JP7334142B2 - Method for manufacturing sealed lithium-ion secondary battery - Google Patents

Method for manufacturing sealed lithium-ion secondary battery Download PDF

Info

Publication number
JP7334142B2
JP7334142B2 JP2020182116A JP2020182116A JP7334142B2 JP 7334142 B2 JP7334142 B2 JP 7334142B2 JP 2020182116 A JP2020182116 A JP 2020182116A JP 2020182116 A JP2020182116 A JP 2020182116A JP 7334142 B2 JP7334142 B2 JP 7334142B2
Authority
JP
Japan
Prior art keywords
ion secondary
battery case
secondary battery
electrode body
battery
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2020182116A
Other languages
Japanese (ja)
Other versions
JP2022072592A (en
Inventor
隆行 北條
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Prime Planet Energy and Solutions Inc
Original Assignee
Prime Planet Energy and Solutions Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Prime Planet Energy and Solutions Inc filed Critical Prime Planet Energy and Solutions Inc
Priority to JP2020182116A priority Critical patent/JP7334142B2/en
Publication of JP2022072592A publication Critical patent/JP2022072592A/en
Application granted granted Critical
Publication of JP7334142B2 publication Critical patent/JP7334142B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Secondary Cells (AREA)

Description

本発明は、密閉型リチウムイオン二次電池の製造方法に関する。詳しくは、捲回電極体と、非水電解液と、電池ケースとを備えた密閉型リチウムイオン二次電池の製造方法に関する。 The present invention relates to a method for manufacturing a sealed lithium ion secondary battery. Specifically, the present invention relates to a method for manufacturing a sealed lithium ion secondary battery including a wound electrode assembly, a non-aqueous electrolyte, and a battery case.

リチウムイオン二次電池等の非水電解液二次電池は、既存の電池に比べて軽量かつエネルギー密度が高いことから、車両搭載用の高出力電源、或いはパソコンおよび携帯端末の電源として好ましく利用されている。特に、軽量で高エネルギー密度が得られるリチウムイオン二次電池は、電気自動車(EV)、ハイブリッド自動車(HV)、プラグインハイブリッド自動車(PHV)等の車両の駆動用高出力電源として好ましく用いられている。 Non-aqueous electrolyte secondary batteries such as lithium-ion secondary batteries are lighter and have higher energy density than existing batteries, so they are preferably used as high-output power sources for vehicles or as power sources for personal computers and mobile terminals. ing. In particular, lithium-ion secondary batteries, which are lightweight and provide high energy density, are preferably used as high-output power sources for driving vehicles such as electric vehicles (EV), hybrid vehicles (HV), and plug-in hybrid vehicles (PHV). there is

かかるリチウムイオン二次電池の一形態として、密閉型リチウムイオン二次電池が挙げられる。かかる密閉型リチウムイオン二次電池は、典型的には、長尺なシート状の正極および負極が、セパレータを介して捲回されてなる捲回電極体と、非水電解液とを、電池ケースに収容した後、負圧下等において封口(密閉)することにより構築される。この種の密閉型リチウムイオン二次電池の製造方法としては、例えば下記特許文献1に開示されている製造方法が挙げられる。 One form of such a lithium ion secondary battery is a sealed lithium ion secondary battery. Such a sealed lithium-ion secondary battery typically includes a wound electrode body in which a long sheet-shaped positive electrode and a negative electrode are wound with a separator interposed therebetween, and a non-aqueous electrolyte, which are placed in a battery case. It is constructed by sealing (sealing) under negative pressure or the like after housing in a container. As a method for manufacturing this type of sealed lithium ion secondary battery, for example, there is a manufacturing method disclosed in Patent Document 1 below.

特開2013-125650号公報JP 2013-125650 A 特開2017-073337号公報JP 2017-073337 A 特開2017-084508号公報JP 2017-084508 A

ところで、密閉型リチウムイオン二次電池では、初回充電の際に電極体に含まれる微量な水分や電解質成分等の一部が電極表面で分解され、ガスが発生することがある。そして、本発明者の検討によると、捲回電極体は非開口部を有するため、かかるガスが電極体内に残留し易く、初回充電時に負極活物質表面に形成される被膜にムラが生じ易いことが分かった。これにより、例えば活性化後(即ち、初回充電・本充電完了後)の密閉型リチウムイオン二次電池に対して急速充電を行った場合に、抵抗のばらつき等により負極活物質表面に金属リチウムが析出するおそれがあるため、好ましくない。 By the way, in the sealed lithium ion secondary battery, a small amount of moisture contained in the electrode body and part of the electrolyte components may be decomposed on the electrode surface during the initial charging, and gas may be generated. According to the studies of the present inventors, since the wound electrode body has non-opening portions, such gas tends to remain in the electrode body, and the film formed on the surface of the negative electrode active material during the initial charge tends to be uneven. I found out. As a result, for example, when rapid charging is performed on a sealed lithium-ion secondary battery after activation (that is, after the completion of the initial charge and the main charge), metallic lithium is deposited on the surface of the negative electrode active material due to variations in resistance, etc. Since there is a possibility of precipitating, it is not preferable.

本発明は、かかる事情に鑑みてなされたものであり、その主な目的は、初回充電等により発生するガスの残留が低減された捲回電極体を備えた密閉型リチウムイオン二次電池を、安定的に供給することができる製造方法を提供することである。なお、上記特許文献2には、組電池構築後の電極体のガス抜きについて記載されており、上記特許文献3には、ラミネート封止前の電極体のガス抜きについて記載されているが、これら文献には、初回充電時等において発生するガスを、当該電池の使用開始前に電極体内から排出する技術に関する内容の開示はない。 The present invention has been made in view of such circumstances, and its main purpose is to provide a sealed lithium ion secondary battery equipped with a wound electrode body in which residual gas generated by initial charging or the like is reduced. It is an object of the present invention to provide a manufacturing method that enables stable supply. Patent Document 2 described above describes degassing of the electrode body after assembly of the assembled battery, and Patent Document 3 described above describes degassing of the electrode body before lamination sealing. The document does not disclose any technology for discharging the gas generated during the initial charge or the like from the electrode body before starting to use the battery.

