JP7280798B2 - plate mixer - Google Patents

plate mixer Download PDF

Info

Publication number
JP7280798B2
JP7280798B2 JP2019186844A JP2019186844A JP7280798B2 JP 7280798 B2 JP7280798 B2 JP 7280798B2 JP 2019186844 A JP2019186844 A JP 2019186844A JP 2019186844 A JP2019186844 A JP 2019186844A JP 7280798 B2 JP7280798 B2 JP 7280798B2
Authority
JP
Japan
Prior art keywords
heat transfer
fluid
groups
protrusions
plate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2019186844A
Other languages
Japanese (ja)
Other versions
JP2020034270A5 (en
JP2020034270A (en
Inventor
ゴク タム グェン
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hisaka Works Ltd
Original Assignee
Hisaka Works Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hisaka Works Ltd filed Critical Hisaka Works Ltd
Priority to JP2019186844A priority Critical patent/JP7280798B2/en
Publication of JP2020034270A publication Critical patent/JP2020034270A/en
Publication of JP2020034270A5 publication Critical patent/JP2020034270A5/en
Application granted granted Critical
Publication of JP7280798B2 publication Critical patent/JP7280798B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)

Description

本発明は、プレート式混合器に関する。
The present invention relates to plate mixers .

従来から、第一流体と第二流体とを熱交換させるプレート式熱交換器が提供されている。プレート式熱交換器は、第一方向の両面に伝熱領域を含む伝熱プレートであって、それぞれの伝熱領域が第一方向に重ね合わされた複数の伝熱プレートを備える(例えば、特許文献1参照)。 Conventionally, there has been provided a plate heat exchanger for exchanging heat between a first fluid and a second fluid. A plate heat exchanger is a heat transfer plate including heat transfer regions on both sides in a first direction, and includes a plurality of heat transfer plates in which the respective heat transfer regions are superimposed in the first direction (see, for example, Patent Document 1).

複数の伝熱プレートのそれぞれの伝熱領域は、第一方向と直交する第二方向に延びる自身の中心線(以下、縦中心線という)に対して傾斜する方向に連続的に延びる複数の凸条及び凹条を含む。伝熱領域内において、凸条及び凹条は、自身の延びる方向と直交する方向に交互に配置される。なお、伝熱プレートは、一般的に、金属プレートをプレス成型して作製される。そのため、一方の面の伝熱領域の凸条と他方の面の伝熱領域の凹条とは、表裏の関係にあり、一方の面の伝熱領域の凹条と他方の面の伝熱領域の凸条とは、表裏の関係にある。 Each heat transfer region of the plurality of heat transfer plates has a plurality of protrusions extending continuously in a direction inclined with respect to its center line (hereinafter referred to as a longitudinal center line) extending in a second direction orthogonal to the first direction. Includes ridges and grooves. In the heat transfer area, the ridges and grooves are alternately arranged in a direction perpendicular to the direction in which they extend. Incidentally, the heat transfer plate is generally produced by press-molding a metal plate. Therefore, the convex streaks in the heat transfer area on one side and the recessed streaks in the heat transfer area on the other side are in a front-to-back relationship. There is a relationship between the front and back of the ridge.

この種のプレート式熱交換器において、複数の伝熱プレートは、互いの伝熱領域を第一方向に重ね合わせた状態にされ、隣り合う伝熱プレート(伝熱領域)の凸条同士が格子状に配置される。すなわち、複数の伝熱プレートは、隣り合う伝熱プレート(伝熱領域)の凸条同士が交差衝合した状態になるように配置される。 In this type of plate heat exchanger, the heat transfer regions of the plurality of heat transfer plates are overlapped in the first direction, and the ridges of the adjacent heat transfer plates (heat transfer regions) are latticed. arranged in a shape. That is, the plurality of heat transfer plates are arranged so that the ridges of adjacent heat transfer plates (heat transfer regions) are in cross-collision.

これにより、この種のプレート式熱交換器では、第一流体を第二方向に流通させる第一流路と、第二流体を第二方向に流通させる第二流路とが、各伝熱プレートを境にして第一方向で交互に形成され、第一流路を流通する第一流体と第二流路を流通する第二流体とを伝熱プレートを介して熱交換させる。 As a result, in this type of plate heat exchanger, the first flow path for circulating the first fluid in the second direction and the second flow path for circulating the second fluid in the second direction are arranged between the heat transfer plates. The first fluid flowing through the first flow path and the second fluid flowing through the second flow path are alternately formed in the first direction with respect to each other, and heat exchange is performed via the heat transfer plates.

ところで、この種のプレート式熱交換器では、伝熱プレートの伝熱領域内にある凸条及び凹条は、縦中心線に対して傾斜する方向に連続的に延びているため、凸条及び凹条の延びる方向(縦中心線に対する傾斜角度)によって、第一流体及び第二流体の流通抵抗や、第一流体と第二流体との熱交換性能(伝熱性能)が異なる。 By the way, in this type of plate heat exchanger, the ridges and grooves in the heat transfer region of the heat transfer plate continuously extend in a direction inclined with respect to the longitudinal center line. The flow resistance of the first fluid and the second fluid and the heat exchange performance (heat transfer performance) between the first fluid and the second fluid differ depending on the direction in which the grooves extend (the angle of inclination with respect to the vertical center line).

具体的に説明すると、縦中心線に対する凸条及び凹条の傾斜角度が大きい場合(第一方向及び第二方向と直交する第三方向に延びる伝熱領域の中心線(以下、横中心線という)に対する凸条及び凹条の傾斜角度が小さい場合)、複数の凸条のそれぞれが流体(第一流体、第二流体)の流れ方向の成分の少ない方向に延びる(凸条が流体の流れ方向を横切るような配置になる)。そのため、第一流体及び第二流体のそれぞれは、複数の凸条を繰り返し乗り越えつつ流路(第一流路又は第二流路)内を第二方向に流通しようとする。その結果、第一流体及び第二流体のそれぞれの流れに乱れが生じ、高い伝熱性能が得られるが、第一流路及び第二流路のそれぞれでの圧力損失(流通抵抗)が非常に大きくなってしまう。 Specifically, when the inclination angle of the ridges and grooves with respect to the vertical center line is large (the center line of the heat transfer area extending in the third direction orthogonal to the first direction and the second direction (hereinafter referred to as the horizontal center line) ), each of the plurality of ridges extends in a direction with few components in the flow direction of the fluid (first fluid, second fluid) (the ridge is in the flow direction of the fluid ). Therefore, each of the first fluid and the second fluid tries to flow in the second direction through the channel (the first channel or the second channel) while repeatedly getting over the plurality of ridges. As a result, turbulence occurs in the flows of the first fluid and the second fluid, and high heat transfer performance is obtained, but the pressure loss (flow resistance) in each of the first flow path and the second flow path is extremely large. turn into.

