. A method of dispersing and fixing gold fine particles on the surface of the carrier or inside the pores of the carrier.

(3)無機または有機担体が多孔質の粒子であることを特徴とする上記(1)または(2)に記載の担体表面もしくは担体の細孔内部に金微粒子を分散・固定する方法。 (3) The method for dispersing and fixing gold fine particles on the surface of the carrier or inside the pores of the carrier according to (1) or (2), wherein the inorganic or organic carrier is a porous particle.

(4)昇華性の金前駆体が、(CH32Au(CH3COCHCOCH3)、(CH32Au(CF3COCHCOCH3)、(CH32Au(CF3COCHCOCF3)、(C252Au(CH3COCHCOCH3)、(CH32Au(C65COCHCOCF3)、ClAuP(CH33、CH3AuP(CH33および下記一般式(1)あるいは(2)で表される金錯体から選ばれた少なくとも一種であることを特徴とする上記(1)〜(3)のいずれかに記載の担体表面もしくは担体の細孔内部に金微粒子を分散・固定する方法。 (4) Sublimable gold precursors are (CH 3 ) 2 Au (CH 3 COCHCOCH 3 ), (CH 3 ) 2 Au (CF 3 COCHCOCH 3 ), (CH 3 ) 2 Au (CF 3 COCHCOCF 3 ), (C 2 H 5 ) 2 Au (CH 3 COCHCOCH 3 ), (CH 3 ) 2 Au (C 6 H 5 COCHCOCF 3 ), ClAuP (CH 3 ) 3 , CH 3 AuP (CH 3 ) 3 and the following general formula ( 1) or at least one selected from gold complexes represented by (2), wherein the fine gold particles are formed on the surface of the carrier or inside the pores of the carrier according to any one of the above (1) to (3) To disperse and fix.

(式中、R1は−CH3または−CF3を表す。) (In the formula, R 1 represents —CH 3 or —CF 3. )

(式中、R2は、−CH3または−CF3を表し、R3は、バレリル基、イソバレリル基、ピバロイル基、チグロイル基、アンゲロイル基、セネシオイル基、フェニル基、チエニル基、またはフリル基を表す。) (In the formula, R 2 represents —CH 3 or —CF 3 , and R 3 represents valeryl group, isovaleryl group, pivaloyl group, tigloyl group, angeloyl group, senecioyl group, phenyl group, thienyl group, or furyl group. To express.)

(5)還元が、還元性ガス雰囲気下で行われることを特徴とする上記(1)〜(4)のいずれかに記載の担体表面もしくは担体の細孔内部に金微粒子を分散・固定する方法。 (5) The method of dispersing and fixing gold fine particles on the surface of the carrier or inside the pores of the carrier according to any one of (1) to (4), wherein the reduction is performed in a reducing gas atmosphere .

(6)還元が、焼成還元法により行われることを特徴とする上記(1)〜(4)のいずれかに記載の担体表面もしくは担体の細孔内部に金微粒子を分散・固定する方法。 (6) The method of dispersing and fixing gold fine particles on the surface of the carrier or inside the pores of the carrier according to any one of (1) to (4), wherein the reduction is performed by a calcination reduction method.

(7)金微粒子の平均粒径が20nm以下であることを特徴とする上記(1)〜(6)のいずれかに記載の担体表面もしくは担体の細孔内部に金微粒子を分散・固定する方法。 (7) The method for dispersing and fixing the gold fine particles on the surface of the carrier or inside the pores of the carrier according to any one of the above (1) to (6), wherein the average particle size of the gold fine particles is 20 nm or less .

(8)上記(1)〜(7)のいずれかに記載の方法で得られた金微粒子が分散・固定化された担体。 (8) A carrier in which gold fine particles obtained by the method according to any one of (1) to (7) above are dispersed and immobilized.

(9)上記(8)に記載の金微粒子が分散・固定化された担体からなる触媒。 (9) A catalyst comprising a carrier in which the gold fine particles described in (8) are dispersed and immobilized.

(10)触媒がグルコース酸化触媒、一酸化炭素酸化触媒またはアルコール酸化触媒であることを特徴とする上記(9)に記載の触媒。 (10) The catalyst according to (9) above, wherein the catalyst is a glucose oxidation catalyst, a carbon monoxide oxidation catalyst or an alcohol oxidation catalyst.

(11)上記(8)に記載の金微粒子が分散・固定化された担体からなる着色剤。   (11) A colorant comprising a carrier in which the gold fine particles according to (8) are dispersed and fixed.

本発明の金ナノ粒子または金クラスター担持触媒および着色剤は、昇華性の金前駆体と担体を固相で混合後還元することにより得られる。本発明は固相で混合するので従来の方法に比べて溶媒を用いずに金微粒子を担持できる。また本発明の方法は、化学気相蒸着のように特別な装置を必要とせず、調製時間も大幅に短縮でき、簡便にナノオーダーの金微粒子(ナノ粒子、クラスター)を担持することができる。   The gold nanoparticle or gold cluster-supported catalyst and colorant of the present invention can be obtained by mixing a sublimable gold precursor and a support in a solid phase and then reducing the mixture. Since the present invention is mixed in a solid phase, gold fine particles can be supported without using a solvent as compared with the conventional method. Further, the method of the present invention does not require a special apparatus as in chemical vapor deposition, can greatly shorten the preparation time, and can easily support nano-order gold fine particles (nanoparticles, clusters).

また、本発明では、担体は高分子、無機酸化物、多孔性高分子金属錯体、活性炭など種々幅広い材料に適用可能であり、担体に特定の官能基なども必要としない。また担体は多孔性であってもなくてもよい。   In the present invention, the carrier can be applied to a wide variety of materials such as a polymer, an inorganic oxide, a porous polymer metal complex, and activated carbon, and a specific functional group is not required for the carrier. The carrier may or may not be porous.

また、本発明で製造された金ナノ粒子および金クラスター担持担体は、高活性の触媒特性を示し、さらに担体の材質、金担持量、金微粒子の大きさなどにより薄緑色、薄青色、薄青緑色、緑色、灰緑色、薄黄色、ピンク色、薄茶色、紫色、灰色など種々の色に着色した粒子が得られることから、種々の色に対応した着色剤として利用することができる。   Further, the gold nanoparticle and gold cluster-supported carrier produced in the present invention show highly active catalytic properties, and further, light green, light blue, light blue depending on the material of the carrier, the amount of gold supported, the size of the gold fine particles, etc. Since particles colored in various colors such as green, green, grayish green, light yellow, pink, light brown, purple, and gray can be obtained, they can be used as colorants corresponding to various colors.

以下、本発明をさらに詳細に説明する。
本発明の金微粒子を担持する担体は、昇華性の金前駆体と無機または有機担体とを機械的摩擦を加えながらの固相混合(例えば、摩砕、物理混合など)後、固相混合により表面もしくは担体の細孔内部に金前駆体を担持する担体を還元処理することにより得られる。
Hereinafter, the present invention will be described in more detail.
The carrier carrying the gold fine particles of the present invention is obtained by solid phase mixing (for example, grinding, physical mixing, etc.) while applying mechanical friction to a sublimable gold precursor and an inorganic or organic carrier, followed by solid phase mixing. It can be obtained by reducing the carrier carrying the gold precursor on the surface or inside the pores of the carrier.

本発明の方法で用いられる金前駆体は、少なくとも昇華性であることが必要とされるが、昇華性であることのほかは特に限定されるものではない。また、昇華性の程度も特に限定されるものではない。本発明で用いられる昇華性の金前駆体としては、有機金錯体が好ましいものとして挙げられる。これら昇華性の有機金錯体としては、例えば(CH32Au(CH3COCHCOCH3)、(CH32Au(CF3COCHCOCH3)、(CH32Au(CF3COCHCOCF3)、(C252Au(CH3COCHCOCH3)、(CH32Au(C65COCHCOCF3)、ClAuP(CH33、CH3AuP(CH33、下記一般式(1)あるいは(2)で表される金錯体等が挙げられ、ジメチル金アセチルアセトナート錯体、ジメチル金トリフルオロアセチルアセトナート錯体、クロロトリメチルホスフィン金錯体およびメチル(トリメチルホスフィン)金錯体などが好ましいものである。 The gold precursor used in the method of the present invention is required to be at least sublimable, but is not particularly limited except that it is sublimable. Further, the degree of sublimation is not particularly limited. Preferred examples of the sublimable gold precursor used in the present invention include organic gold complexes. Examples of these sublimable organic gold complexes include (CH 3 ) 2 Au (CH 3 COCHCOCH 3 ), (CH 3 ) 2 Au (CF 3 COCHCOCH 3 ), (CH 3 ) 2 Au (CF 3 COCHCOCF 3 ), (C 2 H 5 ) 2 Au (CH 3 COCHCOCH 3 ), (CH 3 ) 2 Au (C 6 H 5 COCHCOCF 3 ), ClAuP (CH 3 ) 3 , CH 3 AuP (CH 3 ) 3 , Examples thereof include gold complexes represented by 1) or (2), and preferred are dimethylgold acetylacetonate complex, dimethylgold trifluoroacetylacetonate complex, chlorotrimethylphosphine gold complex, and methyl (trimethylphosphine) gold complex. It is.

(式中、R1は−CH3または−CF3を表す。) (In the formula, R 1 represents —CH 3 or —CF 3. )

(式中、R2は、−CH3または−CF3を表し、R3は、バレリル基、イソバレリル基、ピバロイル基、チグロイル基、アンゲロイル基、セネシオイル基、フェニル基、チエニル基、またはフリル基を表す。) (In the formula, R 2 represents —CH 3 or —CF 3 , and R 3 represents valeryl group, isovaleryl group, pivaloyl group, tigloyl group, angeloyl group, senecioyl group, phenyl group, thienyl group, or furyl group. To express.)

本発明において用いられる担体は、従来触媒、センサーなどの分野で金属などを担持するための担体として知られた材料であればよく、特に限定されない。このような担体としては、高分子、多孔性金属錯体、炭素系物質、金属酸化物、金属硫化物、金属、金属水酸化物、金属炭酸塩、有機結晶などが挙げられる。以下に、これらの材料について具体的に説明する。   The carrier used in the present invention is not particularly limited as long as it is a material conventionally known as a carrier for carrying a metal or the like in the field of a catalyst, a sensor or the like. Examples of such carriers include polymers, porous metal complexes, carbon-based materials, metal oxides, metal sulfides, metals, metal hydroxides, metal carbonates, and organic crystals. Below, these materials are demonstrated concretely.

本発明において担体材料として用いられる高分子としては、従来公知の高分子材料であればよく特に限定されない。高分子材料の例としては、ビニル系高分子、例えば、ポリスチレン(PS)などのスチレン系樹脂、ポリメタクリル酸メチル(PMMA)などの(メタ)アクリル樹脂、ポリ塩化ビニル(PVC)、ポリ塩化ビニリデン(PVDC)、ポリエチレン(PE)、ポリプロピレン(PP)、ポリアクリロニトリル(PAN)、ポリビニルアルコール(PVA)、ポリビニルブチラールなどのアセタール樹脂、ポリ酢酸ビニル(PVAc)、ポリアクリルアミド(PAA)、ポリビニルエーテル系樹脂など;ジエン系樹脂、例えばポリブタジエン(PBd)、ポリイソプレン(PIP)など;縮合系樹脂、例えばナイロン6、ナイロン66などのポリアミド樹脂、ポリエチレンテレフタレート(PET)、ポリラクトンなどのポリエステル樹脂、ポリカーボネート(PC)、ポリオキシメチレン(POM)などのポリエーテル樹脂;硬化型樹脂、例えばポリウレタン樹脂、アルキッド樹脂、フェノール樹脂、ポリアニリン(PANI)など;エポキシ樹脂;シリコーン樹脂;セルロース系樹脂などの天然または半合成樹脂;その他、キシレン樹脂、フラン樹脂、テルペン樹脂、石油樹脂、ケトン樹脂、ポリ環状チオエーテルなどの硫黄系樹脂などが挙げられる。これらの樹脂は多孔性であってもなくてもよく、また前処理がなされていても、なされていなくてもよい。さらには、樹脂担体上に既に他の金属などが担持されているものであってもよい。   The polymer used as the carrier material in the present invention is not particularly limited as long as it is a conventionally known polymer material. Examples of polymer materials include vinyl polymers, for example, styrene resins such as polystyrene (PS), (meth) acrylic resins such as polymethyl methacrylate (PMMA), polyvinyl chloride (PVC), and polyvinylidene chloride. (PVDC), polyethylene (PE), polypropylene (PP), polyacrylonitrile (PAN), polyvinyl alcohol (PVA), acetal resins such as polyvinyl butyral, polyvinyl acetate (PVAc), polyacrylamide (PAA), polyvinyl ether resins Diene resins such as polybutadiene (PBd) and polyisoprene (PIP); condensation resins such as polyamide resins such as nylon 6 and nylon 66, polyester resins such as polyethylene terephthalate (PET) and polylactone, Polyether resins such as carbonate (PC) and polyoxymethylene (POM); curable resins such as polyurethane resins, alkyd resins, phenol resins, polyaniline (PANI), etc .; epoxy resins; silicone resins; Semi-synthetic resins; other examples include xylene resins, furan resins, terpene resins, petroleum resins, ketone resins, and sulfur resins such as polycyclic thioethers. These resins may or may not be porous, and may or may not be pretreated. Further, another metal or the like already supported on the resin carrier may be used.