かかる目的を実現するべく、本発明は、長尺なシート状の正極および負極が、セパレータを介して捲回されてなる捲回電極体と、非水電解液と、密閉可能な電池ケースとを備えた密閉型リチウムイオン二次電池を製造する製造方法を提供する。上記製造方法は、以下の工程:
上記捲回電極体および上記電解液を、上記電池ケース内に収容する工程,ここで、該捲回電極体は、捲回軸が水平方向に沿うようにして収容される;
上記電池ケース内を、負圧にした状態で封止する封止工程;
上記封止工程後に、初回充電を行う初回充電工程;および
上記初回充電工程後に、捲回軸と水平面との間の角度をθとしたとき、θが1°≦θ<45°となるように上記電池ケースを傾けた状態で、該電池ケースに振動を付与することにより、上記捲回電極体中に存在する気泡を脱泡する脱泡工程;
を包含する。
かかる製造方法によると、捲回電極体内に残留しているガスが、脱泡工程において、電極体の捲回軸方向の端部に存在する開口部(即ち、端部積層面)から外部へと効率よく排出される。これにより、電極体内におけるガスの残留を低減することができる。
In order to achieve such an object, the present invention provides a wound electrode body in which long sheet-like positive and negative electrodes are wound with a separator interposed therebetween, a non-aqueous electrolyte, and a hermetic battery case. Provided is a manufacturing method for manufacturing a sealed lithium-ion secondary battery. The above manufacturing method comprises the following steps:
housing the wound electrode body and the electrolyte solution in the battery case, wherein the wound electrode body is housed so that the winding axis extends in a horizontal direction;
A sealing step of sealing the inside of the battery case in a negative pressure state;
After the sealing step, an initial charging step of performing an initial charging; and After the initial charging step, when the angle between the winding axis and the horizontal plane is θ, θ is 1°≦θ<45°. a defoaming step of defoaming air bubbles present in the wound electrode body by applying vibration to the battery case while the battery case is tilted;
encompasses
According to this manufacturing method, the gas remaining in the wound electrode body is released from the opening (that is, the end lamination surface) at the end of the electrode body in the winding axis direction to the outside in the defoaming step. discharged efficiently. As a result, residual gas in the electrode body can be reduced.

ここで開示される密閉型リチウムイオン二次電池の製造方法における好ましい一態様では、上記脱泡工程において、上記θ(以下、「傾斜角」ともいう)は15°≦θ≦30°の範囲内である。
傾斜角θを上記範囲内とすることにより、捲回電極体内のガスをより効率よく排出しつつ、安定した電池性能を維持することができる。
In a preferred embodiment of the method for manufacturing a sealed lithium ion secondary battery disclosed herein, in the defoaming step, θ (hereinafter also referred to as “tilt angle”) is within the range of 15° ≤ θ ≤ 30° is.
By setting the inclination angle θ within the above range, stable battery performance can be maintained while the gas in the wound electrode body is discharged more efficiently.

ここで開示される密閉型リチウムイオン二次電池の製造方法における好ましい一態様では、上記捲回電極体は扁平形状である。
側面から押しつぶされた扁平形状を有する捲回電極体では、電極体のコーナー部分(いわゆるR部)と直線部分とで面圧が異なるため、初回充電等により発生したガスは面圧の低い直線部に残留し易い傾向にある。したがって、ここで開示される技術を適用する対象として好適である。
In a preferred embodiment of the method for manufacturing a sealed lithium ion secondary battery disclosed herein, the wound electrode body has a flat shape.
In the wound electrode body having a flat shape that is flattened from the side, the surface pressure is different between the corner portion (so-called R portion) and the straight portion of the electrode body. tend to remain in Therefore, it is suitable as an object to which the technology disclosed herein is applied.

一実施形態に係る密閉型リチウムイオン二次電池の外形および内部構成を模式的に示す断面図である。1 is a cross-sectional view schematically showing the external shape and internal configuration of a sealed lithium-ion secondary battery according to one embodiment; FIG. 一実施形態に係る捲回電極体の構成を模式的に示す斜視図である。1 is a perspective view schematically showing the configuration of a wound electrode body according to one embodiment; FIG. 一実施形態に係る密閉型リチウムイオン二次電池の製造方法を説明するための大まかなフローチャート(工程図)である。1 is a rough flow chart (process chart) for explaining a method for manufacturing a sealed lithium ion secondary battery according to an embodiment; 一実施形態に係る密閉型リチウムイオ二次電池を傾けた態様を模式的に示す図である。FIG. 4 is a diagram schematically showing an aspect in which the sealed lithium ion secondary battery according to one embodiment is tilted;

以下、ここで開示される密閉型リチウムイオン二次電池の製造方法に関する好適な一実施形態について、適宜図面を参照しつつ詳細に説明する。本明細書において特に言及している事項以外の事柄であって実施に必要な事柄は、当該分野における従来技術に基づく当業者の設計事項として把握され得る。本発明は、本明細書に開示されている内容と当該分野における技術常識とに基づいて実施することができる。
以下の実施形態は、ここで開示される技術を限定することを意図したものではない。また、本明細書にて示す図面では、同じ作用を奏する部材・部位に同じ符号を付して説明している。そして、各図における寸法関係(長さ、幅、厚さ等)は実際の寸法関係を反映するものではない。なお、本明細書において数値範囲をA~B(ここでA,Bは任意の数値)と記載している場合は、一般的な解釈と同様であり、A以上B以下を意味するものである。
A preferred embodiment of the method for manufacturing a sealed lithium-ion secondary battery disclosed herein will be described in detail below with reference to the drawings as appropriate. Matters other than those specifically referred to in this specification that are necessary for implementation can be grasped as design matters for those skilled in the art based on the prior art in the relevant field. The present invention can be implemented based on the contents disclosed in this specification and common general technical knowledge in the field.
The following embodiments are not intended to limit the technology disclosed herein. In addition, in the drawings shown in this specification, members and parts having the same function are denoted by the same reference numerals. The dimensional relationships (length, width, thickness, etc.) in each drawing do not reflect the actual dimensional relationships. In addition, when the numerical range is described as A to B (where A and B are arbitrary numerical values) in this specification, it is the same as the general interpretation and means A or more and B or less. .

本明細書において「リチウムイオン二次電池」とは、非水電解液中のリチウムイオンが電荷の移動を担う二次電池をいう。また、「電極体」とは、正極、負極、および正負極間にセパレータとして機能し得る多孔質絶縁層を含む電池の主体を成す構造体をいう。「正極活物質」または「負極活物質」は、電荷担体となる化学種(リチウムイオン二次電池においてはリチウムイオン)を可逆的に吸蔵および放出可能な化合物をいう。 As used herein, the term “lithium ion secondary battery” refers to a secondary battery in which lithium ions in a non-aqueous electrolyte are responsible for charge transfer. The term "electrode body" refers to a structure that constitutes the main body of a battery, including a positive electrode, a negative electrode, and a porous insulating layer that can function as a separator between the positive and negative electrodes. A “positive electrode active material” or “negative electrode active material” refers to a compound capable of reversibly intercalating and deintercalating a chemical species (lithium ion in a lithium ion secondary battery) that serves as a charge carrier.

なお、以下の実施形態では、扁平形状の捲回電極体を例にして説明するが、捲回電極体の形状をかかる形状に限定することを意図したものではない。例えば、円筒状に捲回された捲回電極体等であってもよい。 In the following embodiments, a flat wound electrode body will be described as an example, but the shape of the wound electrode body is not intended to be limited to such a shape. For example, it may be a cylindrically wound electrode body or the like.

