JP7388069B2 - Metallic coating fluid and coated objects - Google Patents

Metallic coating fluid and coated objects Download PDF

Info

Publication number
JP7388069B2
JP7388069B2 JP2019165300A JP2019165300A JP7388069B2 JP 7388069 B2 JP7388069 B2 JP 7388069B2 JP 2019165300 A JP2019165300 A JP 2019165300A JP 2019165300 A JP2019165300 A JP 2019165300A JP 7388069 B2 JP7388069 B2 JP 7388069B2
Authority
JP
Japan
Prior art keywords
coating liquid
silver nanoparticles
silver
metallic coating
dispersant
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2019165300A
Other languages
Japanese (ja)
Other versions
JP2021042310A (en
Inventor
恵里香 田淵
靖 大江
由美 中山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP2019165300A priority Critical patent/JP7388069B2/en
Publication of JP2021042310A publication Critical patent/JP2021042310A/en
Application granted granted Critical
Publication of JP7388069B2 publication Critical patent/JP7388069B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Description

本発明は、メタリック塗液及びそれを用いた被塗工物に関する。 The present invention relates to a metallic coating liquid and a coated object using the same.

近年、意匠性の観点から、金属光沢を呈する塗液としてメタリック塗液のニーズが高まっている。 In recent years, from the viewpoint of design, there has been an increasing need for metallic coating liquids as coating liquids that exhibit metallic luster.

なかでも、粒径がナノメートルレベルまで微細化された金属ナノ粒子を用いた塗液は、金属光沢性の意匠を呈する塗液として優れた適性を有していることが見出されている。これは、金属ナノ粒子を含有する分散液を塗布すると、分散媒の揮発に伴い、金属ナノ粒子が均一に配列し金属光沢を呈するためである。特に、金属ナノ粒子の中でも銀等の貴金属は耐食性にも優れるため、銀ナノ粒子などの貴金属を用いた塗液は、応用範囲が広く、金属光沢性がある塗液として有用である。 Among these, it has been found that a coating liquid using metal nanoparticles whose particle size has been reduced to the nanometer level has excellent suitability as a coating liquid exhibiting a metallic luster design. This is because when a dispersion containing metal nanoparticles is applied, the metal nanoparticles are arranged uniformly and exhibit metallic luster as the dispersion medium evaporates. In particular, among metal nanoparticles, noble metals such as silver have excellent corrosion resistance, so coating liquids using noble metals such as silver nanoparticles have a wide range of applications and are useful as coating liquids with metallic luster.

このような銀ナノ粒子は、更に、適切な保護剤で粒子の表面を覆うことにより、低粘度の分散媒中でも沈降することなく分散性を維持する。このため、銀ナノ粒子を使用した塗液では、低粘度の塗液を用いるグラビア方式やスロットダイ方式、インクジェット方式から、高粘度の塗液を用いるスクリーン方式やグラビアオフセット方式まで、様々な方式での塗工が可能である。 Furthermore, such silver nanoparticles maintain dispersibility without settling even in a low-viscosity dispersion medium by coating the surface of the particles with an appropriate protective agent. For this reason, various methods are available for coating liquids using silver nanoparticles, from gravure methods, slot die methods, and inkjet methods that use low viscosity coating liquids to screen methods and gravure offset methods that use high viscosity coating liquids. coating is possible.

ここで、銀ナノ粒子を製造する方法としては、一般には硝酸銀や塩化銀等の銀塩を溶解させた水溶液等を用いて、存在する銀イオンを何らかの還元剤により還元して所望の形態の金属塩として析出させることが通常であった(特許文献1~特許文献3)。 Here, as a method for producing silver nanoparticles, generally an aqueous solution in which silver salts such as silver nitrate and silver chloride are dissolved is used, and the existing silver ions are reduced with some kind of reducing agent to obtain the desired form of metal. Usually, it was precipitated as a salt (Patent Documents 1 to 3).

また、シュウ酸銀とアミンを混合して熱分解することにより、シュウ酸銀アミン錯体を経て銀ナノ粒子を製造する方法等も知られている(特許文献4、特許文献5)。この手法は、銀イオンを還元するための還元剤を混合する必要がなく、単純な手法で銀ナノ粒子を製造することが可能である。
そしてこれらの方法で得られた銀ナノ粒子は、アミン分子のアミノ基が銀粒子表面に配位しており、ある種の分散媒に分散可能である。
Also known is a method of producing silver nanoparticles through a silver oxalate amine complex by mixing silver oxalate and an amine and thermally decomposing the mixture (Patent Document 4, Patent Document 5). This method does not require mixing a reducing agent for reducing silver ions, and it is possible to produce silver nanoparticles by a simple method.
Silver nanoparticles obtained by these methods have amino groups of amine molecules coordinated on the surface of the silver particles, and can be dispersed in a certain type of dispersion medium.

しかしながらこれらの方法では、分散媒の種類が限られ、塗液の組成や塗工条件が限定される他、塗工可能な基材も限られたものとなる。分散媒の基材に対する濡れ性が悪い場合、塗工ムラやはじきが生じる。
また、塗液に基材を溶解する成分が含まれる場合、基材表面が溶解して、内部に銀ナノ粒子が入り込む。これにより、被塗工物に光が当てられた場合に銀ナノ粒子由来の局在表面プラズモンが起こり、色味の変化、光沢感の減少に繋がる場合がある。
However, in these methods, the type of dispersion medium is limited, the composition of the coating liquid and coating conditions are limited, and the substrates that can be coated are also limited. If the dispersion medium has poor wettability with respect to the base material, uneven coating and repellency will occur.
Furthermore, when the coating liquid contains a component that dissolves the base material, the surface of the base material is dissolved and the silver nanoparticles enter the interior. As a result, when the object to be coated is exposed to light, localized surface plasmons derived from silver nanoparticles occur, which may lead to a change in color and a decrease in glossiness.

特開2012-180589号公報Japanese Patent Application Publication No. 2012-180589 特開2012-140701号公報Japanese Patent Application Publication No. 2012-140701 特開2002-121437号公報Japanese Patent Application Publication No. 2002-121437 特開2012-162767号公報Japanese Patent Application Publication No. 2012-162767 特許第5574761号公報Patent No. 5574761

本発明は上記のような事情に鑑みてなされたものであって、塗液の組成や塗工条件が幅広く可能で、塗工する基材に合わせた塗液が作成でき、さらに、分散性の良いメタリック塗液を提供すること、及び、それを用いた被塗工物を提供することを目的とする。 The present invention was developed in view of the above circumstances, and it allows for a wide range of coating liquid compositions and coating conditions, allows for the creation of coating liquids tailored to the substrate to be coated, and further improves dispersibility. The purpose is to provide a good metallic coating liquid and to provide a coated object using the same.

