JP2002194627A - Heat-treating oven and method for producing carbon fiber by use of the same - Google Patents

Heat-treating oven and method for producing carbon fiber by use of the same

Info

Publication number
JP2002194627A
JP2002194627A JP2000390236A JP2000390236A JP2002194627A JP 2002194627 A JP2002194627 A JP 2002194627A JP 2000390236 A JP2000390236 A JP 2000390236A JP 2000390236 A JP2000390236 A JP 2000390236A JP 2002194627 A JP2002194627 A JP 2002194627A
Authority
JP
Japan
Prior art keywords
heat treatment
nozzle
hot air
treatment furnace
heat
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2000390236A
Other languages
Japanese (ja)
Inventor
Hiroyuki Inoue
博之 井上
Toshinori Kawamura
俊紀 河村
Tetsushi Onishi
徹史 大西
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toray Industries Inc
Original Assignee
Toray Industries Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toray Industries Inc filed Critical Toray Industries Inc
Priority to JP2000390236A priority Critical patent/JP2002194627A/en
Publication of JP2002194627A publication Critical patent/JP2002194627A/en
Pending legal-status Critical Current

Links

Landscapes

  • Inorganic Fibers (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a heat-treating oven which can maintain a stable heat treatment- enabling state by controlling temperature and air speed in the heat-treating oven without deteriorating the energy efficiency of the heat-treating oven and without disposing an additional installation for uniformly holding temperature distribution and air speed distribution in the heat-treating oven, especially a heat-treating oven suitable for producing carbon fibers, and to provide a method for producing the carbon fibers by the use of the heat-treating oven. SOLUTION: This heat-treating oven has slit-shape openings for taking a material to be treated, in a heat-treating chamber or taking out the material from the heat- treating chamber, has a hot air-circulating device for heat-treating the material, and has nozzles for blowing off hot air in the direction along the material-passing routes at places near to the slit-shape openings in the heat-treating chamber. Therein, in order that a difference ΔT between the highest temperature and the lowest temperature in a nozzle blow-off opening width at an observation point St apart from the blow-off opening of the hot air blow-off nozzle at a constant distance, a pitch Hp between the nozzles and the height Hs of the material-passing route have a relation of Hs/ Hp<=α.Tm1/2.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、炭素繊維の製造に
用いて好適な熱処理炉およびそれを用いた炭素繊維の製
造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a heat treatment furnace suitable for producing carbon fibers and a method for producing carbon fibers using the same.

【0002】[0002]

【従来の技術】従来の熱処理炉、特に炭素繊維の製造に
用いられる熱処理炉としては、たとえば図1に示すよう
に、熱処理室2内に被処理物5を出し入れするスリット
状の開口部7と、被処理物5を熱処理するための熱風循
環装置10が組み込まれている熱処理炉1が知られてい
る。前記熱風循環装置10は、熱風循環ファン9と、加
熱ヒータ8、熱処理室2内へ熱風を流すための吹き出し
ノズル3、熱処理室2内の熱風を吸い込むための吸い込
みノズル4を有する。
2. Description of the Related Art As a conventional heat treatment furnace, particularly a heat treatment furnace used for producing carbon fibers, for example, as shown in FIG. There is known a heat treatment furnace 1 in which a hot air circulation device 10 for heat-treating a workpiece 5 is incorporated. The hot air circulation device 10 has a hot air circulation fan 9, a heater 8, a blowing nozzle 3 for flowing hot air into the heat treatment chamber 2, and a suction nozzle 4 for sucking hot air in the heat treatment chamber 2.

【0003】被処理物5は、熱処理炉1の両側に設置さ
れたガイドローラ6によって走行方向を反転しながら、
熱処理炉1内を多段に略平行して走行する。走行を略平
行としたのは、被処理物5が重力の作用によって懸垂す
るためであり、その懸垂量はガイドローラ6の間隔L、
被処理物5にかかる張力、被処理物の単位長さの重量に
よって決まる。このとき、被処理物5の軌跡はいわゆる
懸垂線を描き、その方程式は文献「機械工学便覧」など
に記載されている。
[0005] The workpiece 5 is guided by guide rollers 6 provided on both sides of the heat treatment furnace 1 while reversing the running direction.
It travels in the heat treatment furnace 1 in multiple stages substantially in parallel. The traveling was made substantially parallel because the object 5 was suspended by the action of gravity, and the amount of suspension was the distance L between the guide rollers 6,
It is determined by the tension applied to the object 5 and the weight of the unit length of the object. At this time, the trajectory of the workpiece 5 draws a so-called catenary line, and its equation is described in the literature “Mechanical Engineering Handbook” and the like.

【0004】隣接するノズル3とノズル3の間に開けら
れた被処理物通過経路の高さHsは、被処理物5がノズ
ルと接触しないように、ノズル吹き出し方向の長さLn
間の被処理物5の懸垂量Kよりも大きく設計される。ま
た被処理物5の各段の間隔は、必然的にガイドローラ6
の直径Dと等しくなる。従って、ノズル間ピッチHpも
ガイドローラ6の直径Dと等しく設計される。
[0004] The height Hs of the passage of the workpiece to be opened between the adjacent nozzles 3 is set to the length Ln in the nozzle blowing direction so that the workpiece 5 does not contact the nozzle.
It is designed to be larger than the suspended amount K of the workpiece 5 between them. In addition, the interval of each stage of the processing object 5 is necessarily
Is equal to the diameter D. Therefore, the pitch Hp between the nozzles is also designed to be equal to the diameter D of the guide roller 6.

【0005】このような熱処理炉1においては、たとえ
ばそれがポリアクリロニトリル(PAN)系のプリカー
サ(前駆体繊維)からなる糸条を耐炎化処理するための
熱処理炉である場合、被処理物である糸条5は、熱処理
室2内を複数回通過することにより、耐炎化処理され
る。このとき熱処理室内の雰囲気は、所望の温度および
風速に制御されている。
[0005] In such a heat treatment furnace 1, for example, when it is a heat treatment furnace for oxidizing a yarn made of a polyacrylonitrile (PAN) -based precursor (precursor fiber), it is an object to be treated. The yarn 5 passes through the inside of the heat treatment chamber 2 a plurality of times to be subjected to a flameproofing treatment. At this time, the atmosphere in the heat treatment chamber is controlled to a desired temperature and wind speed.

【0006】図2は図1に示した熱処理炉1の吹き出し
ノズル3周辺部を正面から見た断面図である。図2にお
いて、吹き出しノズル3aおよび3bは熱処理炉1の側
部に配置されており、熱処理室2に向けて熱風V1を吹
き出す。吹き出しノズル3aおよび3bから吹き出す熱
風V1のサクション効果により、吹き出し口直後の熱処
理室2内の圧力P1は熱処理炉1の外側の圧力P2より
も小さくなり、常温の外気V2が熱処理室2内に流入す
る。そのため、熱処理室2内で熱風V1と外気V2との
混合が起こり、熱処理室2内の温度を均一に保つことが
難しい。
FIG. 2 is a cross-sectional view of the periphery of the blowing nozzle 3 of the heat treatment furnace 1 shown in FIG. 1 as viewed from the front. In FIG. 2, blowing nozzles 3 a and 3 b are arranged on the side of heat treatment furnace 1, and blow hot air V <b> 1 toward heat treatment chamber 2. Due to the suction effect of the hot air V1 blown out from the blowout nozzles 3a and 3b, the pressure P1 in the heat treatment chamber 2 immediately after the blowout port becomes smaller than the pressure P2 outside the heat treatment furnace 1, and outside air V2 at room temperature flows into the heat treatment chamber 2. I do. Therefore, mixing of the hot air V1 and the outside air V2 occurs in the heat treatment chamber 2, and it is difficult to keep the temperature inside the heat treatment chamber 2 uniform.

