JP7341695B2 - power transmission belt - Google Patents

power transmission belt Download PDF

Info

Publication number
JP7341695B2
JP7341695B2 JP2019059622A JP2019059622A JP7341695B2 JP 7341695 B2 JP7341695 B2 JP 7341695B2 JP 2019059622 A JP2019059622 A JP 2019059622A JP 2019059622 A JP2019059622 A JP 2019059622A JP 7341695 B2 JP7341695 B2 JP 7341695B2
Authority
JP
Japan
Prior art keywords
power transmission
transmission belt
mass
ethylene
content
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2019059622A
Other languages
Japanese (ja)
Other versions
JP2020158637A (en
Inventor
莉恵 森本
尚 松田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Bando Chemical Industries Ltd
Original Assignee
Bando Chemical Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Bando Chemical Industries Ltd filed Critical Bando Chemical Industries Ltd
Priority to JP2019059622A priority Critical patent/JP7341695B2/en
Publication of JP2020158637A publication Critical patent/JP2020158637A/en
Priority to JP2023138916A priority patent/JP2023160863A/en
Application granted granted Critical
Publication of JP7341695B2 publication Critical patent/JP7341695B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Description

本発明は、伝動ベルトに関する。 The present invention relates to a power transmission belt .

ゴム製品に用いられる架橋ゴム組成物として、カルボン酸変性されたエチレン-α-オレフィンエラストマーをゴム成分とするものが知られている。例えば、特許文献1には、エチレン含量が10~60モル%であり且つカルボン酸で変性されたエチレン・プロピレン共重合体をゴム成分とする架橋ゴム組成物が開示されている。特許文献2には、エチレン含量が40~99モル%であり且つ不飽和カルボン酸で変性されたエチレン・プロピレン・ジエン三元共重合体をゴム成分とする架橋ゴム組成物が開示されている。特許文献3には、エチレン:プロピレンのモル比=30:70である無水マレイン酸変性エチレン・プロピレン共重合体をゴム成分とする架橋ゴム組成物が開示されている。 BACKGROUND ART As crosslinked rubber compositions used in rubber products, those containing carboxylic acid-modified ethylene-α-olefin elastomer as a rubber component are known. For example, Patent Document 1 discloses a crosslinked rubber composition having an ethylene content of 10 to 60 mol % and containing an ethylene/propylene copolymer modified with carboxylic acid as a rubber component. Patent Document 2 discloses a crosslinked rubber composition containing, as a rubber component, an ethylene-propylene-diene terpolymer having an ethylene content of 40 to 99 mol% and modified with an unsaturated carboxylic acid. Patent Document 3 discloses a crosslinked rubber composition whose rubber component is a maleic anhydride-modified ethylene/propylene copolymer having an ethylene:propylene molar ratio of 30:70.

特許第5049422号公報Patent No. 5049422 国際公開第2009/123228号International Publication No. 2009/123228 特開2010-202784号公報Japanese Patent Application Publication No. 2010-202784

本発明の課題は、耐摩耗性が優れる架橋ゴム組成物を用いた伝動ベルトを提供することである。 An object of the present invention is to provide a power transmission belt using a crosslinked rubber composition with excellent wear resistance.

本発明は、架橋ゴム組成物でプーリ接触面が形成された伝動ベルトであって、前記架橋ゴム組成物は、エチレン-α-オレフィンエラストマーのカルボン酸変性物を主体とするゴム成分と、湿式シリカと、を含有し、前記ゴム成分における前記エチレン-α-オレフィンエラストマーのカルボン酸変性物の含有量が90質量%以上であり、前記湿式シリカの含有量が、前記ゴム成分100質量部に対して30質量部以上80質量部以下である。 The present invention provides a power transmission belt in which a pulley contact surface is formed of a crosslinked rubber composition, the crosslinked rubber composition comprising a rubber component mainly consisting of a carboxylic acid modified ethylene-α-olefin elastomer, and wet silica. and, the content of the carboxylic acid modified product of the ethylene-α-olefin elastomer in the rubber component is 90% by mass or more, and the content of the wet silica is based on 100 parts by mass of the rubber component. It is 30 parts by mass or more and 80 parts by mass or less.

本発明によれば、エチレン-α-オレフィンエラストマーのカルボン酸変性物を主体とするゴム成分とシリカとを含有することにより、優れた耐摩耗性を得ることができる。 According to the present invention, excellent wear resistance can be obtained by containing silica and a rubber component mainly composed of a carboxylic acid modified ethylene-α-olefin elastomer.

実施例1~4及び比較例1~4のDIN摩耗試験の摩耗体積を示すグラフである。1 is a graph showing the wear volumes of DIN wear tests of Examples 1 to 4 and Comparative Examples 1 to 4. 実施例1~4及び比較例1~4の25℃での100%伸び時における引張応力M100を示すグラフである。2 is a graph showing the tensile stress M 100 at 100% elongation at 25° C. of Examples 1 to 4 and Comparative Examples 1 to 4. 実施例1~4及び比較例1~4の25℃での引張強さTBを示すグラフである。1 is a graph showing the tensile strength TB at 25° C. of Examples 1 to 4 and Comparative Examples 1 to 4. 実施例1~4及び比較例1~4の歪量10%及び100℃での貯蔵弾性係数G’(10%,100℃)を示すグラフである。2 is a graph showing the storage modulus G' (10%, 100°C) of Examples 1 to 4 and Comparative Examples 1 to 4 at a strain of 10% and 100°C. 実施例1~4及び比較例1~4の歪量10%及び100℃での損失係数tanδ(10%,100℃)を示すグラフである。2 is a graph showing the loss coefficient tan δ (10%, 100° C.) at a strain amount of 10% and 100° C. of Examples 1 to 4 and Comparative Examples 1 to 4. 実施例1~4及び比較例1~4の歪量1%及び100℃での貯蔵弾性係数G’(1%,100℃)の歪量30%及び100℃での貯蔵弾性係数G’(30%,100℃)に対する比(G’(1%,100℃)/G’(30%,100℃)を示すグラフである。Storage modulus of elasticity G' (1%, 100°C) at strain of 1% and 100°C for Examples 1 to 4 and Comparative Examples 1 to 4 %, 100°C) and the ratio (G'(1%, 100°C)/G'(30%, 100°C). 実施例1~4及び比較例1~4の硬さを示すグラフである。1 is a graph showing the hardness of Examples 1 to 4 and Comparative Examples 1 to 4.