課題を解決するために、本発明の一態様に係るメタリック塗液は、アミン化合物を主として含む保護分子により表面が保護された銀ナノ粒子と、分散媒と、リン酸エステルを主として含む分散剤と、を有することを要旨とする。 In order to solve the problem, a metallic coating liquid according to one embodiment of the present invention includes silver nanoparticles whose surfaces are protected by protective molecules mainly containing an amine compound, a dispersion medium, and a dispersant mainly containing a phosphate ester. The gist is to have the following.

本発明の一態様によれば、分散性の良いメタリック塗液を提供することができる。本発明の一態様の塗液によれば、基材や塗工条件に合わせた塗液の作製ができる上、塗液の保存安定性も向上することが期待される。 According to one aspect of the present invention, a metallic coating liquid with good dispersibility can be provided. According to the coating liquid of one embodiment of the present invention, it is possible to prepare a coating liquid tailored to the substrate and coating conditions, and it is expected that the storage stability of the coating liquid will be improved.

本発明の実施例1で得られた銀ナノ粒子の水分散液を基板に塗布し乾燥させた後、観察した銀ナノ粒子の走査型電子顕微鏡像を示す図である。FIG. 2 is a diagram showing a scanning electron microscope image of silver nanoparticles observed after the aqueous dispersion of silver nanoparticles obtained in Example 1 of the present invention was applied to a substrate and dried. 本発明の実施例1で得られた銀ナノ粒子の粒度分布及び累積度数(%)を示す図である。FIG. 2 is a diagram showing the particle size distribution and cumulative frequency (%) of silver nanoparticles obtained in Example 1 of the present invention.

以下、本発明の実施形態(以下、本実施形態)について説明する。ただし本発明は以下の実施形態に限定されるものではない。 Hereinafter, an embodiment of the present invention (hereinafter referred to as the present embodiment) will be described. However, the present invention is not limited to the following embodiments.

(銀ナノ粒子を用いたメタリック塗液)
本実施形態に係るメタリック塗液(以下、単に塗液とも称する)は、アミン化合物で表面が保護された銀ナノ粒子(以下、単に銀ナノ粒子とも称する)と、分散剤であるリン酸エステルと、分散媒とを有する。
(Metallic coating liquid using silver nanoparticles)
The metallic coating liquid (hereinafter also simply referred to as coating liquid) according to the present embodiment contains silver nanoparticles whose surface is protected with an amine compound (hereinafter also simply referred to as silver nanoparticles) and a phosphate ester as a dispersant. , and a dispersion medium.

本実施形態では、銀ナノ粒子の表面は、アミン化合物を主成分として含む保護分子により覆われている。ここでいう「主成分」とは、銀ナノ粒子の表面を覆っている複数の保護分子のうち最も多い成分(分子)をいう。 In this embodiment, the surface of the silver nanoparticles is covered with protective molecules containing an amine compound as a main component. The "main component" here refers to the component (molecule) that is the most abundant among the plurality of protective molecules covering the surface of the silver nanoparticle.

本実施形態に係る銀ナノ粒子は、例えば、メジアン径(D50)が1nm以上300nm以下の範囲内であり、有機溶媒や水といった分散媒に分散可能である。なお、銀ナノ粒子のメジアン径(D50)が1nmより小さいと視認性が低下し、銀ナノ粒子のメジアン径(D50)が300nmより大きいと分散性が低下することがある。なお、平均一次粒子径は、Nanotrac UPA-EX150粒度分布計(動的光散乱法、日機装社)を用い、0.1質量%分散液にて測定した粒度分布から求めた。 The silver nanoparticles according to the present embodiment have, for example, a median diameter (D50) of 1 nm or more and 300 nm or less, and can be dispersed in a dispersion medium such as an organic solvent or water. Note that if the median diameter (D50) of the silver nanoparticles is smaller than 1 nm, visibility may be reduced, and if the median diameter (D50) of the silver nanoparticles is larger than 300 nm, dispersibility may be reduced. The average primary particle diameter was determined from the particle size distribution measured in a 0.1% by mass dispersion using a Nanotrac UPA-EX150 particle size distribution meter (dynamic light scattering method, Nikkiso Co., Ltd.).

また、銀ナノ粒子の形状としては制限はないが、特には球状、平板状、多角形状等のいずれか、又は複数の形状のものを含む。平板状の銀ナノ粒子は表面積が大きく、粒子が少量であっても視認性がよいことが期待される。また、銀ナノ粒子の形状が球状であると、大きさが均一になりやすく、銀ナノ粒子が隙間なく並ぶことが期待できる。このため、球状の銀ナノ粒子も視認性がよいことが期待される。 Further, the shape of the silver nanoparticles is not limited, but particularly includes any one or a plurality of shapes such as spherical, flat, and polygonal shapes. Flat silver nanoparticles have a large surface area, and are expected to have good visibility even if the particles are small. Moreover, when the shape of the silver nanoparticles is spherical, the size tends to be uniform, and it is expected that the silver nanoparticles will be lined up without gaps. Therefore, it is expected that spherical silver nanoparticles will also have good visibility.

銀ナノ粒子を構成する銀の原料としては、含銀化合物のうちで、加熱により容易に分解して金属銀を生成する銀化合物が好ましく使用される。
このような銀化合物としては、例えば、蟻酸、酢酸、シュウ酸、マロン酸、安息香酸、フ
タル酸などのカルボン酸と銀が化合したカルボン酸銀の他、塩化銀、硝酸銀、炭酸銀等がある。そして、それらの銀化合物の中でも、分解により容易に金属を生成し、かつ、銀以外の不純物を生じにくい観点からシュウ酸銀が好ましく用いられる。
シュウ酸銀は、銀含有率が高いとともに、加熱によりシュウ酸イオンが二酸化炭素として分解除去される。このために、還元剤を必要とせず熱分解により金属銀がそのまま得られ、不純物が残留しにくい点で有利といえる。
Among silver-containing compounds, a silver compound that is easily decomposed by heating to produce metallic silver is preferably used as a raw material for silver constituting the silver nanoparticles.
Examples of such silver compounds include silver carboxylates in which silver is combined with carboxylic acids such as formic acid, acetic acid, oxalic acid, malonic acid, benzoic acid, and phthalic acid, as well as silver chloride, silver nitrate, and silver carbonate. . Among these silver compounds, silver oxalate is preferably used from the viewpoint that it easily generates metal by decomposition and is less likely to generate impurities other than silver.
Silver oxalate has a high silver content, and oxalate ions are decomposed and removed as carbon dioxide by heating. For this reason, metallic silver can be obtained as it is by thermal decomposition without requiring a reducing agent, and it can be said to be advantageous in that it is difficult for impurities to remain.