【0007】このため特開平10−237723号公報
に開示された熱処理炉にあっては、被処理物を熱処理す
るための熱風循環装置以外に、各吹き出しノズルを包括
するように区画されたノズル室にファンおよびヒータを
有する熱風供給装置を接続することで、該ノズル室に熱
風を供給し、隣接する吹き出しノズル3aと3bとの間
の圧力P3を熱処理炉1の外側の圧力P2よりも大きく
することで、外気V2の熱処理炉1内への流入を防いで
いる。
For this reason, in the heat treatment furnace disclosed in Japanese Patent Application Laid-Open No. Hei 10-237723, a nozzle chamber partitioned so as to cover each blowing nozzle, in addition to a hot air circulation device for heat-treating an object to be processed. By connecting a hot air supply device having a fan and a heater to the nozzle chamber, hot air is supplied to the nozzle chamber, and the pressure P3 between the adjacent blowing nozzles 3a and 3b is made larger than the pressure P2 outside the heat treatment furnace 1. This prevents the outside air V2 from flowing into the heat treatment furnace 1.

【0008】また、特開2000−212839号公報
に開示された熱処理炉にあっては、スリット状の開口部
7の外側に排気口を有するシール室を設置し、該シール
室内の圧力P2が吹き出し口直後の熱処理室2内の圧力
P1よりも小さくなるようにシール室の排気量を制御し
ている。
In the heat treatment furnace disclosed in Japanese Patent Application Laid-Open No. 2000-212839, a seal chamber having an exhaust port is provided outside the slit-shaped opening 7, and the pressure P2 in the seal chamber is blown out. The displacement of the seal chamber is controlled so as to be lower than the pressure P1 in the heat treatment chamber 2 immediately after the mouth.

【0009】上記吹き出しノズルから熱処理室内へ供給
される熱風の流速は均一であることが好ましく、ノズル
吹き出し口幅方向に均一な風速分布をもつ吹き出しノズ
ルは、たとえば図3に示すように構成される。吹き出し
ノズルの内部は導入域14と整流域15とに区画されて
おり、導入域14には流路の曲がり損失が小さくなるよ
うに案内羽根12が設置されている。整流域15は、ノ
ズル内部に熱風の流れ方向と略直行して挿入された多孔
板11と、該多孔板11の下流側に設けた空間で構成さ
れており、風速分布不均一の減衰効果を有する。また、
ノズルの吹き出し口直前に複数設置された整流板13に
よって、熱風の吹き出し方向が吹き出し口に直行するよ
うに整流される。
It is preferable that the flow velocity of the hot air supplied from the blow nozzle into the heat treatment chamber is uniform, and the blow nozzle having a uniform wind speed distribution in the width direction of the nozzle blow port is configured as shown in FIG. 3, for example. . The inside of the blowing nozzle is divided into an introduction area 14 and a rectification area 15, and the introduction area 14 is provided with guide vanes 12 so as to reduce the bending loss of the flow path. The rectification region 15 is composed of a perforated plate 11 inserted into the nozzle substantially perpendicular to the flow direction of the hot air, and a space provided on the downstream side of the perforated plate 11, and has a damping effect of nonuniform wind speed distribution. Have. Also,
The flow of hot air is rectified by the plurality of rectifying plates 13 provided immediately before the outlet of the nozzle so that the direction of hot air blowing is orthogonal to the outlet.

【0010】[0010]

【発明が解決しようとする課題】しかしながら、上記特
開平10−237723号公報に開示された熱処理炉の
ように、被処理物を熱処理するための熱風循環装置以外
に熱風供給装置を接続する場合、被処理物の熱処理以外
の目的で熱風を追加供給する必要があるために、エネル
ギー効率が悪くなるという問題がある。また、熱風供給
装置を構成するファンやヒータなどの追加設備が必要で
あるために、設備の固定費が増大し被処理物の製造原価
が上がるという問題がある。
However, when a hot air supply device is connected in addition to a hot air circulation device for heat-treating an object to be processed, as in the heat treatment furnace disclosed in the above-mentioned Japanese Patent Application Laid-Open No. Hei 10-237723, Since it is necessary to additionally supply hot air for a purpose other than the heat treatment of the object to be processed, there is a problem that energy efficiency deteriorates. Further, since additional equipment such as a fan and a heater constituting the hot air supply device is required, there is a problem that the fixed cost of the equipment is increased and the production cost of the object to be processed is increased.

【0011】また、上記特開2000−212839号
公報に開示された熱処理炉のように、熱処理炉出入口の
外側にシール室を設置し該シール室内を排気する場合、
熱処理室内の循環熱風の一部がシール室内に流れ込んで
排気されるためにエネルギー効率が悪くなるという問題
がある。また、熱処理炉外にシール室を設置することで
設備全体が大きくなり、固定費が増大し被処理物の製造
原価が上がるという問題がある。
In a case where a seal chamber is provided outside the heat treatment furnace entrance and exhausted from the seal chamber as in the heat treatment furnace disclosed in Japanese Patent Application Laid-Open No. 2000-212839,
Since a part of the circulating hot air in the heat treatment chamber flows into the seal chamber and is exhausted, there is a problem that energy efficiency is deteriorated. In addition, there is a problem that the installation of the seal chamber outside the heat treatment furnace increases the size of the entire equipment, increases fixed costs, and increases the production cost of the object to be processed.

【0012】一方、製造原価を下げるための一手段とし
て、被処理物通過経路の幅を広くし、熱処理炉内を通過
する被処理物の量を増やすことで単位時間あたりの処理
量を増加する場合、必然的に熱風吹き出しノズルの幅が
広くなり、ノズル内に整流域を単純に設けただけでは、
ノズル吹き出し口幅方向の風速分布を均一に保つことが
難しいという問題がある。
On the other hand, as one means for reducing the manufacturing cost, the width of the passage of the object to be processed is widened, and the amount of the object to be processed passing through the heat treatment furnace is increased to increase the throughput per unit time. In this case, the width of the hot air blowing nozzle is inevitably wide, and simply providing a rectification area
There is a problem that it is difficult to maintain a uniform wind speed distribution in the width direction of the nozzle outlet.

【0013】本発明の目的は、上記のような問題に着目
し、熱処理炉のエネルギー効率を悪化させることなく、
また熱処理炉内の温度分布および風速分布を均一に保つ
ための追加設備を設置することなく、熱処理炉内の温度
および風速を制御することで、安定した熱処理を行える
状況を維持できる熱処理炉、特に炭素繊維製造用に好適
な熱処理炉およびそれを用いた炭素繊維の製造方法を提
供することにある。
An object of the present invention is to pay attention to the above-mentioned problems, without deteriorating the energy efficiency of the heat treatment furnace.
In addition, without installing additional equipment to keep the temperature distribution and wind speed distribution in the heat treatment furnace uniform, by controlling the temperature and wind speed in the heat treatment furnace, heat treatment furnaces that can maintain a stable heat treatment situation, especially An object of the present invention is to provide a heat treatment furnace suitable for carbon fiber production and a method for producing carbon fiber using the same.

【0014】[0014]

【課題を解決するための手段】上記目的を達成するた
め、本発明によれば、熱処理室内に被処理物を出し入れ
するスリット状の開口部を有するとともに、被処理物を
熱処理するための熱風を循環する装置が組み込まれてな
り、かつ熱処理室内の被処理物出入口近傍に被処理物の
通過経路に沿う方向へ熱風を吹き出すノズルを有する熱
処理炉において、該熱風吹き出しノズルの吹き出し口か
ら吹き出し方向へ一定間隔離れた観測点Stにおけるノ
ズル吹き出し口幅方向の最大温度と最小温度の差である
温度むらΔTと、ノズル間ピッチHpと被処理物通過経
路の高さHsの比である開口率Hs/Hpが、Hs/H
p=α・ΔT1/2 の関係にあり、温度むらΔTをTm以
内とするために、開口率がHs/Hp≦α・Tm1/2
関係にあることを特徴とする熱処理炉が提供される。
According to the present invention, in order to achieve the above object, according to the present invention, a heat treatment chamber is provided with a slit-shaped opening for taking in and out an object to be processed, and hot air for heat-treating the object to be processed is provided. In a heat treatment furnace having a circulating device incorporated therein, and having a nozzle for blowing hot air in a direction along a passage of the object in the vicinity of the object inlet / outlet in the heat treatment chamber, in a direction from the outlet of the hot air blowing nozzle to the blowing direction. The temperature unevenness ΔT, which is the difference between the maximum temperature and the minimum temperature in the width direction of the nozzle outlet at the observation point St which is separated by a certain interval, and the aperture ratio Hs / Hp is Hs / H
A heat treatment furnace is provided, wherein p = α · ΔT 1/2 and the opening ratio is Hs / Hp ≦ α · Tm 1/2 in order to keep the temperature unevenness ΔT within Tm. Is done.

