JP5935756B2 - Seismic reinforcement structure for joints of submerged tunnels. - Google Patents

Seismic reinforcement structure for joints of submerged tunnels. Download PDF

Info

Publication number
JP5935756B2
JP5935756B2 JP2013105715A JP2013105715A JP5935756B2 JP 5935756 B2 JP5935756 B2 JP 5935756B2 JP 2013105715 A JP2013105715 A JP 2013105715A JP 2013105715 A JP2013105715 A JP 2013105715A JP 5935756 B2 JP5935756 B2 JP 5935756B2
Authority
JP
Japan
Prior art keywords
joint
submerged
corrugated
reinforcement
tunnel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2013105715A
Other languages
Japanese (ja)
Other versions
JP2014227661A (en
Inventor
禎郎 塩崎
禎郎 塩崎
森 玄
玄 森
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2013105715A priority Critical patent/JP5935756B2/en
Publication of JP2014227661A publication Critical patent/JP2014227661A/en
Application granted granted Critical
Publication of JP5935756B2 publication Critical patent/JP5935756B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Underground Structures, Protecting, Testing And Restoring Foundations (AREA)

Description

本発明は、沈埋トンネル(沈埋函による海底トンネル)の継手部の耐震補強構造に関し、特に、継手部の止水性能を向上する耐震補強構造に関するものである。   The present invention relates to a seismic reinforcement structure for a joint portion of a submerged tunnel (a submarine tunnel by a submerged box), and particularly relates to a seismic reinforcement structure for improving the water stop performance of the joint portion.

図1は、沈埋函11による海底トンネル(沈埋トンネル)10の縦断方向(トンネル軸方向)の構造例である。立坑12の間に沈埋函11が複数函(ここでは、1号函〜6号函の6函)設置されており、1函あたり約110mの長さである。   FIG. 1 is an example of the structure in the longitudinal direction (tunnel axis direction) of a submarine tunnel (submerged tunnel) 10 by a submerged box 11. A plurality of submerged boxes 11 (here, No. 1 to No. 6 boxes) are installed between the shafts 12, and each box has a length of about 110 m.

図2は、沈埋函11による海底トンネル(沈埋トンネル)10の横断方向(トンネル軸直角方向)の構造例である。図2中の13は鉄筋コンクリート、16は止水用鋼板である。   FIG. 2 shows an example of the structure in the transverse direction (the direction perpendicular to the tunnel axis) of the submarine tunnel (submerged tunnel) 10 by the submerged box 11. In FIG. 2, 13 is reinforced concrete, and 16 is a steel plate for water stoppage.

図3は、沈埋函11同士の継手部(沈埋函継手部)21の構造例である。なお、図3では、沈埋函11の天井側部分同士の継手部分を示している。端面(コンタクトフレーム)22には、ゴムガスケット23が圧縮された状態で配置され、沈埋函11から突出した鉄筋15をグリップ継手(グリップジョイント)24で連結している。沈埋函11同士が鉄筋15で連結された後、くぼみ部分には後打ちコンクリート25が打設されている。なお、ゴムガスケット23を一次止水ゴムとして、ゴムガスケット23の内側に二次止水ゴム(図示せず)が配置されている場合もある。   FIG. 3 is a structural example of a joint portion (submerged box joint portion) 21 between the submerged boxes 11. FIG. 3 shows a joint portion between the ceiling side portions of the submerged box 11. A rubber gasket 23 is arranged in a compressed state on the end face (contact frame) 22, and a reinforcing bar 15 protruding from the sinking box 11 is connected by a grip joint (grip joint) 24. After the sinking boxes 11 are connected to each other by the reinforcing bars 15, post-cast concrete 25 is placed in the recessed portions. In some cases, the rubber gasket 23 is a primary waterproof rubber, and a secondary waterproof rubber (not shown) is disposed inside the rubber gasket 23.

このような沈埋函11を用いた海底トンネル10で、建設当時に比べ耐震設計の対象となる地震動が大きくなる場合、沈埋函11同士の継手部21が耐力不足となり、沈埋函11間の目地開き大きくなって、十分に止水性を確保できない可能性がある。   In such a submarine tunnel 10 using the submerged box 11, when the seismic motion to be subjected to the seismic design is larger than that at the time of construction, the joint portion 21 between the submerged boxes 11 becomes insufficient in strength, and the joint between the submerged boxes 11 opens. It may become large and water stoppage may not be secured sufficiently.

そこで、大阪港の咲洲トンネルでは、地震動の見直しによる継手部の耐力不足に対して、沈埋函の継手部において沈埋函同士を補強用鋼板で連結して、目地開きを抑える対策がとられている(非特許文献1参照)。   Therefore, in the Sakishima tunnel of Osaka Port, measures against the joint opening were connected by reinforcing steel plates at the joint part of the submergence box in order to prevent joint opening in response to insufficient strength of the joint part due to the review of earthquake motion. (See Non-Patent Document 1).

すなわち、図4は、上記の補強用鋼板による耐震補強構造を示すものであり、図3に示した沈埋函継手部21において、耐震補強構造として、継手部21のトンネル内部に補強用鋼板31をアンカーボルト33で取り付けている。   That is, FIG. 4 shows the seismic reinforcement structure using the above-described reinforcing steel plate. In the submerged box joint portion 21 shown in FIG. 3, the reinforcing steel plate 31 is provided inside the tunnel of the joint portion 21 as the seismic reinforcement structure. It is attached with anchor bolts 33.

沈埋函の接続部分を耐震補強、日経コンストラクション、日経BP社、2009年3月27日号、P.26〜31Seismic reinforcement of the connecting part of the sinking box, Nikkei Construction, Nikkei BP, March 27, 2009, P.I. 26-31

しかしながら、上記の非特許文献1に記載されたような、沈埋函同士を補強用鋼板で連結する耐震補強構造を用いた場合、補強用鋼板の沈埋函への定着部分に作用する荷重が大きく、定着部分を長くして多数のアンカーボルトによる定着が必要となる。その結果、補強用鋼板自体が重くなり、施工性も悪化してしまう。   However, when using a seismic reinforcement structure that connects the submerged boxes with reinforcing steel plates as described in Non-Patent Document 1 above, the load acting on the fixing portion of the reinforcing steel plate to the submerged box is large, It is necessary to lengthen the fixing portion and fix it with a large number of anchor bolts. As a result, the reinforcing steel plate itself becomes heavier and the workability deteriorates.