<密閉型リチウムイオン二次電池の全体構成>
図1に示すように、本実施形態に係る密閉型リチウムイオン二次電池1は、大まかにいって、捲回電極体100と、該捲回電極体および図示しない非水電解液を収容する矩形状角形の電池ケース本体10と、当該電極体を収容するための開口部を塞ぐ蓋体20とを備えている(なお、電池ケース本体10および蓋体20を併せて電池ケース12という)。また、蓋体20には外部接続用の正極端子30および負極端子40が設けられている。さらに、蓋体20には、密閉型リチウムイオン二次電池1の内圧が所定レベル以上に上昇した場合に該内圧を開放するように設定された安全弁24と、非水電解液を電池ケース12内に注入するための注液孔22が設けられている。なお、蓋体20を電池ケース本体10の開口部の周縁に溶接することにより、該電池ケース本体と該蓋体との境界部を接合(密閉)することができる。
<Overall Configuration of Sealed Lithium-Ion Secondary Battery>
As shown in FIG. 1, a sealed lithium-ion secondary battery 1 according to the present embodiment is roughly composed of a wound electrode body 100, a rectangular body containing the wound electrode body and a non-aqueous electrolyte (not shown). It has a rectangular battery case body 10 and a lid body 20 that closes an opening for housing the electrode body (battery case body 10 and lid body 20 are collectively referred to as battery case 12). The lid 20 is also provided with a positive terminal 30 and a negative terminal 40 for external connection. Further, the lid body 20 is provided with a safety valve 24 which is set to release the internal pressure of the sealed lithium ion secondary battery 1 when the internal pressure rises to a predetermined level or higher, and a non-aqueous electrolytic solution in the battery case 12. A liquid injection hole 22 is provided for injecting into. By welding the lid 20 to the periphery of the opening of the battery case body 10, the boundary between the battery case body and the lid can be joined (sealed).

図1および図2に示すように、本実施形態に係る捲回電極体100は、長尺状の正極シート(正極)32と、長尺状の負極シート(負極)42と、長尺状のセパレータ50とが積層されて長手方向に捲回され扁平形状に成形された電極体である。
具体的には、本実施形態に係る捲回電極体100は、長尺状の正極集電体33の片面または両面(ここでは両面)に長手方向に沿って正極活物質層34が形成された正極シート32と、長尺状の負極集電体43の片面または両面(ここでは両面)に長手方向に沿って負極活物質層44が形成された負極シート42とを、長尺状のセパレータ(セパレータシート)50を介して重ね合わせて長尺方向に扁平形状に捲回して形成された電極体である。ここで、正負極集電体、セパレータ、正負極活物質層を構成する材料は、従来公知のリチウムイオン二次電池において使用され得るものを特に制限なく使用することができる。なお、ここで開示される技術は、上記材料により特徴づけられるものではないため、これ以上の詳細な説明は省略する。
また、捲回電極体100の捲回軸方向における中央部分には、正極活物質層34と、負極活物質層44と、セパレータ50とが密に積層された捲回電極体コア部分100aが形成されている。図2に示す捲回電極体100には、扁平な平坦部61と、湾曲した曲面を有する上部R部60および下部R部62が存在する。そして、捲回電極体100の捲回軸方向の両端にそれぞれはみ出した正極活物質層非形成部分35および負極合材層非形成部分45には、正極集電板31および負極集電板41がそれぞれ接合され、電池の集電構造を形成するが、かかる構造は従来公知の捲回電極体を備えるリチウムイオン二次電池と同様であり、これ以上の詳細な説明は省略する。
As shown in FIGS. 1 and 2, the wound electrode body 100 according to the present embodiment includes a long positive electrode sheet (positive electrode) 32, a long negative electrode sheet (negative electrode) 42, and a long negative electrode sheet (negative electrode) 42. It is an electrode body in which a separator 50 is laminated and wound in the longitudinal direction to be formed into a flat shape.
Specifically, in the wound electrode body 100 according to the present embodiment, the positive electrode active material layer 34 is formed along the longitudinal direction on one side or both sides (here, both sides) of the long positive electrode current collector 33 . A long separator ( It is an electrode body formed by stacking them with a separator sheet 50 interposed therebetween and winding them in a flat shape in the longitudinal direction. Here, materials that can be used in conventionally known lithium ion secondary batteries can be used without particular limitation as the materials that constitute the positive and negative electrode current collectors, separators, and positive and negative electrode active material layers. Since the technology disclosed here is not characterized by the above materials, further detailed description is omitted.
A wound electrode body core portion 100a in which the positive electrode active material layer 34, the negative electrode active material layer 44, and the separator 50 are densely laminated is formed in the central portion of the wound electrode body 100 in the winding axial direction. It is The wound electrode body 100 shown in FIG. 2 has a flat flat portion 61 and an upper R portion 60 and a lower R portion 62 having curved surfaces. The positive electrode current collector plate 31 and the negative electrode current collector plate 41 protrude from both ends of the wound electrode assembly 100 in the winding axial direction. They are joined to each other to form a current collecting structure of the battery. Such a structure is the same as that of a conventionally known lithium ion secondary battery provided with a wound electrode assembly, so further detailed description will be omitted.

図3に示すように、本実施形態に係る密閉型リチウムイオン二次電池1の製造方法は、次の4つの工程:(ステップS1)電極体の収容工程;(ステップS2)封止工程;(ステップS3)初回充電工程;(ステップS4)脱泡工程を包含する。以下、各工程の好ましい態様について説明する。 As shown in FIG. 3, the method for manufacturing the sealed lithium-ion secondary battery 1 according to the present embodiment includes the following four steps: (Step S1) electrode assembly step; (step S2) sealing step; Step S3) Initial charging process; (Step S4) Includes defoaming process. Preferred aspects of each step are described below.

<(ステップS1)電極体の収容工程>
まず、電極体の収容工程(ステップS1)について説明する。かかる工程では、捲回電極体100および非水電解液を、電池ケース12内に収容する。ここでは、捲回電極体100は、電池ケース12の底面を水平面としたとき、捲回軸Lが水平方向に沿うようにして収容される。
ここで、電池ケース12を構成する材料としては、ここで開示される技術の効果が発揮される限り特に限定されないが、例えば、アルミニウム、スチール等の金属材料や、ポリオレフィン系樹脂あるいはポリイミド樹脂等の樹脂材料が挙げられる。なかでも、放熱性やエネルギー密度を向上させ得る等の理由から、比較的軽量な金属材料(例えば、アルミニウムやアルミニウム合金)が好ましく用いられ得る。また、電池ケース12の形状(容器の外形)も、ここに開示される技術の効果が発揮される限り特に限定されないが、例えば、六面体形(直方体形、立方体形)、および、それらを加工し変形させた形状等であり得る。
<(Step S1) Electrode assembly step>
First, the step of accommodating the electrode body (step S1) will be described. In this step, the wound electrode body 100 and the non-aqueous electrolyte are accommodated in the battery case 12 . Here, when the bottom surface of the battery case 12 is a horizontal plane, the wound electrode body 100 is accommodated so that the winding axis L extends along the horizontal direction.
Here, the material constituting the battery case 12 is not particularly limited as long as the effect of the technology disclosed herein is exhibited. A resin material is mentioned. Among them, relatively lightweight metal materials (for example, aluminum and aluminum alloys) are preferably used because they can improve heat dissipation and energy density. The shape of the battery case 12 (outer shape of the container) is also not particularly limited as long as the effect of the technology disclosed herein is exhibited. It may be a deformed shape or the like.