【0015】ここで観測点とは、熱処理炉内の雰囲気を
把握するために温度および風速を測定するためのもので
あり、観測点における温度および風速の測定は被処理物
の無い状態で行う。観測点Stの位置は、ノズルの吹き
出し口から吹き出し方向へ一定間隔離れた被処理物の通
過経路上とし、ノズル吹き出し口幅方向に被処理物の中
央部および両端を含むよう3点以上設ける。
Here, the observation point is for measuring the temperature and the wind speed in order to grasp the atmosphere in the heat treatment furnace, and the measurement of the temperature and the wind speed at the observation point is performed without any object to be processed. The observation point St is provided at three or more points on the passage path of the object to be processed, which is separated from the outlet of the nozzle by a predetermined distance in the blowing direction, and includes the central portion and both ends of the object in the width direction of the nozzle outlet.

【0016】上記αは被処理物通過経路の幅Wsに対し
て一意に決まる定数であり、縦軸にHs/Hp、横軸に
ΔT1/2をとったグラフにおいて、Hs/HpとΔT
1/2の関係が1点わかれば、その点と原点を結ぶ直線
の傾きとして求まる。また、前記グラフにおいてHs/
HpとΔT1/2の関係が複数点わかっている場合、上
記αはそれらの点の近似直線における傾きとして導出さ
れる。
The above α is a constant uniquely determined with respect to the width Ws of the passage of the object to be processed. In a graph with Hs / Hp on the vertical axis and ΔT1 / 2 on the horizontal axis, Hs / Hp and ΔT
If one half of the relationship is known, it can be obtained as the slope of a straight line connecting that point and the origin. In the graph, Hs /
When the relationship between Hp and ΔT1 / 2 is known at a plurality of points, α is derived as the slope of the approximate line of those points.

【0017】Hs/HpとΔT1/2の関係は、熱処理
炉が既に存在する場合、熱電対などを用いて容易に測定
できる。また、熱処理炉が存在しない場合でも、数値シ
ミュレーションによって仮想的に求めることが可能であ
る。
The relationship between Hs / Hp and ΔT1 / 2 can be easily measured using a thermocouple when a heat treatment furnace already exists. In addition, even when a heat treatment furnace does not exist, it can be virtually obtained by numerical simulation.

【0018】また本発明の別の態様によれば、熱処理室
内に被処理物を出し入れするスリット状の開口部を有す
るとともに、被処理物を熱処理するための熱風を循環す
る装置が組み込まれてなり、かつ熱処理室内の被処理物
出入口近傍に被処理物の通過経路に沿う方向へ熱風を吹
き出すノズルを有する熱処理炉において、該熱風吹き出
しノズルの吹き出し口から吹き出し方向へ一定間隔離れ
た観測点Stにおけるノズル吹き出し口幅方向の最大温
度と最小温度の差である温度むらΔTをTm以内とする
ために、ノズル吹き出し方向の長さLnと該Ln間にお
ける被処理物の懸垂量Kとの関係式Ln=G(K)よ
り、Ln<G(Hp×α・Tm1/2 )となるようにLn
を定めたことを特徴とする熱処理炉が提供される。
According to another aspect of the present invention, there is provided a device having a slit-shaped opening for taking a workpiece into and out of a heat treatment chamber and circulating hot air for heat treating the workpiece. In a heat treatment furnace having a nozzle that blows hot air in a direction along a passage of a processing object in the vicinity of a processing object entrance and exit in the heat processing chamber, at an observation point St that is separated from the blowing port of the hot air blowing nozzle by a predetermined distance in a blowing direction. In order to keep the temperature unevenness ΔT, which is the difference between the maximum temperature and the minimum temperature in the nozzle outlet width direction, within Tm, a relational expression Ln between the length Ln in the nozzle outlet direction and the suspended amount K of the workpiece between the nozzles Ln. = G (K), Ln <G (Hp × α · Tm 1/2 ) so that Ln
A heat treatment furnace is provided.

【0019】ここでG(K)は文献「機械工学便覧」に
記載される方法により算出される関数であり、被処理物
にかかる張力と被処理物の単位長さの重量、およびガイ
ドローラ間隔等により決定される。図5に示すようにL
nはKに対して単調に増加する関数である。懸垂量Kを
被処理物通過経路の高さHsよりも小さくすることで、
被処理物のノズルとの接触を回避できる。
Here, G (K) is a function calculated by the method described in the literature “Mechanical Engineering Handbook”, and is a function of the tension applied to the workpiece, the weight of the unit length of the workpiece, and the guide roller interval Etc. are determined. As shown in FIG.
n is a function that increases monotonically with K. By making the amount of suspension K smaller than the height Hs of the workpiece passage path,
Contact of the workpiece with the nozzle can be avoided.

【0020】この熱処理炉は、被処理物を垂下させる縦
型炉に構成することも可能であるが、好ましくは、被処
理物を実質的に水平方向に通過させる横型熱処理炉であ
り、該横型熱処理炉内に複数個の上記熱風吹き出しノズ
ルが被処理物の上下に配置されている。
This heat treatment furnace can be constituted as a vertical furnace for hanging the object to be treated, but is preferably a horizontal heat treatment furnace for passing the object to be treated in a substantially horizontal direction. A plurality of the hot-air blowing nozzles are arranged above and below the workpiece in the heat treatment furnace.

【0021】本発明のさらに別の態様によれば、熱処理
室内に被処理物を出し入れするスリット状の開口部を有
するとともに、被処理物を熱処理するための熱風を循環
する装置が組み込まれてなり、かつ熱処理室内の被処理
物出入口近傍に被処理物の通過経路に沿う方向へ熱風を
吹き出すノズルを有する熱処理炉において、該熱風吹き
出しノズルの吹き出し口から吹き出し方向へ一定間隔離
れた観測点Svにおけるノズル吹き出し口幅方向の最大
風速と最小風速の差である風速むらΔVをVm以内とす
るために、ノズル内部に設ける整流域の段数Nがλ/V
1/2 以上であることを特徴とする熱処理炉が提供され
る。
According to still another aspect of the present invention, there is provided a device having a slit-shaped opening for taking in and out an object to be treated into and out of the heat treatment chamber and circulating hot air for heat treating the object to be treated. In a heat treatment furnace having a nozzle for blowing hot air in a direction along a passage of a processing object in the vicinity of a processing object inlet / outlet in a heat processing chamber, at an observation point Sv separated from the blowing port of the hot air blowing nozzle by a predetermined distance in a blowing direction. In order to make the wind speed unevenness ΔV, which is the difference between the maximum wind speed and the minimum wind speed in the nozzle outlet width direction, within Vm, the number N of rectification zones provided inside the nozzle is λ / V.
A heat treatment furnace is provided, wherein the heat treatment furnace is not less than m1 / 2 .

【0022】ここで、観測点Svの位置は、ノズルの吹
き出し口から吹き出し方向へ一定間隔離れた被処理物の
通過経路上とし、ノズル吹き出し口幅方向に被処理物の
中央部および両端を含むよう3点以上設ける。観測点S
vは上記観測点Stと同じ位置でもかまわない。
Here, the position of the observation point Sv is on the passage of the object to be processed, which is separated from the outlet of the nozzle by a certain distance in the blowing direction, and includes the central portion and both ends of the object to be processed in the width direction of the nozzle outlet. Three or more points are provided. Observation point S
v may be the same position as the observation point St.

【0023】上記λは吹き出しノズル内に挿入される多
孔板の圧力損失に対して一意に決まる定数であり、縦軸
にN、横軸に1/ΔV1/2 をとったグラフにおいて、N
と1/ΔV1/2 の関係が1点わかれば、その点と原点を
結ぶ直線の傾きとして求まる。また、前記グラフにおい
てNと1/ΔV1/2 の関係が複数点わかっている場合、
上記λはそれらの点の近似直線における傾きとして導出
される。
The above-mentioned λ is a constant uniquely determined with respect to the pressure loss of the perforated plate inserted into the blowing nozzle. In a graph in which N is taken on the vertical axis and 1 / ΔV 1/2 is taken on the horizontal axis, N
If the relationship between 1 and ΔV 1/2 is known, it can be obtained as the slope of a straight line connecting that point and the origin. Further, when the relationship between N and 1 / ΔV 1/2 is known at a plurality of points in the graph,
The above λ is derived as an inclination of the points on the approximate straight line.

