JP7358861B2 - Vehicle temperature control device - Google Patents

Vehicle temperature control device Download PDF

Info

Publication number
JP7358861B2
JP7358861B2 JP2019164949A JP2019164949A JP7358861B2 JP 7358861 B2 JP7358861 B2 JP 7358861B2 JP 2019164949 A JP2019164949 A JP 2019164949A JP 2019164949 A JP2019164949 A JP 2019164949A JP 7358861 B2 JP7358861 B2 JP 7358861B2
Authority
JP
Japan
Prior art keywords
engine
temperature
power transmission
cooling water
power
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2019164949A
Other languages
Japanese (ja)
Other versions
JP2021041807A (en
Inventor
和雅 末廣
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Suzuki Motor Corp
Original Assignee
Suzuki Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Suzuki Motor Corp filed Critical Suzuki Motor Corp
Priority to JP2019164949A priority Critical patent/JP7358861B2/en
Priority to FR2008917A priority patent/FR3100567A1/en
Publication of JP2021041807A publication Critical patent/JP2021041807A/en
Application granted granted Critical
Publication of JP7358861B2 publication Critical patent/JP7358861B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L15/00Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles
    • B60L15/20Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles for control of the vehicle or its driving motor to achieve a desired performance, e.g. speed, torque, programmed variation of speed
    • B60L15/2054Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles for control of the vehicle or its driving motor to achieve a desired performance, e.g. speed, torque, programmed variation of speed by controlling transmissions or clutches
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/22Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by apparatus, components or means specially adapted for HEVs
    • B60K6/24Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by apparatus, components or means specially adapted for HEVs characterised by the combustion engines
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/22Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by apparatus, components or means specially adapted for HEVs
    • B60K6/38Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by apparatus, components or means specially adapted for HEVs characterised by the driveline clutches
    • B60K6/387Actuated clutches, i.e. clutches engaged or disengaged by electric, hydraulic or mechanical actuating means
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/42Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by the architecture of the hybrid electric vehicle
    • B60K6/48Parallel type
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/50Architecture of the driveline characterised by arrangement or kind of transmission units
    • B60K6/54Transmission for changing ratio
    • B60K6/547Transmission for changing ratio the transmission being a stepped gearing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L50/00Electric propulsion with power supplied within the vehicle
    • B60L50/10Electric propulsion with power supplied within the vehicle using propulsion power supplied by engine-driven generators, e.g. generators driven by combustion engines
    • B60L50/16Electric propulsion with power supplied within the vehicle using propulsion power supplied by engine-driven generators, e.g. generators driven by combustion engines with provision for separate direct mechanical propulsion
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/02Conjoint control of vehicle sub-units of different type or different function including control of driveline clutches
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/04Conjoint control of vehicle sub-units of different type or different function including control of propulsion units
    • B60W10/06Conjoint control of vehicle sub-units of different type or different function including control of propulsion units including control of combustion engines
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/04Conjoint control of vehicle sub-units of different type or different function including control of propulsion units
    • B60W10/08Conjoint control of vehicle sub-units of different type or different function including control of propulsion units including control of electric propulsion units, e.g. motors or generators
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/30Conjoint control of vehicle sub-units of different type or different function including control of auxiliary equipment, e.g. air-conditioning compressors or oil pumps
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W20/00Control systems specially adapted for hybrid vehicles
    • B60W20/10Controlling the power contribution of each of the prime movers to meet required power demand
    • B60W20/15Control strategies specially adapted for achieving a particular effect
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W20/00Control systems specially adapted for hybrid vehicles
    • B60W20/40Controlling the engagement or disengagement of prime movers, e.g. for transition between prime movers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01PCOOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
    • F01P3/00Liquid cooling
    • F01P3/20Cooling circuits not specific to a single part of engine or machine
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01PCOOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
    • F01P7/00Controlling of coolant flow
    • F01P7/14Controlling of coolant flow the coolant being liquid
    • F01P7/16Controlling of coolant flow the coolant being liquid by thermostatic control
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D29/00Controlling engines, such controlling being peculiar to the devices driven thereby, the devices being other than parts or accessories essential to engine operation, e.g. controlling of engines by signals external thereto
    • F02D29/02Controlling engines, such controlling being peculiar to the devices driven thereby, the devices being other than parts or accessories essential to engine operation, e.g. controlling of engines by signals external thereto peculiar to engines driving vehicles; peculiar to engines driving variable pitch propellers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02NSTARTING OF COMBUSTION ENGINES; STARTING AIDS FOR SUCH ENGINES, NOT OTHERWISE PROVIDED FOR
    • F02N11/00Starting of engines by means of electric motors
    • F02N11/006Starting of engines by means of electric motors using a plurality of electric motors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02NSTARTING OF COMBUSTION ENGINES; STARTING AIDS FOR SUCH ENGINES, NOT OTHERWISE PROVIDED FOR
    • F02N11/00Starting of engines by means of electric motors
    • F02N11/04Starting of engines by means of electric motors the motors being associated with current generators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02NSTARTING OF COMBUSTION ENGINES; STARTING AIDS FOR SUCH ENGINES, NOT OTHERWISE PROVIDED FOR
    • F02N11/00Starting of engines by means of electric motors
    • F02N11/08Circuits or control means specially adapted for starting of engines
    • F02N11/0814Circuits or control means specially adapted for starting of engines comprising means for controlling automatic idle-start-stop
    • F02N11/0818Conditions for starting or stopping the engine or for deactivating the idle-start-stop mode
    • F02N11/0829Conditions for starting or stopping the engine or for deactivating the idle-start-stop mode related to special engine control, e.g. giving priority to engine warming-up or learning
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/42Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by the architecture of the hybrid electric vehicle
    • B60K6/48Parallel type
    • B60K2006/4808Electric machine connected or connectable to gearbox output shaft
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/44Drive Train control parameters related to combustion engines
    • B60L2240/445Temperature
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2510/00Input parameters relating to a particular sub-units
    • B60W2510/06Combustion engines, Gas turbines
    • B60W2510/0676Engine temperature
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2710/00Output or target parameters relating to a particular sub-units
    • B60W2710/02Clutches
    • B60W2710/021Clutch engagement state
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2710/00Output or target parameters relating to a particular sub-units
    • B60W2710/30Auxiliary equipments
    • B60W2710/305Auxiliary equipments target power to auxiliaries
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01PCOOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
    • F01P2031/00Fail safe
    • F01P2031/30Cooling after the engine is stopped
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01PCOOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
    • F01P2050/00Applications
    • F01P2050/24Hybrid vehicles
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D2200/00Input parameters for engine control
    • F02D2200/02Input parameters for engine control the parameters being related to the engine
    • F02D2200/021Engine temperature
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D2250/00Engine control related to specific problems or objectives
    • F02D2250/18Control of the engine output torque
    • F02D2250/24Control of the engine output torque by using an external load, e.g. a generator
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/04Introducing corrections for particular operating conditions
    • F02D41/12Introducing corrections for particular operating conditions for deceleration
    • F02D41/123Introducing corrections for particular operating conditions for deceleration the fuel injection being cut-off
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/40Engine management systems
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/62Hybrid vehicles
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/64Electric machine technologies in electromobility
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/7072Electromobility specific charging systems or methods for batteries, ultracapacitors, supercapacitors or double-layer capacitors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/72Electric energy management in electromobility

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Transportation (AREA)
  • General Engineering & Computer Science (AREA)
  • Automation & Control Theory (AREA)
  • Power Engineering (AREA)
  • Hybrid Electric Vehicles (AREA)
  • Control Of Vehicle Engines Or Engines For Specific Uses (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)

Description

本発明は、車両の昇温制御装置に関する。 The present invention relates to a temperature increase control device for a vehicle.

特許文献1には、エンジンの冷却水を加熱する電気ヒータを備え、車両の減速走行時に発電機によって回生された電力を当該電気ヒータに供給する冷却水温制御装置が開示されている。 Patent Document 1 discloses a cooling water temperature control device that includes an electric heater that heats engine cooling water and supplies electric power regenerated by a generator to the electric heater when the vehicle is decelerating.

この冷却水温制御装置が搭載された車両において、エンジンのクランクシャフトには、エンジンの冷却水を循環させるウォータポンプがベルトを介して接続されている。 In a vehicle equipped with this cooling water temperature control device, a water pump that circulates engine cooling water is connected to the engine crankshaft via a belt.

特開2004-360544号公報Japanese Patent Application Publication No. 2004-360544

しかしながら、特許文献1に記載の冷却水温制御装置が搭載される車両がエンジンと駆動輪との間の動力伝達経路を遮断可能で、かつフューエルカット可能な車両である場合には、次のような問題が生じ得る。 However, if the vehicle in which the cooling water temperature control device described in Patent Document 1 is installed is capable of interrupting the power transmission path between the engine and the drive wheels and is capable of cutting fuel, the following may occur. Problems can arise.