また、使用される非水電解液は、従来公知のリチウムイオン二次電池において使用され得るものを特に制限なく使用することができる。例えば、フッ素元素を有するリチウム塩の好適例として、LiPF、LiBF等が挙げられる。また、非水系溶媒(即ち有機溶媒)の好適例として、エチレンカーボネート(EC)、プロピレンカーボネート(PC)等の環状カーボネート系溶媒、ジメチルカーボネート(DMC)、エチルメチルカーボネート(EMC)等の鎖状カーボネート系溶媒、エチルプロピオネート(EP)等のエステル系溶媒が挙げられる。これら非水系溶媒中に0.1~5mol/L程度の濃度でリチウム塩を含有させることにより、リチウムイオン二次電池用の非水電解液を調製することができる。
なお、種々の目的により、ガス発生剤、皮膜形成剤、分散剤、増粘剤等の添加剤を非水電解液に添加してもよい。例えば、ジフルオロリン酸リチウム(LiPO)等のフルオロリン酸塩、リチウムビスオキサレートボレート(LiBOB)等のオキサレート錯体、ビニレンカーボネート等は、電池の性能向上に寄与する好適な添加剤である。また、シクロヘキシルベンゼン、ビフェニル等の過充電防止剤を用いてもよい。
In addition, as the non-aqueous electrolyte to be used, those that can be used in conventionally known lithium-ion secondary batteries can be used without particular limitation. For example, LiPF6 , LiBF4 etc. are mentioned as a suitable example of the lithium salt which has a fluorine element. Preferred examples of non-aqueous solvents (that is, organic solvents) include cyclic carbonate solvents such as ethylene carbonate (EC) and propylene carbonate (PC), chain carbonates such as dimethyl carbonate (DMC) and ethyl methyl carbonate (EMC). and ester solvents such as ethyl propionate (EP). A non-aqueous electrolyte for a lithium-ion secondary battery can be prepared by adding a lithium salt to the non-aqueous solvent at a concentration of about 0.1 to 5 mol/L.
Additives such as a gas generating agent, a film forming agent, a dispersant and a thickening agent may be added to the non-aqueous electrolytic solution for various purposes. For example, fluorophosphates such as lithium difluorophosphate (LiPO 2 F 2 ), oxalate complexes such as lithium bisoxalate borate (LiBOB), vinylene carbonate, and the like are suitable additives that contribute to improving battery performance. . Also, overcharge inhibitors such as cyclohexylbenzene and biphenyl may be used.

<(ステップS2)封止工程>
次に、封止工程(ステップS2)について説明する。かかる工程では、ステップS1において捲回電極体100および非水電解液が収容された電池ケース12内を、負圧にした状態で封止する。
かかる工程では、まず、封止前の電池ケース12の開口部に真空ポンプ等を接続し、該電池ケース内の気体(典型的には、乾燥空気や不活性ガス)を吸引する等の処理を行うことにより、当該電池ケース内を負圧された状態にする。かかる真空引き処理により、電池ケース12内を、例えば10kPa~60kPa程度に減圧処理する。
そして、上記のとおり電池ケース12内を負圧にした状態で、該電池ケースを封止する。かかる封止は、従来公知の密閉型リチウムイオン二次電池に用いられる方法により実施することができる。例えば、金属製の電池ケースを用いた場合は、レーザー溶接、抵抗溶接、電子ビーム溶接等の手法を用いることができる。また、非金属製(例えば、樹脂材料等)を用いた場合は、接着剤による接着や、超音波溶接等の手法を用いることができる。
なお、本工程は、通常、湿度が非常に低い状態で保持された環境(即ち、ドライ環境)に保たれているクリーンルームやグローブボックス内において行われる。ドライ環境内は、例えば、乾燥空気やアルゴンなどの不活性ガスで充填されている。また、上記では、電池ケース内を減圧する作業と、該電池ケースを封止する作業とを別々に説明したが、これらを一連の操作として行ってもよい。
<(Step S2) sealing step>
Next, the sealing step (step S2) will be described. In this process, in step S1, the inside of the battery case 12 containing the wound electrode assembly 100 and the non-aqueous electrolyte is sealed under a negative pressure.
In this process, first, a vacuum pump or the like is connected to the opening of the battery case 12 before sealing, and processing such as sucking gas (typically dry air or inert gas) from the battery case is performed. By doing so, the inside of the battery case is brought into a negative pressure state. By such a vacuuming process, the inside of the battery case 12 is decompressed to, for example, about 10 kPa to 60 kPa.
Then, the battery case 12 is sealed while the inside of the battery case 12 is kept at a negative pressure as described above. Such sealing can be performed by a method used for a conventionally known sealed lithium ion secondary battery. For example, when a metal battery case is used, techniques such as laser welding, resistance welding, and electron beam welding can be used. Moreover, when a non-metallic material (for example, a resin material or the like) is used, a method such as bonding with an adhesive or ultrasonic welding can be used.
This step is usually performed in a clean room or a glove box kept in an environment with very low humidity (that is, a dry environment). The dry environment is filled with, for example, dry air or an inert gas such as argon. Also, in the above description, the operation of depressurizing the inside of the battery case and the operation of sealing the battery case were described separately, but these operations may be performed as a series of operations.

<(ステップS3)初回充電工程>
次に、初回充電工程(ステップS3)について説明する。かかる工程では、ステップS2において封止された電池に対して、初回充電を行う。初回充電では、電極部材に含まれる微量な水分や非水電解液の一部が電極表面で分解され、ガス(例えば水素(H))が生じるとともに、負極活物質表面にSEI(Solid Electrolyte Interphase)被膜(以下、単に「被膜」ともいう)が形成され得る。かかる被膜により、負極表面と非水電解液との界面が安定化され、非水電解液成分の更なる分解を防止することができる。
かかる初回充電は、例えば、密閉後(即ち、封止工程後)の電池に対して、外部接続用の正極端子30および負極端子40の間に外部電源を接続し、常温(典型的には25℃程度)で充電開始から正負極端子間の電圧が所定値に到達するまで0.1C~10C程度の電流で充電する定電流充電(CC充電)により実施することができる。あるいは、充電開始から正負極端子間の電圧が所定値に到達するまで0.1C~10C程度の定電流で充電し、さらに定電圧で所定時間充電する定電流定電圧充電(CC-CV充電)により実施することもできる。なお、初回充電は1回でもよく、2回以上の充放電操作を繰り返し行ってもよい。初回充電は、例えば後述する実施例に記載の方法等により行うことができる。
<(Step S3) Initial charging step>
Next, the initial charging step (step S3) will be described. In this process, the battery sealed in step S2 is charged for the first time. In the initial charge, a small amount of water and a part of the non-aqueous electrolyte contained in the electrode member are decomposed on the electrode surface, gas (for example, hydrogen (H 2 )) is generated, and SEI (Solid Electrolyte Interphase) is formed on the surface of the negative electrode active material. ) coating (hereinafter also simply referred to as “coating”) can be formed. Such a film stabilizes the interface between the surface of the negative electrode and the non-aqueous electrolyte, thereby preventing further decomposition of the components of the non-aqueous electrolyte.
Such an initial charge is performed, for example, by connecting an external power supply between the positive terminal 30 and the negative terminal 40 for external connection to the battery after sealing (that is, after the sealing process), and at room temperature (typically 25 ° C.) from the start of charging until the voltage between the positive and negative terminals reaches a predetermined value. Alternatively, the battery is charged at a constant current of about 0.1 C to 10 C from the start of charging until the voltage between the positive and negative terminals reaches a predetermined value, and then charged at a constant voltage for a predetermined time (CC-CV charging). It can also be implemented by The initial charging may be performed once, or the charging/discharging operation may be repeated two or more times. The initial charging can be performed, for example, by the method described in Examples described later.