多孔性金属錯体としては、例えば[Cu2(pzdc)2(pyz)]n、[Cu2(pzdc)2(bpy)]、[Cu2(pzdc)2(dpe)]n、[Cu2(pzdc)2(pia)]n、[Cu2(bpdc)2(TED)]n(式中、「pzdc」はピラジン−2,3−ジカルボキシレートを、「pyz」はピラジンを、「bpy」は4,4’−ビピリジンを、「dpe」は1,2−ジ(ピリジル)エチレンを、「pia」はN−(4−ピリジル)イソニコチンアミドを、「bpdc」は4,4’−ビフェニルジカルボキシレートを、「TED」はトリエチレンジアミンを表す。)などの多孔性銅錯体、例えば、[Zn4O(bdc)3]n(「bdc」はベンゼンジカルボキシレートとその誘導体を表す。)(非特許文献10参照)などの多孔性亜鉛錯体、例えば[Ni2(bpy)(NO34]n(「bpy」は4,4’−ビピリジンを表す。)(非特許文献11参照)などの多孔性ニッケル錯体、例えば[Co(1,3,5−Hbtc)(py)2・1.5py)]n(「Hbtc」はベンゼントリカルボン酸を、「py」はピリジンを表す。)(非特許文献12参照)などの多孔性コバルト錯体、多孔性クロム錯体、多孔性銀錯体などの周知あるいは公知多孔性金属錯体が挙げられる。これら多孔性金属錯体は前処理されていてもよく、また既に他の金属などの微粒子が担持されているものであってもよい。なお、多孔性錯体について更に必要であれば、多孔性錯体に関するレビュー文献である下記非特許文献13および14を参照されたい。 Examples of porous metal complexes include [Cu 2 (pzdc) 2 (pyz)] n , [Cu 2 (pzdc) 2 (bpy)] n , [Cu 2 (pzdc) 2 (dpe)] n , [Cu 2 (Pzdc) 2 (pia)] n , [Cu 2 (bpdc) 2 (TED)] n (where “pzdc” is pyrazine-2,3-dicarboxylate, “pyz” is pyrazine, “bpy” "4,4'-bipyridine," dpe "1,2-di (pyridyl) ethylene," pia "N- (4-pyridyl) isonicotinamide," bpdc "4,4'- Biphenyl dicarboxylates, “TED” represents triethylenediamine) and the like, eg, [Zn 4 O (bdc) 3 ] n (“bdc” represents benzene dicarboxylate and its derivatives. (Non-Patent Document 1) 0), for example, [Ni 2 (bpy) (NO 3 ) 4 ] n (“bpy” represents 4,4′-bipyridine) (see Non-Patent Document 11). Nickel complex, for example, [Co (1,3,5-Hbtc) (py) 2 .1.5py)] n (“Hbtc” represents benzenetricarboxylic acid, and “py” represents pyridine) (Non-patent Document 12) Well-known or known porous metal complexes such as porous cobalt complexes, porous chromium complexes, and porous silver complexes. These porous metal complexes may be pretreated or may already carry fine particles such as other metals. In addition, if further necessary for the porous complex, refer to the following non-patent documents 13 and 14, which are review literatures regarding the porous complex.

M.Eddaoudi,J.Kim,N.Rosi,D.Vodak,J.Wachter,M.O’Keeffe,O.M.Yaghi,Science 2002,295,469.M.M. Edaudaudi, J. et al. Kim, N .; Rosi, D.C. Vodak, J .; Wachter, M .; O'Keeffe, O.I. M.M. Yagi, Science 2002, 295, 469. X.Zhao,B.Xiao,A.J.Fletcher,K.M.Tomas,D.Bradshaw,M.J.Rosseinsky,Science 2004,306,1012.X. Zhao, B.A. Xiao, A .; J. et al. Fletcher, K.M. M.M. Thomas, D.C. Bradshaw, M .; J. et al. Rossensky, Science 2004, 306, 1012. O.M.Yaghi,G.Li,H.Li,Nature 1995,378,703.O. M.M. Yagi, G .; Li, H .; Li, Nature 1995, 378, 703. S.Kitagawa,R.Kitaura,S.I,Noro,Angew.Chem.Int.Ed.2004,43,2334.S. Kitagawa, R .; Kitaura, S .; I, Noro, Angew. Chem. Int. Ed. 2004, 43, 2334. J.L.C.Rowsell,O.M.Yaghi,Microporous and Mesoporous Materials 2004,73,3.J. et al. L. C. Rowsell, O.M. M.M. Yaghi, Microporous and Mesoporous Materials 2004, 73,3.

炭素系物質としては、例えば活性炭、炭素繊維、カーボンブラック、黒鉛やナノポーラスカーボン、フラーレン、カーボンナノチューブ、カーボンナノホーン等のナノ構造を有する炭素系材料などが挙げられる。なお、活性炭は塩基前処理がされているものでも、されていないものでもよい。活性炭としては、例えば関西熱化学製MSP−2000などが挙げられる。これら炭素系担体は比表面積が小さくても大きくてもよいが、比表面積(BET法)が通常200m2/g以上、特に500m2/g以上であることが好ましい。これら炭素系物質についても既に他の金属などの微粒子が担持されているものであってもよい。 Examples of the carbon-based material include carbon-based materials having nanostructures such as activated carbon, carbon fiber, carbon black, graphite, nanoporous carbon, fullerene, carbon nanotube, and carbon nanohorn. The activated carbon may or may not be subjected to base pretreatment. Examples of the activated carbon include MSP-2000 manufactured by Kansai Thermal Chemical. These carbon-based carriers may have a small or large specific surface area, but the specific surface area (BET method) is usually 200 m 2 / g or more, and particularly preferably 500 m 2 / g or more. These carbon-based substances may also be already loaded with fine particles such as other metals.

無機酸化物としては、例えば、酸化亜鉛、酸化鉄、酸化銅、酸化ランタン、酸化チタン、酸化コバルト、酸化ジルコニウム、酸化マグネシウム、酸化ベリリウム、酸化ニッケル、酸化クロム、酸化スカンジウム、酸化カドミウム、酸化インジウム、酸化スズ、酸化マンガン、酸化バナジウム、酸化セリウム、酸化アルミニウム、酸化ケイ素などの単一金属の金属酸化物;亜鉛、鉄、銅、ランタン、チタン、コバルト、ジルコニウム、マグネシウム、ベリリウム、ニッケル、クロム、スカンジウム、カドミウム、インジウム、スズ、マンガン、バナジウム、セリウム、アルミニウム、ケイ素などからなる群から選ばれる2種以上の金属の複合酸化物、ゼオライト(例えば、ZSM−5等)、メソポーラスシリケート(例えば、MCM−41等)、粘土、珪藻土、軽石等の天然鉱物等を用いることができる。これらは、必要に応じて混合して用いることも可能である。これらの中で好ましいものとしては、シリカ、アルミナ、チタニア、ジルコニア、マグネシア等の金属酸化物、シリカ・アルミナ、チタニア・シリカ、シリカ・マグネシア等の複合金属酸化物である。   Examples of the inorganic oxide include zinc oxide, iron oxide, copper oxide, lanthanum oxide, titanium oxide, cobalt oxide, zirconium oxide, magnesium oxide, beryllium oxide, nickel oxide, chromium oxide, scandium oxide, cadmium oxide, indium oxide, Single metal metal oxides such as tin oxide, manganese oxide, vanadium oxide, cerium oxide, aluminum oxide, silicon oxide; zinc, iron, copper, lanthanum, titanium, cobalt, zirconium, magnesium, beryllium, nickel, chromium, scandium , Cadmium, indium, tin, manganese, vanadium, cerium, aluminum, silicon, etc., a composite oxide of two or more metals selected from the group consisting of zeolite (for example, ZSM-5), mesoporous silicate (for example, MCM- 41 etc.) It can be used clay, diatomaceous earth, natural minerals such as pumice or the like. These can be mixed and used as necessary. Among these, metal oxides such as silica, alumina, titania, zirconia, and magnesia, and composite metal oxides such as silica / alumina, titania / silica, and silica / magnesia are preferable.

これら無機酸化物は、多孔性であってもなくてもよいが、多孔性のものが好ましく、比表面積(BET法)が通常50m2/g以上、特に100m2/g以上であることがより好ましい。また、無機酸化物は前処理されていても、されていなくてもよい。例えば好ましく用いられるシリカ、アルミナなど無機酸化物は、水素還元後焼成されていても、されていなくてもよい。 These inorganic oxides may or may not be porous, but are preferably porous and have a specific surface area (BET method) of usually 50 m 2 / g or more, particularly 100 m 2 / g or more. preferable. Moreover, the inorganic oxide may or may not be pretreated. For example, inorganic oxides such as silica and alumina that are preferably used may or may not be fired after hydrogen reduction.

さらに金属硫化物としては、モリブデン、タングステン、鉄、ニッケル、コバルト、白金、バナジウム、クロム、マンガン、アルミニウム等の硫化物を用いることができる。この中でも、特に硫化モリブデン、硫化タングステン、硫化鉄、硫化ニッケル、硫化コバルト等が好ましい。金属硫化物についても前処理などについては、無機酸化物と同様である。   Furthermore, sulfides such as molybdenum, tungsten, iron, nickel, cobalt, platinum, vanadium, chromium, manganese, and aluminum can be used as the metal sulfide. Among these, molybdenum sulfide, tungsten sulfide, iron sulfide, nickel sulfide, cobalt sulfide and the like are particularly preferable. Regarding the metal sulfide, the pretreatment and the like are the same as those of the inorganic oxide.

これら以外にも、ステンレススチール、鉄、銅、アルミニウムなどの金属微粉末、アルミニウム、ニッケル、コバルトなどの金属水酸化物やアルミニウム、コバルト、ニッケルなどの金属炭酸塩なども挙げられる。これらは前処理されていても、されていなくてもよいし、また他の金属微粒子が担持されたものでもよい。   In addition to these, metal fine powders such as stainless steel, iron, copper, and aluminum, metal hydroxides such as aluminum, nickel, and cobalt, and metal carbonates such as aluminum, cobalt, and nickel are also included. These may or may not be pretreated, or may carry other metal fine particles.

上記のとおり、本発明で用いられる担体は、活性化などの前処理がされていても、されていなくてもよく、また既に他の金属などの微粒子などが担持されているものであってもよい。また、担体の形状は、昇華性の金前駆体と固相混合できる形状であればよく、また使用する用途に応じ任意の形状でよく、特に限定されないが、通常粉体、顆粒、ペレット、繊維状物などの形状のものが用いられる。また、担体の形態も、稠密体、多孔体、発泡体、中空体、積層体など任意の形態であってよい。担体の大きさは、通常5nm〜1mm程度であることが好ましく、より好ましくは50nm〜0.1mm程度である。担体は、昇華性の金前駆体と混合される前に、必要であれば加温または加熱下に真空乾燥などの減圧処理を行い、水などの揮発性物質を除去しておくことが好ましい。   As described above, the carrier used in the present invention may or may not be subjected to pretreatment such as activation, or may already carry fine particles such as other metals. Good. The shape of the carrier is not particularly limited as long as it can be solid-phase mixed with the sublimable gold precursor, and may be any shape depending on the application to be used. Usually, powder, granule, pellet, fiber A shape such as a shape is used. The form of the carrier may be any form such as a dense body, a porous body, a foamed body, a hollow body, and a laminated body. The size of the carrier is usually preferably about 5 nm to 1 mm, more preferably about 50 nm to 0.1 mm. Before the carrier is mixed with the sublimable gold precursor, it is preferable to remove volatile substances such as water by subjecting to a reduced pressure treatment such as vacuum drying under heating or heating if necessary.