すなわち、車両の減速時に、エンジンと駆動輪との間の動力伝達経路が遮断され、かつフューエルカットが行われると、クランクシャフトが回転しないためウォータポンプが駆動せず、その結果、冷却水が循環されない。 In other words, when the vehicle decelerates, the power transmission path between the engine and the drive wheels is cut off and the fuel is cut, the crankshaft does not rotate and the water pump is not driven, resulting in the cooling water being unable to circulate. Not done.

このため、エンジンと駆動輪との間の動力伝達経路を遮断可能で、かつフューエルカット可能な車両においては、冷却水が局所的に加熱されてしまい、電気ヒータ近傍のエンジン部品の劣化を招くおそれがある。 For this reason, in vehicles where the power transmission path between the engine and the drive wheels can be cut off and the fuel can be cut off, the cooling water may be locally heated, leading to deterioration of engine parts near the electric heater. There is.

本発明は、上述のような事情に鑑みてなされたもので、エンジンと駆動輪との間の動力伝達経路を遮断可能で、かつフューエルカット可能な車両であっても、冷却水の局所的な加熱を伴うことなくエンジンの暖機を早期に行うことができる車両の昇温制御装置を提供することを目的とする。 The present invention has been made in view of the above-mentioned circumstances, and even in vehicles where the power transmission path between the engine and the drive wheels can be cut off and the fuel can be cut, local cooling water An object of the present invention is to provide a temperature increase control device for a vehicle that can quickly warm up an engine without heating it.

本発明は、上記目的を達成するため、エンジンと駆動輪との間の動力伝達経路を遮断又
は接続する動力伝達機構と、動力伝達部材を介して前記エンジンのクランクシャフトに連結されて、前記エンジンの回転を利用して駆動し、前記エンジンの冷却水を循環する冷却水ポンプと、前記動力伝達経路の前記動力伝達機構よりも前記駆動輪側に連結されて、前記駆動輪の回転を利用して発電を行う発電機と、を備え、走行中に前記エンジンのフューエルカットを行うフューエルカット走行が可能な車両の昇温制御装置であって、前記冷却水の循環経路上に設けられ、前記冷却水に対して加温を行う加温部と、前記フューエルカット走行中に前記エンジンの昇温を行う条件が成立した場合、前記エンジンと前記駆動輪との間の動力伝達経路を接続するよう前記動力伝達機構を制御し、前記発電機の発電によって得られた電力を用いて前記加温部を駆動する制御部と、を備える。
In order to achieve the above object, the present invention includes a power transmission mechanism that interrupts or connects a power transmission path between an engine and drive wheels, and a power transmission mechanism that is connected to the crankshaft of the engine via a power transmission member, and a cooling water pump that is driven by utilizing the rotation of the engine and circulates the cooling water of the engine; and a cooling water pump that is connected to the driving wheel side of the power transmission path than the power transmission mechanism and that uses the rotation of the driving wheel. A generator that generates electricity using a generator, and is capable of fuel-cut driving that cuts fuel of the engine while driving, the temperature increase control device being provided on the cooling water circulation path, A heating section that heats water, and a heating section that connects a power transmission path between the engine and the driving wheels when a condition for increasing the temperature of the engine during the fuel cut running is established. A control unit that controls a power transmission mechanism and drives the heating unit using electric power generated by the generator.

本発明によれば、エンジンと駆動輪との間の動力伝達経路を遮断可能で、かつフューエルカット可能な車両であっても、冷却水の局所的な加熱を伴うことなくエンジンの暖機を早期に行うことができる車両の昇温制御装置を提供することができる。 According to the present invention, even in vehicles where the power transmission path between the engine and the drive wheels can be cut off and the fuel can be cut, the engine can be warmed up quickly without local heating of the cooling water. It is possible to provide a vehicle temperature increase control device that can perform temperature increase control.

図1は、本発明の一実施例に係るハイブリッド車両の構成図である。FIG. 1 is a configuration diagram of a hybrid vehicle according to an embodiment of the present invention. 図2は、本発明の一実施例に係るハイブリッド車両におけるエンジン冷却水の循環経路を示す概略図である。FIG. 2 is a schematic diagram showing a circulation path of engine cooling water in a hybrid vehicle according to an embodiment of the present invention. 図3は、本発明の一実施例に係るハイブリッド車両の昇温制御装置によって実行される昇温制御の処理の流れを示すフローチャートである。FIG. 3 is a flowchart showing the flow of temperature increase control processing executed by the temperature increase control device for a hybrid vehicle according to an embodiment of the present invention. 図4は、本発明の一実施例に係るハイブリッド車両の走行状態に応じた加温部の動作の遷移の一例を示すタイムチャートである。FIG. 4 is a time chart showing an example of the transition of the operation of the heating unit according to the driving state of the hybrid vehicle according to the embodiment of the present invention.

本発明の一実施の形態に係る車両の昇温制御装置は、エンジンと駆動輪との間の動力伝達経路を遮断又は接続する動力伝達機構と、エンジンの回転を利用して駆動し、エンジンの冷却水を循環する冷却水ポンプと、駆動輪の回転を利用して発電を行う発電機と、を備え、走行中にエンジンのフューエルカットを行うフューエルカット走行が可能な車両の昇温制御装置であって、冷却水の循環経路上に設けられ、冷却水に対して加温を行う加温部と、フューエルカット走行中にエンジンの昇温を行う条件が成立した場合、エンジンと駆動輪との間の動力伝達経路を接続するよう動力伝達機構を制御し、発電機の発電によって得られた電力を用いて加温部を駆動する制御部と、を備えることを特徴とする。 A temperature increase control device for a vehicle according to an embodiment of the present invention includes a power transmission mechanism that disconnects or connects a power transmission path between an engine and drive wheels, and a power transmission mechanism that uses engine rotation to drive the engine. This is a temperature increase control device for vehicles that is equipped with a cooling water pump that circulates cooling water and a generator that generates electricity using the rotation of the drive wheels, and is capable of fuel cut driving that cuts the fuel of the engine while driving. There is a heating section installed on the cooling water circulation path that heats the cooling water, and when conditions are met to raise the temperature of the engine during fuel cut driving, there is a heating section that heats the cooling water. The heating unit is characterized by comprising a control unit that controls the power transmission mechanism to connect the power transmission path between the heating units and drives the heating unit using electric power generated by the generator.

これにより、本発明の一実施の形態に係る車両の昇温制御装置は、エンジンと駆動輪との間の動力伝達経路を遮断可能で、かつフューエルカット可能な車両であっても、エンジンの暖機を早期に行うことができる。 As a result, the temperature increase control device for a vehicle according to an embodiment of the present invention is capable of heating the engine even if the power transmission path between the engine and the drive wheels can be cut off and the fuel can be cut. The machine can be done early.

以下、本発明の一実施例に係る車両の昇温制御装置について図面を参照して説明する。 DESCRIPTION OF THE PREFERRED EMBODIMENTS A vehicle temperature increase control device according to an embodiment of the present invention will be described below with reference to the drawings.

図1に示すように、車両としてのハイブリッド車両1は、内燃機関としてのエンジン2と、トランスミッション3と、発電機としてのモータジェネレータ4と、駆動輪5と、ハイブリッド車両1を総合的に制御するHCU(Hybrid Control Unit)10と、エンジン2を制御するECM(Engine Control Module)11と、トランスミッション3を制御するTCM(Transmission Control Module)12と、ISGCM(Integrated Starter Generator Control Module)13と、INVCM(Invertor Control Module)14と、低電圧BMS(Battery Management System)15と、高電圧BMS16とを含んで構成される。エンジン2及びモータジェネレータ4は、駆動軸としてのドライブシャフト23に動力を伝達する駆動源を構成する。 As shown in FIG. 1, a hybrid vehicle 1 as a vehicle comprehensively controls an engine 2 as an internal combustion engine, a transmission 3, a motor generator 4 as a generator, drive wheels 5, and the hybrid vehicle 1. An HCU (Hybrid Control Unit) 10, an ECM (Engine Control Module) 11 that controls the engine 2, a TCM (Transmission Control Module) 12 that controls the transmission 3, an ISGCM (Integrated Starter Generator Control Module) 13, and an INVCM ( Inverter Control Module) 14, low voltage BMS (Battery Management System) 15, and high voltage BMS 16. The engine 2 and the motor generator 4 constitute a drive source that transmits power to a drive shaft 23 serving as a drive shaft.

エンジン2には、複数の気筒が形成されている。本実施例において、エンジン2は、各気筒に対して、吸気行程、圧縮行程、膨張行程及び排気行程からなる一連の4行程を行うように構成されている。 The engine 2 is formed with a plurality of cylinders. In this embodiment, the engine 2 is configured to perform a series of four strokes consisting of an intake stroke, a compression stroke, an expansion stroke, and an exhaust stroke for each cylinder.