銀化合物を加熱分解する際は、アルコールや脂肪酸、高分子等を添加してもよい。これらの添加により、良分散媒の変化や、分散安定性の向上が期待される。アルコールとしては、例えば、メタノール、エタノール、1-プロパノール等、脂肪酸としては、オレイン酸、リノール酸等、高分子としては、ポリビニルピロリドン、ゼラチン等が挙げられる。 When thermally decomposing a silver compound, alcohol, fatty acid, polymer, etc. may be added. These additions are expected to change the dispersion medium and improve dispersion stability. Examples of the alcohol include methanol, ethanol, and 1-propanol; examples of the fatty acid include oleic acid and linoleic acid; and examples of the polymer include polyvinylpyrrolidone and gelatin.

銀ナノ粒子の表面を保護するアミン化合物は、特に、その構造に制限はないが、銀原子への配位の容易さから、1級のアミノ基であるRNH(Rは炭化水素基)を有することが好ましい。2級アミノ基も配位可能であるが、反応性は1級よりも低下する。
また、アミノ基を複数有するジアミン化合物でもよい。ジアミン化合物の場合は、1級アミノ基と3級アミノ基とを備えると、1級アミノ基が選択的に銀原子に配位し、嵩高い3級アミノ基は外側を向くことになるため、銀ナノ粒子の表面が保護されやすい。
アミンとしては、例えば、エチルアミン、n-プロピルアミン、イソプロピルアミン、1,2-ジメチルプロピルアミン、n-ブチルアミン、イソブチルアミン、n-ノニルアミン、n-アミノデカン、n-アミノウンデカン、n-ヘキサデシルアミン、n-ヘプタデシルアミン、n-オクタデシルアミン、n-オレイルアミン、等を挙げることができる。さらにジアミンとしては、例えば、N,N-ジメチルエチレンジアミン、N,N-ジエチルエチレンジアミン、N,N-ジメチル-1,3-プロパンジアミン、N,N-ジエチル-1,3-プロパンジアミン、N,N-ジメチル-1,5-ジアミノ-2-メチルペンタン、N,N-ジメチル-1,6-ヘキサンジアミン、N,N-ジブチルアミノプロパン、N,N-ジイソブチル1,3-ジアミノプロパン、等が挙げられるが、この限りではない。また、複数の異なるアミンを同時に用いてもよい。
The amine compound that protects the surface of silver nanoparticles is not particularly limited in its structure, but RNH 2 (R is a hydrocarbon group), which is a primary amino group, is used because it can easily coordinate to silver atoms. It is preferable to have. Secondary amino groups can also be coordinated, but their reactivity is lower than that of primary ones.
Alternatively, a diamine compound having a plurality of amino groups may be used. In the case of a diamine compound, if it has a primary amino group and a tertiary amino group, the primary amino group will selectively coordinate to the silver atom, and the bulky tertiary amino group will face outward. The surface of silver nanoparticles is easily protected.
Examples of the amine include ethylamine, n-propylamine, isopropylamine, 1,2-dimethylpropylamine, n-butylamine, isobutylamine, n-nonylamine, n-aminodecane, n-aminoundecane, n-hexadecylamine, Examples include n-heptadecylamine, n-octadecylamine, n-oleylamine, and the like. Furthermore, the diamines include, for example, N,N-dimethylethylenediamine, N,N-diethylethylenediamine, N,N-dimethyl-1,3-propanediamine, N,N-diethyl-1,3-propanediamine, N,N -dimethyl-1,5-diamino-2-methylpentane, N,N-dimethyl-1,6-hexanediamine, N,N-dibutylaminopropane, N,N-diisobutyl 1,3-diaminopropane, etc. Yes, but not limited to this. Also, a plurality of different amines may be used simultaneously.

塗液における銀ナノ粒子の添加量は、例えば、分散媒に対して1重量%以上50重量%以下の範囲内であることが好ましい。なお、金属光沢性を高めるために銀ナノ粒子の添加量は、15重量%以上であることが特に好ましい。銀ナノ粒子の添加量が1重量%を下回ると印刷物としての視認性が低下し、50重量%を上回ると分散性が低下することがある。 The amount of silver nanoparticles added to the coating liquid is preferably in the range of 1% by weight or more and 50% by weight or less based on the dispersion medium. In addition, in order to improve metallic luster, it is particularly preferable that the amount of silver nanoparticles added is 15% by weight or more. If the amount of silver nanoparticles added is less than 1% by weight, the visibility of printed matter may decrease, and if it exceeds 50% by weight, dispersibility may decrease.

本実施形態に係る塗液に用いられる分散剤は、リン酸エステルを用いる。
リン酸エステルとしては、モノリン酸エステル、ジリン酸エステル、トリリン酸エステル、リン酸エステル塩等を含む。中でも、ポリオキシエチレンアルキルエーテルリン酸、ポリオキシエチレンアルキルエーテルリン酸塩、ポリオキシエチレンフェニルエーテルリン酸、ポリオキシエチレンフェニルエーテルリン酸塩は、水や有機溶剤に対する溶解性に特に優れ、銀ナノ粒子の分散性が向上しやすく好ましい。
The dispersant used in the coating liquid according to this embodiment is a phosphoric acid ester.
Phosphoric esters include monophosphoric esters, diphosphoric esters, triphosphoric esters, phosphoric ester salts, and the like. Among them, polyoxyethylene alkyl ether phosphate, polyoxyethylene alkyl ether phosphate, polyoxyethylene phenyl ether phosphoric acid, and polyoxyethylene phenyl ether phosphate have particularly excellent solubility in water and organic solvents, and are highly soluble in silver nanoparticles. This is preferable because the dispersibility of the particles is easily improved.

リン酸エステルの添加により銀ナノ粒子の分散性が向上すると、良分散媒の種類が増え、塗工可能な条件、基材が増えることが期待される。また、分散性の向上により銀ナノ粒子が凝集しにくくなるため、経時安定性が向上し、塗工ムラが生じない等、塗工性の良い塗液となる。さらに、分散性が高いほど塗液の固形分が高くでき、一度により多くの銀ナノ粒子を塗工できる他、保存安定性も向上する。 If the dispersibility of silver nanoparticles is improved by the addition of phosphate ester, it is expected that the variety of good dispersion media will increase, and the conditions and substrates under which coating can be applied will increase. In addition, since the silver nanoparticles are less likely to aggregate due to improved dispersibility, the stability over time is improved, and a coating liquid with good coating properties, such as no coating unevenness, is obtained. Furthermore, the higher the dispersibility, the higher the solid content of the coating solution, which allows more silver nanoparticles to be coated at one time, and improves storage stability.