本発明においては、上記したように昇華性の金前駆体と無機または有機担体とを固相混合することにより、担体表面もしくは担体の細孔内部に金前駆体が担持される。このとき、一般的には、混合に用いられた金前駆体の全量が担体表面もしくは担体の細孔内部に担持される。勿論全量が担体表面に担持されなくてもよい。本発明で用いられる金前駆体は、通常、常温で昇華性であることから、混合は一般的には室温でなされればよく、加熱、冷却操作などは必要とされないが、必要であれば加温または冷却してもよい。室温としては20〜30℃程度であればよい。また、摩砕もしくは物理混合は常圧下で行われればよく、加圧下または減圧下で行う必要はないが、必要であれば本発明の目的が達成できる範囲での加圧下または減圧下で実施することを、本発明は排除するものではない。本発明では固相混合時には、金前駆体と担体とを混合装置に投入して混合がなされる。この混合操作は、ボールミルなど市販の混合装置、圧潰装置を用いて行えばよい。小規模であればメノウ乳鉢などを用いてすり潰すようにして混合を行えばよい。混合の際には、金前駆体および担体に圧力が加わるように混合が行われればよく、圧力の大きさは特に限定されない。混合時間も使用する金前駆体や担体に応じ、またどの程度の金担持量とするか、さらには混合時の温度、混合の形態、混合条件など、種々の条件によって異なることから、特に限定されるものではないが、通常1または2分程度以上であればよく、一般には5〜60分程度の混合で十分である。   In the present invention, the gold precursor is supported on the surface of the carrier or inside the pores of the carrier by solid-phase mixing the sublimable gold precursor and the inorganic or organic carrier as described above. At this time, generally, the entire amount of the gold precursor used for mixing is supported on the surface of the support or inside the pores of the support. Of course, the entire amount may not be supported on the surface of the carrier. Since the gold precursor used in the present invention is usually sublimable at room temperature, mixing is generally performed at room temperature, and heating and cooling operations are not required. It may be warm or cooled. The room temperature may be about 20 to 30 ° C. The grinding or physical mixing may be performed under normal pressure, and it is not necessary to be performed under pressure or reduced pressure, but if necessary, it is performed under pressure or reduced pressure within a range where the object of the present invention can be achieved. The present invention does not exclude this. In the present invention, at the time of solid phase mixing, the gold precursor and the carrier are charged into a mixing apparatus and mixed. This mixing operation may be performed using a commercially available mixing device such as a ball mill or a crushing device. If it is a small scale, it may be mixed by grinding with an agate mortar. When mixing, it is only necessary to perform mixing so that pressure is applied to the gold precursor and the carrier, and the magnitude of the pressure is not particularly limited. The mixing time is particularly limited because it depends on the gold precursor and the carrier to be used, and how much gold is supported, and also varies depending on various conditions such as the temperature during mixing, the mode of mixing, and the mixing conditions. Although it is not a thing, it may usually be about 1 or 2 minutes or more, and mixing for about 5 to 60 minutes is generally sufficient.

また昇華性の金前駆体は担体と混合される前に、昇華を促進させ、微細で均一粒径の微粒子を担体表面に均一に分散・固定させる観点から、また混合時間を短くする観点から予めできるだけ均一で細かい微粒子となるよう圧潰あるいは粉砕しておくことが好ましい。圧潰あるいは粉砕は、市販の粉砕装置あるいは圧潰装置によればよい。小規模で行う場合には、前記金前駆体と担体の混合と同様にメノウ乳鉢を用いて行えばよい。必要であれば、昇華性の金前駆体の微粉砕が終了した後、粉砕された昇華性の金前駆体微粉を粉砕装置から取り出すことなく、さらにこの装置に担体を投入し、引き続き同一装置で金前駆体と担体との固相混合を行えば、より効率的に処理が行える。固相混合時の、金前駆体と担体との使用割合は、金前駆体の種類、担体の素材、形態、目的とする担持量など種々の条件によって異なるが、通常担体に対し金前駆体を0.01〜10重量%程度用いればよい。担体に対する金前駆体の量が多くなれば、必然的に担体の金担持量も多くなる。通常、担体の金担持量が多くなると、結果として粒径の大きな金微粒子が形成される。このため、担体に対する金前駆体の量を数重量%以下とすることが一般的には好ましい。一般的には、金前駆体の量が少なくなればなるほど、より短時間の攪拌で、用いた金前駆体の全量が担体に担持される。   Further, the sublimable gold precursor is promoted in advance from the viewpoint of promoting sublimation and uniformly dispersing and fixing fine particles having a uniform particle size on the surface of the carrier before being mixed with the carrier, and from the viewpoint of shortening the mixing time. It is preferable to crush or pulverize the particles to be as uniform and fine as possible. The crushing or crushing may be performed by a commercially available crushing device or crushing device. When performing on a small scale, the agate mortar may be used in the same manner as the mixing of the gold precursor and the carrier. If necessary, after the fine sublimation gold precursor is finely pulverized, the carrier is put into this device without removing the fine sublimation gold precursor powder from the pulverizer, and the same device is used. If solid phase mixing of the gold precursor and the carrier is performed, the treatment can be performed more efficiently. The proportion of gold precursor and carrier used during solid phase mixing varies depending on various conditions such as the type of gold precursor, the material and form of the carrier, and the desired loading amount. What is necessary is just to use about 0.01 to 10 weight%. As the amount of the gold precursor with respect to the carrier increases, the amount of gold supported on the carrier necessarily increases. Usually, when the amount of gold supported on the carrier increases, gold fine particles having a large particle diameter are formed as a result. For this reason, it is generally preferable that the amount of the gold precursor with respect to the carrier is several weight% or less. In general, the smaller the amount of the gold precursor, the more the entire amount of the gold precursor used is supported on the support with a shorter stirring time.

担体と昇華性金前駆体とを固相混合した後、金前駆体が担持された担体を還元処理することにより、金前駆体を金微粒子に転換する。この金前駆体の還元方法、還元条件は、従来知られた還元方法、還元条件の中から適宜選択すればよい。還元方法としては、例えば、金前駆体を担持する前記固相混合後の担体を、還元性ガス雰囲気で処理する方法が好ましい方法の一つとして挙げられる。還元性ガス雰囲気とするためには、例えば水素、一酸化炭素、アルコール等の還元性ガスの雰囲気にしてもよいし、これらの還元性ガスを窒素、ヘリウム、アルゴン等の不活性ガスで希釈した混合ガス雰囲気としてもよい。混合ガスとする際の水素ガスや一酸化炭素ガス等の濃度は、金前駆体の還元が行える濃度であればよく、処理温度やガス流量などによっても異なることから特に限定されるものではないが、通常水素ガス、一酸化炭素ガス等の還元性ガスを1〜20容量%程度含むものとすればよい。処理温度は、処理時間、還元性ガスの種類、濃度、担体の材質によっても異なることから、特に限定されるものではないが、通常50〜150℃程度で行われればよい。また還元処理は通常10分〜24時間程度、好ましくは1〜5時間程度である。この他、金属前駆体の還元は、焼成還元法によって行われてもよい。焼成還元法では、例えば200〜400℃で1〜5時間焼成が行われる。なお、高分子材料など耐熱温度が200℃以下の材料が担体材料として用いられている場合には、上記還元性ガス雰囲気で処理する方法が好ましい。   After the support and the sublimable gold precursor are solid-phase mixed, the support on which the gold precursor is supported is reduced to convert the gold precursor into gold fine particles. The gold precursor reduction method and reduction conditions may be appropriately selected from conventionally known reduction methods and reduction conditions. As a reduction method, for example, a method of treating the carrier after the solid-phase mixing supporting the gold precursor in a reducing gas atmosphere is one preferable method. In order to obtain a reducing gas atmosphere, for example, a reducing gas atmosphere such as hydrogen, carbon monoxide, or alcohol may be used, or these reducing gases may be diluted with an inert gas such as nitrogen, helium, or argon. A mixed gas atmosphere may be used. The concentration of hydrogen gas or carbon monoxide gas in the mixed gas is not particularly limited as long as it is a concentration at which the gold precursor can be reduced and varies depending on the processing temperature and gas flow rate. Ordinarily, a reducing gas such as hydrogen gas or carbon monoxide gas may be contained in an amount of about 1 to 20% by volume. The treatment temperature is not particularly limited because it varies depending on the treatment time, the type and concentration of the reducing gas, and the material of the carrier. However, the treatment temperature is usually about 50 to 150 ° C. The reduction treatment is usually about 10 minutes to 24 hours, preferably about 1 to 5 hours. In addition, the reduction of the metal precursor may be performed by a calcination reduction method. In the calcination reduction method, for example, calcination is performed at 200 to 400 ° C. for 1 to 5 hours. In the case where a material having a heat resistant temperature of 200 ° C. or lower such as a polymer material is used as the carrier material, the method of treating in the reducing gas atmosphere is preferable.

上記方法により、平均粒径20nm以下の金ナノ粒子あるいは金クラスターが形成される。なお、平均粒径は、球状粒子の場合は直径、楕円形粒子の場合は、長径であり、例えば透過型電子顕微鏡(TEM)観察から、粒子径分布を作り、平均値を求めたものである。   By the above method, gold nanoparticles or gold clusters having an average particle size of 20 nm or less are formed. The average particle diameter is a diameter in the case of a spherical particle, and a long diameter in the case of an elliptical particle. For example, a particle diameter distribution is created from observation with a transmission electron microscope (TEM), and an average value is obtained. .

本発明の担体表面への金微粒子の分散・固定化方法においては、金の担持量は、0.001〜10重量%であることが好ましく、より好ましくは0.01〜5重量%である。例えば、金微粒子担持担体を触媒として用いる場合、金の担持量が0.001重量%より少ないと触媒の活性が低下するので好ましくなく、また金の担持量を10重量%より多くしても、金を上記の範囲内で担持させた場合と比較して、触媒の活性の更なる向上が望めず、金が無駄になるので好ましくない。   In the method for dispersing and immobilizing gold fine particles on the carrier surface of the present invention, the amount of gold supported is preferably 0.001 to 10% by weight, more preferably 0.01 to 5% by weight. For example, when a gold fine particle supported carrier is used as a catalyst, if the amount of gold supported is less than 0.001% by weight, the activity of the catalyst is lowered, and even if the amount of supported gold is more than 10% by weight, Compared with the case where gold is supported within the above range, further improvement in the activity of the catalyst cannot be expected, and gold is wasted.

本発明の方法によって得られた金ナノ粒子あるいは金クラスター担持担体は、低温CO酸化、アルコールの酸化、プロピレンの気相一段エポキシ化、エポキシドやアミンのカルボニル化、低温水性ガスシフト反応、酸素と水素からの直接過酸化水素合成、炭化水素類の部分酸化、NOxの還元、水添触媒などの従来公知の金ナノ粒子あるいは金クラスターが有用であるとして知られた種々の触媒やその他、センサー素子などとして優れた特性を有する。特に、本発明の金ナノ粒子あるいは金クラスター担持は、グルコースをグルコン酸に酸化する際の酸化触媒として極めて優れた特性を有している。従来グルコースの酸化触媒としてCeO2、TiO2、活性炭、Rossi活性炭(M.Commotti,C.D.Pina,R.Matarrese,M.Rossi,A.Siani,Appl.Catal.A:General 2005,291,204−209参照)などが優れたものとして知られているが、本発明の金微粒子はこれら従来のものに比べ更に触媒活性の高いものが得られる。また、本発明の金ナノ粒子あるいは金クラスター担持担体は、COの酸化触媒としても優れた特性を有していることから、例えば、室内や自動車車内における空調装置(空気清浄機、エアコン、分煙機等)の空気浄化フィルター;火災防毒マスクのフィルター;化学工場等で用いられる原料ガスからのCO除去フィルター;自動車、バイク等の排ガスからのCO除去フィルター;燃料電池の燃料改質による水素製造プロセスにおけるCO除去フィルター等に好適に用いられる。さらに、エタノール、フェネチルアルコールなどのアルコール類の酸化触媒としても優れた特性を示す。 The gold nanoparticle or gold cluster-supported carrier obtained by the method of the present invention comprises low temperature CO oxidation, alcohol oxidation, propylene gas phase one-step epoxidation, epoxide and amine carbonylation, low temperature water gas shift reaction, oxygen and hydrogen. As various sensors known as useful gold nanoparticles or gold clusters, such as direct hydrogen peroxide synthesis, partial oxidation of hydrocarbons, NOx reduction, hydrogenation catalysts, and other sensor elements Has excellent properties. In particular, the gold nanoparticle or gold cluster support of the present invention has extremely excellent characteristics as an oxidation catalyst when oxidizing glucose to gluconic acid. Conventional oxidation catalysts for glucose include CeO 2 , TiO 2 , activated carbon, Rossi activated carbon (M. Commotti, CD Pina, R. Matarrese, M. Rossi, A. Siani, Appl. Catal. A: General 2005, 291 , 204-209) is known as an excellent material, but the gold fine particles of the present invention can be obtained with higher catalytic activity than those of the conventional ones. In addition, since the gold nanoparticle or gold cluster support of the present invention has excellent characteristics as an oxidation catalyst for CO, for example, an air conditioner (an air cleaner, an air conditioner, a smoke distribution unit) in a room or an automobile Air purification filter; Fire gas mask filter; CO removal filter from source gas used in chemical factories; CO removal filter from exhaust gas from automobiles, motorcycles, etc .; Hydrogen production process by fuel cell fuel reforming It is suitably used for a CO removal filter or the like. Furthermore, it exhibits excellent properties as an oxidation catalyst for alcohols such as ethanol and phenethyl alcohol.