また、補強用鋼板は、既存の定着鉄筋等に比べて断面積が大きく、想定以上の地震時に沈埋函同士が離れる方向に変形した際には、補強用鋼板の定着部に作用する荷重が大きくなるため、定着部自体が損傷してしまう可能性がある。そのため、止水性が確保されず、沈埋トンネルが浸水してしまう可能性が否定できない。   In addition, the reinforcing steel sheet has a larger cross-sectional area than existing anchored reinforcing bars, etc., and when deformed in the direction in which the sinking boxes are separated from each other during an earthquake more than expected, the load acting on the fixing part of the reinforcing steel sheet is large. Therefore, the fixing unit itself may be damaged. For this reason, it is impossible to deny the possibility that the water-stopping property is not secured and the buried tunnel is flooded.

一方、下水道や共同溝で用いられるコンクリート製のカルバートの既存構造への耐震対策として、ゴム製の耐震目地補修継手が実用化されている。   On the other hand, rubber anti-seismic joint repair joints have been put to practical use as an anti-seismic measure for the existing structure of concrete culverts used in sewers and joint grooves.

この耐震目地補修継手はゴム製なので、継手部の目地開きが生じても、定着部のアンカーに作用する力は小さいため、少量のアンカーで定着することができる。例えば、アンカーの定着間隔は330mmで、カルバート外部から浸水した場合の耐水圧特性は0.1MPa以下である(水深10m程度の水圧)。   Since this seismic joint repair joint is made of rubber, even if joint joint opening occurs, the force acting on the anchor of the anchoring portion is small, so that it can be anchored with a small amount of anchor. For example, the anchor fixing interval is 330 mm, and the water pressure resistance when submerged from the outside of the culvert is 0.1 MPa or less (water pressure of a depth of about 10 m).

しかしながら、沈埋函の継手部は、アンカーの定着に適した場所が、施工の都合上離れている(1m以上)ことと、水深10m以深に設置されていることも多いので、上記のゴム製の耐震目地補修継手を適用することは不可能である。   However, the joint part of the submerged box is often located at a depth suitable for anchor anchoring (1 m or more) and at a water depth of 10 m or more. It is impossible to apply seismic joints.

本発明は、上記のような事情に鑑みてなされたものであり、想定以上の地震時にも沈埋トンネルの継手部(沈埋函継手部)の止水を確保することができるとともに、容易に取り付けることができる沈埋トンネルの継手部の耐震補強構造を提供することを目的とするものである。   The present invention has been made in view of the circumstances as described above, and can secure water stoppage of a submerged tunnel joint part (submerged box joint part) even during an earthquake more than expected, and can be easily attached. It is an object of the present invention to provide a seismic reinforcement structure for a joint part of a submerged tunnel.

上記課題を解決するために、本発明は以下の特徴を有する。   In order to solve the above problems, the present invention has the following features.

[1]沈埋トンネルの継手部の耐震補強構造であって、前記継手部のトンネル内部全周にわたって補強用波形鋼板を取り付けたことを特徴とする、沈埋トンネルの継手部の耐震補強構造。   [1] A seismic reinforcement structure for a joint part of a submerged tunnel, wherein a corrugated steel sheet for reinforcement is attached to the entire inner periphery of the tunnel of the joint part.

[2]前記継手部と前記補強用波形鋼板の間に、引張強度に優れた防水樹脂を塗布したことを特徴とする前記[1]に記載の沈埋トンネルの継手部の耐震補強構造。   [2] The seismic reinforcement structure for a joint part of a submerged tunnel according to [1], wherein a waterproof resin excellent in tensile strength is applied between the joint part and the corrugated steel sheet for reinforcement.

[3]前記補強用波形鋼板は、前記継手部の目地開きを吸収するための波形部を有し、その波形部の両側に、前記継手部に定着させるための直線部を有していることを特徴とする前記[1]または[2]に記載の沈埋トンネルの継手部の耐震補強構造。   [3] The reinforcing corrugated steel sheet has a corrugated portion for absorbing joint openings of the joint portion, and has straight portions for fixing the joint portion on both sides of the corrugated portion. The seismic reinforcement structure for a joint part of a submerged tunnel according to [1] or [2] above.

本発明に係る沈埋トンネルの継手部の耐震補強構造は、想定以上の地震時にも沈埋トンネルの継手部(沈埋函継手部)の止水を確保することができるとともに、容易に取り付けることができる。   The seismic strengthening structure of the joint part of the submerged tunnel according to the present invention can secure water stoppage of the joint part (submerged box joint part) of the submerged tunnel and can be easily attached even during an earthquake more than expected.

すなわち、本発明においては、沈埋トンネルの継手部(沈埋函継手部)の止水性能を効率的に向上することができる。   That is, in this invention, the water stop performance of the joint part (submerged box joint part) of a submerged tunnel can be improved efficiently.

