JP7375087B2 - High toughness RC structure - Google Patents

High toughness RC structure Download PDF

Info

Publication number
JP7375087B2
JP7375087B2 JP2022057666A JP2022057666A JP7375087B2 JP 7375087 B2 JP7375087 B2 JP 7375087B2 JP 2022057666 A JP2022057666 A JP 2022057666A JP 2022057666 A JP2022057666 A JP 2022057666A JP 7375087 B2 JP7375087 B2 JP 7375087B2
Authority
JP
Japan
Prior art keywords
inwardly curved
reinforcing bars
curved portion
axial
reinforcing bar
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2022057666A
Other languages
Japanese (ja)
Other versions
JP2023149219A (en
Inventor
正己 輿石
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Koei Co Ltd
Original Assignee
Nippon Koei Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Koei Co Ltd filed Critical Nippon Koei Co Ltd
Priority to JP2022057666A priority Critical patent/JP7375087B2/en
Publication of JP2023149219A publication Critical patent/JP2023149219A/en
Application granted granted Critical
Publication of JP7375087B2 publication Critical patent/JP7375087B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Bridges Or Land Bridges (AREA)
  • Buildings Adapted To Withstand Abnormal External Influences (AREA)

Description

本発明は、大規模地震時における鉄筋コンクリート橋脚(以下、RC橋脚という)、その他のRC構造物の倒壊を防止するために靭性率を向上させ、想定以上の地震力、その他の振動に対しても倒壊しない高靭性RC構造物に関するものである。 The present invention improves the toughness factor in order to prevent the collapse of reinforced concrete piers (hereinafter referred to as RC piers) and other RC structures in the event of a large-scale earthquake, and is also able to withstand unexpected earthquake forces and other vibrations. The present invention relates to a highly tough RC structure that does not collapse.

近年、大地震に対しては塑性設計が多用されており、その際、RC橋脚などのRC構造物の崩壊は、塑性ヒンジ部における帯鉄筋の緩み、軸方向鉄筋のはらみ出しの発生、このはらみ出しの後の座屈等により、耐力が低下し倒壊に至る。 In recent years, plastic design has been frequently used for large earthquakes, and in this case, the collapse of RC structures such as RC bridge piers is caused by the loosening of band reinforcing bars at plastic hinges, the protrusion of axial reinforcing bars, and the like. Due to buckling, etc. after being rolled out, the yield strength decreases, leading to collapse.

図6に示すように、コンクリート製橋脚の補強方法が提案されている(特許文献1)。
この図6において、コンクリート製橋脚10の耐震補強又は劣化補強として、このコンクリート製橋脚10の四側面に縦溝を形成して補強縦筋12を配筋し、更に上記補強縦筋12の下端に傾斜曲げ部13を形成し、該傾斜曲げ部13を上記コンクリート製橋脚10の側面11とコンクリート製フーチング14の上面15とで形成する入隅角部16から同フーチング14内へ食い込み角αを以って斜めに埋設し、そして上記コンクリート製橋脚10の四側面(周面)に上記補強縦筋12を覆う補強コンクリート17や接着剤を増し打ちして補強構造を形成したものである。
As shown in FIG. 6, a method for reinforcing concrete bridge piers has been proposed (Patent Document 1).
In FIG. 6, for seismic reinforcement or deterioration reinforcement of the concrete pier 10, vertical grooves are formed on the four sides of the concrete pier 10 and reinforcing longitudinal bars 12 are arranged, and furthermore, at the lower end of the reinforcing longitudinal bars 12, vertical grooves are formed on four sides of the concrete pier 10. An inclined bent part 13 is formed, and the inclined bent part 13 is formed by cutting into the footing 14 from an inside corner part 16 formed by the side surface 11 of the concrete pier 10 and the upper surface 15 of the concrete footing 14 at a cutting angle α as follows. The reinforcing structure is formed by diagonally burying the reinforcing concrete 17 and adhesive to cover the reinforcing longitudinal reinforcements 12 on the four sides (periphery) of the concrete pier 10.

図7に示すように、軸方向の主筋18が軸圧縮力を受けたとき、外側にはらみ出すのを防止する手段が提案されている(特許文献2)。
この図7において、軸方向の主筋18から鋼板21に連続するくの字の曲がり部の傾斜部19のはらみ出しを防止するのに、図7(a)では、帯鉄筋20を用い、図7(b)では、J字形の連結鋼材22を用い、図7(c)では、C形パイプなどの抱持鋼材23を用いている。
As shown in FIG. 7, a means for preventing the axial main reinforcing bars 18 from protruding outward when subjected to an axial compressive force has been proposed (Patent Document 2).
In FIG. 7, in order to prevent the protrusion of the inclined portion 19 of the dogleg-shaped bent portion that continues from the main reinforcement 18 in the axial direction to the steel plate 21, in FIG. In (b), a J-shaped connecting steel member 22 is used, and in FIG. 7(c), a holding steel member 23 such as a C-shaped pipe is used.

図8に示すように、大地震等で損傷したRC柱状構造物における塑性ヒンジ部の補修方法が提案されている(特許文献3)。
この図8(a)(b)において、塑性ヒンジ部27は、フーチング25と接続するRC橋脚26の最下部及び上部構造物24と接続するRC橋脚26の最上部に形成される。この塑性ヒンジ部27は、RC橋脚26の軸方向(上下方向)に沿って埋設配置された複数の軸方向鉄筋28(軸方向筋)が曲げ降伏してRC橋脚26全体が変位することでRC橋脚26に入力される地震エネルギーをひずみエネルギーとして消費して吸収する機能を有している。
図8(b)において、RC橋脚26には、すくなくとも四隅に軸方向鉄筋28が配設され、それらを囲繞するように複数の帯鉄筋(図示せず)が上下方向に所定間隔をおいて配置される。
前記塑性ヒンジ部27には、複数の軸方向鉄筋28と、これらの軸方向鉄筋28を取り外して交換可能に接続する上下一対で複数対の機械式継手29と、前記RC橋脚26の中心軸に沿って埋設された管体である鋼管31を備えている。また、前記RC橋脚26の塑性ヒンジ部27と一般部32との境界には、これらを区分けする仕切材として鋼板30が設置されている。
As shown in FIG. 8, a method for repairing a plastic hinge in an RC columnar structure damaged by a major earthquake or the like has been proposed (Patent Document 3).
In FIGS. 8A and 8B, the plastic hinge portion 27 is formed at the bottom of the RC pier 26 that connects to the footing 25 and at the top of the RC pier 26 that connects to the upper structure 24. The plastic hinge portion 27 is formed by bending and yielding a plurality of axial reinforcing bars 28 (axial bars) buried along the axial direction (vertical direction) of the RC pier 26 and displacing the entire RC pier 26. It has a function of consuming and absorbing seismic energy input to the pier 26 as strain energy.
In FIG. 8(b), the RC pier 26 is provided with axial reinforcing bars 28 at at least four corners, and a plurality of reinforcing bars (not shown) are arranged vertically at predetermined intervals to surround them. be done.
The plastic hinge portion 27 includes a plurality of axial reinforcing bars 28 , a plurality of pairs of upper and lower mechanical joints 29 that connect these axial reinforcing bars 28 so that they can be removed and replaced, and a mechanical joint 29 that connects the axial reinforcing bars 28 to the central axis of the RC pier 26 . It is equipped with a steel pipe 31 which is a pipe body buried along the length. Moreover, a steel plate 30 is installed at the boundary between the plastic hinge part 27 and the general part 32 of the RC pier 26 as a partition material to separate them.