これに対し、縦中心線に対する凸条及び凹条の傾斜角度が小さい場合(横中心線に対する凸条及び凹条の傾斜角度が大きい場合)、複数の凸条のそれぞれが流体(第一流体、第二流体)の流れる方向の成分の多い方向に延びる(凸条が流体の流れ方向に従うような配置になる)。そのため、第一流体及び第二流体のそれぞれは、凸条を大きく乗り越えることなく第二方向に流通しようとする。その結果、第一流路及び第二流路のそれぞれでの圧力損失(流通抵抗)が小さくなるが、第一流体及び第二流体のそれぞれの流れに乱れが生じ難くなり、高い伝熱性能が得られなくなる。 On the other hand, when the angles of inclination of the ridges and grooves with respect to the longitudinal center line are small (when the angles of inclination of the ridges and grooves with respect to the horizontal center line are large), each of the plurality of ridges is fluid (first fluid, Second fluid) extends in the direction in which there are many components in the flow direction (the ridges are arranged so as to follow the flow direction of the fluid). Therefore, each of the first fluid and the second fluid tries to flow in the second direction without largely overcoming the ridges. As a result, the pressure loss (flow resistance) in each of the first flow path and the second flow path is reduced, but turbulence in the flow of the first fluid and the second fluid is less likely to occur, resulting in high heat transfer performance. will not be

特開2014-85044号公報JP 2014-85044 A

発明は、第一流体又は第二流体を構成する二種以上の流体、或いは一種類以上の液体と粉体とを混合させるプレート式混合器を提供することを課題とする。
An object of the present invention is to provide a plate mixer for mixing two or more types of fluids constituting a first fluid or a second fluid, or one or more types of liquids and powder.

本発明に係るプレート式混合器は、第一方向の両面に伝熱領域を含む伝熱プレートであって、それぞれの伝熱領域が第一方向に重ね合わされた複数の伝熱プレートを備え、該複数の伝熱プレートのそれぞれを境にして、第一流体を第一方向と直交する第二方向に流通させる第一流路と、第二流体を第二方向に流通させる第二流路とが第一方向で交互に形成され、伝熱領域は、第二方向に延びる自身の中心線に対して傾斜する方向に長手を有する凸部及び凹部を含み且つ該凸部及び凹部が前記傾斜する方向に延びる仮想線に沿って交互に並ぶ凹凸群であって、前記傾斜する方向と直交する方向に並ぶ複数の凹凸群を有し、該複数の凹凸群のそれぞれの凸部は、前記傾斜する方向と直交する方向で隣り合う凹凸群の凹部に対して横並びに配置されるとともに、前記複数の凹凸群のそれぞれの凹部は、前記傾斜する方向と直交する方向で隣り合う凹凸群の凸部に対して横並びに配置され、伝熱領域を対向させて隣り合う伝熱プレートは、互いの凹凸群の凸部同士を交差衝合させていることを特徴とする。
A plate-type mixer according to the present invention comprises a plurality of heat transfer plates that include heat transfer areas on both sides in a first direction, the heat transfer areas being superimposed in the first direction, and A first flow path through which the first fluid flows in a second direction perpendicular to the first direction, and a second flow path through which the second fluid flows in the second direction, with each of the plurality of heat transfer plates as a boundary. The heat transfer regions are alternately formed in one direction and include projections and depressions having lengths in a direction that is inclined with respect to its centerline that extends in the second direction, and the projections and depressions are in the inclined direction. A group of unevenness arranged alternately along an extending imaginary line, having a plurality of groups of unevenness arranged in a direction orthogonal to the direction of inclination, wherein each convex portion of the group of unevenness is aligned with the direction of inclination. The recesses of the groups of unevenness are arranged side by side with respect to the recesses of the groups of unevenness that are adjacent in the direction orthogonal to each other, and each of the recesses of the plurality of groups of unevenness is arranged with respect to the protrusions of the groups of unevenness that are adjacent in the direction orthogonal to the direction of inclination. The heat transfer plates arranged side by side and adjacent to each other with the heat transfer regions facing each other are characterized in that the protrusions of the groups of protrusions and recesses are cross-matched with each other.

本発明の一態様として、伝熱プレートの伝熱領域にある複数の凹凸群の凸部のそれぞれは、第一方向で隣り合う相手方の伝熱プレートの伝熱領域にある複数の凹凸群のうちの少なくとも二つの凹凸群の凸部と交差衝合してもよい。 As one aspect of the present invention, each of the protrusions of the plurality of uneven groups in the heat transfer region of the heat transfer plate is one of the plurality of uneven groups in the heat transfer region of the other heat transfer plate adjacent in the first direction. may cross-match with the protrusions of at least two groups of protrusions.

本発明の他態様として、伝熱プレートの伝熱領域にある複数の凹凸群の凸部のそれぞれは、第一方向で隣り合う相手方の伝熱プレートの伝熱領域にある複数の凹凸群のうちの一つの凹凸群の一つの凸部と交差衝合してもよい。 As another aspect of the present invention, each of the protrusions of the plurality of uneven groups in the heat transfer region of the heat transfer plate is the one of the plurality of uneven groups in the heat transfer region of the heat transfer plate that is adjacent in the first direction. may be cross-matched with one protrusion of one protrusion group of .

これらの場合、凹凸群の配置の基準となる仮想線は、第二方向に延びる中心線に対して45°未満の角度で傾斜していることが好ましい
In these cases, it is preferable that the imaginary line that serves as a reference for the placement of the uneven group is inclined at an angle of less than 45° with respect to the center line extending in the second direction .

本発明に係るプレート式混合器によれば、第一流体又は第二流体を構成する二種以上の流体、或いは一種類以上の液体と粉体とを混合させるという優れた効果を奏し得る。 Advantageous Effects of Invention According to the plate mixer of the present invention, it is possible to obtain an excellent effect of mixing powder with two or more types of fluids, or one or more types of liquids that constitute the first fluid or the second fluid.