沈埋函による海底トンネルの縦断方向(トンネル軸方向)の構造例である。It is an example of the structure in the longitudinal direction (tunnel axis direction) of the submarine tunnel by submerged box. 沈埋函による海底トンネルの横断方向(トンネル軸直角方向)の構造例である。This is an example of the structure in the transverse direction of the submarine tunnel (in the direction perpendicular to the tunnel axis) by submerged box. 海底トンネルの継手部(沈埋函継手部)の構造例である。It is a structural example of the joint part (submerged box joint part) of a submarine tunnel. 非特許文献1に記載の耐震補強構造を模式的に示した図である。It is the figure which showed typically the earthquake-proof reinforcement structure of the nonpatent literature 1. 本発明の実施形態1における耐震補強構造を示す図である。It is a figure which shows the earthquake-proof reinforcement structure in Embodiment 1 of this invention. 本発明の実施形態1における補強用波形鋼板の断面形状である。It is a cross-sectional shape of the corrugated steel sheet for reinforcement in Embodiment 1 of the present invention. 本発明の実施形態1における補強用波形鋼板の両端を水平方向に載荷したときの荷重〜変位関係である。It is a load-displacement relationship when the both ends of the corrugated steel sheet for reinforcement in Embodiment 1 of this invention are loaded in a horizontal direction. 本発明の実施形態1における補強用波形鋼板の波形部分の他の形状例(直線区間あり)である。It is another example of a shape of a corrugated part of corrugated steel sheet for reinforcement in Embodiment 1 of the present invention (there is a straight section). 本発明の実施形態1において、路面部に必要となる補強用波形鋼板カバーの説明図である。In Embodiment 1 of this invention, it is explanatory drawing of the corrugated steel plate cover for reinforcement required for a road surface part. 本発明の実施形態2における耐震補強構造を示す図である。It is a figure which shows the earthquake-proof reinforcement structure in Embodiment 2 of this invention. 本発明の実施例において、比較例の補強用鋼板と本発明例の補強用波形鋼板について引張方向の荷重と変位の関係を比較した図である。In the Example of this invention, it is the figure which compared the relationship of the load of a tension | pulling direction, and a displacement about the reinforcing steel plate of a comparative example, and the corrugated steel plate for reinforcing of this invention example. 本発明の実施例において、沈埋函部分に相当する地盤部分での水平方向の変位状態を示す図である。In the Example of this invention, it is a figure which shows the displacement state of the horizontal direction in the ground part corresponded to a submerged box part. 従来例における沈埋函継手部の目地開き量を示す図である。It is a figure which shows the joint opening amount of the submerged box joint part in a prior art example. 比較例における沈埋函継手部の目地開き量を示す図である。It is a figure which shows the joint opening amount of the submerged box joint part in a comparative example. 本発明例1における沈埋函継手部の目地開き量を示す図である。It is a figure which shows the joint opening amount of the submerged box joint part in the example 1 of this invention. 本発明例2における沈埋函継手部の目地開き量を示す図である。It is a figure which shows the joint opening amount of the submerged box joint part in the example 2 of this invention.

本発明の実施形態を図面に基づいて説明する。   Embodiments of the present invention will be described with reference to the drawings.

[実施形態1]
図5は、本発明の実施形態1における沈埋函継手部を示す図である。
[Embodiment 1]
FIG. 5 is a diagram showing a submerged box joint portion according to Embodiment 1 of the present invention.

図5に示すように、この実施形態1では、図3に示した沈埋函継手部21において、耐震補強構造として、沈埋函継手部21のトンネル内部全周にわたって、トンネル軸方向に波形が形成された補強用波形鋼板32をアンカーボルト33で取り付けている。   As shown in FIG. 5, in the first embodiment, in the submerged box joint portion 21 shown in FIG. 3, as a seismic reinforcement structure, a waveform is formed in the tunnel axis direction over the entire inner periphery of the tunnel of the submerged box joint portion 21. The reinforcing corrugated steel plate 32 is attached with anchor bolts 33.

つまり、この補強用波形鋼板32は、沈埋函継手部21の目地開きを吸収するための波形部32aを有し、その波形部32aの両側に、沈埋函継手部21にアンカーボルト33で定着させるための直線部32bを有している。   That is, the corrugated steel plate 32 for reinforcement has a corrugated portion 32a for absorbing the joint opening of the submerged box joint portion 21, and is fixed to the submerged box joint portion 21 by the anchor bolts 33 on both sides of the corrugated portion 32a. It has a straight part 32b for the purpose.

これによって、この実施形態1においては、沈埋函11への定着部の荷重が過大とならず、海底トンネル10(沈埋函11)内部への止水性を効率的に確保することができる。   Thereby, in this Embodiment 1, the load of the fixing | fixed part to the submerged box 11 does not become excessive, and the water-stopping inside the submarine tunnel 10 (submerged box 11) can be ensured efficiently.

すなわち、沈埋函継手部21のトンネル内部全周にわたって補強用波形鋼板32を取り付ける構造としたため、沈埋函継手部21で目地開きが生じるような変位が生じても、補強用波形鋼板32が変形しながら追随するため、止水性が確保される。   That is, since the corrugated steel plate 32 for reinforcement is attached to the entire inner periphery of the tunnel of the submerged box joint portion 21, the corrugated steel plate 32 for reinforcement deforms even if a displacement that causes joint opening occurs in the submerged box joint portion 21. However, the water-stopping property is ensured.

また、補強用波形鋼板32はトンネル軸方向に変形しやすいため、変形した場合にも沈埋函11への定着部に大きな荷重を伝達しない特性を有する。したがって、補強用波形鋼板32の沈埋函11への定着が容易になる。   Further, since the corrugated steel sheet for reinforcement 32 is easily deformed in the tunnel axis direction, it has a characteristic that a large load is not transmitted to the fixing portion to the submerged box 11 even when deformed. Therefore, the reinforcing corrugated steel plate 32 can be easily fixed to the sinking box 11.

なお、補強用波形鋼板32は、沈埋函にアンカーボルト33による定着点の間(後打ちコンクリート25に接する区間)で、止水を確保する目標目地開き量の長さの余裕を持たせるような長さになるよう波形を形成すれば良い。大きな目地開き量に対応が必要で、かつ、トンネル内部の空間を阻害しないような形状は、必然的に複数個の波形が必要となる。   In addition, the corrugated steel plate 32 for reinforcement gives the margin of the length of the target joint opening amount which ensures water stop between the fixing points by the anchor bolts 33 (section contacting the post-cast concrete 25) in the submerged box. What is necessary is just to form a waveform so that it may become length. A shape that requires a large amount of joint opening and that does not obstruct the space inside the tunnel inevitably requires a plurality of waveforms.

以下に、補強用波形鋼板の具体的な形状と性能について、数値解析的に検討した結果を示す。   Below, the result of having examined numerically about the concrete shape and performance of a corrugated steel sheet for reinforcement is shown.