特許第4732506号特許公報。Patent Publication No. 4732506. 特許第4081602号特許公報。Patent Publication No. 4081602. 特許第6886664号特許公報。Patent Publication No. 6886664.

特許文献1に記載の発明は、コンクリート製橋脚10の耐震補強又は劣化補強として、コンクリート製橋脚10の四側面11とコンクリート製フーチング14の上面15に縦溝や傾斜孔を形成し、補強縦筋12を配筋し、補強コンクリートや接着剤を充填する方法である。この方法によれば、コンクリート製橋脚10の耐力が上昇するとしても靭性率は向上しない。また、補強部材を取り付けるための複雑で面倒な工事を必要とする。 In the invention described in Patent Document 1, vertical grooves and inclined holes are formed in the four sides 11 of the concrete pier 10 and the upper surface 15 of the concrete footing 14, and reinforcing longitudinal reinforcement This is a method of arranging reinforcement 12 and filling it with reinforcing concrete or adhesive. According to this method, even if the yield strength of the concrete pier 10 increases, the toughness ratio does not improve. Moreover, complicated and troublesome construction work is required to attach the reinforcing member.

特許文献2に記載の発明は、軸方向の主筋18から傾斜部19に連続するくの字の曲がり部のはらみ出しを防止するのに、帯鉄筋20を用いたり、J字形の連結鋼材22を用いたり、C形パイプなどの抱持鋼材23を用いたりしているが、補強部材の追加と、複雑で面倒な補強工事を必要とするという課題が残されていた。 The invention described in Patent Document 2 uses band reinforcing bars 20 or J-shaped connecting steel members 22 to prevent the protrusion of the dogleg-shaped bent part that continues from the main reinforcement 18 in the axial direction to the inclined part 19. However, the problem remains that it requires the addition of reinforcing members and complicated and troublesome reinforcing work.

特許文献3に記載の発明は、RC柱状構造物26の塑性ヒンジ部27を補修する方法であって、塑性ヒンジ部27の複数の軸方向鉄筋28と、これらの軸方向鉄筋28を取り外して交換可能に接続するための上下一対の複数対の機械式継手29と、RC橋脚26の中心軸に沿って埋設された管体である鋼管31を備え、さらに、RC橋脚26の塑性ヒンジ部27と一般部32との境界には、これらを区分けする仕切材として鋼板30が設置されているものであり、複雑、面倒で大掛かりな交換工事となる。 The invention described in Patent Document 3 is a method for repairing a plastic hinge part 27 of an RC columnar structure 26, which includes removing and replacing a plurality of axial reinforcing bars 28 of the plastic hinge part 27 and these axial reinforcing bars 28. It includes multiple pairs of upper and lower mechanical joints 29 for possible connection, and a steel pipe 31 that is a pipe body buried along the central axis of the RC pier 26, and further includes a plastic hinge part 27 of the RC pier 26. A steel plate 30 is installed at the boundary with the general part 32 as a partition material to separate these parts, and the replacement work will be complicated, troublesome, and large-scale.

本発明は、塑性ヒンジ部分の軸方向鉄筋に簡単な加工を施すだけで他の部材を用いることなく、目的の靭性率に向上させることを可能としたものである。 The present invention makes it possible to improve the toughness to a desired level by simply processing the axial reinforcing bars of the plastic hinge portion without using any other members.

請求項1記載の発明は、図1に示すように、
複数本の鉛直線状の軸方向鉄筋41と、これらの軸方向鉄筋41の外側から所定間隔で囲んだ帯鉄筋42と、前記軸方向鉄筋41の下部に複数本のハの字形に延長した直線状の基礎鉄筋48とにコンクリート43を打設してなるRC構造物40において、
前記軸方向鉄筋41は、前記RC構造物40の載荷方向の一方側に配置された引張鉄筋41aと、前記RC構造物40の載荷方向の他方側に配置された圧縮鉄筋41bとを具備し、
前記軸方向鉄筋41の下端と前記基礎鉄筋48の上端とを接続した塑性ヒンジ部46に内向き湾曲部47を形成するとともに、この内向き湾曲部47を帯鉄筋42で囲み、
前記内向き湾曲部47は、前記軸方向鉄筋41の下端と前記内向き湾曲部47の上端との接続点Bと、前記基礎鉄筋48の上端と前記内向き湾曲部47の下端との接続点C又はDと、前記軸方向鉄筋41の下方への直線の延長線と前記基礎鉄筋48の上方への直線の延長線との交点Oとの3点で形成される3角形の前記軸方向鉄筋41の下端と前記内向き湾曲部47の上端との接続点Bと、前記基礎鉄筋48の上端と前記内向き湾曲部47の下端との接続点C又はDに接する円弧に形成して座屈を防止し靭性率を向上したことを特徴とする高靭性RC構造物である。
The invention according to claim 1, as shown in FIG.
A plurality of vertical reinforcing bars 41, band reinforcing bars 42 surrounding the axial reinforcing bars 41 at predetermined intervals, and a plurality of straight lines extending in a V-shape below the axial reinforcing bars 41. In an RC structure 40 formed by pouring concrete 43 on foundation reinforcing bars 48 of the shape ,
The axial reinforcing bars 41 include tension reinforcing bars 41a arranged on one side of the RC structure 40 in the loading direction, and compression reinforcing bars 41b arranged on the other side of the RC structure 40 in the loading direction,
Forming an inwardly curved portion 47 in a plastic hinge portion 46 connecting the lower end of the axial reinforcing bar 41 and the upper end of the foundation reinforcing bar 48, and surrounding this inwardly curved portion 47 with a band reinforcing bar 42;
The inwardly curved portion 47 includes a connection point B between the lower end of the axial reinforcing bar 41 and the upper end of the inwardly curved portion 47, and a connection point between the upper end of the foundation reinforcing bar 48 and the lower end of the inwardly curved portion 47. The triangular axial reinforcing bars formed by three points, C or D, and the intersection O of the downward straight extension of the axial reinforcing bars 41 and the upward straight extension of the foundation reinforcing bars 48 41 and the upper end of the inwardly curved part 47, and a connecting point C or D between the upper end of the foundation reinforcing bar 48 and the lower end of the inwardly curved part 47, and buckled. This is a high-toughness RC structure that is characterized by preventing this and improving the toughness rate.