リン酸エステルは、用いる塗液が水系か有機系かにより、親水性の異なるリン酸エステルを使いわけるのが好ましい。
親水性の指標としては、界面活性剤の水と油(水に不溶性の有機化合物)への親和性の程度を表す値であるHLB(Hydrophilic-Lipophilic Balance)値がある。HLB値は、最大値である20に近いほど親水性であることを表す。具体的なリン酸エステルとしては、フォスファノールRB-40、RD-510Y、RD720N、RL-210、RS-410(東邦化学工業)、NIKKOL DDP-2、DDP-4、DDP-6、DDP-8、DDP-10、TLP-4、TDP-2、TDP-8(日光ケミカルズ)、プライサーフ A212C、A215C、A208F、M208F、A208A、A208B、A210B、A219B、AL、(第一工業製薬)等を挙げることができるがこの限りではない。
It is preferable to use phosphate esters with different hydrophilic properties depending on whether the coating liquid used is aqueous or organic.
As an index of hydrophilicity, there is an HLB (Hydrophilic-Lipophilic Balance) value, which is a value representing the degree of affinity of a surfactant for water and oil (organic compounds insoluble in water). The closer the HLB value is to the maximum value of 20, the more hydrophilic it is. Specific phosphoric acid esters include phosphanol RB-40, RD-510Y, RD720N, RL-210, RS-410 (Toho Chemical Industries), NIKKOL DDP-2, DDP-4, DDP-6, DDP- 8, DDP-10, TLP-4, TDP-2, TDP-8 (Nikko Chemicals), Pricesurf A212C, A215C, A208F, M208F, A208A, A208B, A210B, A219B, AL, (Daiichi Kogyo Seiyaku), etc. I can list them, but they are not limited to this.

なお、本実施形態では、これらの分散剤を単独で、又は複数混合して用いてもよい。また、リン酸エステル以外のアニオン系の分散剤を更に用いてもよい。
塗液の組成物として用いる以外にも、銀ナノ粒子回収時に、分散剤を添加した分散液を遠心分離等で処理することで、粒子が凝集しにくく、再分散しやすい粒子が得られる。
In addition, in this embodiment, these dispersants may be used alone or in combination. Furthermore, anionic dispersants other than phosphoric acid esters may be further used.
In addition to using the silver nanoparticles as a composition for coating liquids, when recovering the silver nanoparticles, by treating a dispersion liquid to which a dispersant has been added by centrifugation or the like, it is possible to obtain particles that are difficult to agglomerate and are easy to redisperse.

塗液における分散剤の添加量は、0.1重量%以上5重量%以下の範囲内であることが好ましい。分散剤の添加量が0.1重量%を下回ると分散安定性が低下し、5重量%を上回ると印刷適性が低下することがある。また、分散剤は、破泡剤として酸化珪素微粉末を含んでいてもよい。更に、分散剤は、エマルジョン化されていてもよい。
また、本実施形態に係るインクは、分散剤以外にも、例えば、色素、消泡剤、レベリング剤、硬化剤、等の添加剤を有してもよい。
The amount of the dispersant added in the coating liquid is preferably in the range of 0.1% by weight or more and 5% by weight or less. If the amount of the dispersant added is less than 0.1% by weight, dispersion stability may decrease, and if it exceeds 5% by weight, printability may decrease. Further, the dispersant may contain fine silicon oxide powder as a foam-breaking agent. Furthermore, the dispersant may be emulsified.
In addition to the dispersant, the ink according to the present embodiment may also contain additives such as a pigment, an antifoaming agent, a leveling agent, and a curing agent.

本実施形態に係る塗液が有する分散媒としては、例えば、水、エタノール、2-プロパノール、1-ブタノール、メチルエチルケトン、酢酸エチル、トルエン、シクロヘキサノン、テルピネオール等のテルペン類等の各成分を挙げることができる。分散媒は、狙いとする塗液の物性に合わせて上記成分を適宜混合して用いてよい。
塗液における上記成分の配合割合は特に限定するものではないが、インクジェット法のようにノズルでの塗液の乾燥を防止する必要がある場合は、例えば、グリセリン、プロピレングリコール、1-ブタノール、シクロヘキサノンのような沸点110℃以上の有機溶剤1種以上を、合計でインクジェット塗布用塗液中に1重量%以上含有していることがより好ましい。塗液中における上記成分の含有量が1重量%より少ないと、塗液の乾燥が起こりやすくなり、ノズルの目詰まりの原因となることがある。上記成分の含有量に上限はないが、多すぎると塗液の乾燥に必要な時間が延びることがある。
Examples of the dispersion medium included in the coating liquid according to the present embodiment include water, ethanol, 2-propanol, 1-butanol, methyl ethyl ketone, ethyl acetate, toluene, cyclohexanone, terpenes such as terpineol, and other components. can. The dispersion medium may be used by appropriately mixing the above components in accordance with the intended physical properties of the coating liquid.
The blending ratio of the above components in the coating liquid is not particularly limited, but when it is necessary to prevent the coating liquid from drying at the nozzle as in the inkjet method, for example, glycerin, propylene glycol, 1-butanol, cyclohexanone, etc. It is more preferable that the inkjet coating liquid contains at least 1% by weight of one or more organic solvents having a boiling point of 110° C. or higher, such as the following. If the content of the above-mentioned components in the coating liquid is less than 1% by weight, the coating liquid tends to dry out, which may cause nozzle clogging. Although there is no upper limit to the content of the above components, if the content is too large, the time required for drying the coating liquid may be extended.

本実施形態に係る塗液は、塗工面に金属光沢を呈する。即ち被塗工物上で金属光沢を示す。一般に、金属光沢とは、金属特有のツヤ感や光沢感等のことをいい、例えば光輝性の低いつや消しの金属光沢も含む。具体的には、正反射率を測定して金属光沢の有無を判断し、正反射率が10%以上であれば金属光沢があると判断する。正反射率が10%未満では、マットな色調の方が強くなり、金属光沢とは言い難くなる場合がある。
なお、銀の折り紙は正反射率が38%程度であり、金属の銀は正反射率が90%以上である場合が多い。
本実施形態では、塗液の塗工面の正反射率は、10%以上が好ましい。より好ましくは50%以上であり、正反射率が90%以上であれば、銀本来の高い金属調意匠性が得られる。
The coating liquid according to this embodiment exhibits metallic luster on the coated surface. That is, it exhibits metallic luster on the object to be coated. In general, metallic luster refers to the luster, luster, etc. peculiar to metals, and includes, for example, matte metallic luster with low glitter. Specifically, the presence or absence of metallic luster is determined by measuring the regular reflectance, and if the regular reflectance is 10% or more, it is determined that there is metallic luster. When the regular reflectance is less than 10%, the matte color tone becomes stronger and it may be difficult to say that it has metallic luster.
Note that silver origami has a regular reflectance of about 38%, and metallic silver often has a regular reflectance of 90% or more.
In this embodiment, the specular reflectance of the coating surface of the coating liquid is preferably 10% or more. More preferably, it is 50% or more, and if the regular reflectance is 90% or more, the high metallic design properties inherent to silver can be obtained.

(塗工方式)
本実施形態に係る塗液は、塗工方式を問わない。例えば、グラビア方式やインクジェット方式、スクリーン方式等の他、バーコートやスピンコートといった手法でも塗工が可能である。パターニングや画像の印刷を行ってもよい。
また、被塗工物は、保護のためにトップコートを有していてもよい。
(Coating method)
The coating liquid according to this embodiment can be applied by any coating method. For example, in addition to the gravure method, inkjet method, screen method, etc., coating can also be performed by methods such as bar coating and spin coating. Patterning or image printing may also be performed.
Further, the object to be coated may have a top coat for protection.