エンジン2には、ISG(Integrated Starter Generator)20と、スタータ21と、冷却水ポンプ22とが連結されている。ISG20は、ベルトやチェーンなどの動力伝達部材を介してエンジン2のクランクシャフト18に連結されている。ISG20は、電力が供給されることにより回転することでエンジン2を回転駆動させる電動機の機能と、クランクシャフト18から入力された回転力を電力に変換する発電機の機能とを有する。 An ISG (Integrated Starter Generator) 20, a starter 21, and a cooling water pump 22 are connected to the engine 2. The ISG 20 is connected to the crankshaft 18 of the engine 2 via a power transmission member such as a belt or chain. The ISG 20 has the function of an electric motor that rotationally drives the engine 2 by rotating when electric power is supplied, and the function of a generator that converts the rotational force input from the crankshaft 18 into electric power.

本実施例では、ISG20は、ISGCM13の制御により、電動機として機能することで、エンジン2をアイドリングストップ機能による停止状態から再始動させるようになっている。ISG20は、電動機として機能することで、ハイブリッド車両1の走行をアシストすることもできる。 In this embodiment, the ISG 20 functions as an electric motor under the control of the ISGCM 13 to restart the engine 2 from a stopped state due to the idling stop function. The ISG 20 can also assist the hybrid vehicle 1 in running by functioning as an electric motor.

スタータ21は、図示しないモータとピニオンギヤとを含んで構成されている。スタータ21は、モータを回転させることにより、クランクシャフト18を回転させて、エンジン2に始動時の回転力を与えるようになっている。このように、エンジン2は、スタータ21によって始動され、アイドリングストップ機能による停止状態からISG20によって再始動される。 The starter 21 includes a motor and a pinion gear (not shown). The starter 21 rotates the crankshaft 18 by rotating the motor, thereby providing rotational force to the engine 2 at the time of starting. In this way, the engine 2 is started by the starter 21 and restarted by the ISG 20 from a stopped state due to the idling stop function.

冷却水ポンプ22は、ベルトやチェーンなどの動力伝達部材を介してエンジン2のクランクシャフト18に連結されている。冷却水ポンプ22は、エンジン2の回転を利用して駆動し、エンジン2の冷却水(以下、「エンジン冷却水」という)の循環経路(図2参照)内でエンジン冷却水を循環させるものである。 Cooling water pump 22 is connected to crankshaft 18 of engine 2 via a power transmission member such as a belt or chain. The cooling water pump 22 is driven by the rotation of the engine 2 and circulates engine cooling water within a circulation path (see FIG. 2) for the engine 2 cooling water (hereinafter referred to as "engine cooling water"). be.

図2に示すように、エンジン冷却水の循環経路は、図2中、矢印で示すようにラジエータ6とエンジン2との間の第1循環経路60と、エンジン2とヒータコア7との間の第2循環経路70とを含んでいる。第1循環経路60には、サーモスタット61が設けられている。エンジン冷却水の循環経路には、上述した冷却水ポンプ22が設けられている。 As shown in FIG. 2, the engine cooling water circulation path includes a first circulation path 60 between the radiator 6 and the engine 2, and a first circulation path 60 between the engine 2 and the heater core 7, as indicated by arrows in FIG. 2 circulation paths 70. A thermostat 61 is provided in the first circulation path 60 . The above-mentioned cooling water pump 22 is provided in the engine cooling water circulation path.

また、エンジン冷却水の循環経路上には、エンジン冷却水に対して加温を行う加温部80が設けられている。加温部80は、第1循環経路60において、冷却水ポンプ22よりもエンジン冷却水の流通方向下流側、かつサーモスタット61よりもエンジン冷却水の流通方向上流側に配置されるのが好ましい。加温部80は、第2循環経路70に設けられていてもよい。 Further, a heating section 80 that heats the engine coolant is provided on the engine coolant circulation path. It is preferable that the heating unit 80 is disposed in the first circulation path 60 on the downstream side of the cooling water pump 22 in the flow direction of the engine coolant and on the upstream side of the thermostat 61 in the flow direction of the engine coolant. The heating section 80 may be provided in the second circulation path 70.

加温部80としては、例えばグロープラグなどの熱源を用いることができる。加温部80としては、電気を利用した熱源であれば、グロープラグに限らず、他の熱源を用いてもよい。 As the heating section 80, a heat source such as a glow plug can be used, for example. The heating unit 80 is not limited to the glow plug, but may be any other heat source that uses electricity.

図1に示すように、加温部80は、DCDCコンバータ81を介して、後述するインバータ45と第3蓄電装置33とを接続する高電圧ケーブル35Bに接続されている。DCDCコンバータ81は、高電圧ケーブル35Bを通じて加温部80に印加される電圧を降圧するものである。加温部80には、モータジェネレータ4の発電(回生発電ともいう)によって得られた電力が供給されるようになっている。加温部80と高電圧ケーブル35Bとの間には、加温部80への通電をオンオフするスイッチが設けられるのが好ましい。 As shown in FIG. 1, heating unit 80 is connected to high voltage cable 35B that connects inverter 45 and third power storage device 33, which will be described later, via DCDC converter 81. The DCDC converter 81 steps down the voltage applied to the heating section 80 through the high voltage cable 35B. The heating unit 80 is supplied with electric power obtained by power generation (also referred to as regenerative power generation) of the motor generator 4. It is preferable that a switch is provided between the heating section 80 and the high voltage cable 35B to turn on/off the power supply to the heating section 80.

トランスミッション3は、エンジン2から出力された回転を変速してドライブシャフト23を介して駆動輪5に伝達し、当該駆動輪5を駆動するようになっている。トランスミッション3は、平行軸歯車機構からなる常時噛合式の変速機構25と、ノーマルクローズタイプの乾式クラッチによって構成されるクラッチ26と、減速機としてのディファレンシャル機構27と、アクチュエータ51、52とを備えている。 The transmission 3 changes the speed of the rotation output from the engine 2 and transmits it to the drive wheels 5 via the drive shaft 23, thereby driving the drive wheels 5. The transmission 3 includes a constant mesh transmission mechanism 25 made of a parallel shaft gear mechanism, a clutch 26 made of a normally closed type dry clutch, a differential mechanism 27 as a speed reducer, and actuators 51 and 52. There is.

クラッチ26は、変速機構25とエンジン2との間に設けられ、締結または非締結が切り換えられることにより、駆動輪5とエンジン2との間の動力伝達経路を遮断または接続するものである。クラッチ26は、動力伝達機構を構成する。 The clutch 26 is provided between the transmission mechanism 25 and the engine 2, and is engaged or disengaged to interrupt or connect the power transmission path between the drive wheels 5 and the engine 2. Clutch 26 constitutes a power transmission mechanism.

トランスミッション3は、いわゆるAMT(Automated Manual Transmission)として構成されており、前進用の複数の変速段及び後進用の変速段を含む複数の変速段を成立可能に構成されている。トランスミッション3は、TCM12により制御されたアクチュエータ52により変速機構25における変速段の切換えが行われ、アクチュエータ51によりクラッチ26の締結及び非締結が行われるようになっている。ディファレンシャル機構27は、変速機構25によって出力された動力をドライブシャフト23に伝達するようになっている。 The transmission 3 is configured as a so-called AMT (Automated Manual Transmission) and is configured to be able to establish a plurality of gears including a plurality of forward gears and a reverse gear. In the transmission 3, an actuator 52 controlled by the TCM 12 switches gears in the transmission mechanism 25, and an actuator 51 engages and disengages the clutch 26. The differential mechanism 27 is configured to transmit the power output by the transmission mechanism 25 to the drive shaft 23.

モータジェネレータ4は、ディファレンシャル機構27に対して、チェーン等の動力伝達部材28を介して連結されている。モータジェネレータ4は、ディファレンシャル機構27を介してドライブシャフト23に接続されている。モータジェネレータ4は、電動機として機能する。 The motor generator 4 is connected to a differential mechanism 27 via a power transmission member 28 such as a chain. Motor generator 4 is connected to drive shaft 23 via differential mechanism 27. Motor generator 4 functions as an electric motor.

このように、ハイブリッド車両1は、エンジン2とモータジェネレータ4の両方の動力を車両の駆動に用いることが可能なパラレルハイブリッドシステムを構成しており、エンジン2及びモータジェネレータ4の少なくとも一方が出力する動力により走行するようになっている。 In this way, the hybrid vehicle 1 constitutes a parallel hybrid system in which the power of both the engine 2 and the motor generator 4 can be used to drive the vehicle, and at least one of the engine 2 and the motor generator 4 outputs It is powered by power.