請求項2記載の発明は、
前記引張鉄筋41aに作用する引張力Tと前記圧縮鉄筋41bに作用する圧縮力Cの中立軸位置N-N点でのポストピーク域において次の釣り合い構造式が成立するようにしたことを特徴とする高靭性RC構造物である。
T(σsy×As)=C(σsy×As)
ここで、σsy:鉄筋の降伏応力
As:鉄筋の全断面積
The invention according to claim 2 is:
The following balanced structural formula is established in the post-peak region at the neutral axis position NN point of the tensile force T acting on the tension reinforcing bar 41a and the compressive force C acting on the compression reinforcing bar 41b. It is a high toughness RC structure.
T(σsy×As)=C(σsy×As)
Here, σsy: Yield stress of reinforcing bars As: Total cross-sectional area of reinforcing bars

請求項3記載の発明は、
前記内向き湾曲部47における曲率は、前記RC構造物40の水平変位時における前記RC構造物40が目標とする靭性率に到達した時点で前記軸方向鉄筋41の内向き湾曲部47が直線となるように設定したことを特徴とする高靭性RC構造物である。
The invention according to claim 3 is:
The curvature of the inwardly curved portion 47 is such that the inwardly curved portion 47 of the axial reinforcing bar 41 becomes a straight line when the RC structure 40 reaches the target toughness when the RC structure 40 is horizontally displaced. This is a high toughness RC structure characterized by being set so that

請求項4記載の発明は、
前記RC構造物40は、RC橋脚、PC橋脚等からなることを特徴とする高靭性RC構造物である。
The invention according to claim 4 is:
The RC structure 40 is a high-toughness RC structure characterized by comprising RC piers, PC piers, and the like.

請求項5記載の発明は、
前記RC構造物40は、既存のRC構造物40の外周に巻き立てる工法における補強用RC構造物の軸方向鉄筋に内向き湾曲部を形成したことを特徴とする高靭性RC構造物である。
The invention according to claim 5 is:
The RC structure 40 is a high-toughness RC structure characterized in that an inwardly curved portion is formed in the axial reinforcing bars of the reinforcing RC structure in a method of wrapping around the outer periphery of the existing RC structure 40.

請求項1記載の発明によれば、
複数本の鉛直線状の軸方向鉄筋と、これらの軸方向鉄筋の外側から所定間隔で囲んだ帯鉄筋と、前記軸方向鉄筋の下部に複数本のハの字形に延長した直線状の基礎鉄筋とにコンクリートを打設してなるRC構造物において、
前記軸方向鉄筋は、前記RC構造物の載荷方向の一方側に配置された引張鉄筋と、前記RC構造物の載荷方向の他方側に配置された圧縮鉄筋とを具備し、
前記軸方向鉄筋の下端と前記基礎鉄筋の上端とを接続した塑性ヒンジ部に内向き湾曲部を形成するとともに、この内向き湾曲部を帯鉄筋で囲み、
前記内向き湾曲部は、前記軸方向鉄筋の下端と前記内向き湾曲部の上端との接続点と、前記基礎鉄筋の上端と前記内向き湾曲部の下端との接続点と、前記軸方向鉄筋の下方への直線の延長線と前記基礎鉄筋の上方への直線の延長線との交点との3点で形成される3角形の前記軸方向鉄筋の下端と前記内向き湾曲部の上端との接続点と、前記基礎鉄筋の上端と前記内向き湾曲部の下端との接続点に接する円弧に形成して座屈を防止し靭性率を向上したしたので、内向き湾曲部は、前記軸方向鉄筋の下端と前記内向き湾曲部の鉄筋の上端との接続点と、前記基礎鉄筋の上端と前記内向き湾曲部の鉄筋の下端との接続点において接線となり、段差なく円滑に連続している。このように、軸方向鉄筋の一部に加工を施すだけで靭性率を従来不可能とされていた約4倍(靭性率40)程度、又はそれ以上に向上させることができる。しかも、従来のような面倒な補強工事や補強部材を用いることがなく、安価に目的を達成できる。
According to the invention described in claim 1,
A plurality of vertical axial reinforcing bars, band reinforcing bars surrounding these axial reinforcing bars at predetermined intervals from the outside, and a plurality of linear foundation reinforcing bars extending in a V-shape below the axial reinforcing bars. In RC structures made by pouring concrete into
The axial reinforcing bars include tension reinforcing bars arranged on one side of the RC structure in the loading direction, and compression reinforcing bars arranged on the other side of the RC structure in the loading direction,
Forming an inwardly curved portion in a plastic hinge portion connecting the lower end of the axial reinforcing bar and the upper end of the foundation reinforcing bar, and surrounding this inwardly curved portion with band reinforcing bars;
The inwardly curved portion includes a connection point between the lower end of the axial reinforcing bar and the upper end of the inwardly curved portion, a connection point between the upper end of the foundation reinforcing bar and the lower end of the inwardly curved portion, and the axial reinforcing bar. The lower end of the triangular axial reinforcing steel formed by the intersection of the downward straight extension line and the upward straight extension line of the foundation reinforcing steel and the upper end of the inwardly curved part. The inwardly curved portion is formed in a circular arc touching the connection point and the connection point between the upper end of the foundation reinforcing steel and the lower end of the inwardly curved portion to prevent buckling and improve toughness . A tangent line exists at the connection point between the lower end of the reinforcing bar and the upper end of the reinforcing bar in the inwardly curved section, and the connecting point between the upper end of the foundation reinforcing bar and the lower end of the reinforcing bar in the inwardly curved section, and continues smoothly without any steps. . In this way, by simply processing a part of the axial reinforcing bar, the toughness factor can be improved to about four times (toughness factor 40), which was previously considered impossible, or more. Moreover, the purpose can be achieved at low cost without using complicated reinforcing work or reinforcing members as in conventional methods.

請求項2記載の発明によれば、
前記引張鉄筋に作用する引張力Tと前記圧縮鉄筋に作用する圧縮力Cの中立軸位置N-N点でのポストピーク域において次の釣り合い構造式
T(σsy×As)=C(σsy×As)
ここで、σsy:鉄筋の降伏応力
As:鉄筋の全断面積
が成立するようにしたので、靭性低下を防止することができる。
According to the invention as claimed in claim 2,
In the post-peak region at the neutral axis position NN point of the tensile force T acting on the tension reinforcing bar and the compressive force C acting on the compression reinforcing bar, the following balanced structural formula T(σsy×As)=C(σsy×As )
Here, σsy: yield stress of reinforcing bars As: total cross-sectional area of reinforcing bars It is possible to prevent a decrease in toughness.