図1は、本発明の第一実施形態に係るプレート式熱交換器の全体斜視図である。FIG. 1 is an overall perspective view of a plate heat exchanger according to a first embodiment of the present invention. 図2は、第一実施形態に係るプレート式熱交換器の概略分解斜視図である。FIG. 2 is a schematic exploded perspective view of the plate heat exchanger according to the first embodiment. 図3は、第一実施形態に係るプレート式熱交換器における第一伝熱プレートの正面図である。FIG. 3 is a front view of a first heat transfer plate in the plate heat exchanger according to the first embodiment; 図4は、第一実施形態に係るプレート式熱交換器における第一伝熱プレートの背面図である。FIG. 4 is a rear view of the first heat transfer plate in the plate heat exchanger according to the first embodiment. 図5は、第一実施形態に係るプレート式熱交換器における第二伝熱プレートの正面図である。FIG. 5 is a front view of a second heat transfer plate in the plate heat exchanger according to the first embodiment; 図6は、第一実施形態に係るプレート式熱交換器における第二伝熱プレートの背面図である。FIG. 6 is a rear view of a second heat transfer plate in the plate heat exchanger according to the first embodiment; 図7は、第一実施形態に係るプレート式熱交換器における第一流路での第一流体の流れを説明するための図である。FIG. 7 is a diagram for explaining the flow of the first fluid in the first channel in the plate heat exchanger according to the first embodiment. 図8は、第一実施形態に係るプレート式熱交換器における第二流路での第二流体の流れを説明するための図である。FIG. 8 is a diagram for explaining the flow of the second fluid in the second channel in the plate heat exchanger according to the first embodiment. 図9は、第一実施形態に係るプレート式熱交換器における第一流路の部分的な領域での第一流体の流れを説明するための図である。FIG. 9 is a diagram for explaining the flow of the first fluid in a partial region of the first channel in the plate heat exchanger according to the first embodiment; 図10は、第一実施形態に係るプレート式熱交換器における第二流路の部分的な領域での第二流体の流れを説明するための図である。FIG. 10 is a diagram for explaining the flow of the second fluid in a partial region of the second channel in the plate heat exchanger according to the first embodiment; 図11は、本発明の第二実施形態に係るプレート式熱交換器の全体斜視図である。FIG. 11 is an overall perspective view of a plate heat exchanger according to a second embodiment of the invention. 図12は、第二実施形態に係るプレート式熱交換器の概略分解斜視図である。FIG. 12 is a schematic exploded perspective view of a plate heat exchanger according to the second embodiment. 図13は、第二実施形態に係るプレート式熱交換器における第一伝熱プレートの正面図である。FIG. 13 is a front view of the first heat transfer plate in the plate heat exchanger according to the second embodiment. 図14は、第二実施形態に係るプレート式熱交換器における第一伝熱プレートの背面図である。FIG. 14 is a rear view of the first heat transfer plate in the plate heat exchanger according to the second embodiment. 図15は、第二実施形態に係るプレート式熱交換器における第二伝熱プレートの正面図である。FIG. 15 is a front view of a second heat transfer plate in the plate heat exchanger according to the second embodiment. 図16は、第二実施形態に係るプレート式熱交換器における第二伝熱プレートの背面図である。FIG. 16 is a rear view of a second heat transfer plate in the plate heat exchanger according to the second embodiment. 図17は、第二実施形態に係るプレート式熱交換器における第一流路での第一流体の流れを説明するための図である。FIG. 17 is a diagram for explaining the flow of the first fluid in the first channel in the plate heat exchanger according to the second embodiment. 図18は、第二実施形態に係るプレート式熱交換器における第二流路での第二流体の流れを説明するための図である。FIG. 18 is a diagram for explaining the flow of the second fluid in the second channel in the plate heat exchanger according to the second embodiment. 図19は、第二実施形態に係るプレート式熱交換器における第一流路の部分的な領域での第一流体の流れを説明するための図である。FIG. 19 is a diagram for explaining the flow of the first fluid in a partial region of the first channel in the plate heat exchanger according to the second embodiment; 図20は、第二実施形態に係るプレート式熱交換器における第二流路の部分的な領域での第二流体の流れを説明するための図である。FIG. 20 is a diagram for explaining the flow of the second fluid in a partial region of the second channel in the plate heat exchanger according to the second embodiment; 図21は、本発明の他実施形態に係るプレート式熱交換器における第一流路の部分的な領域での第一流体の流れを説明するための図である。FIG. 21 is a diagram for explaining the flow of the first fluid in a partial region of the first channel in a plate heat exchanger according to another embodiment of the present invention; 図22は、同実施形態に係るプレート式熱交換器における第二流路の部分的な領域での第二流体の流れを説明するための図である。FIG. 22 is a diagram for explaining the flow of the second fluid in a partial region of the second channel in the plate heat exchanger according to the embodiment;

以下、本発明の第一実施形態に係るプレート式熱交換器について、添付図面を参照しつつ説明する。 A plate heat exchanger according to a first embodiment of the present invention will be described below with reference to the accompanying drawings.

プレート式熱交換器は、図1に示す如く、第一流体Aと第二流体Bとを熱交換させるもので、第一方向に重ね合わされた複数の伝熱プレート2,3を備える。 As shown in FIG. 1, the plate heat exchanger exchanges heat between a first fluid A and a second fluid B, and includes a plurality of heat transfer plates 2 and 3 stacked in a first direction.

なお、以下の説明において、第一方向をX軸方向とし、第一方向と直交する第二方向をZ軸方向とし、第一方向及び第二方向のそれぞれと直交する第三方向をY軸方向とする。これに伴い、各図には、各方向に対応した直交三軸(X軸方向と対応するX軸、Y軸方向と対応するY軸、及びZ軸方向と対応するZ軸)を補助的に図示している。 In the following description, the first direction is the X-axis direction, the second direction orthogonal to the first direction is the Z-axis direction, and the third direction orthogonal to the first direction and the second direction is the Y-axis direction. and Along with this, in each figure, orthogonal three axes corresponding to each direction (X-axis corresponding to X-axis direction, Y-axis corresponding to Y-axis direction, and Z-axis corresponding to Z-axis direction) are shown as auxiliary Illustrated.

本実施形態に係るプレート式熱交換器1において、図2に示す如く、複数の伝熱プレート2,3のそれぞれを境にして、第一流体AをZ軸方向に流通させる第一流路Raと、第二流体BをZ軸方向に流通させる第二流路Rbとが、X軸方向で交互に形成されている。 In the plate heat exchanger 1 according to the present embodiment, as shown in FIG. , and second flow paths Rb through which the second fluid B flows in the Z-axis direction are alternately formed in the X-axis direction.

複数の伝熱プレート2,3のそれぞれは、図3乃至図6に示す如く、X軸方向の両面S1,S2に伝熱領域200a,200b,300a,300bを含む。より具体的に説明すると、複数の伝熱プレート2,3のそれぞれは、X軸方向に第一面S1と該第一面S1の反対側の第二面S2を有する伝熱部20,30と、伝熱部20,30の外周全周から延出した環状部21,31とを備える。 Each of the plurality of heat transfer plates 2, 3 includes heat transfer regions 200a, 200b, 300a, 300b on both sides S1, S2 in the X-axis direction, as shown in FIGS. More specifically, each of the plurality of heat transfer plates 2 and 3 includes heat transfer portions 20 and 30 having a first surface S1 and a second surface S2 opposite to the first surface S1 in the X-axis direction. , and annular portions 21 and 31 extending from the entire outer periphery of the heat transfer portions 20 and 30 .