ハイブリッド車両1の走行モードとしては、少なくとも、エンジン2とモータジェネレータ4の駆動力をドライブシャフト23に伝達してハイブリッド車両1を走行させるHEV走行モードと、エンジン2への燃料噴射を停止させてエンジン2を駆動停止としモータジェネレータ4のみの駆動力をドライブシャフト23に伝達してハイブリッド車両1をEV走行させるEV走行モードとがある。 The driving modes of the hybrid vehicle 1 include at least an HEV driving mode in which the hybrid vehicle 1 is driven by transmitting the driving force of the engine 2 and the motor generator 4 to the drive shaft 23, and an HEV driving mode in which the hybrid vehicle 1 is driven by transmitting the driving force of the engine 2 and the motor generator 4 to the drive shaft 23, and an HEV driving mode in which the hybrid vehicle 1 is driven by stopping fuel injection to the engine 2. There is an EV driving mode in which the drive of the hybrid vehicle 1 is stopped and the driving force of only the motor generator 4 is transmitted to the drive shaft 23 to cause the hybrid vehicle 1 to travel in an EV manner.

モータジェネレータ4は、駆動輪5の回転を利用して発電を行う発電機としても機能し、ハイブリッド車両1の走行によって発電を行うようになっている。なお、モータジェネレータ4は、エンジン2から駆動輪5までの動力伝達経路の何れかの箇所に動力伝達可能に連結されていればよく、必ずしもディファレンシャル機構27に連結される必要はない。 The motor generator 4 also functions as a generator that generates power using the rotation of the drive wheels 5, and generates power as the hybrid vehicle 1 travels. Note that the motor generator 4 only needs to be connected to any location on the power transmission path from the engine 2 to the drive wheels 5 so as to be able to transmit power, and does not necessarily need to be connected to the differential mechanism 27.

ハイブリッド車両1は、第1蓄電装置30と、第2蓄電装置31を含む低電圧パワーパック32と、バッテリとしての第3蓄電装置33を含む高電圧パワーパック34と、高電圧ケーブル35A及び高電圧ケーブル35Bと、低電圧ケーブル36とを備えている。 The hybrid vehicle 1 includes a first power storage device 30, a low voltage power pack 32 including a second power storage device 31, a high voltage power pack 34 including a third power storage device 33 as a battery, a high voltage cable 35A, and a high voltage power pack 32. It includes a cable 35B and a low voltage cable 36.

第1蓄電装置30、第2蓄電装置31及び第3蓄電装置33は、充電可能な二次電池から構成されている。第1蓄電装置30は鉛電池からなる。第2蓄電装置31は、第1蓄電装置30よりも高出力かつ高エネルギー密度な蓄電装置である。 The first power storage device 30, the second power storage device 31, and the third power storage device 33 are configured from rechargeable secondary batteries. The first power storage device 30 is made of a lead battery. The second power storage device 31 is a power storage device with higher output and higher energy density than the first power storage device 30.

第2蓄電装置31は、第1蓄電装置30と比較して短い時間で充電が可能である。本実施例では、第2蓄電装置31はリチウムイオン電池からなる。なお、第2蓄電装置31はニッケル水素蓄電池であってもよい。 The second power storage device 31 can be charged in a shorter time than the first power storage device 30. In this embodiment, the second power storage device 31 is made of a lithium ion battery. Note that the second power storage device 31 may be a nickel-hydrogen storage battery.

第1蓄電装置30及び第2蓄電装置31は、約12Vの出力電圧を発生するようにセルの個数等が設定された低電圧バッテリである。第3蓄電装置33は、例えば、リチウムイオン電池からなる。 The first power storage device 30 and the second power storage device 31 are low-voltage batteries in which the number of cells and the like are set so as to generate an output voltage of approximately 12V. The third power storage device 33 is made of, for example, a lithium ion battery.

第3蓄電装置33は、第1蓄電装置30及び第2蓄電装置31より高電圧を発生するようにセルの個数等が設定された高電圧バッテリであり、例えば、100Vの出力電圧を発生させる。第3蓄電装置33の残容量(以下、「バッテリ残容量」という)などの状態は、高電圧BMS16によって管理される。 The third power storage device 33 is a high voltage battery in which the number of cells and the like are set so as to generate a higher voltage than the first power storage device 30 and the second power storage device 31, and generates an output voltage of 100V, for example. The state such as the remaining capacity of the third power storage device 33 (hereinafter referred to as "remaining battery capacity") is managed by the high voltage BMS 16.

ハイブリッド車両1には、電気負荷としての一般負荷37及び被保護負荷38が設けられている。一般負荷37及び被保護負荷38は、スタータ21及びISG20以外の電気負荷である。 The hybrid vehicle 1 is provided with a general load 37 and a protected load 38 as electrical loads. The general load 37 and the protected load 38 are electrical loads other than the starter 21 and the ISG 20.

被保護負荷38は、常に安定した電力供給が要求される電気負荷である。この被保護負荷38は、例えば、図示しないインストルメントパネルのランプ類を含んでいる。 The protected load 38 is an electrical load that requires stable power supply at all times. This protected load 38 includes, for example, lamps of an instrument panel (not shown).

一般負荷37は、被保護負荷38と比較して安定した電力供給が要求されず、一時的に使用される電気負荷である。一般負荷37には、例えば、図示しないワイパーが含まれる。 The general load 37 is an electrical load that does not require stable power supply compared to the protected load 38 and is used temporarily. The general load 37 includes, for example, a wiper (not shown).

低電圧パワーパック32は、第2蓄電装置31に加えて、スイッチ40、41と、低電圧BMS15とを有している。第1蓄電装置30及び第2蓄電装置31は、低電圧ケーブル36を介して、スタータ21と、ISG20と、電気負荷としての一般負荷37及び被保護負荷38とに電力を供給可能に接続されている。被保護負荷38に対しては、第1蓄電装置30と第2蓄電装置31とが並列に電気的に接続されている。 Low voltage power pack 32 includes switches 40 and 41 and low voltage BMS 15 in addition to second power storage device 31 . The first power storage device 30 and the second power storage device 31 are connected to the starter 21 , the ISG 20 , and a general load 37 and a protected load 38 as electric loads so as to be able to supply power via a low voltage cable 36 . There is. A first power storage device 30 and a second power storage device 31 are electrically connected to the protected load 38 in parallel.

スイッチ40は、第2蓄電装置31と被保護負荷38との間の低電圧ケーブル36に設けられている。スイッチ41は、第1蓄電装置30と被保護負荷38との間の低電圧ケーブル36に設けられている。 Switch 40 is provided on low voltage cable 36 between second power storage device 31 and protected load 38 . Switch 41 is provided on low voltage cable 36 between first power storage device 30 and protected load 38 .

低電圧BMS15は、スイッチ40、41の開閉を制御することで、第2蓄電装置31の充放電及び被保護負荷38への電力供給を制御している。低電圧BMS15は、アイドリングストップによりエンジン2が停止しているときは、スイッチ40を閉じてスイッチ41を開くことで、高出力かつ高エネルギー密度な第2蓄電装置31から被保護負荷38に電力を供給するようになっている。 The low voltage BMS 15 controls the charging and discharging of the second power storage device 31 and the power supply to the protected load 38 by controlling the opening and closing of the switches 40 and 41. When the engine 2 is stopped due to idling, the low voltage BMS 15 closes the switch 40 and opens the switch 41 to supply power from the high output and high energy density second power storage device 31 to the protected load 38. supply.

低電圧BMS15は、エンジン2をスタータ21によって始動するとき、及び、アイドリングストップ制御によって停止しているエンジン2をISG20によって再始動するときに、スイッチ40を閉じてスイッチ41を開くことで、第1蓄電装置30からスタータ21又はISG20に電力を供給するようになっている。スイッチ40を閉じてスイッチ41を開いた状態では、第1蓄電装置30から一般負荷37にも電力が供給される。 The low voltage BMS 15 closes the switch 40 and opens the switch 41 when the engine 2 is started by the starter 21 and when the engine 2 that has been stopped by the idling stop control is restarted by the ISG 20. Electric power is supplied from the power storage device 30 to the starter 21 or the ISG 20. When switch 40 is closed and switch 41 is opened, power is also supplied from first power storage device 30 to general load 37 .

このように、第1蓄電装置30は、少なくともエンジン2を始動する始動装置としてのスタータ21及びISG20に電力を供給するようになっている。第2蓄電装置31は、少なくとも一般負荷37及び被保護負荷38に電力を供給するようになっている。 In this way, the first power storage device 30 supplies power to at least the starter 21 and the ISG 20 as a starting device that starts the engine 2. The second power storage device 31 is configured to supply power to at least the general load 37 and the protected load 38.

第2蓄電装置31は、一般負荷37と被保護負荷38の両方に電力を供給可能に接続されているが、常に安定した電力供給が要求される被保護負荷38に優先的に電力を供給するようにスイッチ40、41が低電圧BMS15により制御される。 The second power storage device 31 is connected to be able to supply power to both the general load 37 and the protected load 38, but preferentially supplies power to the protected load 38, which requires stable power supply at all times. The switches 40 and 41 are controlled by the low voltage BMS 15 as shown in FIG.