請求項3記載の発明によれば、
前記内向き湾曲部における曲率は、前記RC構造物の水平変位時における前記RC構造物が目標とする靭性率に到達した時点で前記軸方向鉄筋の内向き湾曲部が直線となるように設定したので、従来は不可能であった靭性率の設計時における確保、たとえば、目的の靭性率30、40などを予め容易に実現することができる。また、地震動のような交番の振動に対して靭性率を向上させることができる。
According to the invention recited in claim 3,
The curvature of the inwardly curved portion is set such that the inwardly curved portion of the axial reinforcing bar becomes a straight line when the RC structure reaches the target toughness ratio during horizontal displacement of the RC structure. Therefore, it is possible to secure the toughness modulus at the time of design, which was previously impossible, for example, to easily achieve the target toughness modulus of 30, 40, etc. in advance. Furthermore, the toughness can be improved against alternating vibrations such as earthquake vibrations.

請求項4記載の発明によれば、
前記RC構造物は、RC橋脚、PC橋脚からなるので、RC橋脚、PC橋脚などに広く応用することができる。
According to the invention described in claim 4,
Since the RC structure is composed of RC piers and PC piers , it can be widely applied to RC piers, PC piers, and the like.

請求項5記載の発明によれば、
前記RC構造物は、既存のRC構造物の外周に巻き立てる工法における補強用RC構造物の軸方向鉄筋に内向き湾曲部を形成したので、新設のRC構造物のみならず、既存のRC構造物の補強用RC構造物に本発明を応用して既存のRC構造物をより簡単、かつ確実に補強することができる。
According to the invention described in claim 5,
The above-mentioned RC structure has an inwardly curved part formed in the axial reinforcing bars of the reinforcing RC structure in the method of wrapping around the outer periphery of the existing RC structure, so it can be used not only for newly constructed RC structures but also for existing RC structures. By applying the present invention to RC structures for reinforcing objects, existing RC structures can be reinforced more easily and reliably.

本発明による高靭性RC構造物40の一実施例を示す正面から見た断面図である。1 is a cross-sectional view of an embodiment of a high-toughness RC structure 40 according to the present invention, viewed from the front. 本発明によるRC構造物40が目標とする靭性率を得るための内向き湾曲部47を設定するための説明図である。FIG. 4 is an explanatory diagram for setting an inwardly curved portion 47 for obtaining a target toughness factor of the RC structure 40 according to the present invention. 図1の塑性ヒンジ部46におけるA-A線断面図である。2 is a cross-sectional view taken along line AA of the plastic hinge portion 46 in FIG. 1. FIG. RC構造物40の作用を説明する図で、ポストピーク域の力の釣り合いを示す図である。It is a figure explaining the action of the RC structure 40, and is a figure showing the balance of forces in the post-peak region. (a)は、RC構造物40が角柱状のときの軸方向鉄筋41の内向き湾曲部47の説明図、(b)は、RC構造物40が円柱状のときの軸方向鉄筋41の内向き湾曲部47の説明図である。(a) is an explanatory diagram of the inwardly curved portion 47 of the axial reinforcing bar 41 when the RC structure 40 is prismatic, and (b) is an explanatory diagram of the inside of the axial reinforcing bar 41 when the RC structure 40 is cylindrical. FIG. 4 is an explanatory diagram of a direction bending portion 47; 従来の文献1の説明図である。FIG. 2 is an explanatory diagram of conventional document 1. (a)(b)(c)は、従来の文献2の説明図である。(a), (b), and (c) are explanatory diagrams of conventional document 2. (a)(b)は、従来の文献3の説明図である。(a) and (b) are explanatory diagrams of conventional document 3.

本発明は、
複数本の鉛直線状の軸方向鉄筋41と、これらの軸方向鉄筋41の外側から所定間隔で囲んだ帯鉄筋42と、前記軸方向鉄筋41の下部に複数本のハの字形に延長した直線状の基礎鉄筋48とにコンクリート43を打設してなるRC構造物40において、
前記軸方向鉄筋41は、前記RC構造物40の載荷方向の一方側に配置された引張鉄筋41aと、前記RC構造物40の載荷方向の他方側に配置された圧縮鉄筋41bとを具備し、
前記軸方向鉄筋41の下端と前記基礎鉄筋48の上端とを接続した塑性ヒンジ部46に内向き湾曲部47を形成するとともに、この内向き湾曲部47を帯鉄筋42で囲み、
前記内向き湾曲部47は、前記軸方向鉄筋41の下端と前記内向き湾曲部47の上端との接続点Bと、前記基礎鉄筋48の上端と前記内向き湾曲部47の下端との接続点C又はDと、前記軸方向鉄筋41の下方への直線の延長線と前記基礎鉄筋48の上方への直線の延長線との交点Oとの3点で形成される3角形の前記軸方向鉄筋41の下端と前記内向き湾曲部47の上端との接続点Bと、前記基礎鉄筋48の上端と前記内向き湾曲部47の下端との接続点C又はDに接する円弧に形成して座屈を防止し靭性率を向上したことを特徴とする。
The present invention
A plurality of vertical reinforcing bars 41, band reinforcing bars 42 surrounding the axial reinforcing bars 41 at predetermined intervals, and a plurality of straight lines extending in a V-shape below the axial reinforcing bars 41. In an RC structure 40 formed by pouring concrete 43 on foundation reinforcing bars 48 of the shape ,
The axial reinforcing bars 41 include tension reinforcing bars 41a arranged on one side of the RC structure 40 in the loading direction, and compression reinforcing bars 41b arranged on the other side of the RC structure 40 in the loading direction,
Forming an inwardly curved portion 47 in a plastic hinge portion 46 connecting the lower end of the axial reinforcing bar 41 and the upper end of the foundation reinforcing bar 48, and surrounding this inwardly curved portion 47 with a band reinforcing bar 42;
The inwardly curved portion 47 includes a connection point B between the lower end of the axial reinforcing bar 41 and the upper end of the inwardly curved portion 47, and a connection point between the upper end of the foundation reinforcing bar 48 and the lower end of the inwardly curved portion 47. The triangular axial reinforcing bars formed by three points, C or D, and the intersection O of the downward straight extension of the axial reinforcing bars 41 and the upward straight extension of the foundation reinforcing bars 48 41 and the upper end of the inwardly curved part 47, and a connecting point C or D between the upper end of the foundation reinforcing bar 48 and the lower end of the inwardly curved part 47, and buckled. It is characterized by preventing this and improving the toughness rate.

前記引張鉄筋41aに作用する引張力Tと前記圧縮鉄筋41bに作用する圧縮力Cの中立軸位置N-N点でのポストピーク域において次の釣り合い構造式
T(σsy×As)=C(σsy×As)
ここで、σsy:鉄筋の降伏応力
As:鉄筋の全断面積
が成立するようにした。
The tension force T acting on the tension reinforcing bar 41a and the compressive force C acting on the compression reinforcing bar 41b are expressed by the following balanced structural formula in the post-peak region at the neutral axis position NN point: T(σsy×As)=C(σsy ×As)
Here, σsy is the yield stress of the reinforcing bars, and As is the total cross-sectional area of the reinforcing bars.