(塗工基材)
基材に関しては特に制限はないが、基材を構成する材料としては、例えば、ポリエチレンテレフタレート(PET)等のポリエステル樹脂、塩化ビニル樹脂、アクリル樹脂、オレフィン樹脂、ガラス、紙、等を挙げることができる。塗液の密着性向上、又はその他の目的のために、基材表面が親水化処理等の表面処理を施したものを用いてもよい。基材は、複数の積層体から構成されていてもよい。
(Coating base material)
There are no particular restrictions on the base material, but examples of materials constituting the base material include polyester resins such as polyethylene terephthalate (PET), vinyl chloride resins, acrylic resins, olefin resins, glass, paper, etc. can. In order to improve the adhesion of the coating liquid or for other purposes, a base material whose surface has been subjected to a surface treatment such as a hydrophilic treatment may be used. The base material may be composed of a plurality of laminates.

以下に、実施例として、銀ナノ粒子の製造方法及び塗液の組成、物性等を示すが、本発明はこれらに限定されるものではない。 Below, as examples, a method for producing silver nanoparticles, a composition of a coating liquid, physical properties, etc. are shown, but the present invention is not limited thereto.

[実施例1]
〔シュウ酸銀の合成〕
シュウ酸二水和物(関東化学社)9.92gに蒸留水60mLを加え加温しながら溶解させ、110℃のオイルバス中で攪拌しながら、硝酸銀(関東化学社)26.7gに20mLの蒸留水を加え加温しながら溶解させたものを加え、1時間加熱攪拌を続けた。析出したシュウ酸銀を自然ろ過で回収し、さらに熱水200mL、メタノール(関東化学社)50mLでろ過洗浄した後、遮光デシケーター内で減圧しながら室温乾燥した。こうして得たシュウ酸銀の収量は、21.6g(収率90.4%)であった。
[Example 1]
[Synthesis of silver oxalate]
60 mL of distilled water was added to 9.92 g of oxalic acid dihydrate (Kanto Kagaku Co., Ltd.) and dissolved while heating. Distilled water was added and dissolved while heating, and the mixture was heated and stirred for 1 hour. The precipitated silver oxalate was collected by natural filtration, and then filtered and washed with 200 mL of hot water and 50 mL of methanol (Kanto Kagaku Co., Ltd.), and then dried at room temperature under reduced pressure in a light-shielding desiccator. The yield of silver oxalate thus obtained was 21.6 g (yield 90.4%).

〔銀ナノ粒子の合成〕
アミンとしてN,N-ジエチル-1,3-ジアミノプロパン(東京化成社)3.26gにオレイン酸0.13gを加えたところに、上述の工程で得たシュウ酸銀1.90gを加え、110℃のオイルバスで加熱攪拌した。1分以内で二酸化炭素の発泡が起こり、数分後に褐色の懸濁液に変化した。5分間加熱後、冷却したところにメタノール30mLを加え、遠心分離により得られた沈殿物を自然乾燥すると、青色固形物である銀ナノ粒子1.48g(銀基準収率97.0%)を得た。
[Synthesis of silver nanoparticles]
To 0.13 g of oleic acid was added to 3.26 g of N,N-diethyl-1,3-diaminopropane (Tokyo Kasei Co., Ltd.) as an amine, 1.90 g of silver oxalate obtained in the above process was added, and 110 g of silver oxalate was added. The mixture was heated and stirred in an oil bath at ℃. Carbon dioxide bubbling occurred within 1 minute and turned into a brown suspension after a few minutes. After heating for 5 minutes and cooling, 30 mL of methanol was added and the precipitate obtained by centrifugation was naturally dried to obtain 1.48 g of silver nanoparticles (silver standard yield 97.0%) as a blue solid. Ta.

得られた銀ナノ粒子を、走査型電子顕微鏡(日立ハイテクノロジー社、SEM S-4800)を用いてS-TEMモード(加速電圧30kV)で観察したところ、粒子径が5~20nm程度の球状粒子が観察された。その結果を図1に示す。
より詳しくは、図1は、実施例1で得た銀ナノ粒子のトルエン溶媒分散液を、基板(銅メッシュ・マイクログリッド)に垂らし乾燥させた後に観察した銀ナノ粒子の走査型電子顕微鏡像である。
When the obtained silver nanoparticles were observed in S-TEM mode (acceleration voltage 30 kV) using a scanning electron microscope (Hitachi High-Technology, SEM S-4800), it was found that they were spherical particles with a particle size of about 5 to 20 nm. was observed. The results are shown in Figure 1.
More specifically, Figure 1 is a scanning electron microscope image of silver nanoparticles observed after the toluene solvent dispersion of silver nanoparticles obtained in Example 1 was dropped onto a substrate (copper mesh microgrid) and dried. be.

次に、得られた銀ナノ粒子がトルエンに分散したことから、トルエン分散液の動的光散乱粒度測定(日機装社、Nanotrac UPA-EX150)を行った。その結果を図2に示す。この結果から、銀ナノ粒子は平均粒子径15nmで良好に分散していることがわかった。 Next, since the obtained silver nanoparticles were dispersed in toluene, dynamic light scattering particle size measurement (Nikkiso Co., Ltd., Nanotrac UPA-EX150) of the toluene dispersion was performed. The results are shown in FIG. From this result, it was found that the silver nanoparticles had an average particle diameter of 15 nm and were well dispersed.

〔塗液の調製〕
上述の工程で得た銀ナノ粒子0.20gと、分散剤としてプライサーフA208F 0.04g(第一製薬社)を、分散媒であるトルエン(関東化学社)2.0gに添加し、攪拌して塗液とした。この場合、分散媒2.0gに対して銀ナノ粒子0.20gのため、銀ナノ粒子の重量%は10%となる。以下同様に計算する。
なお前記プライサーフA208Fは、ポリオキシエチレンアルキルエーテルリン酸エステルを主成分とする。
[Preparation of coating liquid]
0.20 g of silver nanoparticles obtained in the above process and 0.04 g of Plysurf A208F (Daiichi Pharmaceutical Co., Ltd.) as a dispersant were added to 2.0 g of toluene (Kanto Kagaku Co., Ltd.) as a dispersion medium and stirred. It was made into a coating liquid. In this case, since the silver nanoparticles are 0.20g for 2.0g of the dispersion medium, the weight percent of the silver nanoparticles is 10%. Calculate in the same manner below.
The main component of Plysurf A208F is polyoxyethylene alkyl ether phosphate.

[実施例2]
実施例1で分散媒をシクロヘキサノン(関東化学社)2.0gとした以外は同様にして、実施例2の塗液を調製した。
[Example 2]
A coating liquid in Example 2 was prepared in the same manner as in Example 1 except that 2.0 g of cyclohexanone (Kanto Kagaku Co., Ltd.) was used as the dispersion medium.