まず、検討対象の断面形状(折り曲げ形状)を図6(a)、(b)に示す。図6(a)は波形部の水平方向長さが60cmのモデル(波形部60cmモデル)であり、図6(b)は波形部の水平方向長さが40cmのモデル(波形部40cmモデル)である。なお、図6(a)、(b)において、a点とb点は、直線部の両端部(すなわち、補強用波形鋼板の両端部)を示している。   First, cross-sectional shapes (folded shapes) to be examined are shown in FIGS. 6 (a) and 6 (b). 6A is a model in which the horizontal length of the corrugated portion is 60 cm (waveform portion 60 cm model), and FIG. 6B is a model in which the horizontal length of the corrugated portion is 40 cm (waveform portion 40 cm model). is there. 6A and 6B, points a and b indicate both ends of the straight line portion (that is, both ends of the corrugated steel sheet for reinforcement).

上記の断面形状に材料特性を組み合わせた下記の4ケース(Case1〜Case4)について、鋼板部分をシェル要素で、沈埋函継手部との接触部分をソリッド要素でモデル化した3次元FEM解析をおこなった。   The following four cases (Case 1 to Case 4) combining the above-mentioned cross-sectional shapes with material properties were subjected to three-dimensional FEM analysis in which the steel plate part was modeled as a shell element and the contact part with the submerged box joint part was modeled as a solid element. .

(Case1)波形部60cmモデル、板厚15mm、すべて材質はSS400(一般構造用圧延鋼材)
(Case2)波形部60cmモデル、板厚15mm、直線部の材質はSS400(一般構造用圧延鋼材)、波形部の材質はLY100(建築構造用低降伏点鋼材)
(Case3)波形部40cmモデル、板厚15mm、すべて材質はSS400(一般構造用圧延鋼材)
(Case4)波形部40cmモデル、板厚15mm、直線部の材質はSS400(一般構造用圧延鋼材)、波形部の材質はLY100(建築構造用低降伏点鋼材)
(Case 1) Corrugated part 60cm model, plate thickness 15mm, all materials are SS400 (rolled steel for general structure)
(Case 2) Corrugated part 60 cm model, plate thickness 15 mm, straight part material SS400 (rolled steel for general structure), corrugated part material LY100 (low yield point steel for building structure)
(Case 3) Corrugated part 40cm model, plate thickness 15mm, all materials are SS400 (rolled steel for general structure)
(Case4) Corrugated part 40cm model, plate thickness 15mm, straight part material SS400 (rolled steel for general structure), corrugated part material LY100 (low yield point steel for building structure)

なお、波形部は半径5cmの円弧状になるように加工してあり、波形部60cmモデルでは、波形部の波形に沿った長さは94.2cmで、水平方向長さの60cmよりも34.2cmの長くなっている。また、波形部40cmモデルでは、波形部の波形に沿った長さは62.8cmで、水平方向長さの40cmよりも22.8cmの長くなっている。(以降、長くなっている量を余裕代と呼ぶ)。   The corrugated portion is processed to have an arc shape with a radius of 5 cm. In the corrugated portion 60 cm model, the length of the corrugated portion along the corrugated portion is 94.2 cm, which is 34.cm longer than the horizontal length of 60 cm. It is 2cm long. In the corrugated portion 40 cm model, the length along the corrugated portion is 62.8 cm, which is 22.8 cm longer than the horizontal length of 40 cm. (Hereafter, the amount that is longer is referred to as a margin).

一方、材料特性は以下のとおりである。   On the other hand, the material properties are as follows.

SS400は一般構造用圧延鋼材で、ヤング率(1次勾配)2.0×10N/mm、降伏強度282N/mm(設計で用いる降伏点は235N/mmとすることが多いが、降伏点が大きい方が定着部に作用する力が大きくなるため、ここでは平均的な降伏点とするため235N/mmを1.2倍している)、降伏後の2次勾配は1次勾配(2.0×10N/mm)の1/1000とした。板厚15mmの鋼板の伸びは17%以上が保証されている。 SS400 is rolled steel for general structure, the Young's modulus (primary slope) 2.0 × 10 5 N / mm 2, although yield strength 282N / mm 2 (yield point used in the design is often a 235N / mm 2 As the yield point is larger, the force acting on the fixing portion becomes larger. Here, in order to obtain an average yield point, 235 N / mm 2 is multiplied by 1.2), and the secondary gradient after yield is 1 It was set to 1/1000 of the next gradient (2.0 × 10 5 N / mm 2 ). The elongation of a steel plate with a plate thickness of 15 mm is guaranteed to be 17% or more.

LY100は極低降伏点鋼で、ヤング率5.0×10N/mm、降伏強度100N/mm、降伏後の2次勾配はひずみが0.1までは1.33×10N/mm、それ以降の3次勾配は1.00×10N/mmとした。鋼板の伸びは50%以上が保証されている。 LY100 is an extremely low yield point steel, Young's modulus is 5.0 × 10 4 N / mm 2 , yield strength is 100 N / mm 2 , and the secondary gradient after yield is 1.33 × 10 3 N until the strain is 0.1. / Mm 2 , and the cubic gradient thereafter was 1.00 × 10 2 N / mm 2 . The elongation of the steel sheet is guaranteed to be 50% or more.

そして、a点とb点を水平に載荷して求めた荷重と変位の関係を図7(a)、(b)に示す。図7(a)は、Case1とCase2であり、図7(b)は、Case3とCase4である。なお、ここでは、奥行き方向を10cmとしたモデルで算定している。   7A and 7B show the relationship between the load and the displacement obtained by loading the points a and b horizontally. FIG. 7A shows Case 1 and Case 2, and FIG. 7B shows Case 3 and Case 4. Here, the calculation is performed using a model in which the depth direction is 10 cm.

図7(a)に示すように、Case1、2では、波形に折り曲げたことによる余裕代34.2cmを越えたあたりから荷重が増加している。同様に、図7(b)に示すように、Case3,4では波形に折り曲げたことによる余裕代22.8cmを超えたあたりから荷重が増加している。   As shown in FIG. 7 (a), in Cases 1 and 2, the load increases from around the margin of 34.2 cm due to bending into a waveform. Similarly, as shown in FIG. 7B, in Cases 3 and 4, the load increases from around the margin of 22.8 cm resulting from bending into a waveform.