伝熱部20,30の第一面S1及び第二面S2は、第一流体Aと第二流体Bとの熱交換に寄与する伝熱領域200a,200b,300a,300bを含む。具体的に説明すると、伝熱部20,30は、X軸方向から見て四角形状に形成される。本実施形態において、伝熱部20,30は、X軸方向から見てZ軸方向に長手をなした長方形状に形成される。そして、伝熱部20,30は、Z軸方向に延びる中心線(以下、縦中心線という)CL1と、Y軸方向に延びる中心線(以下、横中心線という)CL2との交点を含む主伝熱部20a,30aと、Z軸方向の主伝熱部20a,30aの両側にある一対の端部20b,30bとを含む。 The first surface S1 and the second surface S2 of the heat transfer portions 20, 30 include heat transfer regions 200a, 200b, 300a, 300b that contribute to heat exchange between the first fluid A and the second fluid B. As shown in FIG. Specifically, the heat transfer portions 20 and 30 are formed in a square shape when viewed from the X-axis direction. In this embodiment, the heat transfer parts 20 and 30 are formed in a rectangular shape elongated in the Z-axis direction when viewed from the X-axis direction. The heat transfer portions 20 and 30 each include a main line including an intersection point between a center line CL1 extending in the Z-axis direction (hereinafter referred to as a vertical center line) and a center line CL2 extending in the Y-axis direction (hereinafter referred to as a horizontal center line) CL2. It includes a heat transfer portion 20a, 30a and a pair of ends 20b, 30b on either side of the main heat transfer portion 20a, 30a in the Z-axis direction.

主伝熱部20a,30aは、X軸方向から見て四角形状に形成される。本実施形態において、主伝熱部20a,30aは、Z軸方向に長手をなした長方形状に形成される。一対の端部20b,30bは、主伝熱部20a,30aと連続し、伝熱部20,30全体をX軸方向から見て四角形状(長方形状)に形成している。 The main heat transfer portions 20a and 30a are formed in a rectangular shape when viewed from the X-axis direction. In this embodiment, the main heat transfer portions 20a and 30a are formed in a rectangular shape elongated in the Z-axis direction. The pair of end portions 20b and 30b are continuous with the main heat transfer portions 20a and 30a, and form the entire heat transfer portions 20 and 30 in a square shape (rectangular shape) when viewed from the X-axis direction.

伝熱部20,30のうちの主伝熱部20a,30aの第一面S1及び第二面S2は、伝熱領域200a,200b,300a,300bとされる。第一面S1及び第二面S2の伝熱領域200a,200b,300a,300bのそれぞれは、縦中心線CL1に対して傾斜する方向(以下、傾斜方向という)に長手を有する凸部201a,202a,301a,302a及び凹部201b,202b,301b,302bを含み且つ該凸部201a,202a,301a,302a及び凹部201b,202b,301b,302bが傾斜方向に延びる仮想線VLに沿って交互に並ぶ凹凸群201,202,301,302であって、傾斜方向と直交する方向に並ぶ複数の凹凸群201,202,301,302を有する。 The first surface S1 and the second surface S2 of the main heat transfer portions 20a, 30a of the heat transfer portions 20, 30 are heat transfer regions 200a, 200b, 300a, 300b. Each of the heat transfer regions 200a, 200b, 300a, and 300b of the first surface S1 and the second surface S2 has projections 201a and 202a having longitudinal sides in a direction inclined with respect to the longitudinal center line CL1 (hereinafter referred to as an inclination direction). , 301a, 302a and concave portions 201b, 202b, 301b, 302b, and the convex portions 201a, 202a, 301a, 302a and concave portions 201b, 202b, 301b, 302b are alternately arranged along a virtual line VL extending in the inclination direction. It is a group 201, 202, 301, 302, and has a plurality of uneven groups 201, 202, 301, 302 arranged in a direction orthogonal to the tilt direction.

複数の凹凸群201,202,301,302のそれぞれの凸部201a,202a,301a,302aは、傾斜方向と直交する方向で隣り合う凹凸群201,202,301,302の凹部201b,202b,301b,302bと横並びに配置される。これに対し、複数の凹凸群201,202,301,302のそれぞれの凹部201b,202b,301b,302bは、傾斜方向と直交する方向で隣り合う凹凸群201,202,301,302の凸部201a,202a,301a,302aと横並びに配置される。 The convex portions 201a, 202a, 301a, and 302a of the plurality of uneven groups 201, 202, 301, and 302 are adjacent to each other in the direction perpendicular to the inclination direction. , 302b. On the other hand, the concave portions 201b, 202b, 301b, and 302b of the plurality of uneven groups 201, 202, 301, and 302 are adjacent to each other in the direction perpendicular to the inclination direction, and the convex portions 201a of the uneven groups 201, 202, 301, and 302 are adjacent to each other. , 202a, 301a, 302a are arranged side by side.

これにより、複数列の凹凸群201,202,301,302の凸部201a,202a,301a,302aは、伝熱領域200a,200b,300a,300b内で千鳥状に配置され、複数列の凹凸群201,202,301,302の凹部201b,202b,301b,302bは、伝熱領域200a,200b,300a,300b内で凸部201a,202a,301a,302aの間に配置され、該伝熱領域200a,200b,300a,300b内で千鳥状に配置されている。 As a result, the convex portions 201a, 202a, 301a, 302a of the multiple rows of uneven groups 201, 202, 301, 302 are arranged in a staggered manner within the heat transfer regions 200a, 200b, 300a, 300b, and the multiple rows of uneven groups The concave portions 201b, 202b, 301b, 302b of the heat transfer regions 201, 202, 301, 302 are arranged between the convex portions 201a, 202a, 301a, 302a in the heat transfer regions 200a, 200b, 300a, 300b. , 200b, 300a, and 300b are staggered.

より正確に説明すると、本実施形態において、複数の凹凸群201,202,301,302のそれぞれの凸部201a,202a,301a,302aは、隣り合う凹凸群201,202,301,302の凹部201b,202b,301b,302bとY軸方向で横並びに配置される。これに対し、複数の凹凸群201,202,301,302のそれぞれの凹部201b,202b,301b,302bは、隣り合う凹凸群201,202,301,302の凸部201a,202a,301a,302aとY軸方向で横並びに配置される。 More precisely, in the present embodiment, the protrusions 201a, 202a, 301a, and 302a of the plurality of groups of protrusions and recesses 201, 202, 301, and 302 correspond to the recesses 201b of the adjacent groups of protrusions and recesses 201, 202, 301, and 302. , 202b, 301b, and 302b are arranged side by side in the Y-axis direction. On the other hand, the concave portions 201b, 202b, 301b, and 302b of the plurality of concave and convex groups 201, 202, 301, and 302, respectively, correspond to the convex portions 201a, 202a, 301a, and 302a of the adjacent concave and convex groups 201, 202, 301, and 302. They are arranged side by side in the Y-axis direction.