前記内向き湾曲部47における曲率は、前記RC構造物40の水平変位時における前記RC構造物40が目標とする靭性率に到達した時点で前記軸方向鉄筋41の内向き湾曲部47が直線となるように設定する。 The curvature of the inwardly curved portion 47 is such that the inwardly curved portion 47 of the axial reinforcing bar 41 becomes a straight line when the RC structure 40 reaches the target toughness when the RC structure 40 is horizontally displaced. Set it so that

前記RC構造物40は、RC橋脚、PC橋脚等からなる。 The RC structure 40 includes an RC pier, a PC pier, and the like.

前記RC構造物40は、既存のRC構造物40の外周に巻き立てる工法における補強用RC構造物の軸方向鉄筋に内向き湾曲部を形成する。 The RC structure 40 forms an inwardly curved portion in the axial reinforcing bar of a reinforcing RC structure in a construction method in which the RC structure is wound around the outer periphery of an existing RC structure 40.

以下、本発明の実施例1を図面に基づき説明する。
図1、図2及び図3において、RC構造物40は、RC柱状構造物で、一例として以下、RC橋脚の場合について説明する。
このRC橋脚40は、複数本の軸方向鉄筋41を主筋とし、この軸方向鉄筋41の外周に所定間隔で前記軸方向鉄筋を拘束する部材としての帯鉄筋42を巻き付け、これらの鉄筋にコンクリート43を打設して構成されている。前記RC橋脚40の下部の基礎部分のフーチング44は、前記軸方向鉄筋41の下部にハの字形に延長した基礎鉄筋48にこの基礎鉄筋を拘束する部材としての帯鉄筋42が巻き付けられ、これらの鉄筋にコンクリート43を打設して構成されている。
前記軸方向鉄筋を拘束する部材は、前記帯鉄筋42に限られるものではなく、図7(b)(c)に示すようなJ字形の連結鋼材やC形パイプなどの抱持鋼材、その他の部材とすることができる。
Embodiment 1 of the present invention will be described below based on the drawings.
In FIGS. 1, 2, and 3, the RC structure 40 is an RC columnar structure, and as an example, the case of an RC pier will be described below.
This RC pier 40 has a plurality of axial reinforcing bars 41 as main reinforcements, band reinforcing bars 42 as members for restraining the axial reinforcing bars are wrapped around the outer periphery of the axial reinforcing bars 41 at predetermined intervals, and concrete 43 is wrapped around these reinforcing bars. It is constructed by pouring. The footing 44 of the lower foundation part of the RC pier 40 is constructed by wrapping band reinforcing bars 42 as members for restraining the foundation reinforcing bars 48 extending in a V-shape below the axial reinforcing bars 41. It is constructed by pouring concrete 43 onto reinforcing bars.
The members that restrain the axial reinforcing bars are not limited to the band reinforcing bars 42, but may include J-shaped connecting steel members as shown in FIGS. 7(b) and 7(c), holding steel members such as C-shaped pipes, and other members. It can be used as a member.

このように構成された図1の前記RC橋脚40において、このRC橋脚40の上方部に地震動等により水平力を受ける個所を載荷点45とすると、前記RC橋脚40の下部の前記フーチング44との結合部分付近は、地震エネルギーを吸収する塑性ヒンジ部46となる。
前記軸方向鉄筋41には、前記塑性ヒンジ部46において本発明による内向き湾曲部47を形成する。この内向き湾曲部47は、図1に示すように、両側の前記塑性ヒンジ部46の軸方向鉄筋41にそれぞれ形成される。
In the RC pier 40 of FIG. 1 configured in this way, if the loading point 45 is a location on the upper part of the RC pier 40 that receives horizontal force due to earthquake motion, etc., then the loading point 45 is the loading point 45 between the footing 44 at the bottom of the RC pier 40. The vicinity of the joint becomes a plastic hinge portion 46 that absorbs earthquake energy.
The axial reinforcing bar 41 is formed with an inwardly curved portion 47 according to the present invention at the plastic hinge portion 46 . As shown in FIG. 1, the inwardly curved portions 47 are formed in the axial reinforcing bars 41 of the plastic hinge portions 46 on both sides.

前記内向き湾曲部47は、次のようにして形成される。
図2において、前記軸方向鉄筋41に水平力がかかっていない状態を41o(鉛直)とし、このときの内向き湾曲部を47yとする。前記軸方向鉄筋41が水平力の大きさに応じて41xから41yと変化したものとする。41yに達したとき内向き湾曲部47yが略直線となり、目標とする靭性率(以下、設計靭性率という)、例えば従来の4倍(靭性率40)に到達するように、内向き湾曲部47yの曲率が設定される。
より詳しくは、鉛直線状の前記軸方向鉄筋41oと前記内向き湾曲部47yの一端部との接続点をBとし、前記内向き湾曲部47yの他端部と直線状の前記基礎鉄筋48yとの接続点をDとし、鉛直線状の前記軸方向鉄筋41oの延長線と直線状の前記基礎鉄筋48yの延長線との交点をOとしたとき、3角形BODの2点に接する曲率の円弧が目標とする靭性率(設計靭性率)の前記内向き湾曲部47yとなる。
このとき、内向き湾曲部47yは、点B、Dにおいて接線となるので、直線状の前記軸方向鉄筋41と前記内向き湾曲部47yの交点B及び前記内向き湾曲部47yと前記基礎鉄筋48yの交点Dは、円滑に連続している。
以上のようにして前記内向き湾曲部47yを設定することにより、軸方向鉄筋41yと内向き湾曲部47yと内向き湾曲部47yが図2のように略一直線になった時点で、目標とする靭性率(設計靭性率)となる。前記内向き湾曲部47yが設定された状態で、軸方向鉄筋41が41yを超えてより大きな水平力がかかり、内向き湾曲部47が外側への曲率になると靭性率は急速に低下する。
The inwardly curved portion 47 is formed as follows.
In FIG. 2, the state in which no horizontal force is applied to the axial reinforcing bar 41 is designated as 41o (vertical), and the inwardly curved portion at this time is designated as 47y. It is assumed that the axial reinforcing bar 41 changes from 41x to 41y depending on the magnitude of the horizontal force. 41y, the inwardly curved portion 47y becomes a substantially straight line, and the inwardly curved portion 47y is bent so that the target toughness ratio (hereinafter referred to as design toughness ratio), for example, four times the conventional toughness ratio (toughness ratio 40) is reached. The curvature of is set.
More specifically, the connection point between the vertical reinforcing bar 41o and one end of the inwardly curved portion 47y is designated as B, and the other end of the inwardly curved portion 47y and the straight foundation reinforcing bar 48y are connected to each other. When the connection point of is D, and the intersection of the vertical extension of the axial reinforcing bar 41o and the linear extension of the foundation reinforcing bar 48y is O, then the curvature of the triangle BOD tangent to two points is The circular arc becomes the inwardly curved portion 47y having a target toughness ratio (design toughness ratio).
At this time, since the inwardly curved portion 47y becomes a tangent at points B and D, the intersection point B between the straight axial reinforcing bar 41 and the inwardly curved portion 47y, and the intersection point B between the inwardly curved portion 47y and the foundation reinforcing bar 48y. The intersection points D are smoothly continuous.
By setting the inwardly curved portion 47y as described above, the target is set when the axial reinforcing bar 41y, the inwardly curved portion 47y, and the inwardly curved portion 47y become substantially in a straight line as shown in FIG. This is the toughness factor (design toughness factor). With the inwardly curved portion 47y set, when the axial reinforcing bar 41 exceeds 41y and a larger horizontal force is applied, and the inwardly curved portion 47 becomes outwardly curved, the toughness rate rapidly decreases.