低電圧BMS15は、第1蓄電装置30及び第2蓄電装置31の充電状態(充電残量)、並びに、一般負荷37及び被保護負荷38への作動要求を考慮し、被保護負荷38が安定して作動することを優先して、スイッチ40、41を上述した例と異なるように制御することがある。 The low-voltage BMS 15 takes into account the state of charge (remaining charge) of the first power storage device 30 and the second power storage device 31 and the operation requests to the general load 37 and the protected load 38, and determines whether the protected load 38 is stable. In some cases, the switches 40 and 41 may be controlled differently from the example described above, giving priority to the operation.

高電圧パワーパック34は、第3蓄電装置33に加えて、インバータ45と、INVCM14と、高電圧BMS16とを有している。高電圧パワーパック34は、高電圧ケーブル35Aを介して、モータジェネレータ4に電力を供給可能に接続されている。 In addition to the third power storage device 33, the high voltage power pack 34 includes an inverter 45, an INVCM 14, and a high voltage BMS 16. High voltage power pack 34 is connected to motor generator 4 via high voltage cable 35A so as to be able to supply electric power.

インバータ45は、INVCM14の制御により、高電圧ケーブル35Aにかかる交流電力と、第3蓄電装置33にかかる直流電力とを相互に変換するようになっている。例えば、INVCM14は、モータジェネレータ4を力行させるときには、第3蓄電装置33が放電した直流電力をインバータ45により交流電力に変換させてモータジェネレータ4に供給する。 Under the control of the INVCM 14, the inverter 45 mutually converts the AC power applied to the high voltage cable 35A and the DC power applied to the third power storage device 33. For example, when powering the motor generator 4 , the INVCM 14 converts the DC power discharged by the third power storage device 33 into AC power using the inverter 45 and supplies the AC power to the motor generator 4 .

INVCM14は、モータジェネレータ4を回生させるときには、モータジェネレータ4が発電した交流電力をインバータ45により直流電力に変換させて第3蓄電装置33に充電する。 When regenerating the motor generator 4 , the INVCM 14 converts the AC power generated by the motor generator 4 into DC power using the inverter 45 and charges the third power storage device 33 .

HCU10、ECM11、TCM12、ISGCM13、INVCM14、低電圧BMS15及び高電圧BMS16は、それぞれCPU(Central Processing Unit)と、RAM(Random Access Memory)と、ROM(Read Only Memory)と、バックアップ用のデータなどを保存するフラッシュメモリと、入力ポートと、出力ポートとを備えたコンピュータユニットによって構成されている。 The HCU 10, ECM 11, TCM 12, ISGCM 13, INVCM 14, low voltage BMS 15, and high voltage BMS 16 each have a CPU (Central Processing Unit), RAM (Random Access Memory), ROM (Read Only Memory), backup data, etc. It consists of a computer unit with a flash memory for storage, an input port, and an output port.

これらのコンピュータユニットのROMには、各種定数や各種マップ等とともに、当該コンピュータユニットをHCU10、ECM11、TCM12、ISGCM13、INVCM14、低電圧BMS15及び高電圧BMS16としてそれぞれ機能させるためのプログラムが格納されている。 The ROM of these computer units stores various constants, various maps, etc., as well as programs for making the computer units function as HCU 10, ECM 11, TCM 12, ISGCM 13, INVCM 14, low voltage BMS 15, and high voltage BMS 16. .

すなわち、CPUがRAMを作業領域としてROMに格納されたプログラムを実行することにより、これらのコンピュータユニットは、本実施例におけるHCU10、ECM11、TCM12、ISGCM13、INVCM14、低電圧BMS15及び高電圧BMS16としてそれぞれ機能する。 That is, when the CPU executes programs stored in the ROM using the RAM as a work area, these computer units function as the HCU 10, ECM 11, TCM 12, ISGCM 13, INVCM 14, low voltage BMS 15, and high voltage BMS 16 in this embodiment, respectively. Function.

本実施例において、ECM11は、アイドリングストップ制御を実行するようになっている。このアイドリングストップ制御において、ECM11は、所定の停止条件の成立時にエンジン2を停止させ、所定の再始動条件の成立時にISGCM13を介してISG20を駆動してエンジン2を再始動させるようになっている。このため、エンジン2の不要なアイドリングが行われなくなり、ハイブリッド車両1の燃費を向上させることができる。 In this embodiment, the ECM 11 is configured to execute idling stop control. In this idling stop control, the ECM 11 stops the engine 2 when a predetermined stop condition is met, and drives the ISG 20 via the ISGCM 13 to restart the engine 2 when a predetermined restart condition is met. . Therefore, unnecessary idling of the engine 2 is no longer performed, and the fuel efficiency of the hybrid vehicle 1 can be improved.

本実施例において、ECM11は、所定のフューエルカット条件が成立するとエンジン2に対する燃料供給を停止するフューエルカットを実行するようになっている。フューエルカットは、ハイブリッド車両1の走行中にも実行可能である。したがって、本実施例のハイブリッド車両1は、走行中にフューエルカットを行うフューエルカット走行が可能な車両である。ECM11は、所定のフューエルカット復帰条件が成立するとエンジン2に対する燃料供給を再開するようになっている。 In this embodiment, the ECM 11 executes a fuel cut to stop fuel supply to the engine 2 when a predetermined fuel cut condition is satisfied. Fuel cut can also be performed while the hybrid vehicle 1 is running. Therefore, the hybrid vehicle 1 of this embodiment is a vehicle that is capable of running with a fuel cut in which the fuel is cut while the vehicle is running. The ECM 11 is configured to restart fuel supply to the engine 2 when a predetermined fuel cut return condition is satisfied.

所定のフューエルカット条件としては、例えば上述したアイドリングストップ制御における所定の停止条件が成立したこと、又はアクセル開度が「0」でハイブリッド車両1が減速していること等が含まれる。また、所定のフューエルカット復帰条件としては、エンジン回転数が所定の復帰回転数まで低下すること、又は、アクセルペダル8が踏み込まれたこと等が含まれる。 The predetermined fuel cut condition includes, for example, that a predetermined stop condition in the idling stop control described above is satisfied, or that the accelerator opening is "0" and the hybrid vehicle 1 is decelerating. Further, the predetermined fuel cut return conditions include that the engine speed drops to a predetermined return speed, that the accelerator pedal 8 is depressed, and the like.

ハイブリッド車両1には、CAN(Controller Area Network)等の規格に準拠した車内LAN(Local Area Network)を形成するためのCAN通信線48、49が設けられている。 The hybrid vehicle 1 is provided with CAN communication lines 48 and 49 for forming an in-vehicle LAN (Local Area Network) that complies with standards such as CAN (Controller Area Network).

HCU10は、INVCM14及び高電圧BMS16にCAN通信線48によって接続されている。HCU10、INVCM14及び高電圧BMS16は、CAN通信線48を介して制御信号等の信号の送受信を相互に行う。 The HCU 10 is connected to the INVCM 14 and the high voltage BMS 16 via a CAN communication line 48. The HCU 10, INVCM 14, and high voltage BMS 16 mutually transmit and receive signals such as control signals via the CAN communication line 48.

HCU10は、ECM11、TCM12、ISGCM13及び低電圧BMS15にCAN通信線49によって接続されている。HCU10、ECM11、TCM12、ISGCM13及び低電圧BMS15は、CAN通信線49を介して制御信号等の信号の送受信を相互に行う。 The HCU 10 is connected to the ECM 11, TCM 12, ISGCM 13, and low voltage BMS 15 via a CAN communication line 49. The HCU 10, ECM 11, TCM 12, ISGCM 13, and low voltage BMS 15 mutually transmit and receive signals such as control signals via the CAN communication line 49.

HCU10には、駆動輪5を含む各車輪の車輪速を検出する車輪速センサ10a、アクセルペダル8の操作量をアクセル開度として検出するアクセル開度センサ10b、クラッチ26の係合度を検出するクラッチストロークセンサ10c、クランク角センサ10d、水温センサ10eが接続されている。HCU10は、クランク角センサ10dからの検出情報に基づきエンジン2の回転速度であるエンジン回転速度を算出する。 The HCU 10 includes a wheel speed sensor 10a that detects the wheel speed of each wheel including the drive wheel 5, an accelerator opening sensor 10b that detects the operation amount of the accelerator pedal 8 as the accelerator opening, and a clutch that detects the degree of engagement of the clutch 26. A stroke sensor 10c, a crank angle sensor 10d, and a water temperature sensor 10e are connected. The HCU 10 calculates the engine rotation speed, which is the rotation speed of the engine 2, based on the detection information from the crank angle sensor 10d.