これにより、異なる凹凸群201,202,301,302の凸部201a,202a,301a,302aと凹部201b,202b,301b,302bとがY軸方向に交互に配置された複数の群(行)が、Z軸方向に複数並んで形成されている。 Thereby, a plurality of groups (rows) in which the convex portions 201a, 202a, 301a, 302a and the concave portions 201b, 202b, 301b, 302b of the different uneven groups 201, 202, 301, 302 are alternately arranged in the Y-axis direction are formed. , are arranged side by side in the Z-axis direction.

傾斜方向は、縦中心線CL1に対して45°未満の角度で傾斜する方向に設定される。これに伴い、縦中心線CL1に対する仮想線VLの傾斜角度θ1は、45°未満に設定される。すなわち、横中心線CL2に対する仮想線VLの傾斜角度θ2は、45°よりも大きく設定される。本実施形態において、縦中心線CL1に対する仮想線VLの傾斜角度θ1は、30°乃至40°に設定される。本実施形態において、横中心線CL2に対する仮想線VLの傾斜角度θ2は、60°乃至70°に設定される。 The direction of inclination is set at an angle of less than 45° with respect to the longitudinal center line CL1. Accordingly, the inclination angle θ1 of the virtual line VL with respect to the vertical center line CL1 is set to less than 45°. That is, the inclination angle θ2 of the virtual line VL with respect to the horizontal center line CL2 is set to be larger than 45°. In this embodiment, the inclination angle θ1 of the virtual line VL with respect to the vertical center line CL1 is set to 30° to 40°. In this embodiment, the inclination angle θ2 of the virtual line VL with respect to the horizontal center line CL2 is set to 60° to 70°.

これにより、複数の伝熱プレート2,3は、伝熱部20,30(伝熱領域200a,200b,300a,300b)を対向させた状態で重ね合わされることで、隣り合う伝熱プレート2,3の互いの凹凸群201,202,301,302の凸部201a,202a,301a,302a同士を交差衝合させるようになっている。 As a result, the plurality of heat transfer plates 2 and 3 are overlapped with the heat transfer portions 20 and 30 (heat transfer regions 200a, 200b, 300a and 300b) facing each other, so that the adjacent heat transfer plates 2 and 3 The protrusions 201a, 202a, 301a, 302a of the three groups of protrusions 201, 202, 301, 302 are cross-matched with each other.

ここで、各凹凸群201,202,301,302に含まれる凸部201a,202a,301a,302aの長手方向の長さ及び凹部201b,202b,301b,302bの長手方向の長さ(仮想線VLの延びる方向に並ぶ凸部201a,202a,301a,302a同士の間隔)は、一つの凸部201a,202a,301a,302aが隣り合う(相手方の)伝熱プレート2,3の伝熱領域200a,200b,300a,300bに含まれる二つ(二列)以上の凹凸群201,202,301,302に跨る(二つ以上の凹凸群201,202,301,302の凸部201a,202a,301a,302aに対して交差衝合する)ように設定される。 Here, the longitudinal lengths of the convex portions 201a, 202a, 301a, 302a and the longitudinal lengths of the concave portions 201b, 202b, 301b, 302b (virtual line VL The distance between the protrusions 201a, 202a, 301a, and 302a arranged in the extending direction of each of the protrusions 201a, 202a, 301a, and 302a is the heat transfer region 200a, 200b, 300a, 200b, 300a, 300b (two or more uneven groups 201, 202, 301, 302 of the convex portions 201a, 202a, 301a, 302a).

凸部201a,202a,301a,302a(凸部201a,202a,301a,302aの頂上)と凹部201b,202b,301b,302b(凹部201b,202b,301b,302bの底)とは、X軸方向における位置を異にする。そのため、凸部201a,202a,301a,302aと凹部201b,202b,301b,302bとの間には、凸部201a,202a,301a,302aの頂上から凹部201b,202b,301b,302bの底(或いは、凹部201b,202b,301b,302bの底から凸部201a,202a,301a,302aの頂上)に繋がる中間領域(採番しない)が形成されている。 Protrusions 201a, 202a, 301a, 302a (tops of protrusions 201a, 202a, 301a, 302a) and recesses 201b, 202b, 301b, 302b (bottoms of recesses 201b, 202b, 301b, 302b) Different position. Therefore, between the convex portions 201a, 202a, 301a, 302a and the concave portions 201b, 202b, 301b, 302b, there is a gap from the top of the convex portions 201a, 202a, 301a, 302a to the bottom of the concave portions 201b, 202b, 301b, 302b (or , from the bottoms of the concave portions 201b, 202b, 301b, 302b to the tops of the convex portions 201a, 202a, 301a, 302a).

この中間領域は、凹凸群201,202,301,302にある凸部201a,202a,301a,302aと凹部201b,202b,301b,302bとの間や、隣り合う凹凸群201,202,301,302の凸部201a,202a,301a,302aと凹部201b,202b,301b,302bとの間に配置される。 This intermediate area is between the convex portions 201a, 202a, 301a, 302a and the concave portions 201b, 202b, 301b, 302b in the uneven groups 201, 202, 301, 302, or between the adjacent uneven groups 201, 202, 301, 302. are arranged between the convex portions 201a, 202a, 301a, 302a and the concave portions 201b, 202b, 301b, 302b.

中間領域は、凸部201a,202a,301a,302aの頂上と凹部201b,202b,301b,302bの底との途中位置にZ軸方向及びY軸方向に広がる中段部位が含まれてもよいが、本実施形態においては、凸部201a,202a,301a,302aの頂上から凹部201b,202b,301b,302bの底に向けて(或いは、凹部201b,202b,301b,302bの底から凸部201a,202a,301a,302aの頂上に向けて)連続的に傾斜している。 The intermediate region may include a middle stage portion extending in the Z-axis direction and the Y-axis direction at a position halfway between the tops of the projections 201a, 202a, 301a, 302a and the bottoms of the recesses 201b, 202b, 301b, 302b. In the present embodiment, from the top of the projections 201a, 202a, 301a, 302a toward the bottom of the recesses 201b, 202b, 301b, 302b (or from the bottom of the recesses 201b, 202b, 301b, 302b to the projections 201a, 202a) , 301a, 302a) are continuously sloping.