材質の違いに関しては、余裕代以下の定常的な区間では、折り曲げ部(波形部)にLY100を用いることで、荷重を4割〜7割程度まで抑制できている。   Regarding the difference in material, the load can be suppressed to about 40% to 70% by using LY100 for the bent portion (corrugated portion) in the stationary section below the margin.

また、図7(a)のCase1と、図7(b)のCase3において、荷重〜変位関係上に記した○印は、鋼板の伸びの下限値17%に相当する地点である。伸びの限界値を越えると破断の可能性があるため、限界以内で使用を前提とする必要がある。Case2、Case4に関しては、伸びの下限値が50%であるため、図示した範囲内では伸びの限界には達しない。   Further, in Case 1 in FIG. 7A and Case 3 in FIG. 7B, a mark marked on the load-displacement relationship is a point corresponding to the lower limit of 17% of the elongation of the steel sheet. If the limit value of elongation is exceeded, there is a possibility of breakage, so it is necessary to assume use within the limit. Regarding Case2 and Case4, the lower limit value of elongation is 50%, and therefore, the elongation limit is not reached within the illustrated range.

以上の結果から、それぞれのケースの目地開きへの対応限界は下記のとおりになる。   From the above results, the limit of correspondence for joint opening in each case is as follows.

Case1:14cm(余裕代34.2cmの4割程度)
Case2:50cm以上まで可能(ただし、30cm程度までの方が定着部に作用する力が小さいため、取り付けが容易)
Case3:9.2cm(余裕代22.8cmの4割程度)
Case4:40cm以上まで可能(ただし、30cm程度までの方が定着部に作用する力が小さいため、取り付けが容易)
Case 1: 14cm (about 40% of the margin 34.2cm)
Case 2: Up to 50 cm or more is possible (however, mounting up to about 30 cm is easier because the force acting on the fixing part is smaller)
Case3: 9.2cm (about 40% of the margin 22.8cm)
Case 4: Up to 40 cm or more is possible (however, mounting up to 30 cm is easier because the force acting on the fixing part is smaller)

したがって、一般構造用圧延鋼材(SS400)を用いる場合には、目地開き総定量の2.5倍以上(4割の逆数)の余裕代を波形形状でもたせ、建築構造用低降伏点鋼材(LY100)の場合には、目地開き総定量の1倍以上の余裕代を波形形状でもたせれば良い。   Therefore, when using a general structural rolled steel (SS400), a margin of 2.5 times or more (a reciprocal of 40%) of the joint opening total amount is provided with a corrugated shape, and a low yield point steel for a building structure (LY100). In the case of (), the margin allowance more than 1 times the total amount of joint opening may be given by the waveform shape.

なお、図6(a)、(b)に示した断面形状(折り曲げ形状)では、半径5cmの円弧を組み合わせた形状としているが、図8に示すように、円弧状部の途中に直線区間を入れることで、余裕代を稼ぐことができる。ただし、その場合には、トンネル内側壁から突出する量が多くなってしまう。   6 (a) and 6 (b), the cross-sectional shape (bent shape) is a shape in which an arc having a radius of 5 cm is combined. However, as shown in FIG. 8, a straight section is provided in the middle of the arc-shaped portion. By adding, you can earn a margin. In this case, however, the amount protruding from the inner wall of the tunnel increases.

また、折り曲げ回数を増やせば余裕代を簡単に増やすことが可能である。ただし、例えば路面部(沈埋函11の底部側)では、図9に示すように、波形部32aを覆うように、通行車両の荷重に対応できるようなカバー(補強用波形鋼板カバー35)を取り付けることが普通である。このような場合は、補強用波形鋼板の材質とカバーの大きさに合わせた折り曲げ回数とすればよい。なお、図9中の36は舗装部である。   In addition, the margin can be easily increased by increasing the number of bendings. However, for example, on the road surface portion (the bottom side of the sinking box 11), as shown in FIG. 9, a cover (reinforcing corrugated steel plate cover 35) that can handle the load of the passing vehicle is attached so as to cover the corrugated portion 32a. It is normal. In such a case, the number of bendings may be adjusted in accordance with the material of the corrugated steel sheet for reinforcement and the size of the cover. In addition, 36 in FIG. 9 is a pavement part.

[実施形態2]
図10は、本発明の実施形態2における沈埋函継手部を示す図である。
[Embodiment 2]
FIG. 10 is a view showing a submerged box joint part in Embodiment 2 of the present invention.

図10に示すように、この実施形態2では、図5に示した本発明の実施形態1の耐震補強構造において、さらに、沈埋函継手部21と補強用波形鋼板32との間に引張強度に優れる防水樹脂34を塗布するようにしている。   As shown in FIG. 10, in this second embodiment, in the seismic reinforcement structure of the first embodiment of the present invention shown in FIG. 5, the tensile strength is further increased between the submerged box joint portion 21 and the corrugated steel sheet 32 for reinforcement. An excellent waterproof resin 34 is applied.

想定以上の地震が作用した場合、後打ちコンクリート25は、沈埋函11同士が離れる方向で挙動するとひび割れが生じ、圧縮側に挙動した場合には圧壊する可能性がある。そのため、ゴムガスケット23が機能しなくなると、補強用波形鋼板32に大きな水圧がかかり、アンカーボルト33の隙間などから徐々に漏水が発生することが懸念される。   When an earthquake more than expected is applied, the post-cast concrete 25 may crack when it moves in the direction in which the submerged boxes 11 are separated from each other, and may collapse when it moves to the compression side. For this reason, when the rubber gasket 23 stops functioning, there is a concern that a large water pressure is applied to the corrugated steel sheet 32 for reinforcement and water leakage gradually occurs from the gaps of the anchor bolts 33 and the like.

これに対して、この実施形態2では、上記のように、沈埋函継手部21(後打ちコンクリート25)と補強用波形鋼板32との間に引張強度に優れる防水樹脂34を介在させているので、上記のような漏水の発生を回避することができる。   In contrast, in the second embodiment, as described above, the waterproof resin 34 having excellent tensile strength is interposed between the submerged box joint portion 21 (post-cast concrete 25) and the corrugated steel plate 32 for reinforcement. The occurrence of water leakage as described above can be avoided.

