JP7315408B2 - copper particles - Google Patents

copper particles Download PDF

Info

Publication number
JP7315408B2
JP7315408B2 JP2019146441A JP2019146441A JP7315408B2 JP 7315408 B2 JP7315408 B2 JP 7315408B2 JP 2019146441 A JP2019146441 A JP 2019146441A JP 2019146441 A JP2019146441 A JP 2019146441A JP 7315408 B2 JP7315408 B2 JP 7315408B2
Authority
JP
Japan
Prior art keywords
copper
particles
treatment agent
copper particles
acid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2019146441A
Other languages
Japanese (ja)
Other versions
JP2021025115A (en
Inventor
瑞樹 秋澤
隆史 佐々木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Mining and Smelting Co Ltd
Original Assignee
Mitsui Mining and Smelting Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Mining and Smelting Co Ltd filed Critical Mitsui Mining and Smelting Co Ltd
Priority to JP2019146441A priority Critical patent/JP7315408B2/en
Publication of JP2021025115A publication Critical patent/JP2021025115A/en
Application granted granted Critical
Publication of JP7315408B2 publication Critical patent/JP7315408B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Description

本発明は銅粒子に関する。本発明の銅粒子は、例えば導電性組成物の原料や、焼結材料の原料として有用である。 The present invention relates to copper particles. The copper particles of the present invention are useful, for example, as raw materials for conductive compositions and raw materials for sintering materials.

本出願人は先に、一次粒子の平均粒径が0.1μm以上0.6μm以下であり、粒子表面に有機表面処理剤が施されており、該有機表面処理剤が施された状態での粒子に占める該有機表面処理剤の割合が、炭素原子換算で0.25質量%以上5.50質量%以下である銅粒子に関する技術を提案した(特許文献1参照)。この技術においては表面処理剤として炭素数6以上18以下の脂肪酸又は脂肪族アミンが好適に用いられる。この技術によれば、銅粒子の低温焼結性が良好になるという利点がある。またこの技術によれば、表面処理剤による銅の酸化を防止しつつ、比抵抗が低く、かつ基材との密着性が高い導体膜を容易に形成することができる。 The present applicant previously proposed a technique related to copper particles having an average primary particle size of 0.1 μm or more and 0.6 μm or less, an organic surface treatment agent applied to the surface of the particles, and a ratio of the organic surface treatment agent to the particles in the state where the organic surface treatment agent was applied is 0.25% by mass or more and 5.50% by mass or less in terms of carbon atoms (see Patent Document 1). In this technique, a fatty acid or an aliphatic amine having 6 to 18 carbon atoms is preferably used as the surface treatment agent. This technique has the advantage of improving the low-temperature sinterability of the copper particles. Moreover, according to this technique, it is possible to easily form a conductor film having a low specific resistance and high adhesion to a substrate while preventing oxidation of copper due to a surface treatment agent.

特開2015-168878号公報JP 2015-168878 A

上述した特許文献1に記載の技術によれば、銅粒子及び有機溶媒を含むペーストやインクなどの組成物を基板上に塗布し、それによって形成された塗膜を焼成することによって導体膜を形成することができる。焼成には水素や一酸化炭素等の還元性雰囲気、及び水素-窒素混合雰囲気等の弱還元性雰囲気が好ましいと、同文献には記載されている。 According to the technique described in the above-mentioned Patent Document 1, a conductor film can be formed by applying a composition such as paste or ink containing copper particles and an organic solvent onto a substrate and baking the coating film formed thereby. The document describes that a reducing atmosphere such as hydrogen or carbon monoxide or a weakly reducing atmosphere such as a hydrogen-nitrogen mixed atmosphere is preferable for firing.

還元性雰囲気での焼成によれば導電性の高い導体膜を首尾よく形成することができる。しかし、工業的には還元性雰囲気や弱還元性雰囲気よりも、不活性雰囲気又は酸化性雰囲気での焼成によっても導電性の高い導体膜を形成できることが有利である。還元性雰囲気以外の雰囲気での焼結を可能にするためには、銅粒子の表面に施す処理剤の量を減らすことが有利である。しかし、その場合には粒子の凝集が甚だしくなり、導体膜の表面を平滑にすることが容易でない。表面が粗い導体膜は、電気抵抗が局所的に異なりやすく、そのことに起因して導電信頼性が低下する場合がある。 By firing in a reducing atmosphere, a highly conductive conductive film can be successfully formed. However, industrially, it is advantageous to be able to form a highly conductive conductor film by firing in an inert atmosphere or an oxidizing atmosphere rather than in a reducing atmosphere or weakly reducing atmosphere. To enable sintering in atmospheres other than reducing atmospheres, it is advantageous to reduce the amount of treatment agent applied to the surface of the copper particles. However, in that case, the particles agglomerate excessively, making it difficult to smooth the surface of the conductor film. A conductor film with a rough surface tends to have a locally different electric resistance, which may lead to a decrease in reliability of conduction.

したがって本発明の課題は、銅粒子の焼結性の向上及び凝集防止に関し、更に詳しくは、凝集を防止しつつ、還元性雰囲気以外の雰囲気でも低温での焼結が可能な銅粒子を提供することにある。 Therefore, an object of the present invention is to improve the sinterability and prevent aggregation of copper particles, and more specifically, to provide copper particles that can be sintered at a low temperature even in an atmosphere other than a reducing atmosphere while preventing aggregation.

前記の課題を解決すべく本発明者は鋭意検討した結果、銅粒子の表面を被覆する処理剤として特定の組み合わせを採用することによって、銅の酸化防止と、粒子の凝集防止という、これまで相容れなかった二つの課題を同時に解決し得ることを知見した。本発明はかかる知見に基づきなされたものであり、
表面に有機表面処理剤が施されている銅粒子であって、
前記有機表面処理剤が、炭素原子数が相対的に多い第1処理剤と、炭素原子数が相対的に少ない第2処理剤とを含み、
第1処理剤が脂肪族有機酸からなり、第2処理剤が脂肪族有機酸塩からなる、銅粒子を提供することによって前記の課題を解決したものである。
As a result of intensive studies aimed at solving the above-mentioned problems, the inventors of the present invention found that by adopting a specific combination as a treatment agent for coating the surfaces of copper particles, it is possible to simultaneously solve the two previously incompatible problems of preventing oxidation of copper and preventing agglomeration of particles. The present invention has been made based on such findings,
A copper particle having an organic surface treatment agent applied to the surface,
The organic surface treatment agent comprises a first treatment agent having a relatively large number of carbon atoms and a second treatment agent having a relatively small number of carbon atoms,
The above problem is solved by providing copper particles in which the first treating agent consists of an aliphatic organic acid and the second treating agent consists of an aliphatic organic acid salt.

本発明によれば、還元性雰囲気以外の雰囲気でも低温焼結性に優れ、且つ焼結によって得られた導体膜の表面平滑性にも優れた銅粒子が提供される。 ADVANTAGE OF THE INVENTION According to this invention, the copper particle which is excellent in the low-temperature sintering property also in atmospheres other than reducing atmosphere, and is excellent also in the surface smoothness of the conductor film obtained by sintering is provided.

以下本発明を、その好ましい実施形態に基づき説明する。本発明の銅粒子は、該粒子の表面に有機表面処理剤が施されているものである。これによって、有機表面処理剤からなる表面処理層が、銅を含む金属からなる芯部の表面を連続的に又は不連続的に覆うように形成されている。有機表面処理剤は、銅の酸化と、粒子の凝集との双方を抑制するために用いられる。 The present invention will be described below based on its preferred embodiments. The copper particles of the present invention are those in which an organic surface treatment agent is applied to the surface of the particles. As a result, the surface treatment layer made of the organic surface treatment agent is formed so as to continuously or discontinuously cover the surface of the core made of metal containing copper. Organic surface treatment agents are used to suppress both copper oxidation and particle agglomeration.