【0024】Nと1/ΔV1/2 の関係は、熱処理炉が既
に存在する場合、熱線風速計などを用いて容易に測定で
きる。また、熱処理炉が存在しない場合でも、数値シミ
ュレーションによって仮想的に求めることが可能であ
る。
The relationship between N and 1 / ΔV 1/2 can be easily measured using a hot wire anemometer or the like when a heat treatment furnace already exists. In addition, even when a heat treatment furnace does not exist, it can be virtually obtained by numerical simulation.

【0025】上記熱処理炉において、ノズルの導入域の
幅をLd、整流域の幅をPとした場合に、ノズル吹き出
し方向の長さLnは幾何学的関係によりLd+P×N以
上となる。整流域の幅Pは、ノズルの高さ(Hp−H
s)の0.5〜1倍程度であることが好ましい。
In the above heat treatment furnace, when the width of the nozzle introduction region is Ld and the width of the rectification region is P, the length Ln in the nozzle blowing direction is Ld + P × N or more due to a geometric relationship. The width P of the rectification area is equal to the height of the nozzle (Hp-H
It is preferably about 0.5 to 1 times s).

【0026】上記熱処理炉において、ノズル吹き出し口
幅方向の温度むらをTm以内、風速むらをVm以内に保
つことが可能で、かつ、被処理物が懸垂によってノズル
と接触しないためには、ノズルの吹き出し方向の長さL
nは、Ld+P×N以上G(Hp×α・Tm1/2 )以下
の範囲内にあることが好ましい。
In the above heat treatment furnace, it is possible to maintain the temperature unevenness in the width direction of the nozzle outlet within Tm and the wind speed unevenness within Vm, and to prevent the workpiece from contacting the nozzle due to suspension. Length L in blowing direction
n is preferably in the range of Ld + P × N or more and G (Hp × α · Tm 1/2 ) or less.

【0027】このような熱処理炉は、熱処理を要する長
尺物の製造に用いて好適なものである。したがって、上
記被処理物は繊維状物でもシート状物でもよく、例えば
炭素繊維の製造に供される糸条、つまり、耐炎化処理に
供される前駆体繊維や、炭化処理に供される耐炎化糸と
することができる。すなわち、上記熱処理炉は、炭素繊
維の製造において、耐炎化炉や、炭化炉、工程油剤付与
後の乾燥機として用いることができ、特に耐炎化炉とし
て好適なものである。
Such a heat treatment furnace is suitable for use in the production of a long product requiring heat treatment. Therefore, the object to be processed may be a fibrous material or a sheet-like material. For example, a yarn provided for the production of carbon fiber, that is, a precursor fiber provided for the oxidization treatment, or a flame resistant material provided for the carbonization treatment It can be a synthetic yarn. That is, the heat treatment furnace can be used as an oxidation furnace, a carbonization furnace, or a dryer after applying a process oil in the production of carbon fibers, and is particularly suitable as an oxidation furnace.

【0028】[0028]

【発明の実施の形態】以下に、本発明の望ましい実施の
形態を、図面を参照しながら説明する。図1は本発明の
熱処理炉を、炭素繊維製造用の耐炎化炉として使用する
場合の一例を示す概略構成図である。耐炎化炉1内に
は、複数個の吹き出しノズル3と吸い込みノズル4が、
熱処理室2を挟んで対向するように配置されている。被
処理物である糸条5は、各ガイドローラ6で走行方向を
反転しながら、耐炎化炉1の両側に設けたスリット状の
開口部7を通り、耐炎化炉1の熱処理室2内を複数回通
過する。熱処理室2内には、ファン9およびヒータ8、
吹き出しノズル3、吸い込みノズル4を有する熱風循環
装置10によって、熱風が循環供給される。循環熱風の
温度および風速はそれぞれヒータ8およびファン9によ
って制御される。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Preferred embodiments of the present invention will be described below with reference to the drawings. FIG. 1 is a schematic configuration diagram showing an example of a case where the heat treatment furnace of the present invention is used as a stabilization furnace for carbon fiber production. A plurality of blowing nozzles 3 and suction nozzles 4 are provided in the oxidation furnace 1.
They are arranged to face each other with the heat treatment chamber 2 interposed therebetween. The yarn 5 to be treated passes through the slit-shaped openings 7 provided on both sides of the oxidizing furnace 1 while reversing the running direction by each guide roller 6 and passes through the inside of the heat treatment chamber 2 of the oxidizing furnace 1. Pass multiple times. Inside the heat treatment chamber 2, a fan 9 and a heater 8,
Hot air is circulated and supplied by a hot air circulating device 10 having a blowing nozzle 3 and a suction nozzle 4. The temperature and wind speed of the circulating hot air are controlled by a heater 8 and a fan 9, respectively.

【0029】[0029]

【実施例】まず、熱処理室内の温度均一化のための構造
について、図面を参照しながら実施例1で説明する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS First, a structure for equalizing the temperature in a heat treatment chamber will be described in a first embodiment with reference to the drawings.

【0030】[実施例1]図4は図1に示した耐炎化炉
1の吹き出しノズル3周辺部を上から見た断面図であ
る。被処理物である糸条5はノズル吹き出し口幅方向に
複数本並んだ状態で走行するが、該糸条が通過し得る位
置を糸条通過経路と呼ぶ。糸条通過経路の幅Wsを5m
とし、ノズル吹き出し口幅方向に糸条の中央部および両
端を含むよう1.25m間隔で5点の観測点Stを設
け、各観測点における熱風V1a〜V1eの温度を測定
した。ノズルの吹き出し口から観測点Stまでの距離L
sは1mとした。ガイドローラ6の直径はローラの強度
を考慮して300mmとした。したがって、ノズル間ピ
ッチHpも300mmとした。糸条通過経路の高さHs
は80mmとした。循環熱風V1の平均温度は250
℃、外気V2の温度は25℃とした。
Embodiment 1 FIG. 4 is a cross-sectional view of the periphery of the blowing nozzle 3 of the flameproofing furnace 1 shown in FIG. 1 as viewed from above. A plurality of yarns 5 to be processed travel in a state where a plurality of yarns 5 are arranged in the width direction of the nozzle outlet, and a position through which the yarns can pass is referred to as a yarn passage route. The width Ws of the thread passage route is 5 m
Five observation points St were provided at intervals of 1.25 m so as to include the center and both ends of the yarn in the width direction of the nozzle outlet, and the temperatures of the hot air V1a to V1e at each observation point were measured. Distance L from nozzle outlet to observation point St
s was 1 m. The diameter of the guide roller 6 was set to 300 mm in consideration of the strength of the roller. Therefore, the pitch Hp between nozzles was also set to 300 mm. Height Hs of thread passage route
Was 80 mm. The average temperature of the circulating hot air V1 is 250
° C and the temperature of the outside air V2 were 25 ° C.

【0031】上記の耐炎化炉において観測点Stの温度
を測定した結果、表1に示すように温度むらΔTは1
2.2℃であった。この場合の係数αは、α=(Hs/
Hp)/(ΔT1/2 )=(80/300)/(12.2
1/2 )=0.0763となり、温度むらを5℃以内にす
るための開口率は、Hs/Hp≦α・Tm1/2 の関係式
より0.171以下と算出された。ノズル間ピッチHp
を300mmのままとすると、温度むらを5℃以内にす
るための糸条通過経路の高さHsは51mm以下と算出
された。
As a result of measuring the temperature of the observation point St in the above-described oxidizing furnace, as shown in Table 1, the temperature unevenness ΔT was 1
2.2 ° C. The coefficient α in this case is α = (Hs /
Hp) / (ΔT 1/2 ) = (80/300) / (12.2)
1/2 ) = 0.0763, and the aperture ratio for keeping the temperature unevenness within 5 ° C. was calculated to be 0.171 or less from the relational expression of Hs / Hp ≦ α · Tm 1/2 . Nozzle pitch Hp
Is kept at 300 mm, the height Hs of the thread passage path for keeping the temperature unevenness within 5 ° C. was calculated to be 51 mm or less.