なお、引張強度に優れる防水樹脂34としては、ポリウレタン樹脂やポリウエア樹脂等が考えられる。   As the waterproof resin 34 having excellent tensile strength, a polyurethane resin, a polyware resin, or the like can be considered.

本発明の実施例として、図1に示した海底トンネル10を対象にして、従来例、比較例、本発明例1、本発明例2について、それぞれの沈埋函継手部21の評価を行った。   As an example of the present invention, the submerged box joint portion 21 was evaluated for the conventional example, the comparative example, the present invention example 1 and the present invention example 2 for the submarine tunnel 10 shown in FIG.

ちなみに、従来例は図3に示した補強の無い沈埋函継手部、比較例は図4に示した補強用鋼板31を取り付けた沈埋函継手部、本発明例1、2は図5に示した補強用波形鋼板32を取り付けた沈埋函継手部である。   Incidentally, the conventional example is a submerged box joint portion without reinforcement shown in FIG. 3, the comparative example is a submerged box joint portion to which the reinforcing steel plate 31 shown in FIG. 4 is attached, and Examples 1 and 2 of the present invention are shown in FIG. It is a submerged box joint with a corrugated steel plate 32 for reinforcement attached.

なお、比較例における補強用鋼板31は、引張強度400N/mm級の鋼板で、板厚15mmである。材料特性は前記Case1のSS400と同一とした。また、本発明例1、2における補強用波形鋼板32は、上記の比較例における補強用鋼板31を波形に加工した波形鋼板で、形状および材料特性は、本発明例1では前記Case1を、本発明例2では前記Case2を適用した。 The reinforcing steel plate 31 in the comparative example is a steel plate having a tensile strength of 400 N / mm 2 and a thickness of 15 mm. The material characteristics were the same as SS400 of Case1. Further, the corrugated steel sheet 32 for reinforcement in Invention Examples 1 and 2 is a corrugated steel sheet obtained by processing the reinforcing steel sheet 31 in the above comparative example into a corrugated shape. In Invention Example 2, Case 2 was applied.

まず、図11は、比較例の補強用鋼板と本発明例1、2の補強用波形鋼板の引張方向の応力とひずみの関係を(トンネル軸直角方向0.1mあたり)を示している。補強用波形鋼板に関しては、図7(a)の荷重〜変位関係から応力〜ひずみ関係に換算した。   First, FIG. 11 shows the relation between the stress and strain in the tensile direction (per 0.1 m in the direction perpendicular to the tunnel axis) of the reinforcing steel sheet of the comparative example and the corrugated steel sheets of the first and second invention examples. The corrugated steel sheet for reinforcement was converted from the load-displacement relationship of FIG.

図11に示すように、本発明例1の補強用波形鋼板の引張剛性は、比較例の補強鋼板の1/4程度、本発明例2の補強用波形鋼板の引張剛性は、比較例の補強鋼板の1/167程度であり、小さな荷重で大きく変形する特性を有していることが分かる。   As shown in FIG. 11, the tensile rigidity of the corrugated steel sheet for reinforcement of Example 1 of the present invention is about ¼ of the reinforcing steel sheet of the comparative example, and the tensile rigidity of the corrugated steel sheet for reinforcing of Example 2 of the present invention is the reinforcement of the comparative example. It is about 1/167 of the steel plate, and it can be seen that it has a characteristic of being greatly deformed with a small load.

次に、ある地震動が沈埋函11部分に相当する地盤部分で水平方向の変位差をもって作用する場合の海底トンネル10の軸方向の挙動の検討を行う。   Next, the axial behavior of the submarine tunnel 10 when a certain earthquake motion acts on the ground portion corresponding to the submerged box 11 portion with a horizontal displacement difference is examined.

図12に、沈埋函11部分に相当する地盤部分での水平方向の変位状態を示す。この変位を解析モデルに強制変位として作用させる。なお、解析モデルは、海底トンネル10の軸方向の挙動を解析するための、沈埋函11および沈埋函継手部21、立坑12に関して、構成する材料をファイバー要素でモデル化している。沈埋函11および立坑12には地盤ばねが配置されており、地盤ばねの地盤側に強制変位を入力する。   FIG. 12 shows a horizontal displacement state in the ground portion corresponding to the submerged box 11 portion. This displacement is applied as a forced displacement to the analysis model. In the analysis model, the materials constituting the submerged box 11, the submerged box joint portion 21, and the shaft 12 for analyzing the axial behavior of the submarine tunnel 10 are modeled by fiber elements. A ground spring is disposed in the submerged box 11 and the vertical shaft 12, and a forced displacement is input to the ground side of the ground spring.

図13は、上記方法で求めた、従来例における沈埋函継手部の目地開き量を示したものである。1号函と2号函の継手部では30mmの目地開き量が生じ、沈埋函同士を連結する鉄筋が降伏している。2号函と3号函の継手部では22.2mmの目地開き量が生じ、沈埋函同士を連結する鉄筋が降伏している。3号函と4号函の継手部では14.2mmの目地開き量が生じ、沈埋函同士を連結する鉄筋が降伏している。4号函と5号函の継手部では14.3mmの目地開き量が生じ、沈埋函同士を連結する鉄筋が降伏している。   FIG. 13 shows the joint opening amount of the submerged box joint portion in the conventional example obtained by the above method. A joint opening of No. 1 box and No. 2 box has a joint opening of 30 mm, and the reinforcing bars connecting the sinking boxes yield. A joint opening of No. 2 box and No. 3 box has a joint opening of 22.2 mm, and the reinforcing bars connecting the sinking boxes yield. A joint opening of No. 3 box and No. 4 box has a joint opening of 14.2 mm, and the reinforcing bars connecting the sinking boxes yield. A joint opening of No. 4 box and No. 5 box has a joint opening of 14.3 mm, and the reinforcing bars connecting the sinking boxes yield.

継手部の鉄筋が降伏してしまうと、目地開きが容易に進む状態となってしまうため、ゴムガスケットのみで止水性を確保することが難しく、耐震補強を行う必要がある。   If the reinforcing bar of the joint part yields, the joint opening will easily proceed, so it is difficult to ensure water-stopping with only the rubber gasket, and it is necessary to perform seismic reinforcement.