[実施例3]
実施例1で分散媒を1-ブタノール(関東化学社)2.0gとした以外は同様にして、実施例3の塗液を調製した。
[Example 3]
A coating liquid in Example 3 was prepared in the same manner as in Example 1 except that 2.0 g of 1-butanol (Kanto Kagaku Co., Ltd.) was used as the dispersion medium.

[比較例1~3]
実施例1~3で分散剤を添加しない以外は同様にして塗液を調製し、それぞれを比較例1~3の塗液とした。
[Comparative Examples 1 to 3]
Coating liquids were prepared in the same manner as in Examples 1 to 3, except that no dispersant was added, and each was used as the coating liquid of Comparative Examples 1 to 3.

[実施例4]
銀ナノ粒子の合成として、N,N-ジメチル-1,3-ジアミノプロパン(東京化成社)1.28gに水4.0g、ゼラチン(純正化学社)を加えたところに、実施例1で得たシュウ酸銀0.48gを加え、100℃のオイルバスで加熱攪拌した。3時間後に褐色の懸濁液に変化したところで冷却し、40mLの水を加え、遠心分離にて褐色の沈殿として銀ナノ粒子0.33gを得た。
上記の工程で得た銀ナノ粒子0.20gと、分散剤としてプライサーフAL 0.04g(第一製薬社)を、分散媒である純水2.0gに添加して攪拌し、実施例4の塗液を調製した。
なお前記プライサーフALは、ポリオキシエチレンスチレン化フェニルエーテルリン酸エステルを主成分とする。
[Example 4]
For the synthesis of silver nanoparticles, 4.0 g of water and gelatin (Junsei Kagaku Co., Ltd.) were added to 1.28 g of N,N-dimethyl-1,3-diaminopropane (Tokyo Kasei Co., Ltd.), and the mixture obtained in Example 1 was added. 0.48 g of silver oxalate was added thereto, and the mixture was heated and stirred in an oil bath at 100°C. After 3 hours, the mixture turned into a brown suspension, which was then cooled, 40 mL of water was added, and centrifuged to obtain 0.33 g of silver nanoparticles as a brown precipitate.
Example 4 0.20 g of silver nanoparticles obtained in the above process and 0.04 g of Plysurf AL (Daiichi Pharmaceutical Co., Ltd.) as a dispersant were added to 2.0 g of pure water as a dispersion medium and stirred. A coating liquid was prepared.
In addition, the said Plysurf AL has polyoxyethylene styrenated phenyl ether phosphate as a main component.

[実施例5]
実施例4で分散剤をNIKKOL DDP-8 0.04g(日光ケミカルズ社)とした以外は同様にして、実施例5の塗液を調製した。
なお前記NIKKOL DDP-8は、ポリオキシエチレンアルキル(12~15)エーテルリン酸(8E.O.)を主成分とする。
[Example 5]
A coating liquid in Example 5 was prepared in the same manner as in Example 4 except that 0.04 g of NIKKOL DDP-8 (Nikko Chemicals Co., Ltd.) was used as the dispersant.
The main component of NIKKOL DDP-8 is polyoxyethylene alkyl (12-15) ether phosphoric acid (8E.O.).

[実施例6]
実施例5で分散媒を1-ブタノール 2.0gとした以外は同様にして、実施例6の塗液を調製した。
[Example 6]
A coating liquid in Example 6 was prepared in the same manner as in Example 5 except that 2.0 g of 1-butanol was used as the dispersion medium.

[実施例7]
実施例4で分散剤をNIKKOL DDP-10 0.04g(日光ケミカルズ社)とした以外は同様にして、実施例7の塗液を調製した。
なお前記NIKKOL DDP-10は、ポリオキシエチレンアルキル(12~15)エーテルリン酸(10E.O.)を主成分とする。
[Example 7]
A coating liquid in Example 7 was prepared in the same manner as in Example 4 except that 0.04 g of NIKKOL DDP-10 (Nikko Chemicals Co., Ltd.) was used as the dispersant.
The NIKKOL DDP-10 has polyoxyethylene alkyl (12-15) ether phosphoric acid (10E.O.) as its main component.

[比較例4~7]
実施例4~7で、分散剤を添加しない以外は同様にして分散液を調製し、それぞれを比較例4~7の塗液とした。
[Comparative Examples 4 to 7]
Dispersions were prepared in the same manner as in Examples 4 to 7, except that no dispersant was added, and these were used as coating liquids for Comparative Examples 4 to 7, respectively.

実施例1~7と比較例1~7で得られた塗液1mLを透明なスクリュー管にいれ、室温下で放置した。5分後、1日後の結果を表1に示す。なお、表1では、沈殿が生じた場合「×」と評価し、少量の沈殿が生じた場合「△」、沈殿が生じなかった場合「○」と評価した。 1 mL of the coating solutions obtained in Examples 1 to 7 and Comparative Examples 1 to 7 was placed in a transparent screw tube and left at room temperature. Table 1 shows the results after 5 minutes and 1 day. In addition, in Table 1, when precipitation occurred, it was evaluated as "x", when a small amount of precipitation occurred, it was evaluated as "Δ", and when no precipitation occurred, it was evaluated as "○".

Figure 0007388069000001
Figure 0007388069000001

表1に示したように、分散剤を添加しなかった比較例1~7のインクはスクリュー管の底に沈殿が生じやすかったのに対し、分散剤を用いた実施例1~7のインクはいずれも沈殿がみられず、良好な分散状態を示した。 As shown in Table 1, the inks of Comparative Examples 1 to 7 that did not contain a dispersant tended to cause precipitation at the bottom of the screw tube, whereas the inks of Examples 1 to 7 that used a dispersant In all cases, no precipitate was observed, indicating a good dispersion state.

[実施例8]
実施例5で調製した塗液を用い、75μmPETフィルム(ルミラーT60、東レ社製)に#3バーコーターで塗工を行ったところ、塗工面に、はじきがみられた。これは、表面が撥水性でPETフィルムに対して水を分散媒とした塗液を用いて塗工したためである。
なおこのような撥水性基材に対しては、表面に親水化処理を施すことにより良好な塗工が可能となる。
[Example 8]
When the coating liquid prepared in Example 5 was applied to a 75 μm PET film (Lumirror T60, manufactured by Toray Industries, Inc.) using a #3 bar coater, repellency was observed on the coated surface. This is because the surface is water repellent and the PET film was coated with a coating liquid containing water as a dispersion medium.
In addition, for such a water-repellent base material, good coating becomes possible by subjecting the surface to a hydrophilic treatment.

[実施例9]
実施例6で調製した塗液を用い、実施例8と同様にPETフィルムに塗工を行ったところ、はじきのない塗工面が得られた。これは、有機溶剤を分散媒とした塗液を用いて塗工したためである。
[Example 9]
When a PET film was coated using the coating liquid prepared in Example 6 in the same manner as in Example 8, a coated surface without repelling was obtained. This is because the coating was performed using a coating liquid containing an organic solvent as a dispersion medium.