本発明に用いられる有機表面処理剤は、複数の処理剤を含んでいる。詳細には、有機表面処理剤は、脂肪族有機酸からなる第1処理剤と、脂肪族有機酸塩からなる第2処理剤とを含んでいる。第1処理剤は、その炭素原子数が第2処理剤の炭素原子数よりも多いものである。つまり、第1処理剤は、炭素原子数が相対的に多いものであり、また、第2処理剤は炭素原子数が相対的に少ないものである。 The organic surface treatment agent used in the present invention contains a plurality of treatment agents. Specifically, the organic surface treatment agent includes a first treatment agent comprising an aliphatic organic acid and a second treatment agent comprising an aliphatic organic acid salt. The first treating agent has more carbon atoms than the second treating agent. That is, the first treatment agent has a relatively large number of carbon atoms, and the second treatment agent has a relatively small number of carbon atoms.

本技術分野においては、銅粒子における銅の酸化の抑制と、粒子どうしの凝集の抑制とを両立するために、炭素原子数が比較的多い有機表面処理剤が用いられてきた。しかし、このような処理剤は、該処理剤の分解温度が高く、銅粒子の焼結時に残存することがあった。このことに起因して、焼結開始温度が上昇したり、銅粒子どうしの焼結後に得られる導体膜の抵抗が高くなったりすることがあった。この問題点を解決すべく本発明者が鋭意検討したところ、炭素原子数が相対的に多い第1処理剤に加えて、炭素原子数が相対的に少ない第2処理剤を組み合わせて用いることによって、銅の酸化及び粒子どうしの凝集の双方を抑制しつつ、焼結開始温度を低くすることができ、その結果、粒子どうしの低温焼結性を向上しつつ、焼結後に得られる導体膜の抵抗を低くすることができることを見出した。 In this technical field, an organic surface treatment agent having a relatively large number of carbon atoms has been used in order to achieve both suppression of oxidation of copper in copper particles and suppression of agglomeration of particles. However, such a treating agent has a high decomposition temperature and sometimes remains during the sintering of the copper particles. Due to this, the sintering start temperature may rise, and the resistance of the conductor film obtained after sintering the copper particles may increase. In order to solve this problem, the present inventors conducted intensive studies and found that by using a combination of a first treatment agent having a relatively large number of carbon atoms and a second treatment agent having a relatively small number of carbon atoms, it is possible to reduce the sintering start temperature while suppressing both oxidation of copper and agglomeration of particles.

銅の酸化抑制と粒子どうしの凝集抑制とを両立させる観点から、脂肪族有機酸からなる第1処理剤における炭素原子数は、6以上18以下であることが好ましく、12以上18以下であることが更に好ましい。このような脂肪族有機酸としては、例えば、直鎖又は分枝鎖であり且つ飽和又は不飽和であるカルボン酸、あるいは直鎖又は分枝鎖であり且つ飽和又は不飽和である炭化水素基を有するスルホン酸等が挙げられ、好ましくは直鎖であり、且つ飽和又は不飽和のカルボン酸である。カルボン酸の具体例としては、クエン酸、ヘキサン酸、ヘプタン酸、オクタン酸、ノナン酸、デカン酸、ラウリン酸、パルミチン酸、オレイン酸、ステアリン酸等が挙げられ、好ましくはラウリン酸、オレイン酸及びステアリン酸であり、更に好ましくはラウリン酸及びステアリン酸である。スルホン酸の具体例としては、ヘキサンスルホン酸、ヘプタンスルホン酸、オクタンスルホン酸、ノナンスルホン酸、デカンスルホン酸、ラウリンスルホン酸、パルミチンスルホン酸、オレインスルホン酸、ステアリンスルホン酸等が挙げられる。これらの脂肪酸は、単独で又は二種以上を組み合わせて用いることができる。 From the viewpoint of achieving both suppression of oxidation of copper and suppression of aggregation of particles, the number of carbon atoms in the first treatment agent composed of an aliphatic organic acid is preferably 6 or more and 18 or less, and more preferably 12 or more and 18 or less. Such aliphatic organic acids include, for example, linear or branched and saturated or unsaturated carboxylic acids, or linear or branched and saturated or unsaturated hydrocarbon group-containing sulfonic acids, preferably linear and saturated or unsaturated carboxylic acids. Specific examples of carboxylic acids include citric acid, hexanoic acid, heptanoic acid, octanoic acid, nonanoic acid, decanoic acid, lauric acid, palmitic acid, oleic acid, stearic acid, etc., preferably lauric acid, oleic acid and stearic acid, more preferably lauric acid and stearic acid. Specific examples of sulfonic acids include hexanesulfonic acid, heptanesulfonic acid, octanesulfonic acid, nonanesulfonic acid, decanesulfonic acid, laurinsulfonic acid, palmitic acid, oleinsulfonic acid, and stearinsulfonic acid. These fatty acids can be used alone or in combination of two or more.

銅の酸化抑制と粒子の凝集抑制とを両立させつつ、粒子どうしの低温焼結性を高める観点から、脂肪族有機酸塩からなる第2処理剤における炭素原子数は、1以上5以下であることが好ましく、1以上3以下であることが更に好ましい。このような脂肪族有機酸塩としては、例えば、直鎖又は分枝鎖であり、且つ飽和又は不飽和のカルボン酸の塩、あるいは直鎖又は分枝鎖であり且つ飽和又は不飽和である炭化水素基を有するスルホン酸の塩等が挙げられ、好ましくは直鎖飽和カルボン酸塩である。脂肪族有機酸塩の具体例としては、ギ酸、酢酸、プロピオン酸、酪酸、ペンタン酸、シュウ酸等のカルボン酸、若しくはエタンスルホン酸、プロパンスルホン酸、プロパンスルホン酸、ブタンスルホン酸、ペンタンスルホン酸等のスルホン酸のリチウム塩、ナトリウム塩、カリウム塩等のアルカリ金属塩、又は前記カルボン酸若しくは前記スルホン酸の無置換若しくは第一級ないし第四級アンモニウム塩等のアンモニウム塩等が挙げられる。これらの脂肪酸塩は、単独で又は二種以上を組み合わせて用いることができる。 From the viewpoint of improving the low-temperature sinterability of particles while simultaneously suppressing oxidation of copper and suppressing aggregation of particles, the number of carbon atoms in the second treatment agent composed of an aliphatic organic acid salt is preferably 1 or more and 5 or less, more preferably 1 or more and 3 or less. Examples of such aliphatic organic acid salts include salts of linear or branched and saturated or unsaturated carboxylic acids, and salts of sulfonic acids having linear or branched and saturated or unsaturated hydrocarbon groups, and preferably linear saturated carboxylic acid salts. Specific examples of aliphatic organic acid salts include carboxylic acids such as formic acid, acetic acid, propionic acid, butyric acid, pentanoic acid, and oxalic acid, or ethanesulfonic acid, propanesulfonic acid, propanesulfonic acid, butanesulfonic acid, alkali metal salts such as potassium salts, and ammonium salts such as unsubstituted or primary to quaternary ammonium salts of sulfonic acids such as ethanesulfonic acid, butanesulfonic acid, and pentanesulfonic acid. These fatty acid salts can be used alone or in combination of two or more.

これらのうち、第2処理剤は、一価のカチオンの塩であることが好ましく、脂肪族有機酸のアンモニウム塩であることがより好ましく、脂肪族有機酸の無置換アンモニウム塩であることが更に好ましい。このような例としては、カルボン酸又はスルホン酸のアンモニウム塩が好ましく、カルボン酸又はスルホン酸の無置換若しくは第一級ないし第四級アンモニウム塩であることがより好ましく、カルボン酸又はスルホン酸の無置換アンモニウム塩であることが更に好ましい。 Among these, the second treatment agent is preferably a monovalent cation salt, more preferably an ammonium salt of an aliphatic organic acid, and even more preferably an unsubstituted ammonium salt of an aliphatic organic acid. Such examples are preferably ammonium salts of carboxylic acids or sulfonic acids, more preferably unsubstituted or primary to quaternary ammonium salts of carboxylic acids or sulfonic acids, and even more preferably unsubstituted ammonium salts of carboxylic acids or sulfonic acids.