以下、実施形態について詳細に説明する。 Hereinafter, embodiments will be described in detail.

実施形態に係る架橋ゴム組成物は、エチレン-α-オレフィンエラストマー(以下「ベースエラストマー」という。)のカルボン酸変性物(以下「エラストマーA」という。)を主体とするゴム成分と、シリカとを含有する。実施形態に係る架橋ゴム組成物によれば、優れた耐摩耗性を得ることができる。これは、ゴム成分の主体がベースエラストマーのカルボン酸変性物のエラストマーAであることにより、シリカの高い分散性が得られ、シリカにより均質に補強されるためであると推測される。 The crosslinked rubber composition according to the embodiment includes a rubber component mainly consisting of a carboxylic acid modified product (hereinafter referred to as "elastomer A") of an ethylene-α-olefin elastomer (hereinafter referred to as "base elastomer"), and silica. contains. According to the crosslinked rubber composition according to the embodiment, excellent abrasion resistance can be obtained. This is presumed to be because the main component of the rubber component is Elastomer A, which is a carboxylic acid-modified base elastomer, which provides high dispersibility of silica and is uniformly reinforced by the silica.

ここで、ゴム成分は、エラストマーAを主体として含むので、その含有量が50質量%よりも多い。ゴム成分におけるエラストマーAの含有量は、好ましくは80質量%以上、より好ましくは90質量%以上、最も好ましくは100質量%である。なお、ゴム成分は、エラストマーA以外のエチレン-α-オレフィンエラストマーを含んでいてもよく、また、その他のクロロプレンゴム(CR)、クロロスルホン化ポリエチレンゴム(CSM)、水素添加アクリロニトリルゴム(H-NBR)等を含んでいてもよい。 Here, since the rubber component mainly contains elastomer A, its content is more than 50% by mass. The content of elastomer A in the rubber component is preferably 80% by mass or more, more preferably 90% by mass or more, and most preferably 100% by mass. Note that the rubber component may contain an ethylene-α-olefin elastomer other than elastomer A, and may also contain other chloroprene rubber (CR), chlorosulfonated polyethylene rubber (CSM), hydrogenated acrylonitrile rubber (H-NBR), etc. ) etc. may be included.

カルボン酸変性前のベースエラストマーとしては、例えば、エチレン・プロピレン共重合体(以下「EPM」という。)、エチレン・プロピレン・非共役ジエン三元共重合体(以下「EPDM」という。)、エチレン・オクテン共重合体、エチレン・ブテン共重合体等が挙げられる。ベースエラストマーは、これらのうちの1種又は2種以上を含むことが好ましく、優れた耐摩耗性を得る観点から、EPR及びEPDMのうちの少なくとも一方を含むことがより好ましく、EPDMを含むことが更に好ましい。 Examples of the base elastomer before carboxylic acid modification include ethylene-propylene copolymer (hereinafter referred to as "EPM"), ethylene-propylene-nonconjugated diene terpolymer (hereinafter referred to as "EPDM"), ethylene-propylene copolymer (hereinafter referred to as "EPDM"), and ethylene-propylene copolymer (hereinafter referred to as "EPDM"). Examples include octene copolymers and ethylene-butene copolymers. The base elastomer preferably contains one or more of these, and from the viewpoint of obtaining excellent wear resistance, it more preferably contains at least one of EPR and EPDM, and preferably contains EPDM. More preferred.

ベースエラストマーにおけるエチレン含量は、優れた耐摩耗性を得る観点から、好ましくは40質量%以上70質量%以下、より好ましくは50質量%以上60質量%以下、更に好ましくは52質量%以上57質量%以下である。ベースエラストマーにおけるα-オレフィン含量は、優れた耐摩耗性を得る観点から、好ましくは30質量%以上60質量%以下、より好ましくは35質量%以上55質量%以下である。ベースエラストマーにおけるエチレン含量のα-オレフィン含量に対する比(エチレン含量/α-オレフィン含量)は、優れた耐摩耗性を得る観点から、好ましくは0.60以上2.4以下、より好ましくは1.0以上1.5以下である。 From the viewpoint of obtaining excellent wear resistance, the ethylene content in the base elastomer is preferably 40% by mass or more and 70% by mass or less, more preferably 50% by mass or more and 60% by mass or less, even more preferably 52% by mass or more and 57% by mass. It is as follows. From the viewpoint of obtaining excellent wear resistance, the α-olefin content in the base elastomer is preferably 30% by mass or more and 60% by mass or less, more preferably 35% by mass or more and 55% by mass or less. The ratio of ethylene content to α-olefin content (ethylene content/α-olefin content) in the base elastomer is preferably 0.60 or more and 2.4 or less, more preferably 1.0 from the viewpoint of obtaining excellent wear resistance. 1.5 or less.

ベースエラストマーがEPDMを含む場合、その非共役ジエン成分としては、例えば、エチリデンノボルネン(ENB)、ジシクロペンタジエン、1,4-ヘキサジエン等が挙げられる。非共役ジエン成分は、優れた耐摩耗性を得る観点から、これらのうちのエチリデンノボルネン(ENB)が好ましい。この場合、ベースエラストマーの非共役ジエン含量は、優れた耐摩耗性を得る観点から、好ましくは1.9質量%以上7.4質量%以下、より好ましくは4.5質量%以上5.5質量%以下である。 When the base elastomer contains EPDM, examples of the non-conjugated diene component include ethylidene nobornene (ENB), dicyclopentadiene, 1,4-hexadiene, and the like. Among these, ethylidene nobornene (ENB) is preferable as the non-conjugated diene component from the viewpoint of obtaining excellent wear resistance. In this case, the non-conjugated diene content of the base elastomer is preferably 1.9% by mass or more and 7.4% by mass or less, more preferably 4.5% by mass or more and 5.5% by mass from the viewpoint of obtaining excellent wear resistance. % or less.

エラストマーAのカルボン酸変性物としては、例えば、無水マレイン酸変性物、マレイン酸変性物、無水イタコン酸変性物、イタコン酸変性物、フマル酸変性物、メタクリル酸変性物、アクリル酸変性物等が挙げられる。エラストマーAのカルボン酸変性物は、これらのうちの1種又は2種以上を含むことが好ましく、優れた耐摩耗性を得る観点から、無水マレイン酸変性物を含むことがより好ましい。 Examples of carboxylic acid-modified products of elastomer A include maleic anhydride-modified products, maleic acid-modified products, itaconic anhydride-modified products, itaconic acid-modified products, fumaric acid-modified products, methacrylic acid-modified products, acrylic acid-modified products, etc. Can be mentioned. The carboxylic acid-modified product of elastomer A preferably contains one or more of these, and more preferably contains a maleic anhydride-modified product from the viewpoint of obtaining excellent wear resistance.