【0032】[0032]

【表1】 [Table 1]

【0033】上記の耐炎化炉において、熱処理室内循環
熱風の平均速度を3m/秒とし、PAN系の前駆体繊維
(単糸:1デニール、フィラメント数:12,000
本)を糸条の走行速度を3m/分で耐炎化処理した。得
られた耐炎化糸を窒素中1400℃で炭化処理した結
果、耐炎化炉内の温度の低い位置を通過した耐炎化糸で
は、耐炎化処理不足による糸切断が多発した。
In the above-mentioned oxidizing furnace, the average velocity of the hot air circulating in the heat treatment chamber was set at 3 m / sec, and the PAN precursor fiber (single yarn: 1 denier, number of filaments: 12,000)
This was subjected to a flame resistance treatment at a running speed of the yarn of 3 m / min. As a result of carbonizing the obtained oxidized yarn at 1400 ° C. in nitrogen, the oxidized yarn that passed through a low temperature position in the oxidized furnace often suffered yarn breakage due to insufficient oxidized treatment.

【0034】本発明によれば、温度むらを5℃以内にす
るための糸条通過経路の高さHsは、上記の通り51m
m以下と算出された。糸条通過経路の高さHsを50m
mに変更し、観測点Stの温度を測定した結果、表2に
示すように温度むらΔTは4.2℃となり、所望の温度
均一化条件を得た。
According to the present invention, the height Hs of the yarn passing path for keeping the temperature unevenness within 5 ° C. is 51 m as described above.
m or less. The height Hs of the thread passage route is 50 m
m, and the temperature of the observation point St was measured. As a result, as shown in Table 2, the temperature non-uniformity ΔT was 4.2 ° C., and desired temperature uniform conditions were obtained.

【0035】[0035]

【表2】 [Table 2]

【0036】上記の耐炎化炉において、熱処理室内循環
熱風の平均速度を3m/秒、熱処理室内の平均温度を2
50℃とし、PAN系の前駆体繊維(単糸:1デニー
ル、フィラメント数:12,000本)を糸条の走行速
度を3m/分で耐炎化処理した。得られた耐炎化糸は、
窒素中1400℃で糸切断することなく炭化処理でき
た。
In the above-mentioned flame-proof furnace, the average speed of the hot air circulating in the heat treatment chamber is 3 m / sec, and the average temperature in the heat treatment chamber is 2
The temperature was set to 50 ° C., and PAN-based precursor fibers (single yarn: 1 denier, number of filaments: 12,000) were subjected to a flame-resistant treatment at a yarn running speed of 3 m / min. The resulting flame resistant yarn is
Carbonization could be performed at 1400 ° C in nitrogen without cutting the yarn.

【0037】また、ガイドローラの間隔を20m、糸条
にかかる張力を1000g、糸の単位長さの重量を2g
/mとすると、ノズル吹き出し方向の長さLnと該Ln
間における糸条の懸垂量Kとの関係Ln=G(K)は文
献「機械工学便覧」より図5のように求められる。本発
明によれば、温度むらを5℃以内にするためのノズル吹
き出し方向の長さLnの範囲は、Ln<G(Hp×α・
Tm1/2 )で表され、図5よりLn<3.5mであっ
た。
The distance between the guide rollers is 20 m, the tension applied to the yarn is 1000 g, and the weight of the unit length of the yarn is 2 g.
/ M, the length Ln in the nozzle blowing direction and Ln
The relationship Ln = G (K) with the amount of suspension K of the yarn between the threads is obtained as shown in FIG. According to the present invention, the range of the length Ln in the nozzle blowing direction for keeping the temperature unevenness within 5 ° C. is Ln <G (Hp × α ·
Tm 1/2 ), and from FIG. 5, Ln <3.5 m.

【0038】次に、熱処理室内の風速均一化のための構
造について、図面を参照しながら実施例2で説明する。
Next, a structure for equalizing the wind speed in the heat treatment chamber will be described in a second embodiment with reference to the drawings.

【0039】[実施例2]図4において、糸条通過経路
の幅Wsを5mとし、ノズル吹き出し口幅方向に糸条の
中央部および両端を含むよう1.25m間隔で5点の観
測点Svを設け、各観測点における熱風V1a〜V1e
の風速を測定した。ノズルの吹き出し口から観測点Sv
までの距離Lsは1mとした。ノズル吹き出し口の幅W
nは5.4m、ノズル間ピッチHpは300mm、糸条
通過経路の高さHsは50mm、ノズルの導入域の幅L
dは1mとした。整流域15は、ノズル内部に熱風の流
れ方向と略直行して挿入された多孔板11と、該多孔板
11の下流側に設けた空間で構成されており、隣り合う
多孔板11と多孔板11の距離(最下流の場合は多孔板
11とノズル吹き出し口との距離)である整流域の幅P
はノズルの高さ(Hp−Hs)と等しく250mmと
し、該整流域の段数Nは2段とした。整流域の圧力損失
は2段の合計で24Paとなるように多孔板の孔径を調
整した。循環熱風V1の風速は、熱処理室内循環熱風の
平均速度が3m/秒となるようにファンの回転数を調節
した。
[Example 2] In FIG. 4, the width Ws of the yarn passing path is 5 m, and five observation points Sv are arranged at 1.25 m intervals in the width direction of the nozzle outlet so as to include the center and both ends of the yarn. And the hot air V1a to V1e at each observation point
The wind speed was measured. Observation point Sv from nozzle outlet
The distance Ls to this was set to 1 m. Nozzle outlet width W
n is 5.4 m, the pitch Hp between the nozzles is 300 mm, the height Hs of the yarn passing path is 50 mm, and the width L of the nozzle introduction area is L.
d was 1 m. The rectification zone 15 is composed of a perforated plate 11 inserted into the nozzle substantially perpendicular to the flow direction of the hot air, and a space provided on the downstream side of the perforated plate 11. 11 (the distance between the perforated plate 11 and the nozzle outlet in the case of the lowermost stream), the width P of the rectification area.
Is 250 mm, which is equal to the height of the nozzle (Hp-Hs), and the number N of stages in the rectification region is two. The hole diameter of the perforated plate was adjusted so that the pressure loss in the rectification region was 24 Pa in total in two stages. The fan speed of the circulating hot air V1 was adjusted such that the average speed of the circulating hot air in the heat treatment room was 3 m / sec.

【0040】上記の耐炎化炉において観測点Svの風速
を測定した結果、表3に示すように風速むらΔVは0.
8m/秒であった。この場合の係数λは、λ=N/(1
/ΔV1/2 )=2/(1/0.81/2 )=1.79とな
り、風速むらを0.6m/秒以内にするための整流域の
段数Nは、N≧λ/Vm1/2 =2.31と算出された。
As a result of measuring the wind speed at the observation point Sv in the above-described oxidizing furnace, as shown in Table 3, the unevenness in wind speed ΔV was equal to 0.
8 m / sec. In this case, the coefficient λ is λ = N / (1
/ ΔV 1/2 ) = 2 / (1 / 0.8 1/2 ) = 1.79, and the number N of stages in the rectification region for keeping the wind speed unevenness within 0.6 m / sec is N ≧ λ / Vm 1/2 = 2.31 was calculated.

【0041】[0041]

【表3】 [Table 3]

【0042】上記の耐炎化炉において、熱処理室内の平
均温度を250℃とし、PAN系の前駆体繊維(単糸:
1デニール、フィラメント数:12,000本)を糸条
の走行速度を3m/分で耐炎化処理した結果、得られた
耐炎化糸の毛羽数は8〜20個/mと多発した。
In the above-described oxidizing furnace, the average temperature in the heat treatment chamber was set to 250 ° C., and the PAN precursor fiber (single yarn:
(1 denier, the number of filaments: 12,000 filaments) was subjected to a flame-resistant treatment at a running speed of the yarn of 3 m / min. As a result, the number of fluffs of the resulting flame-resistant yarn increased to 8 to 20 / m.