<(ステップS4)脱泡工程>
次に、脱泡工程(ステップS4)について説明する。かかる工程では、捲回軸Lと水平面Hとの間の角度θ(即ち、傾斜角)が1°≦θ<45°となるように電池ケース12を傾けた状態(図4を参照)で、該電池ケースに振動を付与することにより、捲回電極体100中に存在する気泡を脱泡する。具体的には、電池ケース12の底面を水平面とすると、該電池ケースの内部に収容されている捲回電極体100の捲回軸Lは、該底面と平行、即ち水平方向に配置されている。このとき、電池ケース12の底面を捲回軸方向と平行とみなし、該電池ケースを傾斜角θだけ傾けるとよい。
以下、特に限定解釈されることを意図したものではないが、例えば電池ケース12を傾けなかった場合(即ち、傾斜角θが0°の場合)は、上部R部60にガスが滞留し易くなる。一方、例えば電池ケース12を大きく傾けた場合(具体的には、傾斜角θを45°以上とした場合)は、捲回電極体100内から非水電解液が流出し易くなる。したがって、傾斜角θが0°あるいは45°以上の場合は、安定した電池性能を維持するという観点から、好ましくないといえる。上記内容を踏まえて、ここで開示される技術では、脱泡工程(ステップS4)において、傾斜角θを1°≦θ<45°の範囲内としている。また、傾斜角θは、好ましくは15°≦θ≦30°の範囲内である。傾斜角θを上記範囲内とすることにより、捲回電極体100内のガスをより効率よく排出しつつ、安定した電池性能を維持することができる。
<(Step S4) defoaming step>
Next, the defoaming step (step S4) will be described. In this step, the battery case 12 is tilted so that the angle θ between the winding axis L and the horizontal plane H (that is, the tilt angle) is 1°≦θ<45° (see FIG. 4). By applying vibration to the battery case, air bubbles present in the wound electrode assembly 100 are eliminated. Specifically, assuming that the bottom surface of the battery case 12 is a horizontal plane, the winding axis L of the wound electrode body 100 housed inside the battery case is parallel to the bottom surface, that is, arranged in the horizontal direction. . At this time, the bottom surface of the battery case 12 should be regarded as being parallel to the winding axis direction, and the battery case should be tilted by the tilt angle θ.
Although the following is not intended to be interpreted in a particularly limited way, for example, when the battery case 12 is not tilted (that is, when the tilt angle θ is 0°), gas tends to stay in the upper R portion 60. . On the other hand, for example, when the battery case 12 is greatly tilted (specifically, when the tilt angle θ is 45° or more), the non-aqueous electrolyte tends to flow out of the wound electrode assembly 100 . Therefore, it can be said that an inclination angle θ of 0° or 45° or more is not preferable from the viewpoint of maintaining stable battery performance. Based on the above, in the technology disclosed herein, the inclination angle θ is set within the range of 1°≦θ<45° in the defoaming step (step S4). Also, the inclination angle θ is preferably within the range of 15°≦θ≦30°. By setting the inclination angle θ within the above range, the gas in the wound electrode body 100 can be discharged more efficiently, and stable battery performance can be maintained.

また、電池ケース12に振動を付与する方法としては、ここで開示される技術の効果が発揮される限り特に限定されないが、例えば、超音波装置を用いて超音波振動を付与する方法等が挙げられる。そして、電池ケース12に付与する振動の振動数(即ち、周波数)としては、電池性能に影響を与えない限り特に限定されないが、例えば電池の固有振動数をFn[Hz]、電池のばね定数をk[N/m]、電池の質量をm[kg]としたときに、式:Fn=(1/2π)×(k/m)1/2により算出される振動数を採用することができる。かかる振動数は、電池のサイズ(具体的には、電池ケース内に収容される捲回電極体のサイズ)等により適宜変更を要するが、例えば通常の角型電池の場合、凡そ1~10kHz(例えば、2~8kHzや3~7kHz)とすることができる。また、振動を付与する時間に関しても同様に、電池性能に影響を与えない限り特に限定されないが、ガスが捲回電極体100から実質的に抜けるまで(具体的には、該捲回電極体中に存在するガスが凡そ90%以上、好ましくは95%以上抜けるまで)行うことが好ましい。かかる振動時間は、電池のサイズ(具体的には、電池ケース内に収容される捲回電極体のサイズ)等により適宜変更を要するが、例えば通常の角型電池の場合、凡そ5~60秒間(例えば10~50秒間、典型的には10~30秒間)とすることができる。振動数および振動時間は、例えば後述する実施例に記載のように2kHz、10秒間等とすることができる。 Also, the method for applying vibration to the battery case 12 is not particularly limited as long as the effect of the technology disclosed herein is exhibited, but examples include a method for applying ultrasonic vibration using an ultrasonic device. be done. The frequency (that is, frequency) of the vibration applied to the battery case 12 is not particularly limited as long as it does not affect the battery performance. When k [N/m] and the mass of the battery is m [kg], the frequency calculated by the formula: Fn=(1/2π)×(k/m) 1/2 can be adopted. . Such a frequency needs to be changed as appropriate depending on the size of the battery (specifically, the size of the wound electrode body housed in the battery case), etc. For example, in the case of a normal prismatic battery, it is about 1 to 10 kHz ( For example, it can be 2-8 kHz or 3-7 kHz). Similarly, the time for applying vibration is not particularly limited as long as it does not affect the battery performance. until about 90% or more, preferably 95% or more of the gas is removed). The vibration time needs to be changed as appropriate depending on the size of the battery (specifically, the size of the wound electrode body housed in the battery case) and the like. (eg 10 to 50 seconds, typically 10 to 30 seconds). The vibration frequency and vibration time can be, for example, 2 kHz, 10 seconds, etc., as described later in Examples.

なお、上記脱泡工程(ステップS4)後に、本充電を行ってもよい。かかる本充電は、例えば、初回充電後の電池に対して、外部接続用の正極端子30および負極端子40との間に外部電源を接続し、常温(典型的には25℃程度)で充電開始から正負極端子間の電圧が所定値に到達するまで0.1C~10C程度の電流で充電する定電流充電(CC充電)により実施することができる。あるいは、充電開始から正負極端子間の電圧が所定値に到達するまで0.1C~10C程度の定電流で充電し、さらに定電圧で所定時間充電する定電流定電圧充電(CC-CV充電)により実施することもできる。ここで、上記「予め定められた電圧」とは、典型的には、上記初回充電工程(ステップS3)における電圧以上であって、電解液が酸化分解されない程度の電圧以下の電圧であり得る。本充電は、例えば後述する実施例に記載の方法等により行うことができる。 In addition, you may perform this charge after the said defoaming process (step S4). In this main charging, for example, an external power supply is connected between the positive terminal 30 and the negative terminal 40 for external connection to the battery after the initial charging, and charging is started at room temperature (typically about 25 ° C.). can be carried out by constant current charging (CC charging) in which charging is performed with a current of about 0.1 C to 10 C until the voltage between the positive and negative terminals reaches a predetermined value. Alternatively, the battery is charged at a constant current of about 0.1 C to 10 C from the start of charging until the voltage between the positive and negative terminals reaches a predetermined value, and then charged at a constant voltage for a predetermined time (CC-CV charging). It can also be implemented by Here, the "predetermined voltage" may typically be a voltage that is equal to or higher than the voltage in the initial charging step (step S3) and equal to or lower than the voltage at which the electrolytic solution is not oxidatively decomposed. The main charging can be performed, for example, by the method described in Examples described later.