エラストマーAは、ベースエラストマー、カルボン酸、及び反応開始剤を、ニーダー、バンバリーミキサー等の密閉型混練機に投入し、反応開始剤が分解する所定の温度下で所定時間混練してベースエラストマーにカルボン酸をグラフト反応させることにより得ることができる。また、エラストマーAは、紫外線照射等の変性手段によっても得ることができる。 Elastomer A is produced by putting a base elastomer, a carboxylic acid, and a reaction initiator into a closed kneader such as a kneader or a Banbury mixer, and kneading for a predetermined time at a predetermined temperature at which the reaction initiator decomposes. It can be obtained by grafting acid. Elastomer A can also be obtained by modification means such as ultraviolet irradiation.

ゴム成分は、分子間が架橋しているが、架橋剤として有機過酸化物が用いられて架橋していてもよく、また、架橋剤として硫黄が用いられて架橋していてもよく、さらに、それらが併用されて架橋していてもよい。また、ゴム成分は、電子線等が用いられて架橋していてもよい。ゴム成分は、優れた耐摩耗性を得る観点から、これらのうち架橋剤として有機過酸化物が用いられて架橋していることが好ましい。この場合、架橋前の未架橋ゴム組成物における有機過酸化物の配合量は、優れた耐摩耗性を得る観点から、ゴム成分100質量部に対して、好ましくは1.0質量部以上5.0質量部以下、より好ましくは2.0質量部以上4.0質量部以下である。 The rubber component is intermolecularly crosslinked, but may be crosslinked using an organic peroxide as a crosslinking agent, or may be crosslinked using sulfur as a crosslinking agent, and further, They may be used together to form a crosslink. Further, the rubber component may be crosslinked using an electron beam or the like. From the viewpoint of obtaining excellent abrasion resistance, the rubber component is preferably crosslinked using an organic peroxide as a crosslinking agent. In this case, the amount of organic peroxide blended in the uncrosslinked rubber composition before crosslinking is preferably 1.0 parts by mass or more with respect to 100 parts by mass of the rubber component, from the viewpoint of obtaining excellent wear resistance. It is 0 parts by mass or less, more preferably 2.0 parts by mass or more and 4.0 parts by mass or less.

シリカとしては、例えば、沈降法シリカやゲル法シリカなどの湿式シリカ;焼成法シリカやアーク法シリカなどの乾式シリカ等の合成シリカが挙げられる。シリカは、これらのうちの1種又は2種以上を含むことが好ましく、優れた耐摩耗性を得る観点から、沈降法シリカを含むことがより好ましい。ISO9277に基づいて測定されるシリカのBET比表面積は、例えば150m/g以上200m/g以下である。シリカの一次粒子径は、例えば10nm以上50nm以下であり、シリカの凝集体の二次粒子径は、例えば1μm以上40μm以下である。実施形態に係る架橋ゴム組成物におけるシリカの含有量は、優れた耐摩耗性を得る観点から、ゴム成分100質量部に対して、好ましくは1質量部以上80質量部以下、より好ましくは20質量部以上60質量部以下、更に好ましくは30質量部以上50質量部以下である。 Examples of the silica include wet silica such as precipitated silica and gel silica; synthetic silica such as dry silica such as calcined silica and arc silica. It is preferable that the silica contains one or more of these, and from the viewpoint of obtaining excellent wear resistance, it is more preferable that the silica contains precipitated silica. The BET specific surface area of silica measured based on ISO9277 is, for example, 150 m 2 /g or more and 200 m 2 /g or less. The primary particle size of silica is, for example, 10 nm or more and 50 nm or less, and the secondary particle size of the silica aggregate is, for example, 1 μm or more and 40 μm or less. From the viewpoint of obtaining excellent abrasion resistance, the content of silica in the crosslinked rubber composition according to the embodiment is preferably 1 part by mass or more and 80 parts by mass or less, more preferably 20 parts by mass, based on 100 parts by mass of the rubber component. Parts or more and 60 parts by weight or less, more preferably 30 parts or more and 50 parts by weight or less.

実施形態に係る架橋ゴム組成物は、その他に、ゴム配合剤として、加工助剤、加硫促進剤、加硫促進助剤、可塑剤、老化防止剤等を含有していてもよい。 The crosslinked rubber composition according to the embodiment may also contain a processing aid, a vulcanization accelerator, a vulcanization accelerator, a plasticizer, an anti-aging agent, etc. as rubber compounding agents.

実施形態に係る架橋ゴム組成物のJISK6264-2に基づくDIN摩耗試験により測定される摩耗量は、好ましくは300mm以下、より好ましくは200mm以下である。 The amount of wear measured by the DIN abrasion test based on JIS K6264-2 of the crosslinked rubber composition according to the embodiment is preferably 300 mm 3 or less, more preferably 200 mm 3 or less.

実施形態に係る架橋ゴム組成物の25℃での100%伸び時における引張応力M100は、好ましくは1.5MPa以上、より好ましくは3.0MPa以上である。実施形態に係る架橋ゴム組成物の25℃での引張強さTBは、好ましくは3.00MPa以上、より好ましくは10.0以上である。これらの25℃での100%伸び時における引張応力M100及び引張強さTBは、JIS K6251:2010に基づいて測定されるものである。 The tensile stress M 100 at 100% elongation at 25° C. of the crosslinked rubber composition according to the embodiment is preferably 1.5 MPa or more, more preferably 3.0 MPa or more. The tensile strength TB at 25° C. of the crosslinked rubber composition according to the embodiment is preferably 3.00 MPa or more, more preferably 10.0 or more. These tensile stress M 100 and tensile strength TB at 100% elongation at 25° C. are measured based on JIS K6251:2010.