また、本発明の方法で得られた金微粒子担持担体は、前記したように金の粒子径の違い、担持量、担体の材質などの違いにより、薄いあるいは濃いなどの違いを含め、黄色、緑色、青色、ピンク色、茶色、紫色、灰色などの種々の色に着色した微粉体として得られる。このため、本発明において、製造条件を適宜設定することにより、所望の色をした着色剤を調製することができる。得られた粒子は、耐久性に優れ、また化粧品、塗料、印刷インキ等各種製品の着色剤として優れた特性を有しており、各種用途の着色剤として好適に用いられる。   In addition, the gold fine particle-supported carrier obtained by the method of the present invention is yellow, green, including a difference of light or dark due to a difference in the particle size of gold, a supported amount, a material of the carrier, etc. , Blue, pink, brown, purple, grey, etc. Therefore, in the present invention, a colorant having a desired color can be prepared by appropriately setting manufacturing conditions. The obtained particles are excellent in durability and have excellent properties as colorants for various products such as cosmetics, paints and printing inks, and are suitably used as colorants for various applications.

[実施例]
以下、実施例を挙げて本発明を具体的に説明するが、本発明はこれによって何ら限定されるものではない。なお、実施例1〜5および実施例7の多孔性金属錯体は、下記非特許文献15に基づいて、実施例6の多孔性金属錯体は、下記非特許文献16に基づいて、実施例8の多孔性金属錯体は、下記非特許文献17に基づいて合成された。
[Example]
EXAMPLES Hereinafter, although an Example is given and this invention is demonstrated concretely, this invention is not limited at all by this. In addition, the porous metal complex of Examples 1-5 and Example 7 is based on the following nonpatent literature 15, and the porous metal complex of Example 6 is based on the following nonpatent literature 16 of Example 8. The porous metal complex was synthesized based on Non-Patent Document 17 below.

Kondo,M.et al.,Angew.Chem.Int.Ed.1999,38,140−143.Kondo, M .; et al. , Angew. Chem. Int. Ed. 1999, 38, 140-143. Uemura,T.et al.,Angew.Chem.Int.Ed.2006,45,4112.Uemura, T .; et al. , Angew. Chem. Int. Ed. 2006, 45, 4112. Seki,K.and Mori,W.,J.Phys.Chem.B 2002,106,1380−1385.Seki, K .; and Mori, W .; , J .; Phys. Chem. B 2002, 106, 1380-1385.

〔多孔性金属錯体、[Cu2(pzdc)2(pyz)]n(孔径;4.0×6.0Å)への金の担持(金担持量;0.5wt%)〕
多孔性金属錯体、[Cu2(pzdc)2(pyz)]n(孔径;4.0×6.0Å)を予め105℃で5時間真空乾燥させた後、室温まで放冷した。ジメチル金アセチルアセトナート錯体1.6mgをメノウ乳鉢ですりつぶし、これに多孔性金属錯体[Cu2(pzdc)2(pyz)]n(孔径;4.0×6.0Å)181mgを加えて室温で20分更にすりつぶした。これを反応管に移し、水素還元(水素:5mL/min、不活性ガス:45mL/min、120℃、2時間)処理することにより青みどり色の金ナノ粒子担持多孔性金属錯体を得た。
TEMで観察したところ、金ナノ粒子が密集して多孔性金属錯体表面上に分散・固定化されており、1〜3nm前後の金ナノ粒子が約50%存在し、3nmより大きな金ナノ粒子も多数見られた(図1参照)。金ナノ粒子の粒子径をTEM写真から計測したところ、平均粒子径は3.2nm、標準偏差は2.9であった。
[Porous metal complex, [Cu 2 (pzdc) 2 (pyz)] n (pore size: 4.0 × 6.0 mm) (gold supported amount: 0.5 wt%)]
A porous metal complex, [Cu 2 (pzdc) 2 (pyz)] n (pore size: 4.0 × 6.0 mm) was previously vacuum-dried at 105 ° C. for 5 hours and then allowed to cool to room temperature. Grind 1.6 mg of dimethylgold acetylacetonate complex in an agate mortar, add 181 mg of porous metal complex [Cu 2 (pzdc) 2 (pyz)] n (pore size: 4.0 × 6.0Å) at room temperature Grinded further for 20 minutes. This was transferred to a reaction tube and treated with hydrogen reduction (hydrogen: 5 mL / min, inert gas: 45 mL / min, 120 ° C., 2 hours) to obtain a blue-green gold nanoparticle-supporting porous metal complex.
When observed with TEM, the gold nanoparticles are densely dispersed and immobilized on the surface of the porous metal complex, and about 50% of the gold nanoparticles of about 1 to 3 nm exist, and gold nanoparticles larger than 3 nm are also present. Many were seen (see FIG. 1). When the particle diameter of the gold nanoparticles was measured from a TEM photograph, the average particle diameter was 3.2 nm and the standard deviation was 2.9.

〔多孔性金属錯体、[Cu2(pzdc)2(pyz)]n(孔径;4.0×6.0Å)への金の担持(金担持量;6.6wt%)〕
ジメチル金アセチルアセトナート錯体26mgと多孔性金属錯体、[Cu2(pzdc)2(pyz)]n(孔径;6.0×8.4Å)248mgを用いるほかは、実施例1と同様にして紫色の金ナノ粒子担持多孔性金属錯体を得た。
TEMで観察したところ、5〜10nm程度の金ナノ粒子が密集して多孔性金属錯体表面上に分散・固定化されていることが判明した(図2参照)。
[Porous metal complex, [Cu 2 (pzdc) 2 (pyz)] n (pore size; 4.0 × 6.0 mm) (gold supported amount: 6.6 wt%)]
Purple as in Example 1 except that 26 mg of dimethyl gold acetylacetonate complex and 248 mg of porous metal complex, [Cu 2 (pzdc) 2 (pyz)] n (pore size; 6.0 × 8.48) are used. The gold nanoparticle-supporting porous metal complex was obtained.
Observation by TEM revealed that gold nanoparticles of about 5 to 10 nm were densely dispersed and immobilized on the surface of the porous metal complex (see FIG. 2).

〔多孔性金属錯体、[Cu2(pzdc)2(bpy)](孔径;6.0×8.2Å)への金の担持(金担持量;6.4wt%)〕
ジメチル金アセチルアセトナート錯体26mgと多孔性金属錯体、[Cu2(pzdc)2(bpy)]n(孔径;6.0×8.4Å)248mgを用いるほかは、実施例1と同様にして紫色の金ナノ粒子担持多孔性金属錯体を得た。
TEMで観察したところ、一部30nm前後の大きな金ナノ粒子が見られたが、ほとんどが1〜2nm前後の金クラスターが密集して多孔性金属錯体表面上に分散・固定化されていることが判明した(図3参照)。金ナノ粒子の粒子径をTEM写真から計測したところ、平均粒子径は1.8nm、標準偏差は1.1であった。
[Porous metal complex, [Cu 2 (pzdc) 2 (bpy)] n (pore size: 6.0 × 8.2 mm) supported on gold (gold supported amount: 6.4 wt%)]
Purple as in Example 1 except that 26 mg of dimethylgold acetylacetonate complex and 248 mg of porous metal complex, [Cu 2 (pzdc) 2 (bpy)] n (pore size; 6.0 × 8.48) are used. The gold nanoparticle-supporting porous metal complex was obtained.
When observed by TEM, large gold nanoparticles of about 30 nm were observed in part, but most of the gold clusters of about 1 to 2 nm were densely dispersed and immobilized on the surface of the porous metal complex. It became clear (refer FIG. 3). When the particle diameter of the gold nanoparticles was measured from a TEM photograph, the average particle diameter was 1.8 nm and the standard deviation was 1.1.

〔多孔性金属錯体、[Cu2(pzdc)2(bpy)]n(孔径;6.0×8.2Å)への金の担持(金担持量;1.0wt%)〕
ジメチル金アセチルアセトナート錯体5.0mgと多孔性金属錯体、[Cu2(pzdc)2(bpy)]n(孔径;6.0×8.4Å)302mgを用いるほかは、実施例1と同様にして、うすい青色の金ナノ粒子担持多孔性金属錯体を得た。
TEMで観察したところ、10nm以上の金ナノ粒子はほとんど観察されず、1〜2nm前後の金クラスターが密集して多孔性金属錯体表面上に分散・固定化されていることが判明した(図4参照)。平均粒子径は1.5nm、標準偏差は0.4であった。
[Porous metal complex, [Cu 2 (pzdc) 2 (bpy)] n (pore size; 6.0 × 8.2 mm) (gold supported amount: 1.0 wt%)]
Example 1 was used except that 5.0 mg of dimethylgold acetylacetonate complex and 302 mg of a porous metal complex, [Cu 2 (pzdc) 2 (bpy)] n (pore diameter: 6.0 × 8.4 mm) were used. Thus, a light blue gold nanoparticle-supported porous metal complex was obtained.
Observation by TEM revealed that gold nanoparticles of 10 nm or more were hardly observed, and gold clusters of about 1 to 2 nm were densely dispersed and immobilized on the surface of the porous metal complex (FIG. 4). reference). The average particle size was 1.5 nm and the standard deviation was 0.4.

〔多孔性金属錯体、[Cu2(pzdc)2(bpy)]n(孔径;6.0×8.2Å)への金の担持(金担持量;1wt%)〕
ジメチル金アセチルアセトナート錯体5.3mgをアセトン0.3mLに溶解し、これを多孔性金属錯体、[Cu2(pzdc)2(bpy)]n(孔径6.0×8.4Å)304mgに加えるほかは、実施例1と同様にして、うすい青色の金ナノ粒子担持多孔性金属錯体を得た。
TEMで観察したところ、1〜2nm前後の金クラスターが、密集して多孔性金属錯体表面上に分散・固定化されていることが判明した(図5参照)。
[Porous metal complex, [Cu 2 (pzdc) 2 (bpy)] n (pore size: 6.0 × 8.2 mm) supported on gold (gold supported amount: 1 wt%)]
Dissolve 5.3 mg of dimethylgold acetylacetonate complex in 0.3 mL of acetone and add it to 304 mg of a porous metal complex, [Cu 2 (pzdc) 2 (bpy)] n (pore size 6.0 × 8.48). Otherwise, a pale blue gold nanoparticle-supporting porous metal complex was obtained in the same manner as in Example 1.
Observation by TEM revealed that gold clusters of about 1 to 2 nm were densely dispersed and immobilized on the surface of the porous metal complex (see FIG. 5).

〔多孔性金属錯体、[Cu2(pzdc)2(dpe)]n(孔径;10×6.0Å)への金の担持(金担持量;0.6wt%)〕
ジメチル金アセチルアセトナート錯体3.0mgと多孔性金属錯体、[Cu2(pzdc)2(dpe)]n(孔径;10×6.0Å)287mgを用いるほかは、実施例1と同様にして、うすい青みどり色の金ナノ粒子担持多孔性金属錯体を得た。
TEMで観察したところ、2〜3nm前後の金ナノ粒子が密集して多孔性金属錯体表面上に分散・固定化されていることが判明した(図6参照)。
[Porous metal complex, [Cu 2 (pzdc) 2 (dpe)] n (pore size; 10 × 6.0 mm) (gold supported amount: 0.6 wt%)]
Except for using 3.0 mg of dimethylgold acetylacetonate complex and 287 mg of a porous metal complex, [Cu 2 (pzdc) 2 (dpe)] n (pore size: 10 × 6.0 mm), the same as in Example 1, A light blue green gold nanoparticle-supporting porous metal complex was obtained.
Observation with TEM revealed that gold nanoparticles of about 2 to 3 nm were densely dispersed and immobilized on the surface of the porous metal complex (see FIG. 6).

〔多孔性金属錯体、[Cu2(pzdc)2(pia)]n(孔径;10×6.0Å)への金の担持(金担持量;0.4wt%)〕
ジメチル金アセチルアセトナート錯体3.2mgと多孔性金属錯体、[Cu2(pzdc)2(pia)]n(孔径;10×6.0Å)404mgを用いるほかは、実施例1と同様にして、みどり色(パステルグリーン)の金ナノ粒子担持多孔性金属錯体を得た。
TEMで観察したところ、1〜3nm前後の金クラスターが密集して多孔性金属錯体表面上に分散・固定化されていることが判明した(図7参照)。
[Porous metal complex, [Cu 2 (pzdc) 2 (pia)] n (pore size; 10 × 6.0 mm) (gold supported amount: 0.4 wt%)]
Except for using 3.2 mg of a dimethylgold acetylacetonate complex and 404 mg of a porous metal complex, [Cu 2 (pzdc) 2 (pia)] n (pore size: 10 × 6.0 mm), the same as in Example 1, A green metal-supported porous metal complex of pastel green was obtained.
Observation with a TEM revealed that gold clusters of around 1 to 3 nm were densely dispersed and immobilized on the surface of the porous metal complex (see FIG. 7).