図2において、目標とする靭性率(以下、設計靭性率という)が前記例より小さい41xに達したときとき、例えば従来の2倍(靭性率20)に到達したものとすると、この靭性率20での内向き湾曲部47xの曲率が設定される。
より詳しくは、鉛直線状の前記軸方向鉄筋41oと前記内向き湾曲部47xの一端部との接続点をBとし、前記内向き湾曲部47xの他端部と直線状の前記基礎鉄筋48xとの接続点をCとし、直線状の前記軸方向鉄筋41の延長線と直線状の前記基礎鉄筋48xの延長線との交点をOとしたとき、3角形BOCの2点に接する曲率の円弧が目標とする靭性率(設計靭性率)の前記内向き湾曲部47xとなる。
このとき、内向き湾曲部47xは、点B、Cにおいて接線となるので、前記軸方向鉄筋41と前記内向き湾曲部47xの交点B及び前記内向き湾曲部47xと前記基礎鉄筋48xの交点Cは、段差なく円滑に連続している。
以上のようにして前記内向き湾曲部47xを設定することにより、軸方向鉄筋41xと内向き湾曲部47xと内向き湾曲部47xが図2のように一直線になった時点で、目標とする靭性率(設計靭性率)となる。前記内向き湾曲部47xが設定された状態で、軸方向鉄筋41が41xを超えてより大きな水平力がかかり、内向き湾曲部47が外側への曲率になると靭性率は急速に低下する。
なお、図2は、図面の記載の都合上、前記軸方向鉄筋41に水平力がかかっていない状態41oから水平力の大きさに応じて41x、41yと変化する角度を大きくあらわしているが、実際は、図示状態の数分の1から数10分の1である。
In FIG. 2, when the target toughness modulus (hereinafter referred to as design toughness modulus) reaches 41x, which is smaller than the above example, for example, if it reaches twice the conventional toughness modulus (toughness modulus 20), then this toughness modulus 20 The curvature of the inwardly curved portion 47x at is set.
More specifically, the connection point between the vertical reinforcing bar 41o and one end of the inwardly curved part 47x is designated as B, and the other end of the inwardly curved part 47x and the straight foundation reinforcing bar 48x are connected to each other. When the connection point of is C, and the intersection of the extension line of the linear axial reinforcing bar 41 and the extension line of the linear foundation reinforcing bar 48x is O, an arc of curvature tangent to two points of the triangle BOC. becomes the inwardly curved portion 47x with a target toughness ratio (design toughness ratio).
At this time, since the inwardly curved portion 47x becomes a tangent at points B and C, the intersection point B between the axial reinforcing bar 41 and the inwardly curved portion 47x and the intersection C between the inwardly curved portion 47x and the foundation reinforcing bar 48x. are smoothly continuous without any steps.
By setting the inwardly curved portion 47x as described above, when the axial reinforcing bar 41x, the inwardly curved portion 47x, and the inwardly curved portion 47x become in a straight line as shown in FIG. ratio (design toughness ratio). With the inwardly curved portion 47x set, when the axial reinforcing bar 41 exceeds 41x and a larger horizontal force is applied, and the inwardly curved portion 47 becomes outwardly curved, the toughness rate rapidly decreases.
In addition, for convenience of description in the drawing, FIG. 2 largely depicts the angle that changes from a state 41o where no horizontal force is applied to the axial reinforcing bar 41 to 41x and 41y depending on the magnitude of the horizontal force. In reality, it is from one-several to several-tenths of the state shown in the figure.

図3における前記軸方向鉄筋41の一方側41aと他方側41bの両側に前記内向き湾曲部47を形成することで、図4に示すポストピーク域における釣り合い構造式を成立させ、はらみ出しを防止する。
より詳しくは、図3において、地震動の載荷点が図中左から右方向に水平力が加えられたものとすると、軸方向鉄筋41の図中左側の軸方向鉄筋41aは、引張鉄筋となり、図中右側の軸方向鉄筋41bは、圧縮鉄筋となる。
図4において、
引張鉄筋41aに作用する引張力T=σsy×Asとなり、
圧縮鉄筋41bに作用する圧縮力C=σsy×Asとなる。
ここで、σsy:鉄筋の降伏応力
As:鉄筋の全断面積である。
中立軸位置N-N点でのポストピーク域における釣り合い構造式は、
T(σsy×As)=C(σsy×As)となる。
By forming the inwardly curved portions 47 on both sides 41a and 41b of the axial reinforcing bar 41 in FIG. 3, a balanced structural formula in the post-peak region shown in FIG. 4 is established, and protrusion is prevented. do.
More specifically, in FIG. 3, if the loading point of the earthquake motion is a horizontal force applied from left to right in the figure, then the axial reinforcing bar 41a on the left side of the axial reinforcing bar 41 becomes a tension reinforcing bar, and as shown in FIG. The axial reinforcing bar 41b on the middle right side is a compression reinforcing bar.
In Figure 4,
The tensile force acting on the tensile reinforcing bar 41a is T=σsy×As,
The compressive force C acting on the compressed reinforcing bar 41b=σsy×As.
Here, σsy: yield stress of reinforcing bars As: total cross-sectional area of reinforcing bars.
The equilibrium structural formula in the post-peak region at the neutral axis position NN point is:
T(σsy×As)=C(σsy×As).

図3の場合とは逆に、地震動の載荷点45が図中右から左方向に水平力が加えられたものとすると、軸方向鉄筋41の一方側41bは、引張鉄筋となり、他方側41aは、圧縮鉄筋となる。
地震時には、交番の地震動が加えられるため、引張側と圧縮側は、交互に発生する。
Contrary to the case of FIG. 3, if the loading point 45 of the earthquake motion is assumed to be a horizontal force applied from right to left in the figure, one side 41b of the axial reinforcing bar 41 becomes a tension reinforcing bar, and the other side 41a becomes a tensile reinforcing bar. , becomes compression reinforcing steel.
During an earthquake, alternating seismic motion is applied, so tension and compression occur alternately.