実施形態に係る架橋ゴム組成物の歪量10%及び100℃での貯蔵弾性係数G’(10%,100℃)は、好ましくは1.0MPa以上5.0MPa以下、より好ましくは2.0MPa以上4.0MPa以下である。実施形態に係る架橋ゴム組成物の歪量10%及び100℃での損失係数tanδ(10%,100℃)は、好ましくは0.030以上0.16以下、より好ましくは0.070以上0.13以下である。実施形態に係る架橋ゴム組成物の歪量1%及び100℃での貯蔵弾性係数G’(1%,100℃)の歪量30%及び100℃での貯蔵弾性係数G’(30%,100℃)に対する比(G’(1%,100℃)/G’(30%,100℃))は、充填材の分散性を評価するための貯蔵弾性係数G’の歪み依存性、すなわち、いわゆるペイン効果の指標であって、1.0に近い程充填材の分散性が優れるということになるが、好ましくは0.8以上3.5以下、より好ましくは0.8以上2.0以下である。これらの貯蔵弾性係数G’及び損失係数tanδは、JIS K6394:2007に基づいて測定されるものである。 The storage modulus G' (10%, 100°C) at 10% strain and 100°C of the crosslinked rubber composition according to the embodiment is preferably 1.0 MPa or more and 5.0 MPa or less, more preferably 2.0 MPa or more. It is 4.0 MPa or less. The loss coefficient tan δ (10%, 100°C) at 10% strain and 100°C of the crosslinked rubber composition according to the embodiment is preferably 0.030 or more and 0.16 or less, more preferably 0.070 or more and 0.070 or more. It is 13 or less. The storage modulus G' (1%, 100°C) of the crosslinked rubber composition according to the embodiment at 1% strain and 100°C. The ratio (G'(1%, 100°C)/G'(30%, 100°C)) to ℃) is the strain dependence of the storage modulus G' for evaluating the dispersibility of the filler, that is, the so-called It is an index of the Payne effect, and the closer it is to 1.0, the better the dispersibility of the filler is. It is preferably 0.8 or more and 3.5 or less, more preferably 0.8 or more and 2.0 or less. be. These storage elastic modulus G' and loss coefficient tan δ are measured based on JIS K6394:2007.

実施形態に係る架橋ゴム組成物のJIS K6253-3:2012に基づいて、タイプAデュロメータにより測定される硬さは、好ましくは50以上90以下、より好ましくは53以上85以下である。 The hardness of the crosslinked rubber composition according to the embodiment as measured by a type A durometer based on JIS K6253-3:2012 is preferably 50 or more and 90 or less, more preferably 53 or more and 85 or less.

以上の実施形態に係る架橋ゴム組成物は、ニーダー、バンバリーミキサー、オープンロール等のゴム混練機を用い、ゴム成分及びシリカ、並びにその他のゴム配合剤を混練して未架橋ゴム組成物を調製し、その未架橋ゴム組成物を所定温度及び所定圧力で架橋させることにより得ることができる。 The crosslinked rubber composition according to the above embodiments is prepared by kneading the rubber component, silica, and other rubber compounding agents using a rubber kneading machine such as a kneader, Banbury mixer, or open roll to prepare an uncrosslinked rubber composition. can be obtained by crosslinking the uncrosslinked rubber composition at a predetermined temperature and a predetermined pressure.

また、実施形態に係る架橋ゴム組成物は、優れた耐摩耗性を有することから、ゴム製品の摺動部分を形成するのに好適であり、具体的には、例えば伝動ベルトのプーリ接触面を形成するのに適している。 In addition, the crosslinked rubber composition according to the embodiment has excellent abrasion resistance, and is therefore suitable for forming sliding parts of rubber products. suitable for forming.

(架橋ゴム組成物)
以下の実施例1~4及び比較例1~4のシート状の架橋ゴム組成物を作製した。それぞれの構成は表1にも示す。
(Crosslinked rubber composition)
Sheet-shaped crosslinked rubber compositions of Examples 1 to 4 and Comparative Examples 1 to 4 below were prepared. The respective configurations are also shown in Table 1.

<実施例1>
密閉型混練機に、EPDM(Nordel IP 4640 Dow Chemical社製 エチレン含量:55質量%、プロピレン含量:40質量%、非共役ジエン含量(ENB含量):4.9質量%、エチレン含量/プロピレン含量=1.4、エチレン含量/非共役ジエン含量(ENB含量)=11)とともに、このEPDM100質量部に対して、1質量部の無水マレイン酸及び0.1質量部の反応開始剤の有機過酸化物(パークミルD 日本油脂社製、ジクミルパーオキサイド)を投入し、それらを170℃の温度下で10分間混練して無水マレイン酸変性EPDMを調製した。次いで、この無水マレイン酸変性EPDMをゴム成分とし、これに、ゴム成分100質量部に対して、5質量部の充填材としての沈降法シリカ(ウルトラジルVN3 エボニック社製)、0.5質量部の加工助剤のステアリン酸(ステアリン酸S50 新日本理化社製)、5質量部の加硫促進助剤の酸化亜鉛(酸化亜鉛3種 白水化学社製)、及び3.2質量部の架橋剤の有機過酸化物(パークミルD 日本油脂社製、ジクミルパーオキサイド)を配合して混練することにより未架橋ゴム組成物を調製した。そして、この未架橋ゴム組成物から所定形状の試験用の架橋ゴム組成物を得た。得られた試験用の架橋ゴム組成物を実施例1とした。
<Example 1>
In a closed kneader, EPDM (Nordel IP 4640 manufactured by Dow Chemical Co., Ltd., ethylene content: 55% by mass, propylene content: 40% by mass, non-conjugated diene content (ENB content): 4.9% by mass, ethylene content/propylene content = 1.4, ethylene content/non-conjugated diene content (ENB content) = 11), and 1 part by mass of maleic anhydride and 0.1 part by mass of organic peroxide as a reaction initiator for 100 parts by mass of this EPDM. (Percumyl D manufactured by Nippon Oil & Fats Co., Ltd., dicumyl peroxide) was added and kneaded for 10 minutes at a temperature of 170° C. to prepare maleic anhydride-modified EPDM. Next, this maleic anhydride-modified EPDM was used as a rubber component, and to this, 5 parts by mass of precipitated silica (Ultrasil VN3 manufactured by Evonik) as a filler was added to 100 parts by mass of the rubber component, and 0.5 parts by mass. stearic acid as a processing aid (stearic acid S50, manufactured by Shin Nippon Rika Co., Ltd.), 5 parts by mass of zinc oxide as a vulcanization accelerating aid (3 types of zinc oxide, manufactured by Hakusui Chemical Co., Ltd.), and 3.2 parts by mass of a crosslinking agent. An uncrosslinked rubber composition was prepared by blending and kneading an organic peroxide (Percumyl D, manufactured by NOF Corporation, dicumyl peroxide). A crosslinked rubber composition for testing in a predetermined shape was obtained from this uncrosslinked rubber composition. The obtained crosslinked rubber composition for testing was designated as Example 1.