〔多孔性金属錯体、[Cu2(bpdc)2(TED)]n(孔径;10.5×10.5Å)への金の担持(金担持量;0.6wt%)〕
ジメチル金アセチルアセトナート錯体1.5mgと多孔性金属錯体、[Cu2(bpdc)2(TED)]n(孔径;10.5×10.5Å)145mgを用いるほかは、実施例1と同様にして、暗い灰緑色の金ナノ粒子担持多孔性金属錯体を得た。
TEMで観察したところ、3〜4nm前後の金ナノ粒子が密集して多孔性金属錯体表面上に分散・固定化されていることが判明した(図8参照)。
[Porous metal complex, [Cu 2 (bpdc) 2 (TED)] n (pore diameter: 10.5 × 10.5%) (gold supported amount: 0.6 wt%)]
Example 1 was used except that 1.5 mg of dimethylgold acetylacetonate complex and 145 mg of a porous metal complex, [Cu 2 (bpdc) 2 (TED)] n (pore diameter: 10.5 × 10.5 cm) were used. As a result, a dark grayish green gold nanoparticle-supporting porous metal complex was obtained.
Observation with TEM revealed that gold nanoparticles of about 3 to 4 nm were densely dispersed and immobilized on the surface of the porous metal complex (see FIG. 8).

〔活性炭への金の担持(金担持量;1wt%)〕
活性炭(関西熱化学製、比表面積;2380m2/g、細孔容積;1.1mL/g、細孔径;1.4nm、平均粒子径;9.8μm)239mgとジメチル金アセチルアセトナート錯体3.9mgをメノウ乳鉢で室温で20分固相混合した。これを反応管に移し、水素還元(水素:5mL/min、不活性ガス:45mL/min、120℃、2時間)処理した。その後空気中、300℃で4時間焼成することにより、黒色の金ナノ粒子担持活性炭を得た。
TEMで観察したところ、2〜5nm程度の金ナノ粒子が密集して活性炭表面上に分散・固定化されていることが判明した(図9参照)。金ナノ粒子の粒子径をTEM写真から計測したところ、平均粒子径は4.3nm、標準偏差は1.5であった。
[Gold loading on activated carbon (gold loading: 1 wt%)]
2. 239 mg of activated carbon (manufactured by Kansai Thermal Chemical Co., Ltd., specific surface area: 2380 m 2 / g, pore volume: 1.1 mL / g, pore size: 1.4 nm, average particle size: 9.8 μm) and dimethyl gold acetylacetonate complex 9 mg was solid-phase mixed in an agate mortar at room temperature for 20 minutes. This was transferred to a reaction tube and treated with hydrogen reduction (hydrogen: 5 mL / min, inert gas: 45 mL / min, 120 ° C., 2 hours). Thereafter, it was baked in air at 300 ° C. for 4 hours to obtain black gold nanoparticle-supported activated carbon.
Observation by TEM revealed that gold nanoparticles of about 2 to 5 nm were densely dispersed and immobilized on the activated carbon surface (see FIG. 9). When the particle diameter of the gold nanoparticles was measured from a TEM photograph, the average particle diameter was 4.3 nm and the standard deviation was 1.5.

〔活性炭への金の担持(金担持量;0.1wt%)〕
ジメチル金アセチルアセトナート錯体0.4mgと活性炭237mgを用いるほかは、実施例9と同様にして、黒色の金ナノ粒子担持活性炭を得た。
[Gold loading on activated carbon (gold loading: 0.1 wt%)]
Black gold nanoparticle-supported activated carbon was obtained in the same manner as in Example 9 except that 0.4 mg of dimethylgold acetylacetonate complex and 237 mg of activated carbon were used.

〔活性炭への金の担持(金担持量;0.2wt%)〕
ジメチル金アセチルアセトナート錯体0.9mgと活性炭264mgを用いるほかは、実施例9と同様にして、黒色の金ナノ粒子担持活性炭を得た。
TEMで観察したところ、2〜4nm程度の金ナノ粒子が密集して活性炭表面上に分散・固定化されていることが判明した(図10参照)。
[Gold loading on activated carbon (gold loading: 0.2 wt%)]
Black gold nanoparticle-supported activated carbon was obtained in the same manner as in Example 9 except that 0.9 mg of dimethylgold acetylacetonate complex and 264 mg of activated carbon were used.
Observation by TEM revealed that gold nanoparticles of about 2 to 4 nm were densely dispersed and immobilized on the activated carbon surface (see FIG. 10).

〔活性炭への金の担持(金担持量;0.3wt%)〕
ジメチル金アセチルアセトナート錯体1.6mgと活性炭321mgを用いるほかは、実施例9と同様にして、黒色の金ナノ粒子担持活性炭を得た。
[Gold loading on activated carbon (gold loading: 0.3 wt%)]
Black gold nanoparticle-supported activated carbon was obtained in the same manner as in Example 9, except that 1.6 mg of dimethylgold acetylacetonate complex and 321 mg of activated carbon were used.

〔活性炭への金の担持(金担持量;1wt%)〕
活性炭(関西熱化学製、比表面積;2380m2/g、細孔容積;1.1mL/g、細孔径;1.4nm、平均粒子径;9.8μm)を1mol/Lの水酸化ナトリウム水溶液に浸漬、1日撹拌した。これを吸引濾過し、濾液のpHが10以下になるまで洗浄し、70℃で10時間乾燥させることにより、活性炭の塩基前処理を行った。ジメチル金アセチルアセトナート錯体5.1mgと塩基前処理をした活性炭304mgを用いるほかは、実施例9と同様にして、黒色の金ナノ粒子担持活性炭を得た。
TEMで観察したところ、2〜4nm程度の金ナノ粒子が密集して活性炭表面上に分散・固定化されていることが判明した(図11参照)。金ナノ粒子の粒子径をTEM写真から計測したところ、平均粒径は4.3nmであった。
[Gold loading on activated carbon (gold loading: 1 wt%)]
Activated carbon (manufactured by Kansai Thermal Chemical Co., Ltd., specific surface area: 2380 m 2 / g, pore volume: 1.1 mL / g, pore size: 1.4 nm, average particle size: 9.8 μm) in a 1 mol / L sodium hydroxide aqueous solution Immersion was stirred for 1 day. This was subjected to suction filtration, washed until the pH of the filtrate was 10 or less, and dried at 70 ° C. for 10 hours to perform a base pretreatment of activated carbon. Black gold nanoparticle-supported activated carbon was obtained in the same manner as in Example 9, except that 5.1 mg of dimethylgold acetylacetonate complex and 304 mg of activated carbon pretreated with a base were used.
Observation by TEM revealed that gold nanoparticles of about 2 to 4 nm were densely dispersed and immobilized on the activated carbon surface (see FIG. 11). When the particle diameter of the gold nanoparticles was measured from a TEM photograph, the average particle diameter was 4.3 nm.

〔高分子への金の担持(金担持量;0.5wt%)〕
ポリメタクリル酸メチル(PMMA)微粒子(粒径;2.6μm)300mgとジメチル金アセチルアセトナート錯体2.5mgを、メノウ乳鉢で室温で5分固相混合した。これを反応管に移し、水素還元(水素:5mL/min、不活性ガス:45mL/min、80℃、3時間)処理することにより、うすい灰色の金ナノ粒子をPMMA微粒子上に担持した。
TEMで観察したところ、3〜9nm程度の金ナノ粒子がPMMA微粒子表面上に分散・固定化されていることが判明した(図12参照)。
[Gold loading on polymer (gold loading: 0.5 wt%)]
300 mg of polymethyl methacrylate (PMMA) fine particles (particle size: 2.6 μm) and 2.5 mg of dimethylgold acetylacetonate complex were solid-phase mixed in an agate mortar at room temperature for 5 minutes. This was transferred to a reaction tube and treated with hydrogen reduction (hydrogen: 5 mL / min, inert gas: 45 mL / min, 80 ° C., 3 hours) to support light gray gold nanoparticles on the PMMA fine particles.
Observation by TEM revealed that gold nanoparticles of about 3 to 9 nm were dispersed and immobilized on the surface of the PMMA fine particles (see FIG. 12).

〔高分子への金の担持(金担持量;0.5wt%)〕
ポリアニリン(PANI)微粒子(粒径;3〜100μm)500mgとジメチル金アセチルアセトナート錯体4.2mgをメノウ乳鉢で室温で20分固相混合した。これを反応管に移し、水素還元(水素:5mL/min、不活性ガス:45mL/min、120℃、3.5時間)処理することにより、黒〜黒緑色の金ナノ粒子をPANI微粒子上に担持した。
TEMで観察したところ、平均粒径6nmの金ナノ粒子がPANI微粒子表面上に分散・固定化されていることが判明した(図13参照)。
[Gold loading on polymer (gold loading: 0.5 wt%)]
500 mg of polyaniline (PANI) fine particles (particle size: 3 to 100 μm) and 4.2 mg of dimethylgold acetylacetonate complex were solid-phase mixed in an agate mortar at room temperature for 20 minutes. This was transferred to a reaction tube and treated with hydrogen reduction (hydrogen: 5 mL / min, inert gas: 45 mL / min, 120 ° C., 3.5 hours), so that black to black-green gold nanoparticles were deposited on the PANI microparticles. Supported.
Observation by TEM revealed that gold nanoparticles having an average particle diameter of 6 nm were dispersed and immobilized on the surface of the PANI fine particles (see FIG. 13).

〔無機酸化物(シリカ)への金微粒子の担持(金担持量;1.1wt%)〕
予めメノウ乳鉢で粉砕し、125μm以下に分級したシリカ(触媒学会参照触媒 JRC−SIO−5、比表面積;192m2/g)300mgとジメチル金アセチルアセトナート錯体5.0mgを用いるほかは実施例9と同様に行って、薄いピンク色の金ナノ粒子担持シリカ微粉体を得た。
TEMで観察したところ、10〜30nm程度の金ナノ粒子がシリカ微粒子表面上に分散・固定化されていることが判明した(図14参照)。
[Support of gold fine particles on inorganic oxide (silica) (gold support amount: 1.1 wt%)]
Example 9 except that 300 mg of silica (Catalyst Society Reference Catalyst JRC-SIO-5, specific surface area: 192 m 2 / g) previously pulverized in an agate mortar and classified to 125 μm or less and dimethylgold acetylacetonate complex 5.0 mg were used. In the same manner as above, thin pink gold nanoparticle-supporting silica fine powder was obtained.
Observation with TEM revealed that gold nanoparticles of about 10 to 30 nm were dispersed and immobilized on the surface of the silica fine particles (see FIG. 14).

〔無機酸化物(アルミナ)への金微粒子の担持(金担持量;1.0wt%)〕
予めメノウ乳鉢で粉砕し、125μm以下に分級したアルミナ(触媒学会参照触媒 JRC−ALO−5、比表面積;233m2/g)300mgとジメチル金アセチルアセトナート錯体5.0mgを用いるほかは実施例16と同様に行って、薄黄色の金ナノ粒子担持アルミナ微粉体を得た。
TEMで観察したところ、15〜20nm程度の金ナノ粒子がアルミナ微粒子表面上に分散・固定化されていることが判明した(図15参照)。
[Support of gold fine particles on inorganic oxide (alumina) (gold support amount: 1.0 wt%)]
Example 16 except that 300 mg of alumina (Catalyst Society Reference Catalyst JRC-ALO-5, specific surface area: 233 m 2 / g), which was previously ground in an agate mortar and classified to 125 μm or less, and 5.0 mg of dimethylgold acetylacetonate complex were used In the same manner as above, a light yellow gold nanoparticle-supported alumina fine powder was obtained.
Observation by TEM revealed that gold nanoparticles of about 15 to 20 nm were dispersed and immobilized on the surface of the alumina fine particles (see FIG. 15).