以下、本発明に関する実施例について説明するが、ここで開示される技術をかかる実施例に示すものに限定することを意図したものではない。 Examples of the present invention will be described below, but the technology disclosed herein is not intended to be limited to those shown in the examples.

1.各サンプルの作製
本実施例では、脱泡工程において電池ケースの傾斜角を異ならせた6種類の密閉型リチウムイオン二次電池(サンプル1~6)を準備した。以下、各々のサンプルについて説明する。
1. Preparation of Each Sample In this example, six types of sealed lithium ion secondary batteries (Samples 1 to 6) were prepared in which the inclination angles of the battery cases were changed in the defoaming process. Each sample will be described below.

<サンプル2の作製>
まず、正極活物質粉末としてのLiNi1/3Co1/3Mn1/3(LNCM)粉末と、導電材としてのアセチレンブラック(AB)と、バインダとしてのポリフッ化ビニリデン(PVdF)とを、これら材料の質量比率が91:6:3となり、かつ、NV値が55質量%となるようにN-メチルピロリドン(NMP)と混合し、正極スラリーを調製した。かかるスラリーを、厚み凡そ15μmの長尺状アルミニウム箔(正極集電体)の両面に塗布して正極合材層を形成し、乾燥後プレスすることでシート状の正極(正極シート)を得た。
<Production of sample 2>
First, LiNi 1/3 Co 1/3 Mn 1/3 O 2 (LNCM) powder as a positive electrode active material powder, acetylene black (AB) as a conductive material, and polyvinylidene fluoride (PVdF) as a binder were prepared. These materials were mixed with N-methylpyrrolidone (NMP) so that the mass ratio of these materials was 91:6:3 and the NV value was 55% by mass to prepare a positive electrode slurry. This slurry was applied to both sides of a long aluminum foil (positive electrode current collector) having a thickness of about 15 μm to form a positive electrode mixture layer, dried and then pressed to obtain a sheet-like positive electrode (positive electrode sheet). .

次に、負極活物質としての天然黒鉛とバインダとしてのスチレンブタジエンゴム(SBR)と、分散剤としてのカルボキシメチルセルロース(CMC)とを、これら材料の質量比が98:1:1となり、かつ、NV値が50質量%となるようにイオン交換水と混合し、負極スラリーを調製した。かかるスラリーを、厚み凡そ10μmの長尺状銅箔(負極集電体)の両面に塗布して負極合材層を形成し、乾燥後プレスすることでシート状の負極(負極シート)を得た。 Next, natural graphite as a negative electrode active material, styrene-butadiene rubber (SBR) as a binder, and carboxymethyl cellulose (CMC) as a dispersing agent are mixed in a mass ratio of 98:1:1 and NV A negative electrode slurry was prepared by mixing with ion-exchanged water so that the value would be 50% by mass. This slurry was applied to both sides of a long copper foil (negative electrode current collector) having a thickness of approximately 10 μm to form a negative electrode mixture layer, which was then dried and pressed to obtain a sheet-like negative electrode (negative electrode sheet). .

上記のとおり作製した正極シートと負極シートとを、2枚のセパレータ(ここでは、多孔質ポリエチレンシート(PE)を用いた)を介して重ね合わせて捲回し、扁平形状に押しつぶすことにより捲回電極体(幅110mm×高さ60mm×奥行10mm)を作製した。かかる電極体を非水電解液(ここでは、エチレンカーボネート(EC)とジメチルカーボネート(DMC)とジメチルカーボネート(EMC)とを3:4:3の体積比で含む混合溶媒に、電解質としてのLiPFを凡そ1mol/Lの濃度で溶解した電解液を用いた)とともに矩形状角形の電池ケース(幅140mm×高さ60mm×奥行15mm、肉厚0.5mm,アルミニウム製)に収容した。 The positive electrode sheet and the negative electrode sheet produced as described above are superimposed and wound with two separators (here, porous polyethylene sheets (PE) were used) interposed therebetween, and crushed into a flat shape to form a wound electrode. A body (width 110 mm x height 60 mm x depth 10 mm) was produced. Such an electrode body is added to a non-aqueous electrolyte (here, a mixed solvent containing ethylene carbonate (EC), dimethyl carbonate (DMC), and dimethyl carbonate (EMC) at a volume ratio of 3:4:3, LiPF 6 as an electrolyte). was placed in a rectangular battery case (width 140 mm x height 60 mm x depth 15 mm, thickness 0.5 mm, made of aluminum).

そして、電池ケース内を真空引きして負圧(ここでは、16kPaとした)にした状態で、レーザー溶接により該電池ケースを封止することにより、電池を構築した。 Then, the inside of the battery case was evacuated to a negative pressure (here, 16 kPa), and the battery case was sealed by laser welding to construct a battery.

次に、上記のとおり構築した電池を、25℃において、正負極端子間の電圧が3.5Vに到達するまで1Cのレートで10分間CC充電を行った(初回充電工程)。そして、初回充電後の電池を水平面に配置し、該水平面に対して電池ケースを15°傾けた状態(即ち、傾斜角θが15°の状態)で(図4を参照)、超音波装置を用いて2kHzの振動を10秒間付与した。その後、電池を1Cの充電レートで4.1Vまで定電流充電した(本充電)。これにより、サンプル2に係る密閉型リチウムイオン二次電池を作製した。 Next, the battery constructed as described above was subjected to CC charging at a rate of 1 C for 10 minutes at 25° C. until the voltage between the positive and negative terminals reached 3.5 V (initial charging step). Then, the battery after the initial charge is placed on a horizontal plane, and the ultrasonic device is operated with the battery case tilted 15° with respect to the horizontal plane (that is, the tilt angle θ is 15°) (see FIG. 4). Vibration of 2 kHz was applied for 10 seconds. After that, the battery was constant current charged to 4.1 V at a charge rate of 1 C (main charge). Thus, a sealed lithium ion secondary battery according to sample 2 was produced.

<サンプル1,3~6>
上記傾斜角θを、表1の該当欄に示すとおりとした以外は、サンプル2と同様な方法により、サンプル1,3~6に係る密閉型リチウムイオン二次電池を作製した。
<Samples 1, 3 to 6>
Sealed lithium ion secondary batteries according to Samples 1 and 3 to 6 were produced in the same manner as Sample 2, except that the tilt angle θ was set as shown in the corresponding column of Table 1.