車輪速センサ10aは、車輪が所定角分回転するごとにパルスを発生させるパルス信号を車速パルスとして出力する。HCU10は、この車速パルスに基づいてハイブリッド車両1の車速を算出する。水温センサ10eは、エンジン冷却水の温度、すなわち、エンジン温度としてのエンジン水温Twを検出する。 The wheel speed sensor 10a outputs a pulse signal as a vehicle speed pulse, which generates a pulse every time the wheel rotates by a predetermined angle. HCU 10 calculates the vehicle speed of hybrid vehicle 1 based on this vehicle speed pulse. The water temperature sensor 10e detects the temperature of engine cooling water, that is, the engine water temperature Tw as the engine temperature.

HCU10は、エンジン2の昇温を行う条件(以下、「昇温条件」という)が成立した場合、ハイブリッド車両1のフューエルカット走行中にエンジン2と駆動輪5との間の動力伝達経路を接続するようクラッチ26を締結状態に制御するようになっている。 The HCU 10 connects the power transmission path between the engine 2 and the driving wheels 5 while the hybrid vehicle 1 is running on a fuel cut when a condition for increasing the temperature of the engine 2 (hereinafter referred to as "temperature increase condition") is established. The clutch 26 is controlled to be in the engaged state so that the clutch 26 is engaged.

HCU10は、エンジン2の昇温条件が成立すると、上述のクラッチ26の制御と併せて、モータジェネレータ4の発電によって得られた電力を用いて加温部80を駆動するようになっている。本実施例に係るHCU10は、制御部を構成する。 When the temperature increase condition for the engine 2 is established, the HCU 10 controls the clutch 26 described above and drives the heating section 80 using the electric power obtained by the electric power generated by the motor generator 4. The HCU 10 according to this embodiment constitutes a control unit.

本実施例では、エンジン水温Twが第1温度T1よりも高い第2温度T2未満であることを、エンジン2の昇温条件としている。ここで、第1温度T1は、エンジン2のアイドルストップが許可されるエンジン水温Twの下限値に相当する。したがって、エンジン水温Twが第1温度T1未満では、エンジン2のアイドルストップが禁止される。 In this embodiment, the condition for increasing the temperature of the engine 2 is that the engine water temperature Tw is less than the second temperature T2, which is higher than the first temperature T1. Here, the first temperature T1 corresponds to the lower limit value of the engine coolant temperature Tw at which idle stop of the engine 2 is permitted. Therefore, when the engine coolant temperature Tw is less than the first temperature T1, idle stop of the engine 2 is prohibited.

第2温度T2は、例えば、エンジン水温Twが第1温度T1であってアイドルストップが許可された状態であっても、エンジン2の温度低下を抑制する必要があると判断できるエンジン水温である。 The second temperature T2 is, for example, an engine water temperature at which it can be determined that it is necessary to suppress a decrease in the temperature of the engine 2 even if the engine water temperature Tw is the first temperature T1 and idle stop is permitted.

次に、図3を参照して、HCU10によって実行される昇温制御の処理の流れについて説明する。図2に示す昇温制御は、所定の時間間隔で繰り返し実行される。 Next, with reference to FIG. 3, the flow of the temperature increase control process executed by the HCU 10 will be described. The temperature increase control shown in FIG. 2 is repeatedly executed at predetermined time intervals.

図3に示すように、HCU10は、ハイブリッド車両1がフューエルカット走行中であるか否かを判定する(ステップS1)。HCU10は、ステップS1においてハイブリッド車両1がフューエルカット走行中でないと判定した場合には、昇温制御を終了する。 As shown in FIG. 3, the HCU 10 determines whether the hybrid vehicle 1 is running on a fuel cut (step S1). If the HCU 10 determines in step S1 that the hybrid vehicle 1 is not running on a fuel cut, it ends the temperature increase control.

HCU10は、ステップS1においてハイブリッド車両1がフューエルカット走行中であると判定した場合には、エンジン2の昇温条件が成立したか否かを判定する(ステップS2)。HCU10は、ステップS2においてエンジン2の昇温条件が成立していないと判定した場合には、昇温制御を終了する。 If the HCU 10 determines in step S1 that the hybrid vehicle 1 is running in a fuel cut mode, the HCU 10 determines whether a temperature increase condition for the engine 2 is satisfied (step S2). If the HCU 10 determines in step S2 that the temperature increase condition for the engine 2 is not satisfied, the HCU 10 ends the temperature increase control.

HCU10は、ステップS2においてエンジン2の昇温条件が成立していると判定した場合には、クラッチ26を締結するようアクチュエータ51を制御する(ステップS3)。これにより、エンジン2の運転が停止された状態であっても、駆動輪5から変速機構25を介して伝達される回転によってエンジン2のクランクシャフト18を回転させることができる。このため、エンジン2の運転が停止された状態であっても、冷却水ポンプ22を駆動させることができる。 If the HCU 10 determines in step S2 that the temperature increase condition for the engine 2 is satisfied, it controls the actuator 51 to engage the clutch 26 (step S3). Thereby, even when the operation of the engine 2 is stopped, the crankshaft 18 of the engine 2 can be rotated by the rotation transmitted from the drive wheels 5 via the transmission mechanism 25. Therefore, the cooling water pump 22 can be driven even when the engine 2 is stopped.

次いで、HCU10は、モータジェネレータ4による回生発電で得られた電力を用いて加温部80を駆動する(ステップS4)。これにより、エンジン冷却水が循環されている状態で加温部80によりエンジン冷却水が温められる。 Next, the HCU 10 drives the heating unit 80 using the electric power obtained by regenerative power generation by the motor generator 4 (step S4). Thereby, the engine cooling water is heated by the heating section 80 while the engine cooling water is being circulated.

次いで、HCU10は、エンジン水温Twが第2温度T2以上であるか否かを判定する(ステップS5)。HCU10は、ステップS5においてエンジン水温Twが第2温度T2以上であると判定した場合には、エンジン2の暖機が完了したものと判断して、加温部80の駆動を停止して(ステップS7)、昇温制御を終了する。 Next, the HCU 10 determines whether the engine water temperature Tw is equal to or higher than the second temperature T2 (step S5). If the HCU 10 determines in step S5 that the engine water temperature Tw is equal to or higher than the second temperature T2, the HCU 10 determines that the engine 2 has been warmed up and stops driving the heating unit 80 (step S5). S7), the temperature increase control is ended.

HCU10は、ステップS5においてエンジン水温Twが第2温度T2以上でないと判定した場合には、エンジン2の暖機が完了していないものと判断して、ハイブリッド車両1のフューエルカット走行が終了したか否かを判定する(ステップS6)。 If the HCU 10 determines in step S5 that the engine water temperature Tw is not equal to or higher than the second temperature T2, the HCU 10 determines that the warm-up of the engine 2 has not been completed and determines whether the fuel cut driving of the hybrid vehicle 1 has ended. It is determined whether or not (step S6).

HCU10は、例えば、ハイブリッド車両1が停車したり、乗員がアクセルペダル8を踏み込む等の所定のフューエルカット復帰条件が成立したりした場合に、フューエルカット走行が終了したと判定する。 The HCU 10 determines that fuel cut driving has ended, for example, when the hybrid vehicle 1 comes to a stop or when a predetermined fuel cut return condition such as the occupant depressing the accelerator pedal 8 is satisfied.

HCU10は、ステップS6においてハイブリッド車両1のフューエルカット走行が終了していないと判定した場合には、エンジン2の暖機も完了しておらず、フューエルカット走行も継続しているため、再度、ステップS4に処理を戻して、加温部80によるエンジン冷却水の加温を継続する。 If the HCU 10 determines in step S6 that the fuel cut driving of the hybrid vehicle 1 has not been completed, the warming up of the engine 2 has not been completed and the fuel cut driving is continuing, so the HCU 10 performs the step again. The process returns to S4, and heating of the engine coolant by the heating unit 80 is continued.

HCU10は、ステップS6においてハイブリッド車両1のフューエルカット走行が終了したと判定した場合には、加温部80の駆動を停止して(ステップS7)、昇温制御を終了する。 If the HCU 10 determines in step S6 that the fuel cut running of the hybrid vehicle 1 has ended, it stops driving the heating section 80 (step S7) and ends the temperature increase control.

次に、図4を参照して、ハイブリッド車両1の走行状態に応じた加温部の動作の遷移の一例について説明する。図4に示す例は、ハイブリッド車両1が加速走行後、減速走行を経てEV走行に遷移する例である。 Next, with reference to FIG. 4, an example of the transition of the operation of the heating section according to the driving state of the hybrid vehicle 1 will be described. The example shown in FIG. 4 is an example in which the hybrid vehicle 1 accelerates, decelerates, and then transitions to EV driving.