<実施例2>
沈降法シリカの配合量を、ゴム成分100質量部に対して40質量部としたことを除いて実施例1と同様にして得た試験用の架橋ゴム組成物を実施例2とした。
<Example 2>
Example 2 was a crosslinked rubber composition for testing obtained in the same manner as in Example 1 except that the amount of precipitated silica was 40 parts by mass per 100 parts by mass of the rubber component.

<実施例3>
沈降法シリカの配合量を、ゴム成分100質量部に対して70質量部としたことを除いて実施例1と同様にして得た試験用の架橋ゴム組成物を実施例3とした。
<Example 3>
Example 3 was a crosslinked rubber composition for testing obtained in the same manner as in Example 1 except that the amount of precipitated silica was 70 parts by mass per 100 parts by mass of the rubber component.

<実施例4>
EPDMに代えて、EPM(EP11 JSR社製 エチレン含量:52質量%、プロピレン含量:48質量%、エチレン含量/プロピレン含量=1.1)を無水マレイン酸変性して用いたことを除いて実施例1と同様にして得た試験用の架橋ゴム組成物を実施例4とした。
<Example 4>
Examples except that EPM (EP11 manufactured by JSR, ethylene content: 52% by mass, propylene content: 48% by mass, ethylene content/propylene content = 1.1) modified with maleic anhydride was used instead of EPDM. Example 4 was a crosslinked rubber composition for testing obtained in the same manner as Example 1.

<比較例1~4>
無水マレイン酸変性したEPDM又はEPMに代えて、酸変性していないEPDM又はEPMを用いたことを除いて、実施例1~4と同様にして得た試験用の架橋ゴム組成物をそれぞれ比較例1~4とした。
<Comparative Examples 1 to 4>
Comparative Examples were crosslinked rubber compositions for testing obtained in the same manner as Examples 1 to 4, except that EPDM or EPM that had not been modified with acid was used instead of EPDM or EPM that had been modified with maleic anhydride. I gave it a rating of 1 to 4.

Figure 0007341695000001
Figure 0007341695000001

(試験方法)
<耐摩耗性>
実施例1~4及び比較例1~4のそれぞれについて、JIS K6264-2:2005に基づいてDIN摩耗試験を行って摩耗体積を測定した。
(Test method)
<Abrasion resistance>
For each of Examples 1 to 4 and Comparative Examples 1 to 4, a DIN abrasion test was conducted based on JIS K6264-2:2005 to measure the wear volume.

<引張特性>
実施例1~4及び比較例1~4のそれぞれについて、JIS K6251:2010に基づいて、25℃での100%伸び時における引張応力M100及び引張強さTBを測定した。
<Tensile properties>
For each of Examples 1 to 4 and Comparative Examples 1 to 4, tensile stress M 100 and tensile strength TB at 100% elongation at 25° C. were measured based on JIS K6251:2010.

<動的粘弾性>
実施例1~4及び比較例1~4のそれぞれについて、JIS K6394:2007に基づいて、歪量10%及び100℃での貯蔵弾性係数G’(10%,100℃)及び損失係数tanδ(10%,100℃)を測定した。
<Dynamic viscoelasticity>
For each of Examples 1 to 4 and Comparative Examples 1 to 4, storage modulus G' (10%, 100 °C) and loss coefficient tan δ (10 %, 100°C) was measured.

また、歪量1%及び100℃での貯蔵弾性係数G’(1%,100℃)並びに歪量30%及び100℃での貯蔵弾性係数G’(30%,100℃)を測定し、前者の後者に対する比(G’(1%,100℃)/G’(30%,100℃)を算出した。 In addition, the storage elastic modulus G' (1%, 100°C) at a strain of 1% and 100°C and the storage elastic modulus G' (30%, 100°C) at a strain of 30% and 100°C were measured, and the former The ratio of G'(1%, 100°C)/G'(30%, 100°C) to the latter was calculated.

<硬さ>
実施例1~4及び比較例1~4のそれぞれについて、JIS K6253-3:2012に基づいて、タイプAデュロメータにより硬さを測定した。
<Hardness>
The hardness of each of Examples 1 to 4 and Comparative Examples 1 to 4 was measured using a type A durometer based on JIS K6253-3:2012.

(試験結果)
表2は、試験結果を示す。図1は、実施例1~4及び比較例1~4のDIN摩耗試験の摩耗体積を示す。図2Aは、実施例1~4及び比較例1~4の25℃での100%伸び時における引張応力M100を示す。図2Bは、実施例1~4及び比較例1~4の25℃での引張強さTBを示す。図3Aは、実施例1~4及び比較例1~4の歪量10%及び100℃での貯蔵弾性係数G’(10%,100℃)を示す。図3Bは、実施例1~4及び比較例1~4の歪量10%及び100℃での損失係数tanδ(10%,100℃)を示す。図4は、実施例1~4及び比較例1~4の歪量1%及び100℃での貯蔵弾性係数G’(1%,100℃)の歪量30%及び100℃での貯蔵弾性係数G’(30%,100℃)に対する比(G’(1%,100℃)/G’(30%,100℃)を示す。図5は、実施例1~4及び比較例1~4の硬さを示す。
(Test results)
Table 2 shows the test results. FIG. 1 shows the wear volume of the DIN wear test for Examples 1 to 4 and Comparative Examples 1 to 4. FIG. 2A shows the tensile stress M 100 at 100% elongation at 25° C. for Examples 1 to 4 and Comparative Examples 1 to 4. FIG. 2B shows the tensile strength TB at 25° C. of Examples 1 to 4 and Comparative Examples 1 to 4. FIG. 3A shows the storage modulus G' (10%, 100°C) at 10% strain and 100°C for Examples 1 to 4 and Comparative Examples 1 to 4. FIG. 3B shows the loss coefficient tan δ (10%, 100° C.) at 10% strain and 100° C. for Examples 1 to 4 and Comparative Examples 1 to 4. FIG. 4 shows the storage modulus G' (1%, 100°C) at a strain of 1% and 100°C for Examples 1 to 4 and Comparative Examples 1 to 4 and the storage modulus at a strain of 30% and 100°C. The ratio (G' (1%, 100 °C)/G' (30%, 100 °C) to G' (30%, 100 °C) is shown. Indicates hardness.