2.各サンプルの評価
上記のとおり作製した各サンプルについて、金属リチウム析出の評価を行った。具体的には、上記作製したサンプル1~6に係る密閉型リチウムイオン二次電池を、-10℃の環境下において静置した。そして、1Cの充電レートで電圧が4.2VとなるまでCC充電を行い、次いで、1Cの放電レートで電圧が3.0VとなるまでCC放電する充放電操作を1サイクルとし、これを1000サイクル実施した。かかるサイクル充放電後の電池を解体し、捲回電極体において金属リチウムが析出しているか否かを確認した。表1に、金属リチウム析出の有無と、金属リチウムの析出箇所を示した。
2. Evaluation of Each Sample Each sample prepared as described above was evaluated for deposition of metallic lithium. Specifically, the sealed lithium ion secondary batteries according to Samples 1 to 6 produced above were allowed to stand in an environment of -10°C. Then, CC charging is performed at a charging rate of 1 C until the voltage reaches 4.2 V, and then CC discharging is performed at a discharging rate of 1 C until the voltage reaches 3.0 V. This charge/discharge operation is defined as one cycle, and this is 1000 cycles. carried out. The battery after such cycle charging and discharging was disassembled, and it was confirmed whether metallic lithium was deposited in the wound electrode assembly. Table 1 shows the presence or absence of metal lithium deposition and the deposition locations of metal lithium.

Figure 0007334142000001
Figure 0007334142000001

表1に示すように、初回充電工程後に、傾斜角θを15°程度とした状態で脱泡したサンプル2と、傾斜角θを30°程度とした状態で脱泡したサンプル3とでは、上部R部および下部R部の表面において、金属リチウムの析出が確認されなかった。一方、初回充電工程後に電池ケースを傾けずに脱泡を行ったサンプル1では、上部R部で金属リチウムの析出が確認された。そして、傾斜角θを45°以上とした状態で脱泡を行ったサンプル4~6では、下部R部で金属リチウムの析出が確認された。
以下、特に限定解釈されることを意図したものではないが、傾斜角θを1°≦θ<45°の範囲内(例えば10°~40°、好ましくは15°≦θ≦30°)としたサンプル2および3では、捲回電極体中のガス抜けが良いため、金属リチウムが析出しなかったと考えられ得る。一方、傾斜角θを45°以上と大きく傾けたサンプル4~6では、捲回電極体外に非水電解液が流出し、かつ、流出した非水電解液には未反応分の添加剤が含まれていることにより、元に戻した際に電池ケース底部における添加物成分が多くなると考えられる。これにより、下部R部において被膜が厚く形成されて抵抗が高くなるため、金属リチウムが析出したと考えられ得る。そして、傾斜を設けなかったサンプル1では、上部R部にガスが滞留することにより、正極および負極間の距離が増大したため、上部R部において金属リチウムが析出したと考えられ得る。
このように、ここで開示される技術によると、初回充電等により発生するガスの残留が低減された捲回電極体を備えた密閉型リチウムイオン二次電池を提供することができる。
As shown in Table 1, after the initial charging process, the sample 2 defoamed with an inclination angle θ of about 15° and the sample 3 degassed with an inclination angle θ of about 30° No deposition of metallic lithium was observed on the surfaces of the R portion and the lower R portion. On the other hand, in sample 1 in which defoaming was performed without tilting the battery case after the initial charging step, precipitation of metallic lithium was confirmed in the upper R portion. In Samples 4 to 6 in which defoaming was performed with the inclination angle θ of 45° or more, precipitation of metallic lithium was confirmed in the lower R portion.
Hereinafter, although not intended to be particularly limited interpretation, the inclination angle θ is set to be in the range of 1 ° ≤ θ < 45 ° (for example, 10 ° to 40 °, preferably 15 ° ≤ θ ≤ 30 °) In Samples 2 and 3, it can be considered that metal lithium was not deposited because the gas in the wound electrode bodies was well vented. On the other hand, in samples 4 to 6, in which the inclination angle θ was large at 45° or more, the non-aqueous electrolyte flowed out of the wound electrode body, and the flowed-out non-aqueous electrolyte contained the unreacted additive. As a result, the amount of additive components at the bottom of the battery case is considered to increase when the battery case is restored. As a result, the film was formed thicker in the lower R portion, and the resistance was increased, so it can be considered that metallic lithium was deposited. Then, in Sample 1, in which no inclination was provided, it is conceivable that the distance between the positive electrode and the negative electrode increased due to the gas remaining in the upper R portion, and metallic lithium was deposited in the upper R portion.
As described above, according to the technology disclosed herein, it is possible to provide a sealed lithium ion secondary battery including a wound electrode body in which residual gas generated by initial charging or the like is reduced.

以上、本発明を詳細に説明したが、上述の説明は例示にすぎない。すなわち、ここで開示される技術には上述した具体例を様々に変形、変更したものが含まれる。 While the present invention has been described in detail above, the foregoing description is exemplary only. That is, the technology disclosed herein includes various modifications and alterations of the above-described specific examples.

1 電池(密閉型リチウムイオン二次電池)
10 電池ケース本体
12 電池ケース
20 蓋体
22 注液孔
24 安全弁
30 正極端子
31 正極集電板
32 正極シート(正極)
33 正極集電体
34 正極活物質層
35 正極活物質層非形成部分
40 負極端子
41 負極集電板
42 負極シート(負極)
43 負極集電体
44 負極活物質層
45 負極活物質層非形成部分
50 セパレータ
60 上部R部
61 平坦部
62 下部R部
100 捲回電極体
100a 捲回電極体コア部分
L 捲回軸
H 水平面
θ 傾斜角

1 battery (sealed lithium-ion secondary battery)
10 Battery case body 12 Battery case 20 Lid 22 Injection hole 24 Safety valve 30 Positive electrode terminal 31 Positive current collecting plate 32 Positive electrode sheet (positive electrode)
33 positive electrode current collector 34 positive electrode active material layer 35 positive electrode active material layer non-formed portion 40 negative electrode terminal 41 negative electrode current collector plate 42 negative electrode sheet (negative electrode)
43 Negative electrode current collector 44 Negative electrode active material layer 45 Negative electrode active material layer non-formed portion 50 Separator 60 Upper R portion 61 Flat portion 62 Lower R portion 100 Wound electrode body 100a Wound electrode body core portion L Winding axis H Horizontal plane θ angle of inclination

Claims (3)