一対の端部20b,30bのそれぞれには、X軸方向に貫通した一対の貫通孔203,204,303,304が設けられている。一対の端部20b,30bのそれぞれにおいて、一対の貫通孔203,204,303,304は、Y軸方向に間隔をあけて配置されている。本実施形態において、一対の貫通孔203,204,303,304は、縦中心線CL1を挟んで配置されている。 A pair of through holes 203, 204, 303, 304 are provided in each of the pair of end portions 20b, 30b, penetrating in the X-axis direction. The pair of through holes 203, 204, 303, 304 are spaced apart in the Y-axis direction in each of the pair of end portions 20b, 30b. In this embodiment, the pair of through-holes 203, 204, 303, 304 are arranged across the vertical center line CL1.

本実施形態において、複数の伝熱プレート2,3のそれぞれは、金属プレートをプレス成型したものである。これに伴い、各伝熱プレート2,3において、第一面S1の伝熱領域200a,300aの凸部201a,301aと第二面S2の伝熱領域200b,300bの凹部202b,302bとが表裏の関係にあり、第一面S1の伝熱領域200a,300aの凹部201b,301bと第二面S2の伝熱領域200b,300bの凸部202a,302aとが表裏の関係にある。すなわち、伝熱プレート2,3の第一面S1の伝熱領域200a,300aにある凹凸群201,301と、伝熱プレート2,3の第二面S2の伝熱領域200b,300bにある凹凸群202,302とは、対応する位置で凹凸関係が反対で形成されている。 In this embodiment, each of the plurality of heat transfer plates 2 and 3 is formed by press-molding a metal plate. Accordingly, in each of the heat transfer plates 2 and 3, the convex portions 201a and 301a of the heat transfer regions 200a and 300a of the first surface S1 and the concave portions 202b and 302b of the heat transfer regions 200b and 300b of the second surface S2 are aligned. , and the concave portions 201b and 301b of the heat transfer regions 200a and 300a of the first surface S1 and the convex portions 202a and 302a of the heat transfer regions 200b and 300b of the second surface S2 are in a front and back relationship. That is, the groups of unevenness 201, 301 in the heat transfer areas 200a, 300a of the first surfaces S1 of the heat transfer plates 2, 3 and the unevennesses in the heat transfer areas 200b, 300b of the second surfaces S2 of the heat transfer plates 2, 3 The groups 202 and 302 are formed with the concave-convex relationship opposite at corresponding positions.

本実施形態に係るプレート式熱交換器1は、二種類の伝熱プレート2,3を含む。この二種類の伝熱プレート2,3は、環状部21,31の伝熱部20,30からの延出方向及び凹凸群201,202,301,302の凹凸の位置を異にする以外は、同一構成である。 A plate heat exchanger 1 according to this embodiment includes two types of heat transfer plates 2 and 3 . These two types of heat transfer plates 2 and 3 are different except that the extending directions of the annular portions 21 and 31 from the heat transfer portions 20 and 30 and the positions of the uneven groups 201, 202, 301 and 302 are different. They have the same configuration.

具体的に説明すると、二種類の伝熱プレート2,3は、主伝熱部20a,30a及び一対の端部20b,30bを含む伝熱部20,30と、環状部21,31とを備え、主伝熱部20a,30aの第一面S1及び第二面S2の伝熱領域200a,200b,300a,300bが複数の凹凸群201,202,301,302を有する点で共通している。 Specifically, the two types of heat transfer plates 2 and 3 include heat transfer portions 20 and 30 including main heat transfer portions 20a and 30a and a pair of end portions 20b and 30b, and annular portions 21 and 31. , the heat transfer regions 200a, 200b, 300a, 300b of the first surface S1 and the second surface S2 of the main heat transfer portions 20a, 30a have a plurality of uneven groups 201, 202, 301, 302 in common.

二種類の伝熱プレート2,3のうちの一方の伝熱プレート(以下、第一伝熱プレートという)2において、環状部21は、伝熱部20の第二面S2側に延出し、二種類の伝熱プレート2,3のうちの他方の伝熱プレート(以下、第二伝熱プレートという)3において、環状部31は、伝熱部30の第一面S1側に延出している。 In one heat transfer plate (hereinafter referred to as the first heat transfer plate) 2 of the two types of heat transfer plates 2 and 3, the annular portion 21 extends toward the second surface S2 of the heat transfer portion 20, In the other heat transfer plate (hereinafter referred to as the second heat transfer plate) 3 of the heat transfer plates 2 and 3 of the type, the annular portion 31 extends toward the first surface S1 of the heat transfer portion 30 .

第一伝熱プレート2の伝熱部20(主伝熱部20a)の第一面S1及び第二面S2のそれぞれの伝熱領域200a,200bにおいて、複数の凹凸群201,202は、X軸方向から見てY軸方向における伝熱部20の一端側から他端側に向けて先下りに傾斜している。これに対し、第二伝熱プレート3の伝熱部30(主伝熱部30a)の第一面S1及び第二面S2のそれぞれの伝熱領域300a,300bにおいて、複数の凹凸群301,302は、X軸方向から見てY軸方向における伝熱部30の他端側から一端側に向けて先下りに傾斜している。 In the heat transfer regions 200a and 200b of the first surface S1 and the second surface S2 of the heat transfer portion 20 (main heat transfer portion 20a) of the first heat transfer plate 2, the plurality of uneven groups 201 and 202 are arranged along the X axis. It is inclined downward from one end side of the heat transfer section 20 toward the other end side in the Y-axis direction when viewed from the direction. On the other hand, in the heat transfer regions 300a and 300b of the first surface S1 and the second surface S2 of the heat transfer portion 30 (main heat transfer portion 30a) of the second heat transfer plate 3, a plurality of uneven groups 301 and 302 is inclined downward from the other end side to the one end side of the heat transfer section 30 in the Y-axis direction when viewed from the X-axis direction.

本実施形態において、第二伝熱プレート3の複数の凹凸群301,302は、X軸方向における同一側から見て、第一伝熱プレート2の複数の凹凸群201,202を縦中心線CL1で反転させた上でY軸方向に所定ピッチ(本実施形態においては1ピッチ)位置ずれさせた配置になっている。 In this embodiment, the plurality of uneven groups 301 and 302 of the second heat transfer plate 3 are aligned with the longitudinal center line CL1 of the plurality of uneven groups 201 and 202 of the first heat transfer plate 2 when viewed from the same side in the X-axis direction. , and shifted by a predetermined pitch (one pitch in this embodiment) in the Y-axis direction.