〔無機酸化物(酸化ランタン)への金微粒子の担持(金担持量;1wt%)〕
La23を用い、水素還元を100℃で行ったほかは実施例9と同様に行って、金ナノ粒子担持酸化ランタン微粉末を得た。
TEMで観察したところ、1.1〜4.0nm程度の金ナノ粒子がPMMA微粒子表面上に分散・固定化されていることが判明した。金ナノ粒子の粒子径をTEM写真から計測したところ、平均粒径は1.6nmであった。
[Support of gold fine particles on inorganic oxide (lanthanum oxide) (gold support amount: 1 wt%)]
A gold nanoparticle-supported lanthanum oxide fine powder was obtained in the same manner as in Example 9 except that La 2 O 3 was used and hydrogen reduction was performed at 100 ° C.
Observation with TEM revealed that gold nanoparticles of about 1.1 to 4.0 nm were dispersed and immobilized on the surface of the PMMA fine particles. When the particle diameter of the gold nanoparticles was measured from a TEM photograph, the average particle diameter was 1.6 nm.

〔活性炭担持金ナノ粒子の触媒特性1〕
実施例9で調製した試料(1wt%金ナノ粒子担持活性炭)を用いて、水溶液中でのグルコースの酸素酸化を行った。粉末試料を30mg、金/グルコースのモル比を1:20000として、グルコース濃度5重量%の水溶液に攪拌下、60℃で、酸素を60mL/minでバブリングした。水溶液のpHを9.5に保つよう水酸化ナトリウム水溶液を随時滴下し、水酸化ナトリウムの滴下量からグルコン酸の生成量を反応時間の関数として測定した。その結果、70分後に転化率96%、反応量は19100mol/molAuとなり、上記の金ナノ粒子担持活性炭は比較的低温でグルコースの酸素酸化に高い触媒活性を有することが判明した。
[Catalytic properties of activated carbon-supported gold nanoparticles 1]
Using the sample (1 wt% gold nanoparticle-supported activated carbon) prepared in Example 9, oxygen oxidation of glucose in an aqueous solution was performed. The powder sample was 30 mg, the molar ratio of gold / glucose was 1: 20000, and oxygen was bubbled at 60 ° C. at 60 ° C. with stirring in an aqueous solution having a glucose concentration of 5% by weight. A sodium hydroxide aqueous solution was dropped as needed to maintain the pH of the aqueous solution at 9.5, and the amount of gluconic acid produced was measured as a function of reaction time from the amount of sodium hydroxide dropped. As a result, after 70 minutes, the conversion was 96%, the reaction amount was 19100 mol / mol Au, and the above gold nanoparticle-supported activated carbon was found to have a high catalytic activity for oxygen oxidation of glucose at a relatively low temperature.

〔活性炭担持金ナノ粒子の触媒特性2〕
実施例10の試料(0.1wt%金ナノ粒子担持活性炭)を用いるほかは、実施例19と同様にして、グルコースの酸素酸化を行ったところ、120分後に転化率84%、反応量16800mol/molAuとなり、金担持量が0.1重量%と少ない場合でも高い触媒活性を有することが判明した。
[Catalytic properties of activated carbon-supported gold nanoparticles 2]
Glucose was oxidized with oxygen in the same manner as in Example 19 except that the sample of Example 10 (0.1 wt% gold nanoparticle-supported activated carbon) was used. After 120 minutes, the conversion was 84% and the reaction amount was 16800 mol / It was found that the catalyst had high catalytic activity even when the amount of gold supported was as small as 0.1% by weight.

〔活性炭担持金ナノ粒子の触媒特性3〕
実施例13の試料(1wt%金ナノ粒子担持塩基前処理活性炭)を用いるほかは、実施例19と同様にして、グルコースの酸素酸化を行ったところ、100分後に転化率90%、反応量17600mol/molAuとなり、塩基前処理をした活性炭を担体に用いた場合においても塩基処理を行わないものと同様の高い触媒活性を有することが判明した。
[Catalytic properties of activated carbon-supported gold nanoparticles 3]
Glucose was oxidized with oxygen in the same manner as in Example 19 except that the sample of Example 13 (1 wt% gold nanoparticle-supported base pretreated activated carbon) was used. After 100 minutes, the conversion was 90% and the reaction amount was 17600 mol. / MolAu, and it was found that even when activated carbon that had been pretreated with a base was used as a carrier, it had the same high catalytic activity as that without the base treatment.

〔PMMA微粒子担持金ナノ粒子の触媒特性〕
実施例14で調製した試料(金ナノ粒子担持PMMA微粒子)を用いて、過酸化水素分解反応を行った。すなわち、5wt%過酸化水素水100mLに試料0.1gを入れ、室温で撹拌した。一定時間毎に反応液5mLを採取し、これに水を加えて200mLとした。撹拌しながらこれに濃硫酸5mLを加え、フェロイン試薬3滴を落とした。この溶液を0.1mol/L硫酸セリウム(IV)水溶液で残存する過酸化水素量を求めることにより、過酸化水素分解率を算出した。60分後に分解率33%となった。
[Catalytic properties of PMMA fine particle-supported gold nanoparticles]
Using the sample (gold nanoparticle-supporting PMMA fine particles) prepared in Example 14, a hydrogen peroxide decomposition reaction was performed. That is, 0.1 g of a sample was placed in 100 mL of 5 wt% hydrogen peroxide water and stirred at room temperature. 5 mL of the reaction solution was collected at regular intervals, and water was added to make 200 mL. While stirring, 5 mL of concentrated sulfuric acid was added thereto, and 3 drops of ferroin reagent were dropped. The hydrogen peroxide decomposition rate was calculated by determining the amount of hydrogen peroxide remaining in this solution with a 0.1 mol / L cerium (IV) sulfate aqueous solution. After 60 minutes, the decomposition rate became 33%.

〔PANI微粒子担持金ナノ粒子の触媒特性〕
実施例15で調製した試料(金ナノ粒子担持PANI微粒子)を用いるほかは実施例22と同様にして、過酸化水素分解反応を行った。60分後に分解率25%となった。
[Catalytic properties of PANI fine particle-supported gold nanoparticles]
A hydrogen peroxide decomposition reaction was performed in the same manner as in Example 22 except that the sample (gold nanoparticle-supported PANI fine particles) prepared in Example 15 was used. After 60 minutes, the decomposition rate was 25%.

〔無機酸化物(シリカ)担持金ナノ粒子の触媒特性(グルコース酸化)〕
実施例16で調製した試料(金ナノ粒子担持シリカ微粉体)を用いて、水溶液中でのグルコースの酸素酸化を行った。金/グルコースのモル比を1:16000とした他は実施例19と同様に行った。その結果、60分後に転化率57%、反応量は9100mol Glu/mol Auとなった。このことから、シリカ担持金ナノ粒子は比較的低温でグルコースの酸素酸化に高い触媒活性を有することが判明した。
[Catalytic properties of gold nanoparticles supported on inorganic oxide (silica) (glucose oxidation)]
Using the sample (gold nanoparticle-supported silica fine powder) prepared in Example 16, oxygen oxidation of glucose in an aqueous solution was performed. The same procedure as in Example 19 was performed except that the molar ratio of gold / glucose was 1: 16000. As a result, after 60 minutes, the conversion was 57% and the reaction amount was 9100 mol Glu / mol Au. This revealed that the silica-supported gold nanoparticles have a high catalytic activity for oxygen oxidation of glucose at a relatively low temperature.

〔無機酸化物(アルミナ)担持金ナノ粒子の触媒特性(グルコース酸化)〕
実施例17で調製した試料(金ナノ粒子担持アルミナ微粉体)を用いるほかは実施例24と同様にして、水溶液中でのグルコースの酸素酸化を行った。60分後に転化率93%、反応量は14900mol/molAuとなった。このことから、アルミナ担持金ナノ粒子は比較的低温でグルコースの酸素酸化に高い触媒活性を有することが判明した。
[Catalytic properties of inorganic oxide (alumina) supported gold nanoparticles (glucose oxidation)]
Glucose oxygen oxidation in an aqueous solution was carried out in the same manner as in Example 24 except that the sample (gold nanoparticle-supported alumina fine powder) prepared in Example 17 was used. After 60 minutes, the conversion was 93% and the reaction amount was 14900 mol / mol Au. This indicates that the alumina-supported gold nanoparticles have a high catalytic activity for oxygen oxidation of glucose at a relatively low temperature.

〔無機酸化物(酸化ランタン)担持金ナノ粒子の触媒特性(CO酸化)〕
実施例18で調製した試料150mgをガラス製U字型反応管(内径10mm)に充填して触媒層を形成し、窒素と酸素の混合ガスを流通しながら触媒層の温度が250℃となるように電気炉で加温し、30分間窒素と酸素の混合ガスを流通させた。ついで、25℃、60℃、110℃の各測定温度で、ガス組成が一酸化炭素/酸素/窒素=1/20/79(CO容積1%)の混合ガスを毎分50mLの流量で反応管に流通させた。反応開始後30分の反応器出口ガスの分析をガスクロマトグラフィーにて行い、転化率を求めた。その結果、一酸化炭素の転化率は25℃で27%、60℃で51%、80℃で71%、110℃で80%となった。
[Catalytic properties of gold nanoparticles supported on inorganic oxide (lanthanum oxide) (CO oxidation)]
150 mg of the sample prepared in Example 18 was filled into a glass U-shaped reaction tube (inner diameter 10 mm) to form a catalyst layer, and the temperature of the catalyst layer was 250 ° C. while flowing a mixed gas of nitrogen and oxygen. The mixture was heated in an electric furnace and a mixed gas of nitrogen and oxygen was circulated for 30 minutes. Then, at each measurement temperature of 25 ° C., 60 ° C., and 110 ° C., a reaction tube of a mixed gas having a gas composition of carbon monoxide / oxygen / nitrogen = 1/20/79 (CO volume 1%) at a flow rate of 50 mL / min. Distributed. Analysis of the reactor outlet gas 30 minutes after the start of the reaction was carried out by gas chromatography, and the conversion rate was determined. As a result, the conversion of carbon monoxide was 27% at 25 ° C, 51% at 60 ° C, 71% at 80 ° C, and 80% at 110 ° C.

〔アルミナ:遊星型ボールミルを用いた摩砕混合(乾式)(金担持量 1wt%)〕
ジルコニア(ZnO2)製45mL容器に、5mmφのボールを20個入れ、アルミナ(Al23(触媒学会 参照触媒ALO−5))3.0gとジメチル金アセチルアセトナート錯体51mgを加えた。蓋をし、遊星型ボールミル(ドイツ フリッチュ社製 遊星型ボールミルP−7)を用いて、回転数350rpmで1時間混合した。取り出した試料を300℃で空気中4時間焼成した。
[Alumina: Mixing and grinding using a planetary ball mill (dry type) (gold loading 1 wt%)]
20 balls of 5 mmφ were put into a 45 mL container made of zirconia (ZnO 2 ), and 3.0 g of alumina (Al 2 O 3 (reference catalyst ALO-5)) and 51 mg of dimethyl gold acetylacetonate complex were added. The mixture was covered and mixed for 1 hour at a rotational speed of 350 rpm using a planetary ball mill (planet type ball mill P-7 manufactured by Frichtu, Germany). The sample taken out was baked in the air at 300 ° C. for 4 hours.

〔グルコースの酸化〕
実施例27で調製した試料を用い、実施例19と同条件でグルコース酸化を行った結果、TOF(Turnover frequency,Au 1mol、1時間当たりに反応したグルコース反応モル数)は59100mol/mol・h-1となった。
[Oxidation of glucose]
As a result of performing glucose oxidation under the same conditions as in Example 19 using the sample prepared in Example 27, TOF (Turnover frequency, Au 1 mol, glucose reaction mole reacted per hour) was 59100 mol / mol · h −. It became 1 .

〔フェネチルアルコールの酸化〕
実施例27で調製した試料を用いて、無溶媒でのフェニチルアルコール(1−フェニルエタノール)の酸素酸化を行った。粉末試料(触媒)を0.76g、フェネチルアルコール3.0g、モレキュラーシーブ4A 0.3gを還流冷却管付き2口ナスフラスコに入れ、100℃で酸素を60mL/minでバブリングしながら2時間加熱攪拌した。n−ペンタデカンを内部標準物質として用いて、ガスクロマトグラフィーにより収率を求めた。その結果、アセトフェノンのみが収率58%で得られ、アルコールの酸素酸化においても触媒活性を有することが判明した。
[Oxidation of phenethyl alcohol]
Using the sample prepared in Example 27, oxygen oxidation of phenethyl alcohol (1-phenylethanol) without solvent was performed. 0.76 g of powder sample (catalyst), 3.0 g of phenethyl alcohol and 0.3 g of molecular sieve 4A were placed in a two-necked eggplant flask with a reflux condenser, and heated and stirred for 2 hours while bubbling oxygen at 60 mL / min at 100 ° C. did. The yield was determined by gas chromatography using n-pentadecane as an internal standard substance. As a result, only acetophenone was obtained with a yield of 58%, and it was found that it has catalytic activity also in oxygen oxidation of alcohol.