Figure 0007341695000002
Figure 0007341695000002

表2及び図1によれば、無水マレイン酸変性したEPDM又はEPMをゴム成分とした実施例1~4は、無水マレイン酸変性していないEPDM又はEPMをゴム成分としたそれぞれ対応する比較例1~4よりも、摩耗体積が少なく、したがって、耐摩耗性が優れることが分かる。 According to Table 2 and FIG. 1, Examples 1 to 4 in which maleic anhydride-modified EPDM or EPM was used as the rubber component were different from corresponding comparative examples 1 in which maleic anhydride-modified EPDM or EPM was used as the rubber component. It can be seen that the wear volume is smaller than that of Samples 4 to 4, and therefore the wear resistance is superior.

表2及び図2Aによれば、無水マレイン酸変性したEPDM又はEPMをゴム成分とした実施例1~4は、無水マレイン酸変性していないEPDM又はEPMをゴム成分としたそれぞれ対応する比較例1~4よりも、引張応力M100が高いことが分かる。また、EPDMをゴム成分とした実施例1~3と比較例1~3とを比較すると、沈降法シリカの含有量がゴム成分100質量部に対して40質量部以上であると、EPDMの無水マレイン酸変性の有無による引張応力M100の差が非常に大きいことが分かる。 According to Table 2 and FIG. 2A, Examples 1 to 4 in which maleic anhydride-modified EPDM or EPM was used as the rubber component were different from corresponding Comparative Examples 1 in which maleic anhydride-modified EPDM or EPM was used as the rubber component. It can be seen that the tensile stress M 100 is higher than that of . Furthermore, when comparing Examples 1 to 3 and Comparative Examples 1 to 3 in which EPDM was used as a rubber component, it was found that when the content of precipitated silica was 40 parts by mass or more based on 100 parts by mass of the rubber component, EPDM was anhydrous. It can be seen that the difference in tensile stress M100 between the presence and absence of maleic acid modification is very large.

表2及び図2Bによれば、無水マレイン酸変性したEPDM又はEPMをゴム成分とした実施例1~4は、無水マレイン酸変性していないEPDM又はEPMをゴム成分としたそれぞれ対応する比較例1~4よりも、引張強さTBが高いことが分かる。 According to Table 2 and FIG. 2B, Examples 1 to 4 in which maleic anhydride-modified EPDM or EPM was used as the rubber component were different from corresponding Comparative Examples 1 in which maleic anhydride-modified EPDM or EPM was used as the rubber component. It can be seen that the tensile strength TB is higher than that of ~4.

表2及び図3Aによれば、沈降法シリカの含有量がゴム成分100質量部に対して40質量部以下である実施例1、2、及び4と、それぞれ対応する比較例1、2、及び4とを比較すると、EPDM又はEPMの無水マレイン酸変性の有無による貯蔵弾性係数G’(10%,100℃)の差がほとんど認められないことが分かる。また、沈降法シリカの含有量がゴム成分100質量部に対して70質量部である実施例3と比較例3とを比較すると、無水マレイン酸変性したEPDMをゴム成分とした実施例3は、無水マレイン酸変性していないEPDMをゴム成分とした比較例3よりも、貯蔵弾性係数G’(10%,100℃)が低いことが分かる。 According to Table 2 and FIG. 3A, Examples 1, 2, and 4 in which the content of precipitated silica is 40 parts by mass or less based on 100 parts by mass of the rubber component, and corresponding Comparative Examples 1, 2, and 4, it can be seen that there is almost no difference in storage modulus G' (10%, 100° C.) depending on whether EPDM or EPM is modified with maleic anhydride. Further, when comparing Example 3 in which the content of precipitated silica was 70 parts by mass per 100 parts by mass of the rubber component and Comparative Example 3, Example 3 in which maleic anhydride-modified EPDM was used as the rubber component, It can be seen that the storage elastic modulus G' (10%, 100° C.) is lower than that of Comparative Example 3 in which the rubber component was EPDM that was not modified with maleic anhydride.

表2及び図3Bによれば、沈降法シリカの含有量がゴム成分100質量部に対して40質量部以下である実施例1、2、及び4と、それぞれ対応する比較例1、2、及び4とを比較すると、無水マレイン酸変性したEPDM又はEPMをゴム成分とした実施例1、2、及び4は、無水マレイン酸変性していないEPDM又はEPMをゴム成分とした比較例1、2、及び4よりも、損失係数tanδ(10%,100℃)が低く、したがって、動的使用による発熱が小さいことが分かる。また、沈降法シリカの含有量がゴム成分100質量部に対して70質量部である実施例3と比較例3とを比較すると、無水マレイン酸変性したEPDMをゴム成分とした実施例3は、無水マレイン酸変性していないEPDMをゴム成分とした比較例3よりも、損失係数tanδ(10%,100℃)が高いことが分かる。これらのことから、動的使用による発熱を抑制する観点からは、沈降法シリカの含有量は、酸変性したゴム成分100質量部に対して70質量部よりも少ないことが好ましく、60質量部以下であることがより好ましい。 According to Table 2 and FIG. 3B, Examples 1, 2, and 4 in which the content of precipitated silica is 40 parts by mass or less based on 100 parts by mass of the rubber component, and corresponding Comparative Examples 1, 2, and Comparing Examples 1, 2, and 4, in which maleic anhydride-modified EPDM or EPM was used as a rubber component, compared to Comparative Examples 1, 2, and 4, in which maleic anhydride-modified EPDM or EPM was used as a rubber component. It can be seen that the loss coefficient tan δ (10%, 100° C.) is lower than that of Samples and 4, and therefore the heat generation due to dynamic use is small. Further, when comparing Example 3 in which the content of precipitated silica was 70 parts by mass per 100 parts by mass of the rubber component and Comparative Example 3, Example 3 in which maleic anhydride-modified EPDM was used as the rubber component, It can be seen that the loss coefficient tan δ (10%, 100° C.) is higher than that of Comparative Example 3 in which the rubber component was EPDM that was not modified with maleic anhydride. For these reasons, from the viewpoint of suppressing heat generation due to dynamic use, the content of precipitated silica is preferably less than 70 parts by mass, and 60 parts by mass or less, based on 100 parts by mass of the acid-modified rubber component. It is more preferable that

表2及び図4によれば、無水マレイン酸変性したEPDM又はEPMをゴム成分とした実施例1~4は、無水マレイン酸変性していないEPDM又はEPMをゴム成分としたそれぞれ対応する比較例1~4よりも、G’(1%,100℃)/G’(30%,100℃)が1.0に近く、したがって、充填材である沈降法シリカの分散性が優れることが分かる。 According to Table 2 and FIG. 4, Examples 1 to 4 in which maleic anhydride-modified EPDM or EPM was used as the rubber component were different from corresponding comparative examples 1 in which maleic anhydride-modified EPDM or EPM was used as the rubber component. It can be seen that G'(1%, 100°C)/G'(30%, 100°C) is closer to 1.0 than that of Sample 4. Therefore, it can be seen that the dispersibility of the precipitated silica as a filler is excellent.