〔正反射率の評価〕
実施例9で得られた塗工面に対し、日立U4100分光光度計を用い、入射角が25°で波長400~800nmの光の正反射率(鏡面反射率)を測定した。測定を行った結果、正反射率は40%であり、金属光沢を示すことが確認できた。
[Evaluation of regular reflectance]
For the coated surface obtained in Example 9, the specular reflectance (specular reflectance) of light with a wavelength of 400 to 800 nm was measured at an incident angle of 25° using a Hitachi U4100 spectrophotometer. As a result of the measurement, it was confirmed that the regular reflectance was 40% and that it exhibited metallic luster.

[実施例10]
実施例1で調製した分散液をシリンジフィルター(Whatman社、25mmGD/Xシリンジフィルター(GF/B 1.0μm))に通し、インクジェット塗布用の塗液を調製した。
[Example 10]
The dispersion prepared in Example 1 was passed through a syringe filter (Whatman, 25 mm GD/X syringe filter (GF/B 1.0 μm)) to prepare a coating liquid for inkjet coating.

〔インクジェット塗布〕
上記の工程で調製したインクジェット塗布用の塗液を用いて、パターン塗布した。ノズル数6のドロップオンデマンド型インクジェットヘッドを用い、1ドロップ10pLのドロップ量にてテストパターンを塗布した。テストパターンには、5cm×5cmの正方形を塗りつぶした画像を用いた。基材として写真用紙<光沢>(L判、EPSON社)を用いたところ、塗布画像は金属光沢を示した。
[Inkjet coating]
Pattern coating was performed using the coating liquid for inkjet coating prepared in the above steps. A test pattern was applied using a drop-on-demand inkjet head with 6 nozzles at a drop volume of 10 pL per drop. An image of a 5 cm x 5 cm square filled in was used as the test pattern. When photo paper <glossy> (L size, manufactured by EPSON) was used as a base material, the coated image showed metallic luster.

以上説明したように、本実施形態に係るメタリック塗液は、アミン化合物で表面が保護された銀ナノ粒子と、分散剤としてリン酸エステルを用いた塗液であり、金属光沢を示す塗工が可能である。また、この分散剤を添加することで良好な分散状態が得られ、かつ広範囲の塗工条件や基材に合わせた塗液の作製が可能である。
以下に、当初の特許請求の範囲に記載していた発明を付記する。
[1]
アミン化合物を主として含む保護分子により表面が保護された銀ナノ粒子と、分散媒と、リン酸エステルを主として含む分散剤と、を有することを特徴とするメタリック塗液。
[2]
前記銀ナノ粒子のメジアン径(D50)が、1nm以上300nm以下の範囲内であることを特徴とする項1に記載のメタリック塗液。
[3]
前記銀ナノ粒子の添加量は、分散媒に対して1重量%以上50重量%以下の範囲内であることを特徴とする項1または項2に記載のメタリック塗液。
[4]
前記分散剤の添加量は、0.1重量%以上5重量%以下の範囲内であることを特徴とする項1~項3のいずれか1項に記載のメタリック塗液。
[5]
前記分散剤に含まれるリン酸エステルは、ポリオキシエチレンアルキルエーテルリン酸、ポリオキシエチレンアルキルエーテルリン酸塩、ポリオキシエチレンフェニルエーテルリン酸、ポリオキシエチレンフェニルエーテルリン酸塩のいずれかであることを特徴とする項1~項4のいずれか1項に記載のメタリック塗液。
[6]
前記メタリック塗液は、塗工面の正反射率が10%以上であり、金属光沢を示すことを特徴とする項1~項5のいずれか1項に記載のメタリック塗液。
[7]
項1~項6のいずれか1項に記載のメタリック塗液を用いて塗工されてなる被塗工物。
As explained above, the metallic coating liquid according to the present embodiment is a coating liquid that uses silver nanoparticles whose surface is protected with an amine compound and a phosphate ester as a dispersant, and has a metallic luster. It is possible. In addition, by adding this dispersant, a good dispersion state can be obtained, and coating liquids can be prepared to suit a wide range of coating conditions and substrates.
The invention described in the original claims is additionally described below.
[1]
A metallic coating liquid comprising silver nanoparticles whose surfaces are protected by protective molecules mainly containing an amine compound, a dispersion medium, and a dispersant mainly containing a phosphoric acid ester.
[2]
Item 2. The metallic coating liquid according to Item 1, wherein the silver nanoparticles have a median diameter (D50) of 1 nm or more and 300 nm or less.
[3]
Item 2. The metallic coating liquid according to Item 1 or 2, wherein the amount of the silver nanoparticles added is within a range of 1% by weight or more and 50% by weight or less based on the dispersion medium.
[4]
The metallic coating liquid according to any one of Items 1 to 3, wherein the amount of the dispersant added is within a range of 0.1% by weight or more and 5% by weight or less.
[5]
The phosphoric acid ester contained in the dispersant is any one of polyoxyethylene alkyl ether phosphate, polyoxyethylene alkyl ether phosphate, polyoxyethylene phenyl ether phosphate, and polyoxyethylene phenyl ether phosphate. The metallic coating liquid according to any one of Items 1 to 4, characterized by:
[6]
Item 5. The metallic coating liquid according to any one of Items 1 to 5, wherein the metallic coating liquid has a specular reflectance of 10% or more on the coated surface and exhibits metallic luster.
[7]
A coated object coated with the metallic coating liquid according to any one of Items 1 to 6.

Claims (7)