【0043】本発明によれば、風速むらを0.6m/秒
以内にするための整流域の段数Nは、上記の通りN≧λ
/Vm1/2 =2.31と算出された。整流域を3段に変
更し、整流域の圧力損失は3段の合計で24Paとなる
ように多孔板の孔径を調整し、観測点Svの風速を測定
した結果、表4に示すように風速むらΔVは0.4m/
秒となり、整流域の圧力損失を増加させることなく所望
の風速均一化条件を得た。このときの、ノズル吹き出し
方向長さLnの下限値は、Ln≧Ld+P×N=1.7
5mとなる。
According to the present invention, the number N of stages in the rectification region for keeping the wind speed unevenness within 0.6 m / sec is N ≧ λ as described above.
/ Vm 1/2 = 2.31 was calculated. The rectification region was changed to three stages, the pressure loss in the rectification region was adjusted so that the total pressure of the three stages was 24 Pa, and the wind speed at the observation point Sv was measured. Unevenness ΔV is 0.4 m /
Seconds, the desired wind speed uniform condition was obtained without increasing the pressure loss in the rectification region. At this time, the lower limit value of the length Ln in the nozzle blowing direction is Ln ≧ Ld + P × N = 1.7.
5 m.

【0044】[0044]

【表4】 [Table 4]

【0045】上記の耐炎化炉において、熱処理室内の平
均温度を250℃とし、PAN系の前駆体繊維(単糸:
1デニール、フィラメント数:12,000本)を糸条
の走行速度を3m/分で耐炎化処理した結果、得られた
耐炎化糸の毛羽数は1〜5個/mと大幅に減少し、糸の
品質が改善した。
In the above-mentioned oxidizing furnace, the average temperature in the heat treatment chamber was set at 250 ° C., and the PAN precursor fiber (single yarn:
(1 denier, number of filaments: 12,000 filaments) as a result of the flame-resistant treatment at a running speed of the yarn of 3 m / min. As a result, the number of fluffs of the resulting flame-resistant yarn is greatly reduced to 1 to 5 / m, Yarn quality improved.

【0046】[比較例1]図4において、糸条通過経路
の幅Wsを2mとし、ノズル吹き出し口幅方向に糸条の
中央部および両端を含むよう0.5m間隔で5点の観測
点Svを設け、各観測点における熱風V1a〜V1eの
風速を測定した。ノズルの吹き出し口から観測点Svま
での距離Lsは1mとした。ノズル吹き出し口の幅Wn
は2.4m、ノズル間ピッチHpは300mm、糸条通
過経路の高さHsは50mmとした。また、ノズルの導
入域の幅Ldは1m、整流域の幅はノズルの高さ(Hp
−Hs)と等しく250mm、整流域の段数Nは2段と
した。整流域の圧力損失は2段の合計で24Paとなる
ように多孔板の孔径を調整した。循環熱風V1の風速
は、熱処理室内循環熱風の平均速度が3m/秒となるよ
うにファンの回転数を調節した。
[Comparative Example 1] In FIG. 4, the width Ws of the yarn passing path is 2 m, and five observation points Sv are provided at 0.5 m intervals in the width direction of the nozzle outlet so as to include the center and both ends of the yarn. Was provided, and the wind speed of the hot air V1a to V1e at each observation point was measured. The distance Ls from the outlet of the nozzle to the observation point Sv was 1 m. Nozzle outlet width Wn
Was 2.4 m, the pitch Hp between nozzles was 300 mm, and the height Hs of the yarn passing path was 50 mm. The width Ld of the introduction area of the nozzle is 1 m, and the width of the rectification area is the height of the nozzle (Hp
−Hs) and 250 mm, and the number N of stages in the rectification region was two. The hole diameter of the perforated plate was adjusted so that the pressure loss in the rectification region was 24 Pa in total in two stages. The fan speed of the circulating hot air V1 was adjusted such that the average speed of the circulating hot air in the heat treatment room was 3 m / sec.

【0047】上記の耐炎化炉において観測点Svの風速
を測定した結果、風速むらΔVは0.3m/秒であっ
た。
As a result of measuring the wind speed at the observation point Sv in the above-described furnace, the unevenness in wind speed ΔV was 0.3 m / sec.

【0048】実施例2では、単位時間あたりの処理量増
加を目的に、糸条通過経路の幅Wsを2mから5mに増
やしており、その影響で0.3m/秒であった風速むら
が0.8m/秒に増加した。しかし、本発明によって算
出した整流域の段数を採用することにより、風速むらを
所望の範囲内に収めることに成功した。
In the second embodiment, the width Ws of the yarn passing path is increased from 2 m to 5 m for the purpose of increasing the throughput per unit time. Increased to 0.8 m / sec. However, by adopting the number of stages in the rectification region calculated according to the present invention, the wind speed unevenness was successfully kept within a desired range.

【0049】実施例1および実施例2の結果から、上記
の耐炎化炉において、ノズル吹き出し方向長さLnを2
mとした。その結果、所望の温度均一化条件と所望の風
速均一化条件の両方を、同時に満足することができた。
From the results of Example 1 and Example 2, in the above-described oxidizing furnace, the length Ln in the nozzle blowing direction was set to 2
m. As a result, both the desired temperature uniformity condition and the desired wind speed uniformity condition could be satisfied at the same time.

【0050】[0050]

【発明の効果】以上説明したように、本発明の熱処理炉
によれば、特別な設備やエネルギーを追加することな
く、熱処理炉内の温度むらを所望の範囲内に収めること
が可能であり、工程安定性の確保と、製造原価の低減が
実現できる。
As described above, according to the heat treatment furnace of the present invention, it is possible to keep the temperature unevenness in the heat treatment furnace within a desired range without adding special equipment or energy. Process stability can be ensured and manufacturing costs can be reduced.

【0051】また、ノズル内整流域の圧力損失を増加さ
せることなく、風速むらを所望の範囲内に収めることが
可能であり、製品の品質が向上する。
Further, it is possible to keep the wind speed unevenness within a desired range without increasing the pressure loss in the rectification region in the nozzle, and the quality of the product is improved.

【0052】さらには、被処理物通過経路の幅を大きく
しても、風速むらを所望の範囲内に収めることが可能で
あり、単位時間あたりの処理量を増加できる。
Furthermore, even if the width of the passage of the object to be processed is increased, it is possible to keep the wind speed unevenness within a desired range, and it is possible to increase the throughput per unit time.

【図面の簡単な説明】[Brief description of the drawings]

【図1】一般的な熱処理炉の形態であるとともに、本発
明の一実施形態に係る熱処理炉の概略構成図である。
FIG. 1 is a schematic configuration diagram of a heat treatment furnace according to an embodiment of the present invention, as well as a form of a general heat treatment furnace.

【図2】本発明の一実施形態に係る熱処理炉の、吹き出
しノズル周辺の部分概略構成図である。
FIG. 2 is a partial schematic configuration diagram around a blowing nozzle of a heat treatment furnace according to an embodiment of the present invention.

【図3】吹き出しノズルの一例を示す部分斜視図であ
る。
FIG. 3 is a partial perspective view illustrating an example of a blowing nozzle.

【図4】本発明の一実施形態に係る熱処理炉の、吹き出
しノズル周辺の部分概略構成図である。
FIG. 4 is a partial schematic configuration diagram around a blowing nozzle of a heat treatment furnace according to an embodiment of the present invention.

【図5】ノズルの吹き出し方向長さとその間の被処理物
の懸垂量との関係の一例をグラフに表したものである。
FIG. 5 is a graph showing an example of a relationship between a length of a nozzle in a blowing direction and an amount of suspension of an object to be processed therebetween.