そして、第一伝熱プレート2及び第二伝熱プレート3は、図2に示す如く、X軸方向で交互に配置され、隣り合う第一伝熱プレート2及び第二伝熱プレート3の環状部21,31同士が嵌合される(図1参照)。この状態で、第一伝熱プレート2の伝熱部20の第一面S1は、第二伝熱プレート3の伝熱部30の第一面S1と対向し、第一伝熱プレート2の伝熱部20の第二面S2は、第二伝熱プレート3の伝熱部30の第二面S2と対向する。 As shown in FIG. 2, the first heat transfer plates 2 and the second heat transfer plates 3 are alternately arranged in the X-axis direction. 21 and 31 are fitted together (see FIG. 1). In this state, the first surface S1 of the heat transfer portion 20 of the first heat transfer plate 2 faces the first surface S1 of the heat transfer portion 30 of the second heat transfer plate 3, The second surface S2 of the heat section 20 faces the second surface S2 of the heat transfer section 30 of the second heat transfer plate 3 .

この状態において、第一伝熱プレート2の伝熱部20の第一面S1(伝熱領域200a)にある複数の凹凸群201のそれぞれの凸部201aに対し、第二伝熱プレート3の伝熱部30の第一面S1(伝熱領域300a)に含まれる二つ(二列)の凹凸群301が交差し、その凹凸群301の凸部301aが交差衝合する。すなわち、第一伝熱プレート2の伝熱部20の第一面S1(伝熱領域200a)にある複数の凹凸群201のそれぞれの凸部201aに対し、第二伝熱プレート3の伝熱部30の第一面S1(伝熱領域300a)にある二つの凸部301aが交差衝合する(図7参照)。 In this state, the projections 201a of the plurality of uneven groups 201 on the first surface S1 (heat transfer region 200a) of the heat transfer portion 20 of the first heat transfer plate 2 are applied to the projections 201a of the second heat transfer plate 3. Two (two rows) uneven groups 301 included in the first surface S1 (heat transfer region 300a) of the heating section 30 intersect, and the convex portions 301a of the uneven groups 301 intersect. That is, the heat transfer part of the second heat transfer plate 3 Two protrusions 301a on the first surface S1 (heat transfer area 300a) of 30 intersect (see FIG. 7).

また、第一伝熱プレート2の伝熱部20の第二面S2(伝熱領域200b)にある複数の凹凸群202のそれぞれの凸部202aに対し、第二伝熱プレート3の伝熱部30の第二面S2(伝熱領域300b)に含まれる二つ(二列)の凹凸群302が交差し、その凹凸群302の凸部302aが交差衝合する。すなわち、第一伝熱プレート2の伝熱部20の第二面S2(伝熱領域200b)にある複数の凹凸群202のそれぞれの凸部202aに対し、第二伝熱プレート3の伝熱部30の第二面S2(伝熱領域300b)にある二つの凸部302aが交差衝合する。 Further, the heat transfer portion of the second heat transfer plate 3 is applied to each of the convex portions 202a of the plurality of uneven groups 202 on the second surface S2 (heat transfer region 200b) of the heat transfer portion 20 of the first heat transfer plate 2. Two (two rows) uneven groups 302 included in the second surface S2 (heat transfer area 300b) of 30 intersect, and the convex portions 302a of the uneven groups 302 intersect. That is, the heat transfer portion of the second heat transfer plate 3 The two protrusions 302a on the second surface S2 (heat transfer area 300b) of 30 intersect.

そして、X軸方向に重ね合わされた複数の伝熱プレート2,3(第一伝熱プレート2、第二伝熱プレート3)の環状部21,31間や、貫通孔203,204,303,304の周囲等が適宜液密にシールされる。本実施形態において、X軸方向に重ね合わされた複数の伝熱プレート2,3は、ロウ付けにより一体にされ、該ロウ付けによって環状部21,31間や貫通孔203,204,303,304の周囲等がシールされる。 Between the annular portions 21 and 31 of the plurality of heat transfer plates 2 and 3 (the first heat transfer plate 2 and the second heat transfer plate 3) superimposed in the X-axis direction, and through holes 203, 204, 303, and 304 is liquid-tightly sealed as appropriate. In this embodiment, the plurality of heat transfer plates 2 and 3 superimposed in the X-axis direction are integrated by brazing. The surroundings are sealed.

これにより、複数の伝熱プレート2,3の伝熱部20,30(第一伝熱プレート2の伝熱部20、第二伝熱プレート3の伝熱部30)を境にして、第一流体AをZ軸方向に流通させる第一流路Raと、第二流体BをZ軸方向に流通させる第二流路RbとがX軸方向で交互に形成される。すなわち、第一伝熱プレート2の伝熱部20の第一面S1に含まれる伝熱領域200aの凹部201b及び第二伝熱プレート3の伝熱部30の第一面S1に含まれる伝熱領域300aの凹部301bによって形成される空間が、第一流路Raを構成するとともに、第一伝熱プレート2の伝熱部20の第二面S2に含まれる伝熱領域200bの凹部202b及び第二伝熱プレート3の伝熱部30の第二面S2に含まれる伝熱領域300bの凹部302bによって形成される空間が、第二流路Rbを構成する。 Thereby, the first A first flow path Ra through which the fluid A flows in the Z-axis direction and a second flow path Rb through which the second fluid B flows in the Z-axis direction are alternately formed in the X-axis direction. That is, the recesses 201b of the heat transfer region 200a included in the first surface S1 of the heat transfer portion 20 of the first heat transfer plate 2 and the heat transfer included in the first surface S1 of the heat transfer portion 30 of the second heat transfer plate 3 The space formed by the recessed portion 301b of the region 300a constitutes the first flow path Ra, and the recessed portion 202b of the heat transfer region 200b included in the second surface S2 of the heat transfer portion 20 of the first heat transfer plate 2 and the second A space formed by the concave portion 302b of the heat transfer region 300b included in the second surface S2 of the heat transfer portion 30 of the heat transfer plate 3 constitutes the second flow path Rb.

また、複数の伝熱プレート2,3(第一伝熱プレート2、第二伝熱プレート3)の対応する貫通孔203,204,303,304同士がX軸方向に連なり、第一流路Raのみに連通した一対の第一連通路Ra1,Ra2であって、第一流路Raに対して第一流体Aを流出入させる一対の第一連通路Ra1,Ra2が形成されるとともに、第二流路Rbのみに連通した一対の第二連通路Rb1,Rb2であって、第二流路Rbに対して第二流体Bを流出入させる一対の第二連通路Rb1,Rb2が形成される。 Further, the corresponding through holes 203, 204, 303, 304 of the plurality of heat transfer plates 2, 3 (the first heat transfer plate 2, the second heat transfer plate 3) are connected to each other in the X-axis direction, and only the first flow path Ra A pair of first communication passages Ra1 and Ra2 communicating with the first flow passage Ra and allowing the first fluid A to flow into and out of the first flow passage Ra are formed, and the second flow passage A pair of second communication passages Rb1, Rb2 communicating only with Rb and allowing the second fluid B to flow into and out of the second flow path Rb are formed.