アルカリ金属塩を用いる場合には、銅粒子の焼結時にアルカリ金属が残存し、焼結体における銅の純度が低下することがあるところ、このような脂肪族有機酸塩を用いることによって、銅の酸化抑制と粒子の凝集抑制とを両立させつつ、第2処理剤の分解温度を低くして、粒子の焼結時に第2処理剤が導体膜中に残存することを低減することができる。その結果、還元性雰囲気以外の雰囲気でも粒子どうしの低温焼結性に一層優れ、得られる導体膜の表面平滑性に優れたものとなる。特に、第2処理剤としてアンモニウム塩を用いることによって、粒子の焼結時に、第2処理剤の分解及び揮発を容易に進行させることができ、且つ第2処理剤が導体膜中に残存しづらくなるので有利である。この効果をより一層顕著なものとする観点から、第2処理剤における炭素原子数は低いほど好ましく、第2処理剤としてギ酸アンモニウム(HCOONH)及び酢酸アンモニウム(CHCOONH)の少なくとも一種を用いることが更に好ましく、ギ酸アンモニウムを用いることがより一層好ましい。 When an alkali metal salt is used, the alkali metal remains during the sintering of the copper particles, and the purity of the copper in the sintered body may decrease. By using such an aliphatic organic acid salt, it is possible to reduce the decomposition temperature of the second treatment agent while simultaneously suppressing the oxidation of copper and the agglomeration of the particles, thereby reducing the second treatment agent remaining in the conductor film during the sintering of the particles. As a result, even in an atmosphere other than a reducing atmosphere, the particles are more excellent in low-temperature sinterability, and the resulting conductor film has excellent surface smoothness. In particular, the use of an ammonium salt as the second treatment agent facilitates the decomposition and volatilization of the second treatment agent during sintering of the particles, and makes it difficult for the second treatment agent to remain in the conductor film, which is advantageous. From the viewpoint of making this effect more pronounced, the lower the number of carbon atoms in the second treating agent, the better. It is more preferable to use at least one of ammonium formate (HCOONH 4 ) and ammonium acetate (CH 3 COONH 4 ) as the second treating agent, and it is even more preferable to use ammonium formate.

二種の処理剤を含む有機表面処理剤は、例えば、銅粒子を製造した後の工程において、得られた銅粒子と該有機表面処理剤とを混合することによって、粒子表面に施すことができる。有機表面処理剤を施す量は、該有機表面処理剤が施された状態での銅粒子に占める該有機表面処理剤全体の割合(質量%)で表して、炭素原子換算で0.2質量%以上2.0質量%以下とすることが好ましく、0.3質量%以上1.0質量%以下とすることが更に好ましい。このような範囲にあることで、有機表面処理剤による銅粒子表面の酸化被膜の除去や、共融解による効果によって、銅粒子どうしの融解温度を低温化することができ、その結果、還元性雰囲気以外の雰囲気でも低温焼結性を高めることができる。 The organic surface treatment agent containing two kinds of treatment agents can be applied to the particle surface by, for example, mixing the obtained copper particles with the organic surface treatment agent in a step after the production of the copper particles. The amount of the organic surface treatment agent to be applied is expressed by the ratio (% by mass) of the entire organic surface treatment agent to the copper particles to which the organic surface treatment agent is applied, and is preferably 0.2% by mass or more and 2.0% by mass or less, more preferably 0.3% by mass or more and 1.0% by mass or less in terms of carbon atoms. Within this range, the melting temperature of the copper particles can be lowered due to the removal of the oxide film on the surface of the copper particles by the organic surface treatment agent and the effect of eutectic melting. As a result, low-temperature sinterability can be improved even in atmospheres other than reducing atmospheres.

銅粒子の表面に施された有機表面処理剤全体の割合(質量%)は、次のようにして測定することができる。有機表面処理剤が施された銅粒子の集合体である銅粉0.5gを、炭素・硫黄分析装置(堀場製作所製、EMIA-320V)にて酸素気流中で加熱し、銅粉中の炭素分をCOあるいはCOに分解させてその量を定量することで測定できる。 The ratio (% by mass) of the total organic surface treatment agent applied to the surface of the copper particles can be measured as follows. 0.5 g of copper powder, which is an aggregate of copper particles to which an organic surface treatment agent has been applied, is heated in an oxygen stream with a carbon/sulfur analyzer (manufactured by Horiba, Ltd., EMIA-320V), and the carbon content in the copper powder can be measured by decomposing it into CO or CO 2 and quantifying the amount.

また第1処理剤及び第2処理剤の定性及び定量は、例えば核磁気共鳴(NMR)法、ラマン分光法、赤外分光法、液体クロマトグラフィー法、飛行時間型二次イオン質量分析法(TOF-SIMS)等を用いて行うことができる。 Further, the qualitative and quantitative determination of the first processing agent and the second processing agent can be performed using, for example, nuclear magnetic resonance (NMR) method, Raman spectroscopy, infrared spectroscopy, liquid chromatography, time-of-flight secondary ion mass spectrometry (TOF-SIMS), and the like.

銅粒子の低温での焼結性の向上と、該粒子の焼結によって得られる導体膜の表面平滑性の向上とを両立する観点から、有機表面処理剤が施された銅粒子において、その一次粒子の平均粒径が、好ましくは0.1μm以上0.6μm以下、更に好ましくは0.15μm以上0.4μm以下である。一次粒子とは、外形上の幾何学的形態から判断して、粒子としての最小単位と認められる物体のことをいう。 From the viewpoint of simultaneously improving the sinterability of copper particles at low temperatures and improving the surface smoothness of the conductor film obtained by sintering the particles, in the copper particles to which the organic surface treatment agent is applied, the average particle size of the primary particles is preferably 0.1 μm or more and 0.6 μm or less, more preferably 0.15 μm or more and 0.4 μm or less. A primary particle refers to an object recognized as a minimum unit as a particle judging from its external geometrical form.

一次粒子の平均粒径は、例えば走査型電子顕微鏡(日本電子(株)製JSM-6330F)を用い、倍率10000倍又は30000倍で銅粒子を観察し、視野中の粒子200個について水平方向フェレ径を測定し、これらの測定値から、球に換算した体積平均粒径を算出することができる。 For the average particle size of the primary particles, for example, using a scanning electron microscope (JSM-6330F manufactured by JEOL Ltd.), the copper particles are observed at a magnification of 10,000 or 30,000 times, and 200 particles in the field of view.

上述のとおり、本発明の銅粒子は、有機表面処理剤からなる表面処理層が、銅を含む金属からなる芯部を覆うように形成されている。芯部は、銅を主体として含んでおり、好ましくは銅を80質量%以上含み、更に好ましくは銅及び残部不可避不純物のみからなる。 As described above, the copper particles of the present invention are formed such that the surface treatment layer made of an organic surface treatment agent covers the core portion made of a metal containing copper. The core mainly contains copper, preferably contains 80% by mass or more of copper, and more preferably consists of only copper and the balance of unavoidable impurities.

また、銅粒子の形状は球状であることが、粒子の分散性を高めて、表面平滑性の高い導体膜を得る観点から好ましい。球状の銅粒子を得るためには、例えば芯部を構成する金属粒子の形状を球状とすればよい。なお、粒子が球状であるとは、以下の方法で測定した円形度係数が好ましくは0.85以上、更に好ましくは0.90以上であることをいう。円形度係数は、次の方法で算出される。金属粒子の走査型電子顕微鏡像を撮影し、粒子どうしが重なり合っていないものを無作為に1000個選び出す。粒子の二次元投影像の面積をSとし、周囲長をLとしたときに、粒子の円形度係数を4πS/Lの式から算出する。各粒子の円形度係数の算術平均値を上述した円形度係数とする。粒子の二次元投影像が真円である場合は、粒子の円形度係数は1となる。 Moreover, it is preferable that the shape of the copper particles is spherical from the viewpoint of improving the dispersibility of the particles and obtaining a conductor film with high surface smoothness. In order to obtain spherical copper particles, for example, the shape of the metal particles forming the core should be spherical. In addition, that the particles are spherical means that the circularity coefficient measured by the following method is preferably 0.85 or more, more preferably 0.90 or more. The circularity coefficient is calculated by the following method. Scanning electron microscope images of metal particles are taken, and 1000 particles are randomly selected so that particles do not overlap each other. When the area of the two-dimensional projection image of the particle is S and the perimeter is L, the circularity coefficient of the particle is calculated from the formula 4πS/L 2 . Let the arithmetic mean value of the circularity coefficient of each particle be the circularity coefficient mentioned above. If the two-dimensional projection image of the particle is a perfect circle, the circularity coefficient of the particle is 1.