長尺なシート状の正極および負極が、セパレータを介して捲回されてなる捲回電極体と、
非水電解液と、
密閉可能な角型の電池ケースと、
を備えた角型の密閉型リチウムイオン二次電池を製造する方法であって、以下の工程:
前記捲回電極体および前記非水電解液を、前記電池ケース内に収容する工程、ここで、該捲回電極体は、捲回軸が水平方向に沿うようにして収容される;
前記電池ケース内を、負圧にした状態で封止する封止工程;
前記封止工程後に、初回充電を行う初回充電工程;および
前記初回充電工程後に、捲回軸と水平面との間の角度をθとしたとき、θが1°≦θ<45°となるように前記電池ケースを傾けた状態で、該電池ケースに超音波振動を1~10kHzの振動数でかつ5~60秒間付与することにより、前記捲回電極体中に存在する気泡を脱泡する脱泡工程;
を包含する、密閉型リチウムイオン二次電池の製造方法。
A wound electrode body in which a long sheet-shaped positive electrode and a negative electrode are wound with a separator interposed therebetween;
a non-aqueous electrolyte;
A square battery case that can be sealed,
A method for manufacturing a prismatic sealed lithium ion secondary battery comprising the steps of:
housing the wound electrode body and the non-aqueous electrolyte in the battery case, wherein the wound electrode body is housed so that the winding axis extends in a horizontal direction;
A sealing step of sealing the inside of the battery case in a negative pressure state;
After the sealing step, an initial charging step of performing an initial charging; and After the initial charging step, when the angle between the winding axis and the horizontal plane is θ, θ is 1°≦θ<45°. With the battery case tilted, ultrasonic vibration is applied to the battery case at a frequency of 1 to 10 kHz for 5 to 60 seconds to remove bubbles present in the wound electrode assembly. process;
A method for manufacturing a sealed lithium ion secondary battery, comprising:
前記脱泡工程において、前記θは15°≦θ≦30°の範囲内である、請求項1に記載の密閉型リチウムイオン二次電池の製造方法。 2. The method for manufacturing a sealed lithium ion secondary battery according to claim 1, wherein in said defoaming step, said θ is within the range of 15°≦θ≦30°. 前記捲回電極体は、扁平形状である、請求項1または2に記載の密閉型リチウムイオン二次電池の製造方法。 3. The method of manufacturing a sealed lithium-ion secondary battery according to claim 1, wherein said wound electrode body has a flat shape.
JP2020182116A 2020-10-30 2020-10-30 Method for manufacturing sealed lithium-ion secondary battery Active JP7334142B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020182116A JP7334142B2 (en) 2020-10-30 2020-10-30 Method for manufacturing sealed lithium-ion secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2020182116A JP7334142B2 (en) 2020-10-30 2020-10-30 Method for manufacturing sealed lithium-ion secondary battery

Publications (2)

Publication Number Publication Date
JP2022072592A JP2022072592A (en) 2022-05-17
JP7334142B2 true JP7334142B2 (en) 2023-08-28

Family

ID=81604010

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020182116A Active JP7334142B2 (en) 2020-10-30 2020-10-30 Method for manufacturing sealed lithium-ion secondary battery

Country Status (1)

Country Link
JP (1) JP7334142B2 (en)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013125650A (en) 2011-12-14 2013-06-24 Toyota Motor Corp Sealed lithium secondary battery and manufacturing method of the same
JP2014027239A (en) 2012-07-30 2014-02-06 Sharp Corp Solar cell module transport device
CN105633473A (en) 2015-12-31 2016-06-01 天津市捷威动力工业有限公司 Method for controlling liquid preserving capability consistency of soft package lithium titanate lithium-ion battery
KR20170001147A (en) 2015-06-25 2017-01-04 주식회사 엘지화학 Manufacturing Method of secondary battery and Wetting process equipment for secondary battery
JP2017084508A (en) 2015-10-23 2017-05-18 日産自動車株式会社 Secondary battery manufacturing method and manufacturing apparatus for the same
JP2018515891A (en) 2015-08-20 2018-06-14 エルジー・ケム・リミテッド Gas trap removal device for battery cell manufacturing using vibration
JP2019053929A (en) 2017-09-15 2019-04-04 株式会社東芝 Battery manufacturing method and manufacturing device
JP2020113369A (en) 2019-01-08 2020-07-27 トヨタ自動車株式会社 Manufacturing method of battery

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013125650A (en) 2011-12-14 2013-06-24 Toyota Motor Corp Sealed lithium secondary battery and manufacturing method of the same
JP2014027239A (en) 2012-07-30 2014-02-06 Sharp Corp Solar cell module transport device
KR20170001147A (en) 2015-06-25 2017-01-04 주식회사 엘지화학 Manufacturing Method of secondary battery and Wetting process equipment for secondary battery
JP2018515891A (en) 2015-08-20 2018-06-14 エルジー・ケム・リミテッド Gas trap removal device for battery cell manufacturing using vibration
JP2017084508A (en) 2015-10-23 2017-05-18 日産自動車株式会社 Secondary battery manufacturing method and manufacturing apparatus for the same
CN105633473A (en) 2015-12-31 2016-06-01 天津市捷威动力工业有限公司 Method for controlling liquid preserving capability consistency of soft package lithium titanate lithium-ion battery
JP2019053929A (en) 2017-09-15 2019-04-04 株式会社東芝 Battery manufacturing method and manufacturing device
JP2020113369A (en) 2019-01-08 2020-07-27 トヨタ自動車株式会社 Manufacturing method of battery

Also Published As

Publication number Publication date
JP2022072592A (en) 2022-05-17

Similar Documents

Publication Publication Date Title
JP5888551B2 (en) Manufacturing method of sealed lithium secondary battery
JP5818116B2 (en) Sealed lithium secondary battery and manufacturing method thereof
JP2018106903A (en) Lithium ion secondary battery
CN106654168B (en) Nonaqueous electrolyte secondary battery and method for producing same, and conductive assistant for nonaqueous electrolyte secondary battery and method for producing same
JP6836727B2 (en) Non-aqueous electrolyte Lithium ion secondary battery
JP7290124B2 (en) Manufacturing method and negative electrode material for lithium ion secondary battery
JP7169524B2 (en) Non-aqueous electrolyte secondary battery
CN109119629B (en) Non-aqueous electrolyte secondary battery
US10177408B2 (en) Non-aqueous electrolyte secondary battery and method for producing same
JP6722384B2 (en) Lithium ion secondary battery
JP6120065B2 (en) Nonaqueous electrolyte secondary battery and manufacturing method thereof
JP7334142B2 (en) Method for manufacturing sealed lithium-ion secondary battery
JP5904368B2 (en) Nonaqueous electrolyte secondary battery and manufacturing method thereof
JP2011124058A (en) Lithium-ion secondary battery, vehicle and battery-equipped apparatus with the battery
JP7121912B2 (en) Negative electrode for non-aqueous lithium-ion secondary battery, and non-aqueous lithium-ion secondary battery using the same
CN109119678B (en) Non-aqueous electrolyte secondary battery
JP5975291B2 (en) Method for producing non-aqueous electrolyte secondary battery
JP2017130317A (en) Nonaqueous electrolyte secondary battery having wound electrode body
JP6895079B2 (en) Non-aqueous electrolyte secondary battery
JP6778396B2 (en) Non-aqueous electrolyte secondary battery
CN114583244B (en) Lithium ion secondary battery
JP2021082479A (en) Nonaqueous electrolyte secondary battery
JP6731155B2 (en) Non-aqueous electrolyte secondary battery
JP2017054736A (en) Electrolytic solution for lithium ion secondary battery, and method for manufacturing lithium ion secondary battery
JP2022050741A (en) Non-aqueous electrolyte of lithium-ion secondary battery and lithium-ion secondary battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20211104

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20220908

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220922

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20221115

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230302

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230426

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230803

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230816

R150 Certificate of patent or registration of utility model

Ref document number: 7334142

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150