〔エタノールの酸化〕
実施例27で調製した試料を用いて、水溶液中でのエタノールの酸素酸化を行った。粉末試料(触媒)を0.59g、エタノール2.0g、水40gを100mLオートクレーブに入れた(エタノール/金=1400mol/mol)。酸素ガスで0.5MPaまで加圧し、180℃、回転数650rpmで4時間攪拌した。ガスクロマトグラフィーを用い、外部標準法によりエタノールの転化率、アセトアルデヒド、酢酸の収率と選択率を求めた。その結果、エタノールの転化率は26%、アセトアルデヒド収率5%、選択率20%、酢酸収率19%、選択率73%となり、目的とする酢酸を高い選択率で得ることができた。
[Oxidation of ethanol]
Using the sample prepared in Example 27, oxygen oxidation of ethanol in an aqueous solution was performed. A powder sample (catalyst) of 0.59 g, ethanol of 2.0 g, and water of 40 g were placed in a 100 mL autoclave (ethanol / gold = 1400 mol / mol). The pressure was increased to 0.5 MPa with oxygen gas, and the mixture was stirred at 180 ° C. and a rotation speed of 650 rpm for 4 hours. Using gas chromatography, the conversion of ethanol, the yield and selectivity of acetaldehyde and acetic acid were determined by an external standard method. As a result, the ethanol conversion was 26%, the acetaldehyde yield was 5%, the selectivity was 20%, the acetic acid yield was 19%, and the selectivity was 73%, and the target acetic acid could be obtained with high selectivity.

本発明の方法により製造された表面に金微粒子が分散・固定された担体(金微粒子担持担体)は、酸化触媒、水添触媒、顔料、着色剤、導電剤、その他各種検出素子材料として有用に利用することができる。   A carrier manufactured by the method of the present invention in which gold fine particles are dispersed and fixed (gold fine particle-supported carrier) is useful as an oxidation catalyst, a hydrogenation catalyst, a pigment, a colorant, a conductive agent, and other various detection element materials. Can be used.

図面代用写真であり、本発明の実施例1で得られた金ナノ粒子担持多孔性金属錯体、[Cu2(pzdc)2(pyz)]nのTEM写真である。It is a drawing substitute photograph, and is a TEM photograph of a gold nanoparticle-supporting porous metal complex, [Cu 2 (pzdc) 2 (pyz)] n obtained in Example 1 of the present invention. 図面代用写真であり、本発明の実施例2で得られた金ナノ粒子担持多孔性金属錯体、[Cu2(pzdc)2(pyz)]nのTEM写真である。It is a drawing-substituting photograph, and is a TEM photograph of a gold nanoparticle-supporting porous metal complex, [Cu 2 (pzdc) 2 (pyz)] n obtained in Example 2 of the present invention. 図面代用写真であり、本発明の実施例3で得られた金ナノ粒子担持多孔性金属錯体、[Cu2(pzdc)2(bpy)]のTEM写真である。It is a drawing substitute photograph, and is a TEM photograph of a gold nanoparticle-supporting porous metal complex, [Cu 2 (pzdc) 2 (bpy)] n , obtained in Example 3 of the present invention. 図面代用写真であり、本発明の実施例4で得られた金ナノ粒子担持多孔性金属錯体、[Cu2(pzdc)2(bpy)]nのTEM写真である。It is a drawing-substituting photograph, and is a TEM photograph of a gold nanoparticle-supported porous metal complex, [Cu 2 (pzdc) 2 (bpy)] n obtained in Example 4 of the present invention. 図面代用写真であり、本発明の実施例5で得られた金ナノ粒子担持多孔性金属錯体、[Cu2(pzdc)2(bpy)]nのTEM写真である。It is a drawing substitute photograph, and is a TEM photograph of a gold nanoparticle-supporting porous metal complex, [Cu 2 (pzdc) 2 (bpy)] n obtained in Example 5 of the present invention. 図面代用写真であり、本発明の実施例6で得られた金ナノ粒子担持多孔性金属錯体、[Cu2(pzdc)2(dpe)]nのTEM写真である。It is a drawing-substituting photograph, and is a TEM photograph of a gold nanoparticle-supporting porous metal complex, [Cu 2 (pzdc) 2 (dpe)] n obtained in Example 6 of the present invention. 図面代用写真であり、本発明の実施例7で得られた金ナノ粒子担持多孔性金属錯体、[Cu2(pzdc)2(pia)]nのTEM写真である。It is a drawing-substituting photograph and is a TEM photograph of a gold nanoparticle-supporting porous metal complex obtained in Example 7 of the present invention, [Cu 2 (pzdc) 2 (pia)] n . 図面代用写真であり、本発明の実施例8で得られた金ナノ粒子担持多孔性金属錯体、[Cu2(bpdc)2(TED)]nのTEM写真である。It is a drawing substitute photograph, and is a TEM photograph of a gold nanoparticle-supporting porous metal complex, [Cu 2 (bpdc) 2 (TED)] n obtained in Example 8 of the present invention. 図面代用写真であり、本発明の実施例9で得られた金ナノ粒子担持活性炭のTEM写真である。It is a drawing substitute photograph and is a TEM photograph of gold nanoparticle carrying | support activated carbon obtained in Example 9 of this invention. 図面代用写真であり、本発明の実施例11で得られた金ナノ粒子担持活性炭のTEM写真である。It is a drawing substitute photograph and is a TEM photograph of gold nanoparticle carrying | support activated carbon obtained in Example 11 of this invention. 図面代用写真であり、本発明の実施例13で得られた金ナノ粒子担持活性炭のTEM写真である。It is a drawing-substituting photograph and is a TEM photograph of the gold nanoparticle-supported activated carbon obtained in Example 13 of the present invention. 図面代用写真であり、本発明の実施例14で得られた金ナノ粒子担持高分子(PMMA)のTEM写真である。It is a drawing substitute photograph, and is a TEM photograph of a gold nanoparticle carrying polymer (PMMA) obtained in Example 14 of the present invention. 図面代用写真であり、本発明の実施例15で得られた金ナノ粒子担持高分子(ポリアニリン)のTEM写真である。It is a drawing substitute photograph, and is a TEM photograph of a gold nanoparticle-supported polymer (polyaniline) obtained in Example 15 of the present invention. 図面代用写真であり、本発明の実施例16で得られた金ナノ粒子担持シリカのTEM写真である。It is a drawing substitute photograph and is a TEM photograph of the gold nanoparticle carrying | support silica obtained in Example 16 of this invention. 図面代用写真であり、本発明の実施例17で得られた金ナノ粒子担持アルミナのTEM写真である。It is a drawing substitute photograph, and is a TEM photograph of gold nanoparticle carrying | support alumina obtained in Example 17 of this invention.

Claims (11)

昇華性の金前駆体と無機または有機担体とを機械的摩擦を加えながら固相混合した後、還元することを特徴とする担体表面もしくは担体の細孔内部に金微粒子を分散・固定する方法。   A method of dispersing and fixing gold fine particles on the surface of a carrier or inside the pores of the carrier, wherein the sublimable gold precursor and the inorganic or organic carrier are solid-phase mixed while applying mechanical friction and then reduced. 無機または有機担体が、高分子、金属錯体、炭素系物質、金属酸化物、金属水酸化物および金属硫化物から選ばれた少なくとも一種であることを特徴とする請求項1記載の担体表面もしくは担体の細孔内部に金微粒子を分散・固定する方法。   2. The carrier surface or carrier according to claim 1, wherein the inorganic or organic carrier is at least one selected from a polymer, a metal complex, a carbon-based material, a metal oxide, a metal hydroxide and a metal sulfide. To disperse and fix gold fine particles inside the pores. 無機または有機担体が多孔質の粒子であることを特徴とする請求項1または2に記載の担体表面もしくは担体の細孔内部に金微粒子を分散・固定する方法。   3. The method for dispersing and fixing gold fine particles on the surface of the carrier or inside the pores of the carrier according to claim 1, wherein the inorganic or organic carrier is porous particles. 昇華性の金前駆体が、(CH32Au(CH3COCHCOCH3)、(CH32Au(CF3COCHCOCH3)、(CH32Au(CF3COCHCOCF3)、(C252Au(CH3COCHCOCH3)、(CH32Au(C65COCHCOCF3)、ClAuP(CH33、CH3AuP(CH33および下記一般式(1)あるいは(2)で表される金錯体から選ばれた少なくとも一種であることを特徴とする請求項1〜3のいずれかに記載の担体表面もしくは担体の細孔内部に金微粒子を分散・固定する方法。
(式中、R1は−CH3または−CF3を表す。)
(式中、R2は、−CH3または−CF3を表し、R3は、バレリル基、イソバレリル基、ピバロイル基、チグロイル基、アンゲロイル基、セネシオイル基、フェニル基、チエニル基、またはフリル基を表す。)
Sublimable gold precursors are (CH 3 ) 2 Au (CH 3 COCHCOCH 3 ), (CH 3 ) 2 Au (CF 3 COCHCOCH 3 ), (CH 3 ) 2 Au (CF 3 COCHCOCF 3 ), (C 2 H 5 ) 2 Au (CH 3 COCHCOCH 3 ), (CH 3 ) 2 Au (C 6 H 5 COCHCOCF 3 ), ClAuP (CH 3 ) 3 , CH 3 AuP (CH 3 ) 3 and the following general formula (1) or The method for dispersing and fixing gold fine particles on the surface of the carrier or inside the pores of the carrier according to any one of claims 1 to 3, which is at least one selected from gold complexes represented by (2) .
(In the formula, R 1 represents —CH 3 or —CF 3. )
(In the formula, R 2 represents —CH 3 or —CF 3 , and R 3 represents valeryl group, isovaleryl group, pivaloyl group, tigloyl group, angeloyl group, senecioyl group, phenyl group, thienyl group, or furyl group. To express.)
還元が、還元性ガス雰囲気下で行われることを特徴とする請求項1〜4のいずれかに記載の担体表面もしくは担体の細孔内部に金微粒子を分散・固定する方法。   The method for dispersing and fixing gold fine particles on the surface of the carrier or inside the pores of the carrier according to any one of claims 1 to 4, wherein the reduction is performed in a reducing gas atmosphere. 還元が、焼成還元法により行われることを特徴とする請求項1〜4のいずれかに記載の担体表面もしくは担体の細孔内部に金微粒子を分散・固定する方法。   The method for dispersing and fixing gold fine particles on the surface of the carrier or inside the pores of the carrier according to any one of claims 1 to 4, wherein the reduction is performed by a calcination reduction method. 金微粒子の平均粒径が20nm以下であることを特徴とする請求項1〜6のいずれかに記載の担体表面もしくは担体の細孔内部に金微粒子を分散・固定する方法。   7. The method for dispersing and fixing gold fine particles on the surface of the carrier or inside the pores of the carrier according to claim 1, wherein the average particle size of the gold fine particles is 20 nm or less. 請求項1〜7のいずれかに記載の方法で得られた金微粒子が分散・固定化された担体。   A carrier in which gold fine particles obtained by the method according to claim 1 are dispersed and immobilized. 請求項8に記載の金微粒子が分散・固定化された担体からなる触媒。   A catalyst comprising a carrier in which the gold fine particles according to claim 8 are dispersed and immobilized. 触媒がグルコース酸化触媒、一酸化炭素酸化触媒またはアルコール酸化触媒であることを特徴とする請求項9に記載の触媒。   The catalyst according to claim 9, wherein the catalyst is a glucose oxidation catalyst, a carbon monoxide oxidation catalyst or an alcohol oxidation catalyst. 請求項8に記載の金微粒子が分散・固定化された担体からなる着色剤。   A colorant comprising a carrier in which the gold fine particles according to claim 8 are dispersed and fixed.
JP2007106198A 2007-04-13 2007-04-13 Method for dispersing and fixing gold fine particles on a carrier Active JP4970120B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007106198A JP4970120B2 (en) 2007-04-13 2007-04-13 Method for dispersing and fixing gold fine particles on a carrier

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007106198A JP4970120B2 (en) 2007-04-13 2007-04-13 Method for dispersing and fixing gold fine particles on a carrier

Publications (2)

Publication Number Publication Date
JP2008259993A true JP2008259993A (en) 2008-10-30
JP4970120B2 JP4970120B2 (en) 2012-07-04

Family

ID=39982888

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007106198A Active JP4970120B2 (en) 2007-04-13 2007-04-13 Method for dispersing and fixing gold fine particles on a carrier

Country Status (1)

Country Link
JP (1) JP4970120B2 (en)