以下に、本発明の銅粒子の好適な製造方法について説明する。本製造方法は、芯部となる銅の粒子を生成させる工程(生成工程)、得られた該粒子を洗浄処理する工程(洗浄工程)、及び該粒子の表面に有機表面処理剤を施す工程(表面処理工程)の三つに大別される。このような工程を経ることによって、上述した物性を有する銅粒子を容易且つ簡便に得ることができる。 A preferred method for producing the copper particles of the present invention is described below. This production method is roughly divided into three steps: a step of producing copper particles that form the core (producing step), a step of washing the obtained particles (washing step), and a step of applying an organic surface treatment agent to the surface of the particles (surface treatment step). Through such steps, copper particles having the physical properties described above can be obtained easily and simply.

まず、芯部となる銅の粒子(以下、この粒子を「銅芯粒子」ともいう。)を生成させる。銅芯粒子の製造方法としては、例えば特開2015-168878号公報に記載の方法で製造することできる。すなわち、水と、好ましくは炭素原子数が1以上5以下の一価アルコールとを含む液媒体に、塩化銅、酢酸銅、水酸化銅、硫酸銅、酸化銅又は亜酸化銅等の一価又は二価の銅源を含む反応液を調製する。この反応液とヒドラジンとを、銅1モルに対して好ましくは0.5モル以上50モル以下の割合となるように混合し、該銅源を還元して、銅芯粒子を得る。本工程で得られる銅芯粒子は、その表面に有機表面処理剤が施されていないものである。 First, a copper particle (hereinafter also referred to as a “copper core particle”) to be the core is produced. As a method for producing the copper core particles, for example, the method described in JP-A-2015-168878 can be used. That is, a reaction solution containing a monovalent or divalent copper source such as copper chloride, copper acetate, copper hydroxide, copper sulfate, copper oxide or cuprous oxide in a liquid medium containing water and preferably a monohydric alcohol having 1 to 5 carbon atoms is prepared. This reaction solution and hydrazine are mixed at a ratio of preferably 0.5 mol or more and 50 mol or less per 1 mol of copper, and the copper source is reduced to obtain copper core particles. The surface of the copper core particles obtained in this step is not applied with an organic surface treatment agent.

次いで、上述の工程で得られた銅芯粒子を洗浄処理する。洗浄方法としては、例えばデカンテーション法や、ロータリーフィルター法等が挙げられる。ロータリーフィルター法で銅芯粒子を洗浄する場合、例えば銅芯粒子を水等の溶媒に分散させた水性スラリーを調製し、該スラリーの導電率を好ましくは2.0mS以下となるまで洗浄を行う。このときの洗浄条件は、例えば、洗浄溶媒として水を用いた場合、洗浄温度を15℃以上30℃以下、洗浄時間を10分以上60分以下とすることができる。スラリーの導電率を上述の範囲とすることによって、洗浄対象の銅芯粒子が凝集することなく均一に分散したままで、後述する表面処理を効率よく行うことができる。このスラリー中の銅芯粒子の含有割合は、洗浄効率の向上と粒子の分散性の向上とを両立する観点から、好ましくは5質量%以上50質量%以下である。 Next, the copper core particles obtained in the above steps are washed. Washing methods include, for example, the decantation method and the rotary filter method. When the copper core particles are washed by the rotary filter method, for example, an aqueous slurry is prepared by dispersing the copper core particles in a solvent such as water, and washing is performed until the electrical conductivity of the slurry is preferably 2.0 mS or less. As for the washing conditions at this time, for example, when water is used as the washing solvent, the washing temperature can be 15° C. or more and 30° C. or less, and the washing time can be 10 minutes or more and 60 minutes or less. By setting the conductivity of the slurry within the above range, the surface treatment described below can be efficiently performed while the copper core particles to be cleaned are uniformly dispersed without agglomeration. The content ratio of the copper core particles in the slurry is preferably 5% by mass or more and 50% by mass or less from the viewpoint of achieving both an improvement in cleaning efficiency and an improvement in dispersibility of the particles.

続いて、洗浄後の銅芯粒子に対して、有機表面処理剤による表面処理を行う。表面処理の方法として、洗浄後の銅芯粒子を水等の溶媒に分散させた水性スラリーに、第1処理剤及び第2処理剤のうち一方を添加して表面処理を行った後、他方の処理剤を添加して表面処理を行ってもよく、あるいは、該スラリーに、第1処理剤及び第2処理剤を同時に添加して表面処理を行ってもよい。銅芯粒子のスラリーは、洗浄工程で得られたスラリーをそのまま用いてもよく、該スラリーを固液分離して得られた固形分を洗浄工程で用いた溶媒と同一の又は異なる溶媒に更に分散させたスラリーを用いてもよい。銅芯粒子に対して表面処理を均一に行う観点から、第1処理剤を添加して表面処理を行った後、第2処理剤を添加して表面処理を行うことが好ましい。 Subsequently, the washed copper core particles are surface-treated with an organic surface treatment agent. As a method of surface treatment, one of the first treatment agent and the second treatment agent may be added to an aqueous slurry prepared by dispersing the washed copper core particles in a solvent such as water to perform surface treatment, and then the other treatment agent may be added to perform surface treatment, or the first treatment agent and the second treatment agent may be added to the slurry at the same time to perform surface treatment. As the slurry of the copper core particles, the slurry obtained in the washing step may be used as it is, or a slurry obtained by further dispersing the solid content obtained by solid-liquid separation of the slurry in a solvent which is the same as or different from the solvent used in the washing step may be used. From the viewpoint of uniformly surface-treating the copper core particles, it is preferable to add the first treating agent for surface treatment and then add the second treating agent for surface treatment.

処理剤を順次添加して表面処理を行う方法を例にとり以下に説明する。まず洗浄工程を経て得られた銅芯粒子を含むスラリーを第1処理剤の融点以上(例えば25℃以上70℃以下)に加熱し、その状態下で、水と相溶性のある有機溶媒に溶解させた第1処理剤を該スラリーに瞬時に加え、その後1時間撹拌して、銅芯粒子の表面に第1処理剤を施す。 A method of performing surface treatment by sequentially adding treatment agents will be described below as an example. First, the slurry containing the copper core particles obtained through the washing step is heated to the melting point of the first treatment agent or higher (e.g., 25° C. or higher and 70° C. or lower). Under this condition, the first treatment agent dissolved in an organic solvent compatible with water is instantaneously added to the slurry, and then stirred for 1 hour to apply the first treatment agent to the surfaces of the copper core particles.

第1処理剤を用いた表面処理において、銅芯粒子を含むスラリー中の第1処理剤の含有量は、表面処理剤を処理していない銅芯粒子100質量部に対して、好ましくは0.2質量部以上2.0質量部以下、より好ましくは0.5質量部以上1.5質量部以下とする。このような量で表面処理を行うことによって、上述した炭素原子割合で表面処理された銅粒子を得ることができる。 In the surface treatment using the first treatment agent, the content of the first treatment agent in the slurry containing the copper core particles is preferably 0.2 parts by mass or more and 2.0 parts by mass or less, more preferably 0.5 parts by mass or more and 1.5 parts by mass or less with respect to 100 parts by mass of the copper core particles not treated with the surface treatment agent. By performing the surface treatment with such an amount, it is possible to obtain the copper particles surface-treated with the carbon atom ratio described above.