図3に示すように、水平力の作用するRC構造物40の側面が一定している場合には、水平力の方向に直交する方向の軸方向鉄筋41の引張側41aと圧縮側41bにのみ内向き湾曲部47を形成するようにする。
しかし、方向が一定していない地震動のように全方向の水平力に対応させるためには、RC橋脚40が図5(a)に示すように、角柱状である場合には、すべての軸方向鉄筋41の内向き湾曲部47を、RC橋脚40のすべての軸方向鉄筋41の中心に向かって湾曲するように形成する。
また、RC構造物40が図5(b)に示すように、円柱状である場合には、すべての軸方向鉄筋41に内向き湾曲部47を、RC構造物40のすべての軸方向鉄筋41の中心に向かって湾曲するように形成する。
As shown in FIG. 3, when the side surface of the RC structure 40 on which the horizontal force acts is constant, only the tension side 41a and the compression side 41b of the axial reinforcing bar 41 in the direction perpendicular to the direction of the horizontal force An inwardly curved portion 47 is formed.
However, in order to respond to horizontal forces in all directions, such as earthquake motions whose directions are not constant, when the RC pier 40 is prismatic as shown in FIG. 5(a), it is necessary to The inwardly curved portions 47 of the reinforcing bars 41 are formed to curve toward the center of all the axial reinforcing bars 41 of the RC pier 40.
In addition, when the RC structure 40 has a columnar shape as shown in FIG. It is formed so that it curves toward the center.

前記実施例では、本発明を新設のRC構造物40の製造に利用した場合について説明したが、これ以外にも下記の工法にも適用できる。
(1)既存のRC橋脚、その他のRC構造物の外周に、RCコンクリートを巻き立てて補強する際に、その補強用RCコンクリートの軸方向鉄筋41に本発明の内向き湾曲部47を形成して靭性率を向上させることができる。
(2)跨線橋、跨道橋、道路や鉄道の橋梁などのRC橋脚補強用としてRCコンクリートを打設するときに、軸方向鉄筋41の塑性ヒンジ部に本発明の内向き湾曲部47を形成して靭性率を向上させることができる。
(3)RCでPC(プレストレス)の中空煙突、RCでPC(プレストレス)のタワー、RCでPC(プレストレス)の電柱などの新設構造物や補強用構造物の軸方向鉄筋41に本発明の内向き湾曲部47を形成して靭性率を向上させることができる。
(4)円柱や円筒のRC構造物以外の角型のボックスカルバート角隅部分の軸方向鉄筋の靭性率向上用として本発明の内向き湾曲部を形成して靭性率を向上させることができる。
In the embodiment described above, the present invention is applied to the manufacturing of a newly constructed RC structure 40, but the present invention can also be applied to the following construction methods.
(1) When reinforcing the outer circumference of an existing RC pier or other RC structure by rolling RC concrete, the inwardly curved portion 47 of the present invention is formed in the axial reinforcing bar 41 of the reinforcing RC concrete. can improve toughness.
(2) When pouring RC concrete to reinforce RC piers of overpass bridges, overpass bridges, road and railway bridges, etc., the inwardly curved portion 47 of the present invention is formed at the plastic hinge portion of the axial reinforcing bar 41. can improve toughness.
(3) The axial reinforcing bars 41 of newly constructed structures and reinforcing structures such as RC hollow chimneys with PC (prestress), towers with RC and PC (prestress), and utility poles with RC and PC (prestress) The inwardly curved portion 47 of the invention can be formed to improve the toughness modulus.
(4) The inwardly curved portion of the present invention can be formed to improve the toughness of the axial reinforcing bars at the corner portions of rectangular box culverts other than cylinders and cylindrical RC structures.

10…橋脚、11…側面、12…補強縦筋、13…傾斜曲げ部、14…フーチング、15…上面、16…入隅角部、17…補強コンクリート、18…主筋、19…傾斜部、20…帯鉄筋、21…鋼板、22…連結鋼材、23…抱持鋼材、24…上部構造物、25…フーチング、26…RC橋脚、27…塑性ヒンジ部、28…軸方向鉄筋、29…機械的継手、30…仕切り材、31…鋼管、32…一般部、40…RC構造物、41…軸方向鉄筋、42…帯鉄筋、43…コンクリート、44…フーチング、45…載荷点、46…塑性ヒンジ部、47…内向き湾曲部、48…基礎鉄筋。
10... Pier, 11... Side, 12... Reinforcement vertical reinforcement, 13... Inclined bent part, 14... Footing, 15... Top surface, 16... Corner part, 17... Reinforced concrete, 18... Main reinforcement, 19... Slanted part, 20 ... Band reinforcing bar, 21... Steel plate, 22... Connecting steel material, 23... Holding steel material, 24... Super structure, 25... Footing, 26... RC pier, 27... Plastic hinge part, 28... Axial reinforcing bar, 29... Mechanical Joint, 30... Partition material, 31... Steel pipe, 32... General part, 40... RC structure, 41... Axial reinforcing bar, 42... Hoop reinforcing bar, 43... Concrete, 44... Footing, 45... Loading point, 46... Plastic hinge Part, 47... Inward curved part, 48... Foundation reinforcement.

Claims (5)