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010529061A (en) * 2007-06-05 2010-08-26 ディーエスエム アイピー アセッツ ビー.ブイ. Novel reaction using gold catalyst
WO2010110447A1 (en) * 2009-03-26 2010-09-30 国立大学法人北海道大学 Mesoporous silica-supported gold cluster, catalyst comprising same, and process for producing same
JP2010247108A (en) * 2009-04-17 2010-11-04 National Institute Of Advanced Industrial Science & Technology Gold nano cluster uniformly controlled in size on metal oxide, method for manufacturing the same and catalyst using the same
JP2010261040A (en) * 2009-05-04 2010-11-18 Laird Technologies Inc Method for uniformly and more highly filling polymer matrix using highly porous host material with metal filler
JP2011219466A (en) * 2010-03-23 2011-11-04 Tokyo Metropolitan Univ Gold catalyst for ethanol oxidation and method for producing acetaldehyde and acetic acid using the same
WO2012175409A1 (en) 2011-06-21 2012-12-27 Umicore Ag & Co. Kg Method for the deposition of metals on support oxides
JP2013085988A (en) * 2011-10-13 2013-05-13 Noritake Co Ltd Catalyst material, and method for manufacturing the same
JP2013094705A (en) * 2011-10-28 2013-05-20 Noritake Co Ltd Catalyst material including carbon particle, and method for manufacturing catalyst material
WO2013099382A1 (en) * 2011-12-28 2013-07-04 株式会社村田製作所 Method for manufacturing functional material, and electronic component
WO2013187323A1 (en) * 2012-06-12 2013-12-19 公立大学法人首都大学東京 Gold cluster catalyst and method for producing same
KR101345609B1 (en) 2012-11-14 2013-12-31 우석대학교 산학협력단 Metallic nano catalysts-impregnated membrane composites for fuel cell and manufacturing method thereof
WO2014057992A1 (en) * 2012-10-10 2014-04-17 国立大学法人九州大学 Method for producing multisubstituted biphenyl compound and solid catalyst to be used therein
JP2014100638A (en) * 2012-11-19 2014-06-05 Dainippon Printing Co Ltd Method for manufacturing carbon monoxide purging filter, carbon monoxide purging filter, and carbon monoxide purging apparatus
JP2014516770A (en) * 2011-04-28 2014-07-17 ビーエーエスエフ ソシエタス・ヨーロピア Precious metal catalysts for oxidative dehydrogenation with low metal loading
CN105880631A (en) * 2016-06-14 2016-08-24 国家纳米科学中心 Core-shell structured gold cluster-carbon dot nano-particles as well as preparation method and application thereof
JP2016175075A (en) * 2016-03-18 2016-10-06 公立大学法人首都大学東京 Gold cluster catalyst
CN114210993A (en) * 2021-12-18 2022-03-22 兰州大学 Method for preparing hollow gold nanospheres by rapid sintering
JP7421608B1 (en) 2022-08-01 2024-01-24 星和電機株式会社 Metal particle-supported porous carbon material and its manufacturing method, precursor of metal particle-supported porous carbon material, and catalyst material and electrode material using metal particle-supported porous carbon material

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09122478A (en) * 1995-11-07 1997-05-13 Agency Of Ind Science & Technol Ultrafine gold particle fixing substance and manufacture thereof
JPH09155206A (en) * 1995-12-07 1997-06-17 Nippon Soken Inc Production of exhaust gas purifying catalyst
JP2003200052A (en) * 2001-03-28 2003-07-15 Toshiba Corp Catalyst for synthesizing carbon fiber, composite carbon material, carbon fiber manufacturing method, catalytic material for fuel cell and method for manufacturing catalytic material for fuel cell
JP2004009011A (en) * 2002-06-11 2004-01-15 National Institute Of Advanced Industrial & Technology Catalyst for water-gas-shift reaction
JP2005518277A (en) * 2002-02-26 2005-06-23 ビーエーエスエフ アクチェンゲゼルシャフト Method for producing shell-type catalyst

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09122478A (en) * 1995-11-07 1997-05-13 Agency Of Ind Science & Technol Ultrafine gold particle fixing substance and manufacture thereof
JPH09155206A (en) * 1995-12-07 1997-06-17 Nippon Soken Inc Production of exhaust gas purifying catalyst
JP2003200052A (en) * 2001-03-28 2003-07-15 Toshiba Corp Catalyst for synthesizing carbon fiber, composite carbon material, carbon fiber manufacturing method, catalytic material for fuel cell and method for manufacturing catalytic material for fuel cell
JP2005518277A (en) * 2002-02-26 2005-06-23 ビーエーエスエフ アクチェンゲゼルシャフト Method for producing shell-type catalyst
JP2004009011A (en) * 2002-06-11 2004-01-15 National Institute Of Advanced Industrial & Technology Catalyst for water-gas-shift reaction

Cited By (31)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010529061A (en) * 2007-06-05 2010-08-26 ディーエスエム アイピー アセッツ ビー.ブイ. Novel reaction using gold catalyst
WO2010110447A1 (en) * 2009-03-26 2010-09-30 国立大学法人北海道大学 Mesoporous silica-supported gold cluster, catalyst comprising same, and process for producing same
JP2010247108A (en) * 2009-04-17 2010-11-04 National Institute Of Advanced Industrial Science & Technology Gold nano cluster uniformly controlled in size on metal oxide, method for manufacturing the same and catalyst using the same
US8663506B2 (en) 2009-05-04 2014-03-04 Laird Technologies, Inc. Process for uniform and higher loading of metallic fillers into a polymer matrix using a highly porous host material
JP2010261040A (en) * 2009-05-04 2010-11-18 Laird Technologies Inc Method for uniformly and more highly filling polymer matrix using highly porous host material with metal filler
JP2011219466A (en) * 2010-03-23 2011-11-04 Tokyo Metropolitan Univ Gold catalyst for ethanol oxidation and method for producing acetaldehyde and acetic acid using the same
JP2014516770A (en) * 2011-04-28 2014-07-17 ビーエーエスエフ ソシエタス・ヨーロピア Precious metal catalysts for oxidative dehydrogenation with low metal loading
US20140112849A1 (en) * 2011-06-21 2014-04-24 Umicore Ag & Co., Kg Method for the depositon of metals on support oxides
CN108671908A (en) * 2011-06-21 2018-10-19 优美科股份公司及两合公司 Method for the deposited metal in support oxide
CN103619470A (en) * 2011-06-21 2014-03-05 优美科股份公司及两合公司 Method for the deposition of metals on support oxides
WO2012175409A1 (en) 2011-06-21 2012-12-27 Umicore Ag & Co. Kg Method for the deposition of metals on support oxides
JP2014524826A (en) * 2011-06-21 2014-09-25 ユミコア・アクチエンゲゼルシャフト・ウント・コムパニー・コマンディットゲゼルシャフト Method for depositing metal on support oxide
JP2013085988A (en) * 2011-10-13 2013-05-13 Noritake Co Ltd Catalyst material, and method for manufacturing the same
JP2013094705A (en) * 2011-10-28 2013-05-20 Noritake Co Ltd Catalyst material including carbon particle, and method for manufacturing catalyst material
WO2013099382A1 (en) * 2011-12-28 2013-07-04 株式会社村田製作所 Method for manufacturing functional material, and electronic component
US9608213B2 (en) 2011-12-28 2017-03-28 Murata Manufacturing Co., Ltd. Method for manufacturing functional material and electronic component
JPWO2013099382A1 (en) * 2011-12-28 2015-04-30 株式会社村田製作所 Method for producing functional material and electronic component
WO2013187323A1 (en) * 2012-06-12 2013-12-19 公立大学法人首都大学東京 Gold cluster catalyst and method for producing same
JP2013255887A (en) * 2012-06-12 2013-12-26 Tokyo Metropolitan Univ Gold cluster catalyst and production method thereof
US9533285B2 (en) 2012-06-12 2017-01-03 Tokyo Metropolitan University Gold cluster catalyst and method for producing same
WO2014057992A1 (en) * 2012-10-10 2014-04-17 国立大学法人九州大学 Method for producing multisubstituted biphenyl compound and solid catalyst to be used therein
JPWO2014057992A1 (en) * 2012-10-10 2016-09-05 国立大学法人九州大学 Method for producing polysubstituted biphenyl compound and solid catalyst used therefor
US9469621B2 (en) 2012-10-10 2016-10-18 Kyushu University, National University Corporation Method for producing multisubstituted biphenyl compound and solid catalyst to be used therein
KR101345609B1 (en) 2012-11-14 2013-12-31 우석대학교 산학협력단 Metallic nano catalysts-impregnated membrane composites for fuel cell and manufacturing method thereof
JP2014100638A (en) * 2012-11-19 2014-06-05 Dainippon Printing Co Ltd Method for manufacturing carbon monoxide purging filter, carbon monoxide purging filter, and carbon monoxide purging apparatus
JP2016175075A (en) * 2016-03-18 2016-10-06 公立大学法人首都大学東京 Gold cluster catalyst
CN105880631A (en) * 2016-06-14 2016-08-24 国家纳米科学中心 Core-shell structured gold cluster-carbon dot nano-particles as well as preparation method and application thereof
CN105880631B (en) * 2016-06-14 2018-09-04 国家纳米科学中心 A kind of golden cluster-carbon dots nano particle of nucleocapsid structure and its preparation method and application
CN114210993A (en) * 2021-12-18 2022-03-22 兰州大学 Method for preparing hollow gold nanospheres by rapid sintering
CN114210993B (en) * 2021-12-18 2023-04-11 兰州大学 Method for preparing hollow gold nanospheres through rapid sintering
JP7421608B1 (en) 2022-08-01 2024-01-24 星和電機株式会社 Metal particle-supported porous carbon material and its manufacturing method, precursor of metal particle-supported porous carbon material, and catalyst material and electrode material using metal particle-supported porous carbon material

Also Published As

Publication number Publication date
JP4970120B2 (en) 2012-07-04

Similar Documents

Publication Publication Date Title
JP4970120B2 (en) Method for dispersing and fixing gold fine particles on a carrier
Zou et al. Photocatalytic selective oxidation of benzyl alcohol over ZnTi-LDH: The effect of surface OH groups
Jiao et al. Metal–organic frameworks as platforms for catalytic applications
Oar-Arteta et al. Metal organic frameworks as precursors for the manufacture of advanced catalytic materials
Sheng et al. MOF-templated fabrication of hollow Co4N@ N-doped carbon porous nanocages with superior catalytic activity
Cui et al. Spontaneous redox approach to the self-assembly synthesis of Au/CeO2 plasmonic photocatalysts with rich oxygen vacancies for selective photocatalytic conversion of alcohols
Xu et al. Mechanochemical synthesis of advanced nanomaterials for catalytic applications
Wang et al. Enhanced photoreduction CO2 activity over direct Z-scheme α-Fe2O3/Cu2O heterostructures under visible light irradiation
Zhang et al. Facile synthesis of ultrafine cobalt oxides embedded into N-doped carbon with superior activity in hydrogenation of 4-nitrophenol
Zhang et al. PdNi nanoparticles supported on MIL-101 as high-performance catalysts for hydrogen generation from ammonia borane
Guo et al. Biogenic Pt/CaCO3 nanocomposite as a robust catalyst toward benzene oxidation
EP1826180A1 (en) A composite material composed of nanoparticles of transition metal and magnetic ferric oxide, a methode of preparing the same, and uses of the same
CN107252702A (en) A kind of Co N C/SiO2Composite nano-catalyst, its preparation method and application
Zhang et al. Synthesis of highly loaded and well dispersed CuO/SBA-15 via an ultrasonic post-grafting method and its application as a catalyst for the direct hydroxylation of benzene to phenol
CN108404987B (en) Method for improving catalytic efficiency of nanoparticle @ MOFs material
Zhang et al. Octahedral core–shell bimetallic catalysts M@ UIO-67 (M= Pt–Pd nanoparticles, Pt–Pd nanocages): metallic nanocages that enhanced CO2 conversion
Chen et al. Template engaged synthesis of hollow ceria-based composites
Ashik et al. Nanomaterials as catalysts
Cheng et al. Rapid discrimination of adsorbed oxygen and lattice oxygen in catalysts by the cataluminescence method
Xie et al. Carbon supported copper catalyst prepared in situ by one-pot pyrolysis of Bougainvillea glabra: An efficient and stable catalyst for selective oxidation of cyclohexane
Kute et al. A review on the synthesis and applications of sustainable copper-based nanomaterials
Yousaf et al. Synergistic effect of interfacial phenomenon on enhancing catalytic performance of Pd loaded MnO x–CeO 2–C hetero-nanostructure for hydrogenation and electrochemical reactions
Qiu et al. Photocatalytic conversion of sodium lignosulfonate into vanillin using mesoporous TiO2 derived from MIL-125
Liu et al. Promoted selective oxidation of ethylbenzene in liquid phase achieved by hollow CeVO4 microspheres
Zhang et al. Encapsulating spinel nancrystals in Laponite cages and applications in molecular oxidation of cyclohexane

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20091214

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110609

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110621

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110822

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111213

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111216

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120327

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120404

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150413

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4970120

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250