次いで、第1処理剤が施された銅芯粒子含むスラリーを固液分離して固形物を得、該固形物を有機溶媒に分散させてスラリーとする。このスラリーに、有機溶媒に溶解させた第2処理剤を瞬時に加える。その後、有機溶媒を乾燥等によって除去して、銅芯粒子の表面に第1処理剤及び第2処理剤を含む有機表面処理剤が施された銅粒子を得る。この方法によって得られた銅粒子は、銅芯粒子の表面に第1処理剤と第2処理剤とを含む表面処理層が形成されたものとなる。 Next, the slurry containing the copper core particles to which the first treatment agent has been applied is subjected to solid-liquid separation to obtain a solid matter, and the solid matter is dispersed in an organic solvent to obtain a slurry. A second treating agent dissolved in an organic solvent is instantly added to this slurry. Thereafter, the organic solvent is removed by drying or the like to obtain copper particles in which an organic surface treatment agent containing a first treatment agent and a second treatment agent is applied to the surfaces of the copper core particles. In the copper particles obtained by this method, a surface treatment layer containing the first treatment agent and the second treatment agent is formed on the surface of the copper core particles.

第2処理剤を用いた表面処理において、銅芯粒子を含むスラリー中の第2処理剤の含有量は、表面処理剤を処理していない銅芯粒子100質量部に対して、好ましくは0.1質量部以上2.0質量部以下、より好ましくは0.2質量部以上1.0質量部以下とする。このような量で表面処理を行うことによって、上述した炭素原子割合で表面処理された銅粒子を得ることができる。 In the surface treatment using the second treatment agent, the content of the second treatment agent in the slurry containing the copper core particles is preferably 0.1 parts by mass or more and 2.0 parts by mass or less, more preferably 0.2 parts by mass or more and 1.0 parts by mass or less with respect to 100 parts by mass of the copper core particles not treated with the surface treatment agent. By performing the surface treatment with such an amount, it is possible to obtain the copper particles surface-treated with the carbon atom ratio described above.

表面処理工程において用いられる有機溶媒は、炭素原子数が1以上5以下である一価アルコール、多価アルコール、多価アルコールのエステル、ケトン、エーテル等を挙げることができる。これらのうち、水との相溶性、経済性、取扱い性及び除去の容易性の観点から、炭素原子数が1以上5以下の一価アルコールを用いることが好ましく、メタノール水溶液、エタノール、n-プロパノール、又はイソプロパノールを用いることが更に好ましい。 Examples of the organic solvent used in the surface treatment step include monohydric alcohols, polyhydric alcohols, polyhydric alcohol esters, ketones, and ethers having 1 to 5 carbon atoms. Among these, from the viewpoint of compatibility with water, economy, ease of handling and removal, it is preferable to use a monohydric alcohol having 1 to 5 carbon atoms, and it is more preferable to use an aqueous methanol solution, ethanol, n-propanol, or isopropanol.

以上の工程を経て得られた本発明の銅粒子は、必要に応じて洗浄や固液分離を行った後、該粒子を水や有機溶媒等の溶媒に分散させたスラリーの形態で用いてもよく、該粒子を乾燥させて、銅粒子の集合体である乾燥粉の形態で使用することができる。いずれの場合であっても、本発明の銅粒子は、構成金属である銅の酸化が抑制され、且つ粒子の凝集が抑制されたものとなる。また、本発明の銅粒子は、後述するように、有機溶媒や樹脂等に更に分散させて、導電性インクや導電性ペースト等の導電性組成物の形態で用いることもできる。 The copper particles of the present invention obtained through the above steps may be used in the form of a slurry in which the particles are dispersed in a solvent such as water or an organic solvent after washing or solid-liquid separation as necessary, or the particles may be dried and used in the form of a dry powder that is an aggregate of copper particles. In either case, in the copper particles of the present invention, oxidation of copper, which is a constituent metal, is suppressed, and aggregation of the particles is suppressed. As will be described later, the copper particles of the present invention can also be used in the form of a conductive composition, such as a conductive ink or a conductive paste, by further dispersing it in an organic solvent, resin, or the like.

本発明の銅粒子を含む導電性組成物は、該銅粒子及び有機溶媒を少なくとも含んで構成される。有機溶媒としては、金属粉を含む導電性組成物の技術分野においてこれまで用いられてきたものと同様のものを特に制限なく用いることができる。そのような有機溶媒としては、例えば一価アルコール、多価アルコール、多価アルコールアルキルエーテル、多価アルコールアリールエーテル、ポリエーテル、エステル類、含窒素複素環化合物、アミド類、アミン類、飽和炭化水素などが挙げられる。これらの有機溶媒は、単独で又は2種以上を組み合わせて用いることができる。これらのうち、高い還元作用を有し、焼結時における銅粒子の意図しない酸化を防ぐ観点から、ポリエチレングリコール及びポリプロピレングリコールなどのポリエーテルを用いることが好ましい。同様の観点から、有機溶媒としてポリエチレングリコールを用いる場合、その数平均分子量は、120以上400以下であることが好ましく、180以上400以下であることが更に好ましい。 The conductive composition containing copper particles of the present invention comprises at least the copper particles and an organic solvent. As the organic solvent, the same ones that have hitherto been used in the technical field of conductive compositions containing metal powder can be used without particular limitation. Examples of such organic solvents include monohydric alcohols, polyhydric alcohols, polyhydric alcohol alkyl ethers, polyhydric alcohol aryl ethers, polyethers, esters, nitrogen-containing heterocyclic compounds, amides, amines, and saturated hydrocarbons. These organic solvents can be used alone or in combination of two or more. Among these, polyethers such as polyethylene glycol and polypropylene glycol are preferably used from the viewpoint of having a high reducing action and preventing unintended oxidation of copper particles during sintering. From the same point of view, when polyethylene glycol is used as the organic solvent, the number average molecular weight is preferably 120 or more and 400 or less, more preferably 180 or more and 400 or less.

本発明の導電性組成物には、必要に応じて、分散剤、有機ビヒクル及びガラスフリットの少なくとも一種を更に添加してもよい。分散剤としては、ナトリウム、カルシウム、リン、硫黄及び塩素等を含有しない非イオン性界面活性剤等の分散剤等が挙げられる。有機ビヒクルとしては、例えば、アクリル樹脂、エポキシ樹脂、エチルセルロース、カルボキシエチルセルロース等の樹脂成分と、ターピネオール及びジヒドロターピネオール等のテルペン系溶剤、エチルカルビトール及びブチルカルビトール等のエーテル系溶剤等の溶剤とを含む混合物が挙げられる。ガラスフリットとしては、例えばホウケイ酸ガラス、ホウケイ酸バリウムガラス、ホウケイ酸亜鉛ガラス等が挙げられる。 At least one of a dispersant, an organic vehicle and a glass frit may be further added to the conductive composition of the present invention, if necessary. Examples of dispersants include dispersants such as nonionic surfactants that do not contain sodium, calcium, phosphorus, sulfur, chlorine, or the like. Examples of organic vehicles include mixtures containing resin components such as acrylic resins, epoxy resins, ethyl cellulose, and carboxyethyl cellulose, and solvents such as terpene solvents such as terpineol and dihydroterpineol, and ether solvents such as ethyl carbitol and butyl carbitol. Examples of the glass frit include borosilicate glass, barium borosilicate glass, and zinc borosilicate glass.

また本発明の導電性組成物には、導電性組成物の各種の性能を一層高めることを目的として、必要に応じて、本発明の銅粒子に加えて、該銅粒子と同一若しくは異なる金属組成を有する金属粒子、あるいは該銅粒子と同一若しくは異なる粒子形状を有する金属粒子を適宜配合してもよい。 In addition to the copper particles of the present invention, the electrically conductive composition of the present invention may optionally contain metal particles having the same or different metal composition as the copper particles, or metal particles having the same or different particle shape as the copper particles, in addition to the copper particles of the present invention, for the purpose of further enhancing various performances of the electrically conductive composition.