複数本の鉛直線状の軸方向鉄筋と、これらの軸方向鉄筋の外側から所定間隔で囲んだ帯鉄筋と、前記軸方向鉄筋の下部に複数本のハの字形に延長した直線状の基礎鉄筋とにコンクリートを打設してなるRC構造物において、
前記軸方向鉄筋は、前記RC構造物の載荷方向の一方側に配置された引張鉄筋と、前記RC構造物の載荷方向の他方側に配置された圧縮鉄筋とを具備し、
前記軸方向鉄筋の下端と前記基礎鉄筋の上端とを接続した塑性ヒンジ部に内向き湾曲部を形成するとともに、この内向き湾曲部を帯鉄筋で囲み、
前記内向き湾曲部は、前記軸方向鉄筋の下端と前記内向き湾曲部の上端との接続点と、前記基礎鉄筋の上端と前記内向き湾曲部の下端との接続点と、前記軸方向鉄筋の下方への直線の延長線と前記基礎鉄筋の上方への直線の延長線との交点との3点で形成される3角形の前記軸方向鉄筋の下端と前記内向き湾曲部の上端との接続点と、前記基礎鉄筋の上端と前記内向き湾曲部の下端との接続点に接する円弧に形成して座屈を防止し靭性率を向上したことを特徴とする高靭性RC構造物。
A plurality of vertical axial reinforcing bars, band reinforcing bars surrounding these axial reinforcing bars at predetermined intervals from the outside, and a plurality of linear foundation reinforcing bars extending in a V-shape below the axial reinforcing bars. In RC structures made by pouring concrete into
The axial reinforcing bars include tension reinforcing bars arranged on one side of the RC structure in the loading direction, and compression reinforcing bars arranged on the other side of the RC structure in the loading direction,
Forming an inwardly curved portion in a plastic hinge portion connecting the lower end of the axial reinforcing bar and the upper end of the foundation reinforcing bar, and surrounding this inwardly curved portion with band reinforcing bars;
The inwardly curved portion includes a connection point between the lower end of the axial reinforcing bar and the upper end of the inwardly curved portion, a connection point between the upper end of the foundation reinforcing bar and the lower end of the inwardly curved portion, and the axial reinforcing bar. The lower end of the triangular axial reinforcing steel formed by the intersection of the downward straight extension line and the upward straight extension line of the foundation reinforcing steel and the upper end of the inwardly curved part. A high-toughness RC structure, characterized in that it is formed into a circular arc that touches a connection point and a connection point between the upper end of the foundation reinforcing steel and the lower end of the inwardly curved portion to prevent buckling and improve toughness.
前記引張鉄筋の作用する引張力Tと前記圧縮鉄筋の作用する圧縮力Cの中立軸位置N-N点でのポストピーク域において次の釣り合い構造式が成立するようにしたことを特徴とする請求項1記載の高靭性RC構造物。
T(σsy×As)=C(σsy×As)
ここで、σsy:鉄筋の降伏応力
As:鉄筋の全断面積
A claim characterized in that the following balanced structural formula is established in a post-peak region at a neutral axis position NN point between the tensile force T acting on the tension reinforcing bars and the compressive force C acting on the compression reinforcing bars. Item 1. High toughness RC structure.
T(σsy×As)=C(σsy×As)
Here, σsy: Yield stress of reinforcing bars As: Total cross-sectional area of reinforcing bars
前記内向き湾曲部における曲率は、前記RC構造物の水平変位時における前記RC構造物が目標とする靭性率に到達した時点で前記軸方向鉄筋の内向き湾曲部が直線となるように設定したことを特徴とする請求項1又は2記載の高靭性RC構造物。 The curvature of the inwardly curved portion is set such that the inwardly curved portion of the axial reinforcing bar becomes a straight line when the RC structure reaches the target toughness ratio during horizontal displacement of the RC structure. The high toughness RC structure according to claim 1 or 2, characterized in that: 前記RC構造物は、RC橋脚、PC橋脚からなることを特徴とする請求項1、2又は3記載の高靭性RC構造物。
The high toughness RC structure according to claim 1, 2 or 3, wherein the RC structure comprises an RC pier or a PC pier .
前記RC構造物は、既存のRC構造物の外周に巻き立てる工法における補強用RC構造物の軸方向鉄筋に内向き湾曲部を形成したことを特徴とする請求項1、2又は3記載の高靭性RC構造物。
The RC structure according to claim 1, 2 or 3, wherein an inwardly curved portion is formed in an axial reinforcing bar of a reinforcing RC structure in a construction method of wrapping around the outer periphery of an existing RC structure. Toughness RC structure.
JP2022057666A 2022-03-30 2022-03-30 High toughness RC structure Active JP7375087B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2022057666A JP7375087B2 (en) 2022-03-30 2022-03-30 High toughness RC structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2022057666A JP7375087B2 (en) 2022-03-30 2022-03-30 High toughness RC structure

Publications (2)

Publication Number Publication Date
JP2023149219A JP2023149219A (en) 2023-10-13
JP7375087B2 true JP7375087B2 (en) 2023-11-07

Family

ID=88288172

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2022057666A Active JP7375087B2 (en) 2022-03-30 2022-03-30 High toughness RC structure

Country Status (1)

Country Link
JP (1) JP7375087B2 (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005054532A (en) 2003-08-07 2005-03-03 Sumitomo Mitsui Construction Co Ltd Reinforcing structure of concrete structure, and method of reinforcing concrete structure

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3300162B2 (en) * 1994-05-23 2002-07-08 新日本製鐵株式会社 Joint structure between steel wall and reinforced concrete floor slab
JP5004829B2 (en) * 2008-02-29 2012-08-22 公益財団法人鉄道総合技術研究所 Seismic reinforcement method for structure and reinforcement structure
JP5802519B2 (en) * 2011-11-01 2015-10-28 三井住友建設株式会社 Bridge

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005054532A (en) 2003-08-07 2005-03-03 Sumitomo Mitsui Construction Co Ltd Reinforcing structure of concrete structure, and method of reinforcing concrete structure

Also Published As

Publication number Publication date
JP2023149219A (en) 2023-10-13

Similar Documents

Publication Publication Date Title
US20210032819A1 (en) A precast segmental pier reinforced with both conventional steel bars and high-strength steel bars
JP5597317B1 (en) Seismic reinforcement structure for bridge piers
US4390306A (en) Composite arch structure
JP7157401B2 (en) Joint structure of column-center-column assembly type restraint
JP5935756B2 (en) Seismic reinforcement structure for joints of submerged tunnels.
KR101791062B1 (en) Method of manufacturing steel girder and steel girder manufactured using same
JP7375087B2 (en) High toughness RC structure
JP3659099B2 (en) Joint structure of footing and steel pipe pile
EP0214800A2 (en) Filler filled steel tube column
JP7479029B2 (en) Residual strain suppression structure for RC columnar structure and method for repairing plastic hinge part of RC columnar structure
KR102314546B1 (en) Reinforcing structure for Column and Beam
KR101294289B1 (en) Buckling restrained brace of dry type, and manufacturing method for the same
CN112069584B (en) Design method of ductile structural pier for railway
Arzoumanidis et al. Performance‐based seismic analysis and design of suspension bridges
JP5423185B2 (en) Concrete-filled pier structure
KR200263281Y1 (en) Apparatus for reinforcing a construction by enlarging its' size
JP3644981B2 (en) Precast joint groove construction method
JP2021021287A (en) Load bearing material
CN213539792U (en) Crossed reinforcement steel skeleton and reinforced concrete reinforcing column
JP5680328B2 (en) Concrete laminated timber and its construction method
JP7447879B2 (en) Construction methods for steel walls, structures, and structures
JP5835110B2 (en) Quay-quake-proof structure and quake-quake-proof reinforcement method
JP7351271B2 (en) Steel beams, column-beam joint structures, and structures containing them
CN100340724C (en) Frame pole construction method with vertical stirrup free of connection
KR101615501B1 (en) Concrete Structure and Connection Method thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20221219

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230719

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230814

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20231004

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20231025

R150 Certificate of patent or registration of utility model

Ref document number: 7375087

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150