アミン化合物を主として含む保護分子により表面が保護された銀ナノ粒子と、分散媒と、リン酸エステルを主として含む分散剤と、を有することを特徴とし、
前記分散剤に含まれるリン酸エステルは、ポリオキシエチレンアルキルエーテルリン酸、ポリオキシエチレンアルキルエーテルリン酸塩、ポリオキシエチレンフェニルエーテルリン酸、ポリオキシエチレンフェニルエーテルリン酸塩のいずれかであるメタリック塗液。
It is characterized by having silver nanoparticles whose surfaces are protected by protective molecules mainly containing an amine compound, a dispersion medium, and a dispersant mainly containing a phosphoric acid ester ,
The phosphoric acid ester contained in the dispersant is any one of polyoxyethylene alkyl ether phosphate, polyoxyethylene alkyl ether phosphate, polyoxyethylene phenyl ether phosphate, and polyoxyethylene phenyl ether phosphate. Metallic paint.
前記銀ナノ粒子のメジアン径(D50)が、1nm以上300nm以下の範囲内であることを特徴とする請求項1に記載のメタリック塗液。 The metallic coating liquid according to claim 1, wherein the median diameter (D50) of the silver nanoparticles is within a range of 1 nm or more and 300 nm or less. 前記銀ナノ粒子の添加量は、分散媒に対して1重量%以上50重量%以下の範囲内であることを特徴とする請求項1または請求項2に記載のメタリック塗液。 The metallic coating liquid according to claim 1 or 2, wherein the amount of the silver nanoparticles added is within a range of 1% by weight or more and 50% by weight or less based on the dispersion medium. 前記分散剤の添加量は、0.1重量%以上5重量%以下の範囲内であることを特徴とする請求項1~請求項3のいずれか1項に記載のメタリック塗液。 The metallic coating liquid according to any one of claims 1 to 3, wherein the amount of the dispersant added is within a range of 0.1% by weight or more and 5% by weight or less. 前記分散剤に含まれるリン酸エステルは、ポリオキシエチレンフェニルエーテルリン酸、ポリオキシエチレンフェニルエーテルリン酸塩のいずれかであることを特徴とする請求項1~請求項4のいずれか1項に記載のメタリック塗液。 Any one of claims 1 to 4, wherein the phosphoric acid ester contained in the dispersant is either polyoxyethylene phenyl ether phosphoric acid or polyoxyethylene phenyl ether phosphate. Metallic coating liquid described in . 前記メタリック塗液は、塗工面の正反射率が10%以上であり、金属光沢を示すことを特徴とする請求項1~請求項5のいずれか1項に記載のメタリック塗液。 The metallic coating liquid according to any one of claims 1 to 5, wherein the metallic coating liquid has a regular reflectance of 10% or more on the coated surface and exhibits metallic luster. 請求項1~請求項6のいずれか1項に記載のメタリック塗液を用いて塗工されてなる被塗工物。 A coated object coated with the metallic coating liquid according to any one of claims 1 to 6.
JP2019165300A 2019-09-11 2019-09-11 Metallic coating fluid and coated objects Active JP7388069B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019165300A JP7388069B2 (en) 2019-09-11 2019-09-11 Metallic coating fluid and coated objects

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019165300A JP7388069B2 (en) 2019-09-11 2019-09-11 Metallic coating fluid and coated objects

Publications (2)

Publication Number Publication Date
JP2021042310A JP2021042310A (en) 2021-03-18
JP7388069B2 true JP7388069B2 (en) 2023-11-29

Family

ID=74863796

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019165300A Active JP7388069B2 (en) 2019-09-11 2019-09-11 Metallic coating fluid and coated objects

Country Status (1)

Country Link
JP (1) JP7388069B2 (en)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012162767A (en) 2011-02-04 2012-08-30 Yamagata Univ Coated metal microparticle and manufacturing method thereof
JP2015225842A (en) 2014-05-30 2015-12-14 Dowaエレクトロニクス株式会社 Joint material and joint method using the same
JP2016115464A (en) 2014-12-12 2016-06-23 株式会社ノリタケカンパニーリミテド Silver paste and use thereof
JP2018051526A (en) 2016-09-30 2018-04-05 日華化学株式会社 Metal particle dispersion body and manufacturing method thereof
JP2018086789A (en) 2016-11-29 2018-06-07 凸版印刷株式会社 Silver nanoparticle laminate, and method for producing silver nanoparticle laminate
JP2018087297A (en) 2016-11-29 2018-06-07 凸版印刷株式会社 Coating liquid composition, silver nanoparticle laminate, and method for producing silver nanoparticle laminate
US20190259510A1 (en) 2016-11-08 2019-08-22 Dowa Electronics Materials Co., Ltd. Silver particle dispersing solution, method for producing same, and method for producing conductive film using silver particle dispersing solution

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012162767A (en) 2011-02-04 2012-08-30 Yamagata Univ Coated metal microparticle and manufacturing method thereof
JP2015225842A (en) 2014-05-30 2015-12-14 Dowaエレクトロニクス株式会社 Joint material and joint method using the same
JP2016115464A (en) 2014-12-12 2016-06-23 株式会社ノリタケカンパニーリミテド Silver paste and use thereof
JP2018051526A (en) 2016-09-30 2018-04-05 日華化学株式会社 Metal particle dispersion body and manufacturing method thereof
US20190259510A1 (en) 2016-11-08 2019-08-22 Dowa Electronics Materials Co., Ltd. Silver particle dispersing solution, method for producing same, and method for producing conductive film using silver particle dispersing solution
JP2018086789A (en) 2016-11-29 2018-06-07 凸版印刷株式会社 Silver nanoparticle laminate, and method for producing silver nanoparticle laminate
JP2018087297A (en) 2016-11-29 2018-06-07 凸版印刷株式会社 Coating liquid composition, silver nanoparticle laminate, and method for producing silver nanoparticle laminate

Also Published As

Publication number Publication date
JP2021042310A (en) 2021-03-18

Similar Documents

Publication Publication Date Title
US8313572B2 (en) Metallic pigment, pigment dispersion liquid, metallic pigment ink composition, and ink jet recording method
JP5258150B2 (en) Ink composition
JP5214103B2 (en) Metallic pigment, ink composition, and ink jet recording method
JP6715383B1 (en) Flake-shaped indium particles and method for producing the same, bright pigment, water-based paint, water-based ink, and coating film
WO2009015493A1 (en) Compositions comprising carbon coated, non-noble metal nanoparticles
JP2006265292A (en) Oil-based ink composition for inkjet recording
CN102838904A (en) A water resistant aluminum pigment dispersion, an aqueous ink composition containing the same, and a method for manufacturing the water resistant aluminum pigment dispersion
TWI681409B (en) Electrically conductive compositions, process and applications
JP2010202815A (en) Manufacturing method for water resistant aluminum pigment dispersion, water resistant aluminum pigment and aqueous ink composition containing the same
US10953681B2 (en) Ink jet composition and recorded matter
US11149153B2 (en) Method of preparing a product comprising surface modified silver nanowires, and use of the product
JP5752201B2 (en) Metallic ink composition for inkjet printing for polyvinyl chloride substrate
JP7383904B2 (en) Metallic ink and printing substrate
JP7388069B2 (en) Metallic coating fluid and coated objects
US20190300732A1 (en) Ink Jet Composition And Recorded Matter
JP4351020B2 (en) Ink composition
JP6439807B2 (en) Bright ink composition for lithographic printing
JP5548481B2 (en) Composition for inkjet containing nickel fine particles
WO2021106955A1 (en) Decorative sheet, decorative plate, and inkjet ink for decorative sheets
JP6984904B2 (en) Scale-like composite particles and their manufacturing methods, inks, coating films, and printed matter
CN114806276B (en) Coloring composition and coloring method
JP2022066955A (en) Decorative sheet and decorative board
JP2018159085A (en) Brilliant ink composition for planographic printing
JP2013155376A (en) Ink composition
JP2011140660A (en) Metallic pigment, ink composition and inkjet recording method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220824

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20230502

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20230517

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230627

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230803

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20231017

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20231030

R150 Certificate of patent or registration of utility model

Ref document number: 7388069

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150