本発明の導電性組成物は、これを基板上に塗布して塗膜とし、この塗膜を加熱して焼結させることによって、銅を含む導体膜を形成することができる。導体膜は、例えばプリント配線板の回路形成や、セラミックコンデンサの外部電極の電気的導通確保のために好適に用いられる。基板としては、銅粒子が用いられる電子回路の種類に応じて、ガラスエポキシ樹脂等からなるプリント基板や、ポリイミド等からなるフレキシブルプリント基板が挙げられる。 The conductive composition of the present invention can be coated on a substrate to form a coating film, and the coating film is heated and sintered to form a conductive film containing copper. Conductive films are suitably used for forming circuits on printed wiring boards and ensuring electrical continuity between external electrodes of ceramic capacitors, for example. Examples of the substrate include a printed circuit board made of glass epoxy resin or the like and a flexible printed circuit board made of polyimide or the like, depending on the type of electronic circuit in which the copper particles are used.

本発明の導電性組成物における銅粒子及び有機溶媒の配合量は、該導電性組成物の具体的な用途や該導電性組成物の塗布方法に応じて調整可能であるが、導電性組成物における銅粒子の含有割合は、好ましくは5質量%以上95質量%以下、より好ましくは80質量%以上90質量%以下である。塗布方法としては、例えばインクジェット法、ディスペンサ法、マイクロディスペンサ法、グラビア印刷法、スクリーン印刷法、ディップコーティング法、スピンコーティング法、スプレー塗布法、バーコーティング法、ロールコーティング法などを用いることができる。 The amount of the copper particles and the organic solvent in the conductive composition of the present invention can be adjusted according to the specific application of the conductive composition and the coating method of the conductive composition. Examples of coating methods that can be used include an inkjet method, a dispenser method, a microdispenser method, a gravure printing method, a screen printing method, a dip coating method, a spin coating method, a spray coating method, a bar coating method, and a roll coating method.

形成された塗膜を焼結させる際の加熱温度は、銅粒子の焼結開始温度以上であればよく、例えば170℃以上300℃以下とすることができる。加熱時における雰囲気は、例えば酸化性雰囲気下、又は非酸化性雰囲気下で行うことができる。酸化性雰囲気としては、例えば酸素含有雰囲気が挙げられる。非酸化性雰囲気としては、例えば水素や一酸化炭素等の還元性雰囲気、水素-窒素混合雰囲気等の弱還元性雰囲気、アルゴン、ネオン、ヘリウム及び窒素等の不活性雰囲気が挙げられる。いずれの雰囲気を用いる場合であっても、加熱時間は、上述の温度範囲で加熱することを条件として、好ましくは1分以上3時間以下、更に好ましくは3分以上2時間以下とする。 The heating temperature for sintering the formed coating film may be equal to or higher than the sintering start temperature of the copper particles, and may be, for example, 170° C. or higher and 300° C. or lower. The atmosphere during heating can be, for example, an oxidizing atmosphere or a non-oxidizing atmosphere. The oxidizing atmosphere includes, for example, an oxygen-containing atmosphere. Examples of non-oxidizing atmospheres include reducing atmospheres such as hydrogen and carbon monoxide, weakly reducing atmospheres such as hydrogen-nitrogen mixed atmospheres, and inert atmospheres such as argon, neon, helium and nitrogen. In any atmosphere, the heating time is preferably 1 minute or more and 3 hours or less, more preferably 3 minutes or more and 2 hours or less, provided that the heating is performed within the above temperature range.

このようにして得られた導体膜は、本発明の銅粒子の焼結によって得られたものであるので、比較的低温の条件で焼結を行った場合でも、十分に焼結を進行させることができる。また焼結時には、銅粒子が低温でも溶融するので、銅粒子どうし、あるいは銅粒子と基材の表面との接触面積を大きくすることができ、その結果、接合対象物との密着性が高く、且つ密な焼結構造を効率良く形成することができる。更に、得られた導体膜は、表面平滑性が高く、導電信頼性が高いものとなる。 Since the conductor film thus obtained is obtained by sintering the copper particles of the present invention, sintering can be sufficiently advanced even when sintering is performed at a relatively low temperature. In addition, since the copper particles melt even at a low temperature during sintering, the contact area between the copper particles or between the copper particles and the surface of the base material can be increased. Furthermore, the obtained conductor film has high surface smoothness and high conductivity reliability.

以下、実施例により本発明を更に詳細に説明する。しかしながら本発明の範囲は、かかる実施例に制限されない。 EXAMPLES The present invention will be described in more detail below with reference to examples. However, the scope of the invention is not limited to such examples.

〔実施例1〕
特開2015-168878号公報の実施例1に記載の方法に準じて、有機表面処理剤が施されていない球状の銅芯粒子(銅:100質量%)が水に分散したスラリーを製造した。このスラリーをロータリーフィルターによって25℃で30分間洗浄して、洗浄処理された銅芯粒子のスラリーを得た。洗浄後の導電率は1.0mSであり、スラリー中の銅芯粒子の含有量は、1000g(10質量%)であった。
[Example 1]
According to the method described in Example 1 of JP-A-2015-168878, a slurry in which spherical copper core particles (copper: 100% by mass) not applied with an organic surface treatment agent were dispersed in water was produced. This slurry was washed with a rotary filter at 25° C. for 30 minutes to obtain a slurry of washed copper core particles. The electrical conductivity after washing was 1.0 mS, and the content of copper core particles in the slurry was 1000 g (10% by mass).

次いで、洗浄処理された銅芯粒子のスラリーを50℃に加熱し、この状態下で、第1処理剤として、ラウリン酸10gをメタノール100mLに溶解させた第1処理剤溶液を瞬時に添加し、50℃で1時間撹拌した。その後、ろ過により固液分離を行い、第1処理剤で表面処理された銅芯粒子を固形分として得た。 Next, the slurry of the washed copper core particles was heated to 50° C. Under this condition, as the first treating agent, a first treating agent solution in which 10 g of lauric acid was dissolved in 100 mL of methanol was instantaneously added and stirred at 50° C. for 1 hour. Thereafter, solid-liquid separation was performed by filtration to obtain copper core particles surface-treated with the first treating agent as a solid content.

続いて、第1処理剤で表面処理された銅芯粒子の200gをイソブタノール40mLに分散させてスラリーとし、その後、第2処理剤として酢酸アンモニウム1gをメタノール水溶液(メタノール90体積%)20mLに溶解させた第2処理剤溶液を瞬時に添加した。反応終了後のスラリーを真空乾燥させて、二種の処理剤が表面に施された銅粒子を得た。 Subsequently, 200 g of the copper core particles surface-treated with the first treating agent were dispersed in 40 mL of isobutanol to form a slurry, and then, as the second treating agent, a second treating agent solution in which 1 g of ammonium acetate was dissolved in 20 mL of an aqueous methanol solution (90% by volume of methanol) was instantly added. The slurry after completion of the reaction was vacuum-dried to obtain copper particles having surfaces treated with two types of treatment agents.

〔実施例2〕
第2処理剤の添加量を2gに変更したほかは、実施例1と同様の方法で銅粒子を得た。
[Example 2]
Copper particles were obtained in the same manner as in Example 1, except that the amount of the second treatment agent added was changed to 2 g.

〔実施例3〕
第1処理剤の添加量を8gに変更したほかは、実施例1と同様の方法で銅粒子を得た。
[Example 3]
Copper particles were obtained in the same manner as in Example 1, except that the amount of the first treating agent added was changed to 8 g.

〔実施例4〕
第2処理剤の添加量を2gに変更したほかは、実施例3と同様の方法で銅粒子を得た。
[Example 4]
Copper particles were obtained in the same manner as in Example 3, except that the amount of the second treatment agent added was changed to 2 g.

〔実施例5〕
第1処理剤の添加量を5gに変更したほかは、実施例2と同様の方法で銅粒子を得た。
[Example 5]
Copper particles were obtained in the same manner as in Example 2, except that the amount of the first treating agent added was changed to 5 g.

〔実施例6〕
第1処理剤としてステアリン酸を用いたほかは、実施例2と同様の方法で銅粒子を得た。
[Example 6]
Copper particles were obtained in the same manner as in Example 2, except that stearic acid was used as the first treating agent.