【符号の説明】[Explanation of symbols]

1:熱処理炉(耐炎化炉) 2:熱処理室 3:吹き出しノズル 3a、3b:吹き出しノズル 4:吸い込みノズル 5:被処理物(糸条) 6:ガイドローラ 7:スリット状の開口部 8:加熱ヒータ 9:熱風循環ファン 10:熱風循環装置 11:多孔板 12:案内羽根 13:整流板 14:導入域 15:整流域 St:温度観測点 Sv:風速観測点 Hp:ノズル間ピッチ Hs:被処理物通過経路の高さ P:吹き出しノズルの整流域の幅 Ld:吹き出しノズルの導入域の幅 Ls:吹き出しノズルの吹き出し口から観測点までの距
離 Ln:吹き出しノズルの吹き出し方向長さ K:Ln間における被処理物の懸垂量 V1:循環熱風 V1a〜V1e:局所的にみた循環熱風 V2:外気 P1:熱処理室内の圧力 P2:熱処理炉外の圧力 P3:隣接する吹き出しノズル3aと3bとの間の圧力 Ws:被処理物通過経路の幅 Wn:吹き出しノズルの幅 L:ガイドローラの間隔
1: Heat treatment furnace (oxidizing furnace) 2: Heat treatment chamber 3: Blow nozzle 3a, 3b: Blow nozzle 4: Suction nozzle 5: Workpiece (thread) 6: Guide roller 7: Slit-shaped opening 8: Heating Heater 9: Hot air circulation fan 10: Hot air circulation device 11: Perforated plate 12: Guide vane 13: Rectifying plate 14: Introducing area 15: Rectifying area St: Temperature observation point Sv: Wind velocity observation point Hp: Nozzle pitch Hs: Processing target Height of the object passage path P: width of the rectification area of the blowing nozzle Ld: width of the introduction area of the blowing nozzle Ls: distance from the blowing port of the blowing nozzle to the observation point Ln: length of the blowing nozzle in the blowing direction K: between Ln V1: circulating hot air V1a to V1e: locally circulating hot air V2: outside air P1: pressure inside heat treatment chamber P2: pressure outside heat treatment furnace P3: neighbor The pressure between the nozzle 3a and 3b callout Ws: width Wn of the workpiece passing path: the width of blowoff nozzles L: guide roller spacing

Claims (9)

【特許請求の範囲】[Claims] 【請求項1】熱処理室内に被処理物を出し入れするスリ
ット状の開口部を有するとともに、被処理物を熱処理す
るための熱風を循環する装置が組み込まれてなり、かつ
熱処理室内の被処理物出入口近傍に被処理物の通過経路
に沿う方向へ熱風を吹き出すノズルを有する熱処理炉に
おいて、該熱風吹き出しノズルの吹き出し口から吹き出
し方向へ一定間隔離れた観測点Stにおけるノズル吹き
出し口幅方向の最大温度と最小温度の差ΔTをTm以内
とするために、ノズル間ピッチHpと被処理物通過経路
の高さHsとが、Hs/Hp≦α・Tm1/2 の関係にあ
ることを特徴とする熱処理炉。(ただし、上記αは本文
中に定義するように被処理物通過経路の幅Wsに対して
一意に決まる定数である)
An object having a slit-shaped opening for taking a workpiece into and out of a heat treatment chamber, a device for circulating hot air for heat-treating the workpiece, and an inlet / outlet for the workpiece in the heat treatment chamber. In a heat treatment furnace having a nozzle that blows hot air in a direction along a passage of an object in the vicinity, the maximum temperature in the nozzle outlet width direction at an observation point St that is spaced apart from the outlet of the hot air outlet nozzle at a certain interval in the blowing direction. In order to keep the minimum temperature difference ΔT within Tm, the heat treatment is characterized in that the inter-nozzle pitch Hp and the height Hs of the passage of the workpiece are in a relationship of Hs / Hp ≦ α · Tm 1/2. Furnace. (However, α is a constant that is uniquely determined with respect to the width Ws of the passage of the workpiece as defined in the text.)
【請求項2】熱処理室内に被処理物を出し入れするスリ
ット状の開口部を有するとともに、被処理物を熱処理す
るための熱風を循環する装置が組み込まれてなり、かつ
熱処理室内の被処理物出入口近傍に被処理物の通過経路
に沿う方向へ熱風を吹き出すノズルを有する熱処理炉に
おいて、該熱風吹き出しノズルの吹き出し口から吹き出
し方向へ一定間隔離れた観測点Stにおけるノズル吹き
出し口幅方向の最大温度と最小温度の差ΔTをTm以内
とするために、ノズル吹き出し方向の長さLnと、該L
n間における被処理物の懸垂量Kとの関係式Ln=G
(K)より、Ln<G(Hp×α・Tm1/2 )となるよ
うにLnを定めたことを特徴とする熱処理炉。(ただ
し、Hpはノズル間ピッチを示し、上記αは本文中に定
義するように被処理物通過経路の幅Wsに対して一意に
決まる定数である)
2. A heat treatment chamber having a slit-shaped opening for taking in and out of the object to be treated, a device for circulating hot air for heat treating the object to be treated being incorporated, and an object entrance and exit in the heat treatment chamber. In a heat treatment furnace having a nozzle that blows hot air in a direction along a passage of an object in the vicinity, the maximum temperature in the nozzle outlet width direction at an observation point St that is spaced apart from the outlet of the hot air outlet nozzle at a certain interval in the blowing direction. In order to keep the minimum temperature difference ΔT within Tm, the length Ln in the nozzle blowing direction and the length Ln
Relational expression Ln = G with the amount of suspension K of the object to be processed between n
(K) A heat treatment furnace, wherein Ln is determined so that Ln <G (Hp × α · Tm 1/2 ). (However, Hp indicates the pitch between nozzles, and α is a constant that is uniquely determined with respect to the width Ws of the passage of the workpiece as defined in the text.)
【請求項3】前記熱処理炉が被処理物を実質的に水平方
向に通過させる横型熱処理炉であり、該横型熱処理炉内
に複数個の前記熱風吹き出しノズルが被処理物の上下に
配置されていることを特徴とする請求項1または2に記
載の熱処理炉。
3. The heat treatment furnace is a horizontal heat treatment furnace for passing an object to be processed in a substantially horizontal direction, and a plurality of the hot air blowing nozzles are arranged above and below the object to be processed in the horizontal heat treatment furnace. The heat treatment furnace according to claim 1 or 2, wherein
【請求項4】前記熱処理炉が炭素繊維の製造に用いられ
る耐炎化炉であり、前記被処理物が糸条であることを特
徴とする請求項1〜3のいずれかに記載の熱処理炉。
4. The heat treatment furnace according to claim 1, wherein said heat treatment furnace is a stabilization furnace used for producing carbon fibers, and said object to be treated is a yarn.
【請求項5】熱処理室内に被処理物を出し入れするスリ
ット状の開口部を有するとともに、被処理物を熱処理す
るための熱風を循環する装置が組み込まれてなり、かつ
熱処理室内の被処理物出入口近傍に被処理物の通過経路
に沿う方向へ熱風を吹き出すノズルを有する熱処理炉に
おいて、該熱風吹き出しノズルの吹き出し口から吹き出
し方向へ一定間隔離れた観測点Svにおけるノズル吹き
出し口幅方向の最大風速と最小風速の差ΔVをVm以内
とするために、ノズル内部に設ける整流域の段数Nがλ
/Vm1/2 以上であることを特徴とする熱処理炉。(上
記λは本文中に説明するように吹き出しノズル内に挿入
される多孔板の圧力損失に対して一意に決まる定数であ
る)
5. A heat treatment chamber having a slit-shaped opening through which an object to be processed is taken in and out, a device for circulating hot air for heat-treating the object to be processed is incorporated, and an object entrance and exit in the heat treatment chamber. In a heat treatment furnace having a nozzle that blows out hot air in a direction along the passage of the object in the vicinity, the maximum wind speed in the nozzle outlet width direction at an observation point Sv that is spaced apart from the outlet of the hot air outlet by a predetermined distance in the blowing direction. In order to keep the difference ΔV of the minimum wind speed within Vm, the number N of stages of the rectification region provided inside the nozzle is λ
/ Vm 1/2 or more. (The above λ is a constant uniquely determined for the pressure loss of the perforated plate inserted into the blowing nozzle as described in the text.)
【請求項6】前記熱風吹き出しノズルの導入域の幅をL
d、整流域の幅をPとした場合に、ノズル吹き出し方向
の長さLnが、Ld+P×N以上であり、かつ、G(H
p×α・Tm1/2 )以下であることを特徴とする請求項
5に記載の熱処理炉。
6. The width of the hot air blowing nozzle introduction area is L.
d, when the width of the rectification region is P, the length Ln in the nozzle blowing direction is Ld + P × N or more, and G (H
(p × α · Tm 1/2 ) or less.
【請求項7】前記熱処理炉が被処理物を実質的に水平方
向に通過させる横型熱処理炉であり、該横型熱処理炉内
に複数個の前記熱風吹き出しノズルが被処理物の上下に
配置されていることを特徴とする請求項5または6に記
載の熱処理炉。
7. The heat treatment furnace is a horizontal heat treatment furnace for passing an object to be processed in a substantially horizontal direction, and a plurality of hot air blowing nozzles are arranged above and below the object in the horizontal heat treatment furnace. The heat treatment furnace according to claim 5 or 6, wherein
【請求項8】前記熱処理炉が炭素繊維の製造に用いられ
る耐炎化炉であり、前記被処理物が糸条であることを特
徴とする請求項5〜7のいずれかに記載の炭素繊維製造
用熱処理炉。
8. The carbon fiber production according to claim 5, wherein the heat treatment furnace is an oxidation-resistant furnace used for producing carbon fibers, and the object to be treated is a yarn. Heat treatment furnace.
【請求項9】請求項1〜9のいずれかに記載の熱処理炉
を用いて、該熱処理炉内の温度を制御することを特徴と
する炭素繊維の製造方法。
9. A method for producing carbon fibers, wherein the temperature in the heat treatment furnace is controlled by using the heat treatment furnace according to claim 1.
JP2000390236A 2000-12-22 2000-12-22 Heat-treating oven and method for producing carbon fiber by use of the same Pending JP2002194627A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000390236A JP2002194627A (en) 2000-12-22 2000-12-22 Heat-treating oven and method for producing carbon fiber by use of the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000390236A JP2002194627A (en) 2000-12-22 2000-12-22 Heat-treating oven and method for producing carbon fiber by use of the same