表2及び図5によれば、無水マレイン酸変性したEPDM又はEPMをゴム成分とした実施例1~4と、無水マレイン酸変性していないEPDM又はEPMをゴム成分としたそれぞれ対応する比較例1~4とを比較すると、硬さの差がほとんど認められないことが分かる。 According to Table 2 and FIG. 5, Examples 1 to 4 using EPDM or EPM modified with maleic anhydride as the rubber component, and corresponding Comparative Example 1 using EPDM or EPM not modified with maleic anhydride as the rubber component. Comparing with No. 4 to No. 4, it can be seen that there is almost no difference in hardness.

本発明は、伝動ベルトの技術分野について有用である。 The present invention is useful in the technical field of power transmission belts .

Claims (11)

架橋ゴム組成物でプーリ接触面が形成された伝動ベルトであって、
前記架橋ゴム組成物は、エチレン-α-オレフィンエラストマーのカルボン酸変性物を主体とするゴム成分と、湿式シリカと、を含有し、
前記ゴム成分における前記エチレン-α-オレフィンエラストマーのカルボン酸変性物の含有量が90質量%以上であり、
前記湿式シリカの含有量が、前記ゴム成分100質量部に対して30質量部以上80質量部以下である伝動ベルト
A power transmission belt in which a pulley contact surface is formed of a crosslinked rubber composition,
The crosslinked rubber composition contains a rubber component mainly composed of a carboxylic acid modified ethylene-α-olefin elastomer, and wet silica,
The content of the carboxylic acid modified ethylene-α-olefin elastomer in the rubber component is 90% by mass or more,
A power transmission belt in which the content of the wet silica is 30 parts by mass or more and 80 parts by mass or less based on 100 parts by mass of the rubber component.
請求項1に記載された伝動ベルトにおいて、
前記エチレン-α-オレフィンエラストマーが、エチレン・プロピレン共重合体を含む伝動ベルト
The power transmission belt according to claim 1,
A power transmission belt in which the ethylene-α-olefin elastomer contains an ethylene-propylene copolymer.
請求項1又は2に記載された伝動ベルトにおいて、
前記エチレン-α-オレフィンエラストマーが、エチレン・プロピレン・非共役ジエン三元共重合体を含む伝動ベルト
The power transmission belt according to claim 1 or 2,
A power transmission belt in which the ethylene-α-olefin elastomer includes an ethylene-propylene-nonconjugated diene terpolymer.
請求項3に記載された伝動ベルトにおいて、
前記エチレン・プロピレン・非共役ジエン三元共重合体における非共役ジエン成分がエチリデンノボルネンであり、且つその非共役ジエン含量が1.9質量%以上7.4質量%以下である伝動ベルト
In the power transmission belt according to claim 3,
A power transmission belt, wherein the non-conjugated diene component in the ethylene/propylene/non-conjugated diene terpolymer is ethylidene nobornene, and the non-conjugated diene content is 1.9% by mass or more and 7.4% by mass or less.
請求項1乃至4のいずれかに記載された伝動ベルトにおいて、
前記エチレン-α-オレフィンエラストマーのエチレン含量が40質量%以上70質量%以下である伝動ベルト
The power transmission belt according to any one of claims 1 to 4,
A power transmission belt, wherein the ethylene content of the ethylene-α-olefin elastomer is 40% by mass or more and 70% by mass or less.
請求項1乃至5のいずれかに記載された伝動ベルトにおいて、
前記エチレン-α-オレフィンエラストマーのα-オレフィン含量が30質量%以上60質量%以下である伝動ベルト
The power transmission belt according to any one of claims 1 to 5,
A power transmission belt, wherein the ethylene-α-olefin elastomer has an α-olefin content of 30% by mass or more and 60% by mass or less.
請求項1乃至6のいずれかに記載された伝動ベルトにおいて、
前記エチレン-α-オレフィンエラストマーにおけるエチレン含量のα-オレフィン含量に対する比が0.60以上2.4以下である伝動ベルト
The power transmission belt according to any one of claims 1 to 6,
A power transmission belt, wherein the ratio of ethylene content to α-olefin content in the ethylene-α-olefin elastomer is 0.60 or more and 2.4 or less.
請求項1乃至7のいずれかに記載された伝動ベルトにおいて、
前記カルボン酸変性物が、無水マレイン酸変性物を含む伝動ベルト
The power transmission belt according to any one of claims 1 to 7,
A power transmission belt , wherein the carboxylic acid modified product includes a maleic anhydride modified product.
請求項1乃至8のいずれかに記載された伝動ベルトにおいて、
前記ゴム成分が、架橋剤として有機過酸化物が用いられて架橋している伝動ベルト
The power transmission belt according to any one of claims 1 to 8,
A power transmission belt in which the rubber component is crosslinked using an organic peroxide as a crosslinking agent.
請求項1乃至9のいずれかに記載された伝動ベルトにおいて、
前記湿式シリカが、沈降法シリカを含む伝動ベルト
The power transmission belt according to any one of claims 1 to 9,
A power transmission belt , wherein the wet silica includes precipitated silica.
請求項1乃至10のいずれかに記載された伝動ベルトにおいて、
JISK6264-2に基づくDIN摩耗試験により測定される摩耗体積が200mm以下である伝動ベルト
The power transmission belt according to any one of claims 1 to 10,
A power transmission belt whose wear volume measured by a DIN abrasion test based on JIS K6264-2 is 200 mm 3 or less.
JP2019059622A 2019-03-27 2019-03-27 power transmission belt Active JP7341695B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2019059622A JP7341695B2 (en) 2019-03-27 2019-03-27 power transmission belt
JP2023138916A JP2023160863A (en) 2019-03-27 2023-08-29 Transmission belt

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019059622A JP7341695B2 (en) 2019-03-27 2019-03-27 power transmission belt

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2023138916A Division JP2023160863A (en) 2019-03-27 2023-08-29 Transmission belt