〔実施例7〕
第2処理剤としてギ酸アンモニウムを用いたほかは、実施例2と同様の方法で銅粒子を得た。
[Example 7]
Copper particles were obtained in the same manner as in Example 2, except that ammonium formate was used as the second treating agent.

〔比較例1〕
第1処理剤を用いた表面処理に代えて、酢酸アンモニウム23gをメタノール水溶液(メタノール90体積%)100mLに溶解させた第2処理剤溶液を瞬時に添加したほかは、実施例1と同様の方法で銅粒子を得た。つまり、本比較例の銅粒子は、第1処理剤を用いておらず、第2処理剤のみで表面処理を行ったものである。得られた銅粒子における第2処理剤の含有量は、合計量として炭素原子換算で0.47質量%であった。
[Comparative Example 1]
Copper particles were obtained in the same manner as in Example 1, except that instead of the surface treatment using the first treating agent, a second treating agent solution in which 23 g of ammonium acetate was dissolved in 100 mL of an aqueous methanol solution (90% by volume of methanol) was instantaneously added. That is, the copper particles of this comparative example were surface-treated only with the second treatment agent without using the first treatment agent. The total content of the second treatment agent in the obtained copper particles was 0.47% by mass in terms of carbon atoms.

〔比較例2〕
第1処理剤による表面処理を行った後、第2処理剤による表面処理を行わなかった他は、実施例3と同様の方法で銅粒子を得た。つまり、本比較例の銅粒子は、第1処理剤のみで表面処理されたものである。得られた銅粒子における第1処理剤の含有量は炭素原子換算で0.71質量%であった。
[Comparative Example 2]
Copper particles were obtained in the same manner as in Example 3 except that the surface treatment with the second treatment agent was not performed after the surface treatment with the first treatment agent. That is, the copper particles of this comparative example were surface-treated only with the first treating agent. The content of the first treating agent in the obtained copper particles was 0.71% by mass in terms of carbon atoms.

〔比較例3〕
第1処理剤による表面処理を行った後、第2処理剤による表面処理を行わなかった他は、実施例5と同様の方法で銅粒子を得た。つまり、本比較例の銅粒子は、第1処理剤のみで表面処理されたものである。得られた銅粒子における第1処理剤の含有量は炭素原子換算で0.71質量%であった。得られた銅粒子の一次粒子の平均粒径は、5.73μmであった。
[Comparative Example 3]
Copper particles were obtained in the same manner as in Example 5, except that after the surface treatment with the first treating agent, the surface treatment with the second treating agent was not performed. That is, the copper particles of this comparative example were surface-treated only with the first treating agent. The content of the first treating agent in the obtained copper particles was 0.71% by mass in terms of carbon atoms. The average particle size of primary particles of the obtained copper particles was 5.73 μm.

〔焼結性の評価〕
本出願人の先の出願に係る特開2017-157329号公報の実施例1に記載の方法に準じて、焼結を行った。詳細には、実施例及び比較例の銅粒子8.5gと、数平均分子量が300のポリエチレングリコールとをプラスチック容器に入れて混合し、銅粒子を含む導電性ペーストを得た。得られたペーストをガラス基板に塗布し、以下の表1に示す温度で、窒素雰囲気下、3分間焼結させた。焼結後の銅粒子について、銅粒子どうしの融着度合を電子顕微鏡を用いて観察し、以下の評価基準で焼結性を評価した。結果を以下の表1に示す。
[Evaluation of sinterability]
Sintering was performed according to the method described in Example 1 of Japanese Patent Application Laid-Open No. 2017-157329, which was previously filed by the present applicant. Specifically, 8.5 g of the copper particles of Examples and Comparative Examples and polyethylene glycol having a number average molecular weight of 300 were placed in a plastic container and mixed to obtain a conductive paste containing copper particles. The resulting paste was applied to a glass substrate and sintered for 3 minutes in a nitrogen atmosphere at the temperature shown in Table 1 below. Regarding the copper particles after sintering, the degree of fusion between the copper particles was observed using an electron microscope, and the sinterability was evaluated according to the following evaluation criteria. The results are shown in Table 1 below.

<焼結性の評価基準>
◎:粒子どうしが融着し、粒子間に太いネッキングが見られ、焼結性に優れる。
○:粒子どうしが融着し、粒子間にネッキングが見られ、焼結性を有する。
×:粒子どうしが融着しておらず、焼結性が悪い。
<Evaluation Criteria for Sinterability>
A: Particles are fused together, thick necking is observed between particles, and sinterability is excellent.
◯: Particles are fused together, necking is observed between particles, and sinterability is exhibited.
x: Particles were not fused together and sinterability was poor.

〔導体膜の抵抗率の評価〕
実施例及び比較例の銅粒子100質量部に対して、樹脂としてポリアミド樹脂(T&K TOKA製、TPAE-826-5A)を4質量部、並びに有機溶媒としてターピネオール17.5質量部及びリモネン7.5質量部を混合し、3本ロール混練機を用いて混練してペースト状の導電性組成物を得た。この導電性組成物を、基材である厚さ100μmのポリエチレンテレフタレート(PET)製フィルムの一面に、スクリーン印刷によって塗布し、厚さ50μmの塗膜を形成した。塗膜のサイズは1cm四方とした。この塗膜を大気下、110℃で30分間にわたり予備乾燥させた後、塗膜を25℃まで冷却させた。次いで、表面に離型フィルムを配して塗膜を保護し、同温度で30MPaの圧力にて、大気下で圧縮した。圧縮には油圧プレス機を用いた。その後、塗膜を光焼成工程に付した。光焼成にはキセノンフラッシュランプを用いた。パルス幅は1.25ms、パルス電圧は2500~3000Vに設定した。このようにして得られた導電膜の表面に離型フィルムを配して導電膜を保護し、油圧プレス機を用いて、30MPaの圧力で圧縮する後工程を施して、導体膜を製造した。
[Evaluation of resistivity of conductor film]
With respect to 100 parts by mass of the copper particles of Examples and Comparative Examples, 4 parts by mass of a polyamide resin (manufactured by T&K TOKA, TPAE-826-5A) as a resin, and 17.5 parts by mass of terpineol and 7.5 parts by mass of limonene as an organic solvent were mixed and kneaded using a three-roll kneader to obtain a pasty conductive composition. This conductive composition was applied by screen printing onto one surface of a polyethylene terephthalate (PET) film having a thickness of 100 μm as a substrate to form a coating film having a thickness of 50 μm. The size of the coating film was 1 cm square. After the coating was pre-dried at 110°C for 30 minutes in air, the coating was cooled to 25°C. Then, a release film was placed on the surface to protect the coating film, and the film was compressed under the atmosphere at the same temperature and a pressure of 30 MPa. A hydraulic press was used for compression. The coating was then subjected to a light baking process. A xenon flash lamp was used for photobaking. The pulse width was set to 1.25 ms, and the pulse voltage was set to 2500-3000V. A release film was placed on the surface of the conductive film thus obtained to protect the conductive film, and a post-process of compressing at a pressure of 30 MPa using a hydraulic press was performed to produce a conductive film.

導体膜の抵抗率は、抵抗率計(三菱ケミカルアナリテック株式会社製、Loresta-GP MCP-T610)を用いて、測定対象の導体膜について3回測定し、その算術平均値を抵抗率(Ω・cm)とした。抵抗率が低ければ低いほど導体膜の抵抗が小さいことを示す。結果を以下の表1に示す。 The resistivity of the conductor film was measured three times using a resistivity meter (Loresta-GP MCP-T610, manufactured by Mitsubishi Chemical Analytech Co., Ltd.), and the arithmetic average value was taken as the resistivity (Ω cm). A lower resistivity indicates a lower resistance of the conductor film. The results are shown in Table 1 below.