Publications (1)

Publication Number Publication Date
JP2002194627A true JP2002194627A (en) 2002-07-10

Family

ID=18856642

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000390236A Pending JP2002194627A (en) 2000-12-22 2000-12-22 Heat-treating oven and method for producing carbon fiber by use of the same

Country Status (1)

Country Link
JP (1) JP2002194627A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008144293A (en) * 2006-12-07 2008-06-26 Mitsubishi Rayon Co Ltd Heat treatment apparatus for flame resistance and method for producing flame-resistant fiber bundle
WO2013015343A1 (en) 2011-07-28 2013-01-31 三菱レイヨン株式会社 Flame-retardant heat treatment furnace
WO2015012311A1 (en) 2013-07-23 2015-01-29 三菱レイヨン株式会社 Gas supply blowout nozzle and method for producing carbon fibers and flameproofed fibers using same
WO2020189029A1 (en) 2019-03-19 2020-09-24 東レ株式会社 Flame resistance heat treatment oven, flame-resistant fiber bundles, and method for manufacturing carbon-fiber bundles
US20210348305A1 (en) * 2018-09-28 2021-11-11 Toray Industries , Inc. Method of manufacturing stabilized fiber bundle, and method of manufacturing carbon fiber bundle
JP7166742B2 (en) 2014-06-20 2022-11-08 ウォンチュン ゲゼルシャフト ミット ベシュレンクテル ハフツング oxidation furnace

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10237723A (en) * 1996-12-16 1998-09-08 Toray Ind Inc The treatment furnace and production of carbon fiber
JP2000212839A (en) * 1999-01-12 2000-08-02 Mitsubishi Rayon Co Ltd Horizontal thermal treatment oven and thermal treatment

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10237723A (en) * 1996-12-16 1998-09-08 Toray Ind Inc The treatment furnace and production of carbon fiber
JP2000212839A (en) * 1999-01-12 2000-08-02 Mitsubishi Rayon Co Ltd Horizontal thermal treatment oven and thermal treatment

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008144293A (en) * 2006-12-07 2008-06-26 Mitsubishi Rayon Co Ltd Heat treatment apparatus for flame resistance and method for producing flame-resistant fiber bundle
CN105316799A (en) * 2011-07-28 2016-02-10 三菱丽阳株式会社 Pre-oxidation heat treatment furnace and fabricating method of carbon fiber
US9834869B2 (en) 2011-07-28 2017-12-05 Mitsubishi Chemical Corporation Flame-resistant heat treatment furnace
EP2738292A1 (en) * 2011-07-28 2014-06-04 Mitsubishi Rayon Co., Ltd. Flame-retardant heat treatment furnace
EP2738292A4 (en) * 2011-07-28 2014-12-17 Mitsubishi Rayon Co Flame-retardant heat treatment furnace
WO2013015343A1 (en) 2011-07-28 2013-01-31 三菱レイヨン株式会社 Flame-retardant heat treatment furnace
JP5682626B2 (en) * 2011-07-28 2015-03-11 三菱レイヨン株式会社 Flameproof heat treatment furnace
CN103717792A (en) * 2011-07-28 2014-04-09 三菱丽阳株式会社 Flame-retardant heat treatment furnace
KR101604932B1 (en) * 2011-07-28 2016-03-18 미쯔비시 레이온 가부시끼가이샤 Flame-retardant heat treatment furnace
US9157679B2 (en) 2011-07-28 2015-10-13 Mitsubishi Rayon Co., Ltd. Flame-resistant heat treatment furnace
WO2015012311A1 (en) 2013-07-23 2015-01-29 三菱レイヨン株式会社 Gas supply blowout nozzle and method for producing carbon fibers and flameproofed fibers using same
US10472738B2 (en) 2013-07-23 2019-11-12 Mitsubishi Chemical Corporation Gas supply blowout nozzle and method of producing flame-proofed fiber and carbon fiber
JP7166742B2 (en) 2014-06-20 2022-11-08 ウォンチュン ゲゼルシャフト ミット ベシュレンクテル ハフツング oxidation furnace
US20210348305A1 (en) * 2018-09-28 2021-11-11 Toray Industries , Inc. Method of manufacturing stabilized fiber bundle, and method of manufacturing carbon fiber bundle
WO2020189029A1 (en) 2019-03-19 2020-09-24 東レ株式会社 Flame resistance heat treatment oven, flame-resistant fiber bundles, and method for manufacturing carbon-fiber bundles
KR20210137016A (en) 2019-03-19 2021-11-17 도레이 카부시키가이샤 Flame-resistant heat treatment furnace, flame-resistant fiber bundle and carbon fiber bundle manufacturing method

Similar Documents

Publication Publication Date Title
JP5682626B2 (en) Flameproof heat treatment furnace
JP3868907B2 (en) Flameproof heat treatment apparatus and method of operating the apparatus
JP2010100967A (en) Heat-treatment furnace, flame retardant fiber bundle, and method for producing carbon fiber
US10087558B2 (en) Carbon fiber manufacturing method
JPH10237723A (en) The treatment furnace and production of carbon fiber
JP2007247130A (en) Heat-treating furnace and method for producing carbon fiber
JP5037978B2 (en) Flameproof furnace and flameproofing method
JP2002194627A (en) Heat-treating oven and method for producing carbon fiber by use of the same
JP5765425B2 (en) Carbon fiber bundle manufacturing method and carbon fiber precursor fiber bundle heating furnace
JP2009242962A (en) Flameproofing apparatus and method for flameproofing precursor fiber bundle
JP6729819B1 (en) Method for producing flame resistant fiber bundle and carbon fiber bundle, and flame resistant furnace
JP2000088464A (en) Heat treatment furnace and manufacture of carbon fiber using it
JP5812205B2 (en) Gas supply blowout nozzle and method for producing flameproof fiber and carbon fiber using the same
JP4572460B2 (en) Heat treatment furnace and method for producing carbon fiber using the same
JP2004124310A (en) Flameproofing furnace
CN115279958B (en) Flame-retardant fiber bundle, method for producing carbon fiber bundle, and flame-retardant furnace
JP4292771B2 (en) Heat treatment furnace
JP2014221956A (en) Heat treatment apparatus, and method for producing flame-resistant fiber by using the same
JPS6030762B2 (en) Hot air heating furnace for carbon fiber production
JP4236316B2 (en) Flame-resistant heat treatment equipment for yarn
TW202030386A (en) Method for producing flame-proof fiber bundle, and method for producing carbon fiber bundle
JP4276669B2 (en) Flameproof heat treatment apparatus and method of operating the apparatus
JP2003155629A (en) Heat treatment apparatus for making carbon fiber flameproof and method for producing carbon fiber
JP2001288623A (en) Hot air-circulating type convective oven and method for producing flameproof fiber
JPH034834B2 (en)

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20071214

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100721

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100803

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100914

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101019

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20110301