Publications (2)

Publication Number Publication Date
JP2020158637A JP2020158637A (en) 2020-10-01
JP7341695B2 true JP7341695B2 (en) 2023-09-11

Family

ID=72641896

Family Applications (2)

Application Number Title Priority Date Filing Date
JP2019059622A Active JP7341695B2 (en) 2019-03-27 2019-03-27 power transmission belt
JP2023138916A Pending JP2023160863A (en) 2019-03-27 2023-08-29 Transmission belt

Family Applications After (1)

Application Number Title Priority Date Filing Date
JP2023138916A Pending JP2023160863A (en) 2019-03-27 2023-08-29 Transmission belt

Country Status (1)

Country Link
JP (2) JP7341695B2 (en)

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002364630A (en) 2001-06-11 2002-12-18 Sumitomo Rubber Ind Ltd Rubber roller
JP2003192855A (en) 2001-12-25 2003-07-09 Mitsubishi Cable Ind Ltd Heat reversible crosslinkable elastomer composition and molding thereof
JP2004231933A (en) 2002-12-03 2004-08-19 Yokohama Rubber Co Ltd:The Thermoplastic elastomer composition
JP2004307576A (en) 2003-04-03 2004-11-04 Yokohama Rubber Co Ltd:The Thermoplastic elastomer composition
JP2005248108A (en) 2004-03-08 2005-09-15 Yokohama Rubber Co Ltd:The Thermoplastic elastomer composition
JP2008056715A (en) 2006-08-29 2008-03-13 Kraton Jsr Elastomers Kk Thermoplastic elastomer composition
CN106279940A (en) 2016-08-08 2017-01-04 扬州曙光电缆股份有限公司 High fire-retardance cross-linked polyolefin sheath generation Ⅲ nuclear power station nuclear island cable and manufacture method
WO2017065299A1 (en) 2015-10-16 2017-04-20 株式会社ブリヂストン Multicomponent copolymer, rubber composition, cross-linked rubber composition, rubber product, and tire
JP2017206604A (en) 2016-05-17 2017-11-24 Jxtgエネルギー株式会社 Thermoplastic elastomer composition and method for producing the same
CN107603112A (en) 2017-09-22 2018-01-19 江阴海达橡塑股份有限公司 A kind of high-performance high ferro outer hood elastomeric material and its compression molding preparation method

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01108239A (en) * 1987-10-20 1989-04-25 Mitsui Petrochem Ind Ltd Modified polysiloxane-containing heat-resistant rubber composition
JPH07119348B2 (en) * 1987-10-20 1995-12-20 三井石油化学工業株式会社 Modified rubber composition
JPH08311350A (en) * 1995-05-23 1996-11-26 Yokohama Rubber Co Ltd:The Thermoplastic elastomer composition and its production

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002364630A (en) 2001-06-11 2002-12-18 Sumitomo Rubber Ind Ltd Rubber roller
JP2003192855A (en) 2001-12-25 2003-07-09 Mitsubishi Cable Ind Ltd Heat reversible crosslinkable elastomer composition and molding thereof
JP2004231933A (en) 2002-12-03 2004-08-19 Yokohama Rubber Co Ltd:The Thermoplastic elastomer composition
JP2004307576A (en) 2003-04-03 2004-11-04 Yokohama Rubber Co Ltd:The Thermoplastic elastomer composition
JP2005248108A (en) 2004-03-08 2005-09-15 Yokohama Rubber Co Ltd:The Thermoplastic elastomer composition
JP2008056715A (en) 2006-08-29 2008-03-13 Kraton Jsr Elastomers Kk Thermoplastic elastomer composition
WO2017065299A1 (en) 2015-10-16 2017-04-20 株式会社ブリヂストン Multicomponent copolymer, rubber composition, cross-linked rubber composition, rubber product, and tire
JP2017206604A (en) 2016-05-17 2017-11-24 Jxtgエネルギー株式会社 Thermoplastic elastomer composition and method for producing the same
CN106279940A (en) 2016-08-08 2017-01-04 扬州曙光电缆股份有限公司 High fire-retardance cross-linked polyolefin sheath generation Ⅲ nuclear power station nuclear island cable and manufacture method
CN107603112A (en) 2017-09-22 2018-01-19 江阴海达橡塑股份有限公司 A kind of high-performance high ferro outer hood elastomeric material and its compression molding preparation method

Also Published As

Publication number Publication date
JP2020158637A (en) 2020-10-01
JP2023160863A (en) 2023-11-02

Similar Documents

Publication Publication Date Title
KR100230645B1 (en) Ethylene-alpha-olefin belting
US7741392B2 (en) Rubber compositions having improved physical and low temperature properties
JP2005523947A (en) EPDM compounds for dynamic applications
WO2007018148A1 (en) Rubber composition for driving belt and driving belt
JP6717982B2 (en) Rubber composition
WO2018194162A1 (en) Rubber composition for torsional damper, and torsional damper
JP7100767B2 (en) Rubber composition for torsional damper
JP5625227B2 (en) Rubber composition for liquid filled anti-vibration rubber
JP7341695B2 (en) power transmission belt
JP5419681B2 (en) Elastomer products containing a radically vulcanized rubber mixture
JP6804010B1 (en) Crosslinked rubber composition and rubber products using it
US10836885B2 (en) Anti-vibration rubber composition and anti-vibration rubber member
JP7088679B2 (en) Thermoplastic elastomer composition
JP4698342B2 (en) Rubber composition and conveyor belt using the rubber composition
JP7365361B2 (en) Crosslinked rubber composition and rubber products using the same
JP6835770B2 (en) Crosslinked rubber composition and sealing material using it
JPH07126452A (en) Thermoplastic elastomer composition
JP3583593B2 (en) Crosslinkable rubber composition, and crosslinked rubber thereof
US20050288439A1 (en) Elastomeric compositions having improved mechanical properties and scorch resistance
JP6512054B2 (en) Method for producing resin composition
JP2010248401A (en) Rubber composition and transmission belt
US20210214541A1 (en) Thermoplastic elastomer composition and method for producing the same
JP7411400B2 (en) Rubber composition for anti-vibration rubber and anti-vibration rubber
JPWO2017199581A1 (en) EPDM composition
JP2023171441A (en) Rubber composition and method for producing the same and transmission belt

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220202

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20221213

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230202

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230322

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230508

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230801

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230830

R150 Certificate of patent or registration of utility model

Ref document number: 7341695

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150