〔表面平滑性の評価〕
上述の〔導体膜の抵抗率の評価〕において、焼結温度を190℃として製造した各導体膜を表面粗さ測定装置(株式会社東京精密製、SURFCOM 130A)を用いて、表面粗さを測定した。測定対象の導体膜について表面粗さを3回測定し、その算術平均値を平均表面粗さRa(μm)とし、各測定値のうち最大のものを最大表面粗さRmax(μm)とした。表面粗さの値が低ければ低いほど導体膜の表面平滑性が良好であることを示す。結果を以下の表1に示す。
[Evaluation of surface smoothness]
In the above [Evaluation of resistivity of conductor film], the surface roughness of each conductor film produced at a sintering temperature of 190° C. was measured using a surface roughness measuring device (SURFCOM 130A manufactured by Tokyo Seimitsu Co., Ltd.). The surface roughness of the conductor film to be measured was measured three times, the arithmetic average value was defined as the average surface roughness Ra (μm), and the maximum measured value was defined as the maximum surface roughness Rmax (μm). The lower the surface roughness value, the better the surface smoothness of the conductor film. The results are shown in Table 1 below.

Figure 0007315408000001
Figure 0007315408000001

表1に示すように、実施例の銅粒子は、比較例の銅粒子と比較して、低温での焼結性に優れており、該銅粒子の焼結によって得られた導体膜の抵抗が十分に小さいものであることが判る。また、実施例の銅粒子を用いて製造した導体膜は、その表面平滑性に優れていることも判る。
As shown in Table 1, the copper particles of Examples are superior in sinterability at low temperatures compared to the copper particles of Comparative Examples, and the resistance of the conductor film obtained by sintering the copper particles is sufficiently small. It is also found that the conductor films produced using the copper particles of Examples are excellent in surface smoothness.

Claims (7)

表面に有機表面処理剤が施されている銅粒子であって、
前記有機表面処理剤が、炭素原子数が相対的に多い第1処理剤と、炭素原子数が相対的に少ない第2処理剤とを含み、
第1処理剤の炭素原子数が6以上18以下であり、第2処理剤の炭素原子数が1以上5以下であり、
第1処理剤が脂肪族有機酸からなり、第2処理剤が脂肪族有機酸塩からなる、銅粒子。
A copper particle having an organic surface treatment agent applied to the surface,
The organic surface treatment agent comprises a first treatment agent having a relatively large number of carbon atoms and a second treatment agent having a relatively small number of carbon atoms,
The number of carbon atoms in the first treatment agent is 6 or more and 18 or less, and the number of carbon atoms in the second treatment agent is 1 or more and 5 or less,
Copper particles, wherein the first treating agent comprises an aliphatic organic acid and the second treating agent comprises an aliphatic organic acid salt.
第1処理剤の炭素原子数が12以上18以下である、請求項1に記載の銅粒子。 The copper particles according to claim 1, wherein the number of carbon atoms in the first treating agent is 12 or more and 18 or less. 第2処理剤の炭素原子数が1以上以下である、請求項1又は2に記載の銅粒子。 The copper particles according to claim 1 or 2, wherein the number of carbon atoms in the second treating agent is 1 or more and 3 or less. 第2処理剤が一価のカチオンの塩である、請求項1ないし3のいずれか一項に記載の銅粒子。 4. Copper particles according to any one of claims 1 to 3, wherein the second treating agent is a salt of a monovalent cation. 第2処理剤がアンモニウム塩である、請求項4に記載の銅粒子。 5. The copper particles of claim 4, wherein the second treating agent is an ammonium salt. 一次粒子の平均粒径が0.1μm以上0.6μm以下である、請求項1ないし5のいずれか一項に記載の銅粒子。 The copper particles according to any one of claims 1 to 5, wherein the primary particles have an average particle size of 0.1 µm or more and 0.6 µm or less. 請求項1ないし6のいずれか一項に記載の銅粒子と、有機溶媒とを含む、導電性組成物。 A conductive composition comprising the copper particles according to any one of claims 1 to 6 and an organic solvent.
JP2019146441A 2019-08-08 2019-08-08 copper particles Active JP7315408B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019146441A JP7315408B2 (en) 2019-08-08 2019-08-08 copper particles

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019146441A JP7315408B2 (en) 2019-08-08 2019-08-08 copper particles

Publications (2)

Publication Number Publication Date
JP2021025115A JP2021025115A (en) 2021-02-22
JP7315408B2 true JP7315408B2 (en) 2023-07-26

Family

ID=74662169

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019146441A Active JP7315408B2 (en) 2019-08-08 2019-08-08 copper particles

Country Status (1)

Country Link
JP (1) JP7315408B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024071303A1 (en) * 2022-09-29 2024-04-04 三井金属鉱業株式会社 Copper powder, copper paste containing same, and method for producing conductive film

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013047365A (en) 2011-08-29 2013-03-07 Hitachi Cable Ltd Copper fine particle dispersion and preparation method therefor, copper fine particle and preparation method therefor, copper paste containing copper fine particle, copper film and preparation method therefor
JP2015168878A (en) 2014-03-10 2015-09-28 三井金属鉱業株式会社 copper powder
JP2017095780A (en) 2015-11-27 2017-06-01 協立化学産業株式会社 Composite particle, copper paste composition and method for producing the same, and conductor
CN107460464A (en) 2017-08-28 2017-12-12 厦门大学 A kind of surface treatment method of copper-bearing materials

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013047365A (en) 2011-08-29 2013-03-07 Hitachi Cable Ltd Copper fine particle dispersion and preparation method therefor, copper fine particle and preparation method therefor, copper paste containing copper fine particle, copper film and preparation method therefor
JP2015168878A (en) 2014-03-10 2015-09-28 三井金属鉱業株式会社 copper powder
JP2017095780A (en) 2015-11-27 2017-06-01 協立化学産業株式会社 Composite particle, copper paste composition and method for producing the same, and conductor
CN107460464A (en) 2017-08-28 2017-12-12 厦门大学 A kind of surface treatment method of copper-bearing materials

Also Published As

Publication number Publication date
JP2021025115A (en) 2021-02-22

Similar Documents

Publication Publication Date Title
JP5843821B2 (en) Metal powder paste and method for producing the same
JP5872063B2 (en) Copper powder
JP2008198595A (en) Metal particulate ink paste and organic acid treated metal particulate
JP2008176951A (en) Silver-based particulate ink paste
EP3309798B1 (en) Surface-coated copper filler, method for producing same and conductive composition
JP5712635B2 (en) Silver-containing composition
JP5320962B2 (en) Conductive composition, method for forming conductive film, and conductive film
JP6509770B2 (en) Conductive metal powder paste
JP6277751B2 (en) Copper particle dispersion paste and method for producing conductive substrate
JP3990712B1 (en) Conductive composition, method for forming conductive film, and conductive film
JP7315408B2 (en) copper particles
WO2014013557A1 (en) Silver-containing composition, and base for use in formation of silver element
JP4339919B2 (en) Conductive composition, method for forming conductive film, and conductive film
JP2019006903A (en) Conductive copper ink composition
JP5272290B2 (en) Method for producing substrate with conductive coating
WO2012063659A1 (en) Silver particle-containing composition, dispersion liquid, paste, and production method for each
JP5453598B2 (en) Silver-coated copper powder and conductive paste
JP2014051569A (en) Conductive copper ink composition
JP6605848B2 (en) Dispersion solution of surface-coated metal fine particles, and method for producing sintered conductor and conductive connecting member, including steps of applying and sintering this dispersion solution
JP2012140661A (en) Flat copper particle
KR101803956B1 (en) Method for preparing copper nanoparticle which is capable of being calcined under atmospheric pressure
WO2022045252A1 (en) Oxide-containing copper fine particles, method for manufacturing same, and method for manufacturing sintered compact using oxide-containing copper fine particles
JP2008235035A (en) Metal nanoparticle paste and manufacturing method of metal nanoparticle paste
JP6295876B2 (en) Method for producing copper powder
JP6490856B1 (en) Surface-coated metal fine particles and dispersions thereof

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200116

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200123

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20200116

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220617

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20230413

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230425

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230606

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230704

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230713

R150 Certificate of patent or registration of utility model

Ref document number: 7315408

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150