図4に示すように、時刻t0において、エンジン水温は第1水温未満、クラッチ26は締結状態、加温部80はOFFすなわち非駆動状態、冷却水ポンプ22はONすなわち駆動状態である。 As shown in FIG. 4, at time t0, the engine water temperature is lower than the first water temperature, the clutch 26 is in the engaged state, the heating section 80 is OFF, that is, in the non-driving state, and the cooling water pump 22 is ON, that is, in the driving state.

その後、ハイブリッド車両1の加速走行に伴い、エンジン水温が上昇し、時刻t1において第1水温以上、第2水温未満の温度まで上昇する。図4に示す例では、時刻t1においてハイブリッド車両1が減速走行に移行した時点でフューエルカット条件が成立したものとする。 Thereafter, as the hybrid vehicle 1 accelerates, the engine water temperature increases to a temperature that is equal to or higher than the first water temperature and lower than the second water temperature at time t1. In the example shown in FIG. 4, it is assumed that the fuel cut condition is satisfied when the hybrid vehicle 1 shifts to deceleration driving at time t1.

時刻t1において、ハイブリッド車両1が加速走行から減速走行に移行すると、フューエルカット走行中であってエンジン水温Twが第2温度T2未満であるため、エンジン2の昇温制御が行われる。 At time t1, when the hybrid vehicle 1 shifts from accelerating to decelerating, the temperature of the engine 2 is controlled to increase because it is running on a fuel cut and the engine water temperature Tw is less than the second temperature T2.

具体的には、モータジェネレータ4の発電によって得られた電力を用いて加温部80を駆動するよう、HCU10から駆動指令が各部に送信される。また、クラッチ26を締結するよう、HCU10からアクチュエータ51に駆動指令が送信される。これにより、時刻t1においてハイブリッド車両1が減速走行に移行しても、クラッチ26は締結状態に維持される。 Specifically, a drive command is transmitted from the HCU 10 to each part so that the heating part 80 is driven using the electric power obtained by the electric power generated by the motor generator 4. Further, a drive command is transmitted from the HCU 10 to the actuator 51 to engage the clutch 26. Thereby, even if the hybrid vehicle 1 shifts to deceleration traveling at time t1, the clutch 26 is maintained in the engaged state.

このため、ハイブリッド車両1がフューエルカット走行に移行しても、クラッチ26が締結状態に維持されるため、駆動輪5から伝達される回転によってクランクシャフト18が回転することで冷却水ポンプ22は駆動状態に維持される。 Therefore, even if the hybrid vehicle 1 shifts to fuel-cut driving, the clutch 26 is maintained in the engaged state, so the rotation transmitted from the drive wheels 5 rotates the crankshaft 18, which drives the cooling water pump 22. maintained in condition.

その後、時刻t2において、実際に加温部80がONすなわち駆動される。これにより、ハイブリッド車両1の減速走行中にエンジン水温が昇温される。時刻t1から時刻t2間の遅れは、HCU10が加温部80の駆動指令を送信してから実際に加温部80が駆動するまでの応答遅れである。 Thereafter, at time t2, the heating section 80 is actually turned on, that is, driven. As a result, the engine water temperature is increased while the hybrid vehicle 1 is decelerating. The delay between time t1 and time t2 is a response delay from when the HCU 10 transmits a driving command for the heating section 80 until when the heating section 80 actually drives.

その後、時刻t3において、乗員によってアクセルペダル8が踏み込まれることによってハイブリッド車両1の減速走行が終了すると、クラッチ26を非締結状態とするよう、HCU10からアクチュエータ51に駆動指令が送信される。このとき、加温部80の駆動を停止するよう、HCU10から駆動指令が各部に送信される。 Thereafter, at time t3, when the hybrid vehicle 1 finishes decelerating by depressing the accelerator pedal 8 by the occupant, a drive command is transmitted from the HCU 10 to the actuator 51 to disengage the clutch 26. At this time, a drive command is sent from the HCU 10 to each part to stop driving the heating part 80.

時刻t3後は、ハイブリッド車両1がEV走行に移行する。したがって、時刻t3後はエンジン2の運転が停止する。 After time t3, hybrid vehicle 1 shifts to EV driving. Therefore, after time t3, the operation of engine 2 is stopped.

その後、時刻t4において、実際にクラッチ26が非締結状態になると、駆動輪5からの回転がエンジン2に伝達されずクランクシャフト18が回転しなくなるため、冷却水ポンプ22がOFF、すなわち非駆動状態となる。時刻t3から時刻t4間の遅れは、HCU10が加温部80の駆動指令を送信してから実際に加温部80が駆動するまでの応答遅れ、及び、アクチュエータ51の駆動指令を送信してから実際にクラッチ26が非締結状態となるまでの応答遅れである。 Thereafter, at time t4, when the clutch 26 is actually disengaged, the rotation from the drive wheels 5 is not transmitted to the engine 2 and the crankshaft 18 stops rotating, so the cooling water pump 22 is turned OFF, that is, the non-drive state. becomes. The delay between time t3 and time t4 is a response delay from when the HCU 10 sends the drive command for the heating unit 80 until the heating unit 80 actually drives, and from when the HCU 10 sends the drive command for the actuator 51. This is a response delay until the clutch 26 is actually disengaged.

以上のように、本実施例に係る車両の昇温制御装置は、フューエルカット走行中にエンジン2の昇温条件が成立した場合、クラッチ26を締結し、モータジェネレータ4の回生発電によって得られた電力を用いて加温部80を駆動する構成を有する。 As described above, the vehicle temperature increase control device according to the present embodiment engages the clutch 26 when the temperature increase condition of the engine 2 is established during fuel-cut driving, and generates power generated by the regenerative power generation of the motor generator 4. The heating unit 80 is configured to be driven using electric power.

この構成により、本実施例に係る車両の昇温制御装置は、フューエルカット走行中であっても冷却水ポンプ22を駆動させることができ、エンジン冷却水を循環させた状態で加温部80によりエンジン冷却水を温めることができる。 With this configuration, the vehicle temperature increase control device according to the present embodiment can drive the cooling water pump 22 even during fuel-cut driving, and the heating unit 80 can drive the cooling water pump 22 while the engine cooling water is being circulated. It can warm the engine coolant.

このため、本実施例に係る車両の昇温制御装置は、エンジン2の運転が停止した状態でエンジン冷却水を循環させるための電動ポンプ等の装置を新たに設ける必要がない。また、本実施例に係る車両の昇温制御装置は、エンジン冷却水を循環させた状態で加温部80によりエンジン冷却水を温めるので、エンジン冷却水が局所的に加熱されることを防止することができる。 Therefore, the vehicle temperature increase control device according to the present embodiment does not require a new device such as an electric pump for circulating the engine cooling water when the engine 2 is stopped. In addition, the vehicle temperature increase control device according to the present embodiment warms the engine cooling water using the heating unit 80 while the engine cooling water is being circulated, thereby preventing the engine cooling water from being locally heated. be able to.

このように、本実施例に係る車両の昇温制御装置は、エンジン冷却水の局所的な加熱を伴うことなくエンジン2の暖機を早期に行うことができる。 In this way, the vehicle temperature increase control device according to this embodiment can quickly warm up the engine 2 without locally heating the engine cooling water.

また、本実施例に係る車両の昇温制御装置は、エンジン水温Twが第1温度T1よりも高い第2温度T2未満であることを、エンジン2の昇温条件としているので、アイドルストップが許可されている状態であってもフューエルカット走行によるエンジン水温の低下を抑制することができる。第2温度T2は、アイドルストップが許可されるエンジン水温Twの下限値である第1温度T1よりも高い温度である。 In addition, the vehicle temperature increase control device according to the present embodiment sets the temperature increase condition of the engine 2 such that the engine water temperature Tw is less than the second temperature T2 which is higher than the first temperature T1, so that the idle stop is permitted. Even in a state where the engine is running in a fuel-cut state, it is possible to suppress a drop in engine water temperature due to fuel-cut driving. The second temperature T2 is higher than the first temperature T1, which is the lower limit value of the engine coolant temperature Tw at which idle stop is permitted.

なお、本実施例においては、加温部80を高電圧ケーブル35Bに接続した構成について説明したが、これに限らず、加温部80を低電圧ケーブル36接続した構成としてもよい。この場合、加温部80は、ISG20によって発電された電力により駆動する。また、ハイブリッド車両1がISG20に代えてオルタネータを備える場合には、当該オルタネータによって発電された電力を用いて加温部80を駆動する構成としてもよい。 In this embodiment, a configuration in which the heating unit 80 is connected to the high voltage cable 35B has been described, but the present invention is not limited to this, and a configuration in which the heating unit 80 is connected to the low voltage cable 36 may be used. In this case, the heating unit 80 is driven by the power generated by the ISG 20. Further, when the hybrid vehicle 1 includes an alternator instead of the ISG 20, the heating unit 80 may be driven using electric power generated by the alternator.