次に、図14に比較例における沈埋函継手部の目地開き量を示し、図15に本発明例1における沈埋函継手部の目地開き量を示し、図16に本発明例2における沈埋函継手部の目地開き量を示す。   Next, FIG. 14 shows the joint opening amount of the submerged box joint part in the comparative example, FIG. 15 shows the joint opening amount of the submerged box joint part in Example 1 of the present invention, and FIG. Indicates the amount of joint opening.

また、表1に、比較例において補強用鋼材に作用する引張力と、本発明例1、2において補強用波形鋼板に作用する引張力を比較した結果を示す。そして、表2に、比較例と本発明例のそれぞれにおいて、直径16mm、許容せん断応力80N/mmのアンカーボルトを用いて定着させる場合に必要となる片側1m幅あたり(図4に示すアンカーボルト33が、定着部片側における紙面奥行き方向1mあたり)のアンカーボルトの本数を示す。 Table 1 shows the result of comparing the tensile force acting on the reinforcing steel material in the comparative example and the tensile force acting on the corrugated steel sheet for reinforcing in the inventive examples 1 and 2. Table 2 shows that each of the comparative example and the example of the present invention has a diameter of 1 mm per 1 m width (anchor bolt shown in FIG. 4) required for fixing using an anchor bolt having a diameter of 16 mm and an allowable shear stress of 80 N / mm 2 . 33 indicates the number of anchor bolts per 1 m in the depth direction of the paper on one side of the fixing unit.

図14に示すように、比較例では、沈埋函継手部の最大の目地開き量は0.6mmまで低減され、耐震補強の効果が非常に顕著である。ただし、表1に示すように、比較例では、補強用鋼材に作用する引張力は、9.52×10〜1.21×10kNとなり、表2に示すように、比較例では、補強用鋼板を沈埋函に定着させるために必要なアンカーボルトは片側1m幅あたり、86〜110本必要となる。 As shown in FIG. 14, in the comparative example, the maximum joint opening amount of the submerged box joint portion is reduced to 0.6 mm, and the effect of seismic reinforcement is very remarkable. However, as shown in Table 1, in the comparative example, the tensile force acting on the reinforcing steel material is 9.52 × 10 4 to 1.21 × 10 5 kN, and as shown in Table 2, in the comparative example, The anchor bolts necessary for fixing the reinforcing steel plate in the sinking box are required to be 86 to 110 per 1 m width on one side.

一方、図15に示すように、本発明例1では、沈埋函継手部の最大の目地開き量は16.3mmまで低減され、耐震補強の効果が顕著である。また、表1に示すように、本発明例1では、補強用波形鋼材に作用する引張力は、1.71×10〜2.72×10kNと比較例に比べて小さくなり、表2に示すように、補強用波形鋼板を沈埋函に定着させるために必要なアンカーボルトは片側1m幅あたり、16〜25本で済む。 On the other hand, as shown in FIG. 15, in Example 1 of the present invention, the maximum joint opening amount of the submerged box joint portion is reduced to 16.3 mm, and the effect of seismic reinforcement is remarkable. Moreover, as shown in Table 1, in Invention Example 1, the tensile force acting on the corrugated steel material for reinforcement is 1.71 × 10 4 to 2.72 × 10 4 kN, which is smaller than that of the comparative example. As shown in FIG. 2, the anchor bolts required for fixing the corrugated steel sheet for reinforcement in the submerged box are 16 to 25 per 1 m width on one side.

さらに、図16に示すように、本発明例2では、沈埋函継手部の最大の目地開き量は23.7mmまで低減される。また、表1に示すように、本発明例2では、補強用波形鋼材に作用する引張力は、9.39×10〜1.14×10kNと比較例に比べて小さくなり、表2に示すように、補強用波形鋼板を沈埋函に定着させるために必要なアンカーボルトは片側1m幅あたり、9〜10本で済む。 Furthermore, as shown in FIG. 16, in Example 2 of this invention, the maximum joint opening amount of a submerged box joint part is reduced to 23.7 mm. Moreover, as shown in Table 1, in the present invention example 2, the tensile force acting on the corrugated steel material for reinforcement is 9.39 × 10 3 to 1.14 × 10 4 kN, which is smaller than that of the comparative example. As shown in Fig. 2, only 9 to 10 anchor bolts are required per 1 m width on one side to fix the corrugated steel sheet for reinforcement in the sinking box.

このように、本発明例1、2では、目地開き量の抑制効果は比較例ほどには大きくないものの、定着に必要となるアンカーボルトの本数は比較例の1〜2割程度まで抑制することができる。   Thus, in Examples 1 and 2 of the present invention, the effect of suppressing the joint opening amount is not as great as that of the comparative example, but the number of anchor bolts necessary for fixing is suppressed to about 10 to 20% of the comparative example. Can do.

したがって、本発明例1、2では、想定以上の地震動が作用して、継手部の目地開き量が生じても、余裕をもって追随可能であり、ゴムガスケットや二次止水ゴムが破断したとしても、止水性を確保できる。   Therefore, in the present invention examples 1 and 2, even if the seismic motion more than expected acts and the joint opening amount of the joint portion occurs, it can be followed with a margin, even if the rubber gasket or the secondary waterproof rubber breaks. , Can ensure water-stopping.

そして、補強用波形鋼板の波形部の形状や波形個数、鋼材の材質に関しては、想定外の地震に対しても対応できるような目地開き量に対して設計すればよい。   The shape of the corrugated portion of the corrugated steel sheet for reinforcement, the number of corrugations, and the material of the steel material may be designed with respect to the amount of joint opening that can cope with an unexpected earthquake.