本実施例では、エンジン水温Twが第2温度T2未満であることを、エンジン2の昇温条件としたが、これに限らず、エンジン水温Twが所定温度としての第1温度T1未満であることを、エンジン2の昇温条件としてもよい。 In this embodiment, the temperature increase condition for the engine 2 is that the engine water temperature Tw is less than the second temperature T2, but the condition is not limited to this, and the engine water temperature Tw is less than the first temperature T1 as a predetermined temperature. may be used as the temperature increase condition for the engine 2.

この場合、エンジン2のアイドルストップが禁止されている冷機状態において、早い段階からエンジン2の昇温を行うことができる。この結果、エンジン2をアイドルストップ許可状態に早期に移行させることができ、燃費向上を図ることができる。 In this case, the temperature of the engine 2 can be raised from an early stage in a cold state where idle stop of the engine 2 is prohibited. As a result, the engine 2 can be quickly shifted to the idle stop permission state, and fuel efficiency can be improved.

本発明の実施例を開示したが、当業者によっては本発明の範囲を逸脱することなく変更が加えられうることは明白である。すべてのこのような修正および等価物が次の請求項に含まれることが意図されている。 Although embodiments of the invention have been disclosed, it will be apparent that modifications may be made by one skilled in the art without departing from the scope of the invention. All such modifications and equivalents are intended to be included in the following claims.

1 ハイブリッド車両(車両)
2 エンジン
3 トランスミッション
4 モータジェネレータ(発電機)
5 駆動輪
6 ラジエータ
7 ヒータコア
8 アクセルペダル
10 HCU(制御部)
10b アクセル開度センサ
10d クランク角センサ
10e 水温センサ
11 ECM
12 TCM
13 ISGCM
14 INVCM
18 クランクシャフト
20 ISG
22 冷却水ポンプ
26 クラッチ(動力伝達機構)
60 第1循環経路
61 サーモスタット
70 第2循環経路
80 加温部
81 DCDCコンバータ
1 Hybrid vehicle (vehicle)
2 Engine 3 Transmission 4 Motor generator (generator)
5 Drive wheel 6 Radiator 7 Heater core 8 Accelerator pedal 10 HCU (control unit)
10b Accelerator opening sensor 10d Crank angle sensor 10e Water temperature sensor 11 ECM
12 TCM
13 ISGCM
14 INVCM
18 Crankshaft 20 ISG
22 Cooling water pump 26 Clutch (power transmission mechanism)
60 First circulation path 61 Thermostat 70 Second circulation path 80 Heating section 81 DCDC converter

Claims (3)

エンジンと駆動輪との間の動力伝達経路を遮断又は接続する動力伝達機構と、
動力伝達部材を介して前記エンジンのクランクシャフトに連結されて、前記エンジンの回転を利用して駆動し、前記エンジンの冷却水を循環する冷却水ポンプと、
前記動力伝達経路の前記動力伝達機構よりも前記駆動輪側に連結されて、前記駆動輪の回転を利用して発電を行う発電機と、を備え、
走行中に前記エンジンのフューエルカットを行うフューエルカット走行が可能な車両の昇温制御装置であって、
前記冷却水の循環経路上に設けられ、前記冷却水に対して加温を行う加温部と、
前記フューエルカット走行中に前記エンジンの昇温を行う条件が成立した場合、前記エンジンと前記駆動輪との間の動力伝達経路を接続するよう前記動力伝達機構を制御し、前記発電機の発電によって得られた電力を用いて前記加温部を駆動する制御部と、を備えることを特徴とする車両の昇温制御装置。
A power transmission mechanism that blocks or connects a power transmission path between the engine and the drive wheels;
a cooling water pump connected to the crankshaft of the engine via a power transmission member, driven by the rotation of the engine, and circulating cooling water for the engine;
a generator connected to the driving wheel side of the power transmission path relative to the power transmission mechanism, and generating electricity using rotation of the driving wheel;
A temperature increase control device for a vehicle capable of fuel cut running that cuts the fuel of the engine while the vehicle is running,
a heating unit that is provided on the cooling water circulation path and heats the cooling water;
If conditions for raising the temperature of the engine are established during the fuel cut driving, the power transmission mechanism is controlled to connect the power transmission path between the engine and the driving wheels, and the power transmission mechanism is controlled to connect the power transmission path between the engine and the drive wheels, and A temperature increase control device for a vehicle, comprising: a control section that drives the heating section using the obtained electric power.
アイドルストップを許可するエンジン温度の下限を所定温度としたとき、エンジン温度が前記所定温度未満であることを、前記エンジンの昇温を行う条件とすることを特徴とする請求項1に記載の車両の昇温制御装置。 The vehicle according to claim 1, wherein when a lower limit of the engine temperature at which idle stop is permitted is set to a predetermined temperature, a condition for raising the temperature of the engine is that the engine temperature is less than the predetermined temperature. temperature increase control device. アイドルストップを許可するエンジン温度の下限を第1温度としたとき、エンジン温度が前記第1温度よりも高い第2温度未満であることを、前記エンジンの昇温を行う条件とすることを特徴とする請求項1に記載の車両の昇温制御装置。 When the lower limit of the engine temperature at which idle stop is permitted is a first temperature, the condition for raising the temperature of the engine is that the engine temperature is less than a second temperature higher than the first temperature. The temperature increase control device for a vehicle according to claim 1.
JP2019164949A 2019-09-10 2019-09-10 Vehicle temperature control device Active JP7358861B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2019164949A JP7358861B2 (en) 2019-09-10 2019-09-10 Vehicle temperature control device
FR2008917A FR3100567A1 (en) 2019-09-10 2020-09-02 VEHICLE TEMPERATURE RISE CONTROL DEVICE

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019164949A JP7358861B2 (en) 2019-09-10 2019-09-10 Vehicle temperature control device

Publications (2)

Publication Number Publication Date
JP2021041807A JP2021041807A (en) 2021-03-18
JP7358861B2 true JP7358861B2 (en) 2023-10-11

Family

ID=74857829

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019164949A Active JP7358861B2 (en) 2019-09-10 2019-09-10 Vehicle temperature control device

Country Status (2)

Country Link
JP (1) JP7358861B2 (en)
FR (1) FR3100567A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004360544A (en) 2003-06-04 2004-12-24 Mitsubishi Motors Corp Cooling water temperature control device
JP2006161742A (en) 2004-12-09 2006-06-22 Toyota Motor Corp Control device for vehicle
JP2015174601A (en) 2014-03-18 2015-10-05 日産自動車株式会社 Hybrid vehicle control device
JP2018150018A (en) 2017-03-15 2018-09-27 株式会社デンソー Vehicle control device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004360544A (en) 2003-06-04 2004-12-24 Mitsubishi Motors Corp Cooling water temperature control device
JP2006161742A (en) 2004-12-09 2006-06-22 Toyota Motor Corp Control device for vehicle
JP2015174601A (en) 2014-03-18 2015-10-05 日産自動車株式会社 Hybrid vehicle control device
JP2018150018A (en) 2017-03-15 2018-09-27 株式会社デンソー Vehicle control device

Also Published As

Publication number Publication date
JP2021041807A (en) 2021-03-18
FR3100567A1 (en) 2021-03-12

Similar Documents

Publication Publication Date Title
KR100765600B1 (en) Engine starting stable method for hybrid vehicle
JP6842237B2 (en) Vehicle control device
JP6432534B2 (en) Hybrid vehicle
JP6561803B2 (en) High voltage controller
JP2018176810A (en) Control device of vehicle
JP6582928B2 (en) Shift control device for hybrid vehicle
JP7358861B2 (en) Vehicle temperature control device
JP7115039B2 (en) Motor torque controller for hybrid vehicle
JP6303774B2 (en) Engine start control device
JP6607021B2 (en) Power generation control device for hybrid vehicle
JP7251054B2 (en) hybrid vehicle
JP7283039B2 (en) hybrid vehicle
JP2018069947A (en) Drive control device of hybrid vehicle
JP2018103740A (en) Hybrid vehicle
JP2017105377A (en) Drive control device of hybrid vehicle
JP6428658B2 (en) Hybrid vehicle
JP6447473B2 (en) Hybrid vehicle
JP2021041808A (en) Vehicle temperature rise control device
JP7484562B2 (en) Hybrid vehicle control device
JP7334493B2 (en) Drive system for hybrid vehicle
JP6977321B2 (en) Vehicle control device
JP7338553B2 (en) Hybrid vehicle control device
JP7334491B2 (en) Vehicle drive control device
JP7491475B2 (en) Hybrid vehicle control device
JP2017136982A (en) Hybrid vehicle

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220624

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20230424

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230509

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230621

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230829

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230911

R151 Written notification of patent or utility model registration

Ref document number: 7358861

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151