10 海底トンネル(沈埋トンネル)
11 沈埋函
12 立杭
13 鉄筋コンクリート
14 コンクリート
15 鉄筋
16 止水用鋼板
21 沈埋函継手部
22 コンタクトフレーム
23 ゴムガスケット
24 グリップ継手(グリップジョイント)
25 後打ちコンクリート
31 補強用鋼板
32 補強用波形鋼板
33a 波形部
33b 直線部
33 アンカーボルト
34 防水樹脂
35 補強用波形鋼板カバー
36 舗装部
10 Submarine tunnel (submerged tunnel)
DESCRIPTION OF SYMBOLS 11 Submerged box 12 Standing pile 13 Reinforced concrete 14 Concrete 15 Reinforcement 16 Steel plate for water stop 21 Submerged box joint part 22 Contact frame 23 Rubber gasket 24 Grip joint (grip joint)
25 Post-cast concrete 31 Reinforcing steel plate 32 Reinforced corrugated steel plate 33a Corrugated portion 33b Straight line portion 33 Anchor bolt 34 Waterproof resin 35 Reinforced corrugated steel plate cover 36 Pavement portion

Claims (2)

沈埋トンネルの継手部の耐震補強構造であって、前記継手部のトンネル内部全周にわたって補強用波形鋼板を有し、
前記継手部と前記補強用波形鋼板の間に、引張強度に優れた防水樹脂を介在させてなることを特徴とする、沈埋トンネルの継手部の耐震補強構造。
It is a seismic reinforcement structure for a joint part of a submerged tunnel, and has a corrugated steel sheet for reinforcement over the entire tunnel inner periphery of the joint part ,
A seismic reinforcement structure for a joint portion of a submerged tunnel, wherein a waterproof resin excellent in tensile strength is interposed between the joint portion and the corrugated steel sheet for reinforcement.
前記補強用波形鋼板は、前記継手部の目地開きを吸収するための波形部を有し、その波形部の両側に、前記継手部に定着させるための直線部を有していることを特徴とする請求項に記載の沈埋トンネルの継手部の耐震補強構造。 The reinforcing corrugated steel sheet has a corrugated portion for absorbing joint openings of the joint portion, and has straight portions for fixing the joint portion on both sides of the corrugated portion. The seismic reinforcement structure of the joint part of a submerged tunnel according to claim 1 .
JP2013105715A 2013-05-20 2013-05-20 Seismic reinforcement structure for joints of submerged tunnels. Active JP5935756B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013105715A JP5935756B2 (en) 2013-05-20 2013-05-20 Seismic reinforcement structure for joints of submerged tunnels.

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013105715A JP5935756B2 (en) 2013-05-20 2013-05-20 Seismic reinforcement structure for joints of submerged tunnels.

Publications (2)

Publication Number Publication Date
JP2014227661A JP2014227661A (en) 2014-12-08
JP5935756B2 true JP5935756B2 (en) 2016-06-15

Family

ID=52127790

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013105715A Active JP5935756B2 (en) 2013-05-20 2013-05-20 Seismic reinforcement structure for joints of submerged tunnels.

Country Status (1)

Country Link
JP (1) JP5935756B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104727344B (en) * 2015-03-31 2016-05-11 合肥工业大学 Submerged floating tunnel anti-collision structure in water
CN104988882B (en) * 2015-07-14 2016-10-26 同济大学 Damping shear connections device between a kind of Arch Dam With Joint
CN105839670A (en) * 2016-04-05 2016-08-10 中铁隧道勘测设计院有限公司 Pipe joint connector water-stop belt longitudinal locking limiting pull rod under high water level difference condition
CN106402534B (en) * 2016-06-29 2018-03-30 郑州赛诺建材有限公司 The joint self-seal device of immersed tunnelling method tunnel water proofing
CN107524163B (en) * 2017-08-30 2019-06-28 中交第四航务工程局有限公司 A kind of steel cap sealing anchorage and tensioning construction method

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0266893U (en) * 1988-11-08 1990-05-21
JPH08218405A (en) * 1995-02-09 1996-08-27 Mitsubishi Heavy Ind Ltd Water-tight joint section structure of submerged case
JP3908936B2 (en) * 2001-10-30 2007-04-25 大成建設株式会社 Structure of submerged tunnel
JP2004285578A (en) * 2003-03-19 2004-10-14 Nippon Steel Corp The last tube of immersed tube and the last joining method

Also Published As

Publication number Publication date
JP2014227661A (en) 2014-12-08

Similar Documents

Publication Publication Date Title
JP5935756B2 (en) Seismic reinforcement structure for joints of submerged tunnels.
KR101684771B1 (en) Method for connection structure for internally confined hollow rc column-foundation connection reinforced with external tube
KR101171876B1 (en) The damper for the earthquake-proof
JP5597317B1 (en) Seismic reinforcement structure for bridge piers
KR101751432B1 (en) Seismic reinforcement structure of conventional ferroconcrete structure using corrugate steel plate
CN107532398B (en) Rigid connection structure for lower end of support and concrete pile
JP2008007995A (en) Steel brace stiffening structure and method of constructing the same
CN107165275A (en) A kind of combined anti-seismic bolt connection node
JP4819605B2 (en) Precast prestressed concrete beams using tendons with different strength at the end and center
JP2011247046A (en) Bridge provided with means for absorbing bridge abutment deformation
JP6838877B2 (en) Buckling restraint brace damper
JP6541255B2 (en) Pile design method and structure support structure
KR101209363B1 (en) Concrete block for seismic reinforcement of H-shaped column and seismic reinforcing method using the same
JP5385510B2 (en) Flexible element damping structure and flexible mixed damping structure
KR101294289B1 (en) Buckling restrained brace of dry type, and manufacturing method for the same
JP5525475B2 (en) Reinforcement structure of existing reinforced concrete wall and reinforcement method of existing reinforced concrete wall
JP6311047B2 (en) Buckling restraint brace
JP5418838B2 (en) Steel pipe sheet pile wall
JP6996544B2 (en) Seismic retrofitting method for existing structures
KR101531785B1 (en) Seismic retrofit method using seismic control device as wing wall
JP4708295B2 (en) Pile-column connection structure
JP7375087B2 (en) High toughness RC structure
JP5825232B2 (en) Combined steel walls and design methods for combined steel walls
JP7121645B2 (en) Seismic structure of pile pier and seismic reinforcement method
KR20240000317A (en) Diaphragm wall and construction method thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20141219

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150914

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150929

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20151126

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160412

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160425

R150 Certificate of patent or registration of utility model

Ref document number: 5935756

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250