本実施形態に係るプレート式熱交換器1は、以上の通りであり、一方の第一連通路Ra1に第一流体Aを供給するとともに、一方の第二連通路Rb2に第二流体Bを供給すると、第一流体Aは、一方の第一連通路Ra1から複数の第一流路Raのそれぞれに流入し、第二流体Bは、一方の第二連通路Rb1から複数の第二流路Rbのそれぞれに流入する。 The plate heat exchanger 1 according to the present embodiment is as described above, and supplies the first fluid A to one first communication passage Ra1 and the second fluid B to one second communication passage Rb2. Then, the first fluid A flows from one of the first communication passages Ra1 into each of the plurality of first flow passages Ra, and the second fluid B flows from one of the second communication passages Rb1 to the plurality of second flow passages Rb. flow into each.

そうすると、図7及び図8に示す如く、第一流体Aは、第一流路Ra内でZ軸方向に流通し、第二流体Bは、第二流路Rb内でZ軸方向に流通する。すなわち、第一流体Aは、第一流路Ra内において、Z軸方向における伝熱領域200a,300aの一端側から他端側に向けて流通し、第二流体Bは、第二流路Rb内において、Z軸方向における伝熱領域200b,300bの他端側から一端側に向けて流通する。 Then, as shown in FIGS. 7 and 8, the first fluid A flows in the first flow path Ra in the Z-axis direction, and the second fluid B flows in the second flow path Rb in the Z-axis direction. That is, the first fluid A flows in the first flow path Ra from one end side to the other end side of the heat transfer regions 200a and 300a in the Z-axis direction, and the second fluid B flows in the second flow path Rb. , the heat flows from the other end side to the one end side of the heat transfer regions 200b and 300b in the Z-axis direction.

より具体的に説明すると、図9に示す如く、第一流路Ra内で流通する第一流体Aは、伝熱領域200a,300aにある凹部201b,301bに沿って流れ、その凹部201b,301bの含まれる凹凸群201,301の凸部201a,301a(凹部201b,301bと隣り合う凸部201a,301a)に衝突する。その結果、第一流体Aは、衝突した凸部201a,202a,301a,302aの両側に分岐する。 More specifically, as shown in FIG. 9, the first fluid A flowing in the first flow path Ra flows along the recesses 201b and 301b in the heat transfer regions 200a and 300a, and the recesses 201b and 301b It collides with the protrusions 201a and 301a (the protrusions 201a and 301a adjacent to the recesses 201b and 301b) of the uneven groups 201 and 301 included. As a result, the first fluid A branches to both sides of the colliding protrusions 201a, 202a, 301a, and 302a.

そうすると、分岐した第一流体Aは、衝突した凸部201a,301aを含む凹凸群201,301の両側にある凹凸群201,301の凹部201b,301bに沿って下流側に流れる。そして、凹部201b,301bに沿って流れる第一流体Aは、その凹部201b,301bの含まれる凹凸群201,301の凸部201a,301a(凹部201b,301bと隣り合う凸部201a,301a)に衝突する。その結果、凸部201a,301aに衝突した第一流体Aは,該凸部201a,301aの両側に分岐する。 Then, the branched first fluid A flows downstream along the concave portions 201b, 301b of the concave-convex groups 201, 301 on both sides of the concave-convex groups 201, 301 including the colliding convex portions 201a, 301a. Then, the first fluid A flowing along the concave portions 201b and 301b is applied to the convex portions 201a and 301a (the convex portions 201a and 301a adjacent to the concave portions 201b and 301b) of the concave/convex groups 201 and 301 included in the concave portions 201b and 301b. collide. As a result, the first fluid A that has collided with the protrusions 201a and 301a branches to both sides of the protrusions 201a and 301a.

これにより、第一流体Aは、元の凹凸群201,301に含まれる凹部201b,301bに沿って流通する。すなわち、上流側の凸部201a,301aによって分岐した第一流体Aは、異なる列(隣の列)の凸部201a,301aとの衝突によって元の列(凹凸群201,301)に合流する。このように、第一流体Aは、分岐と合流とを繰り返しつつ下流側に流れる。これにより、第一流路Ra内において、第一流体Aの流れに乱れが生じる。 Thereby, the first fluid A flows along the concave portions 201b and 301b included in the original concave/convex groups 201 and 301, respectively. That is, the first fluid A branched by the convex portions 201a and 301a on the upstream side collides with the convex portions 201a and 301a in a different row (adjacent row) and merges into the original row (group of irregularities 201 and 301). Thus, the first fluid A flows downstream while repeating branching and merging. This causes turbulence in the flow of the first fluid A in the first flow path Ra.

特に、本実施形態において、凹凸群201,301(凹凸群201,301の沿う仮想線VL)は、縦中心線CL1に対して45°未満で傾斜しているため、第一流体Aが流れる方向の成分を多く含んだ角度で配置される。これにより、第一流体Aが下流側に向けて流通するに当たり、凹部201b,301bに沿って流通し易くなるため、流通抵抗の増加が抑えられる。 In particular, in the present embodiment, the uneven groups 201 and 301 (virtual line VL along the uneven groups 201 and 301) are inclined at an angle of less than 45° with respect to the longitudinal center line CL1. is arranged at an angle that includes many components of As a result, when the first fluid A circulates toward the downstream side, it becomes easier to circulate along the concave portions 201b and 301b, so an increase in circulation resistance is suppressed.

本実施形態において、第二流路Rbを画定する主伝熱部20a,30a(第二面S2にある伝熱領域200b,300b)の複数の凹凸群202,302は、第一流路Raを画定する主伝熱部20a,30a(第一面S1にある伝熱領域200a,300a)の複数の凹凸群201,301に対して凹凸関係を逆にした態様であり、単一の凸部202a,302aに対して二つの凸部202a,302aが交差衝合しているため、図10に示す如く、第二流路Rb内で流通する第二流体Bについても、第一流路Ra内で流通する第一流体Aと同様に、分岐及び合流を繰り返しつつ、下流側に流通する。 In the present embodiment, the plurality of uneven groups 202, 302 of the main heat transfer portions 20a, 30a (heat transfer regions 200b, 300b on the second surface S2) defining the second flow path Rb define the first flow path Ra. This is a mode in which the uneven relationship is reversed with respect to the plurality of uneven groups 201, 301 of the main heat transfer portions 20a, 30a (heat transfer regions 200a, 300a on the first surface S1). Since the two protrusions 202a, 302a are cross-colliding with 302a, as shown in FIG. 10, the second fluid B flowing in the second flow path Rb also flows in the first flow path Ra. Like the first fluid A, it circulates downstream while repeating branching and merging.

このように、第一流体Aが第一流路Ra内を流通し、第二流体Bが第二流路Rb内を流通することで、第一流体Aと第二流体Bとは、第一流路Raと第二流路Rbとを区画する主伝熱部20a,30a(伝熱領域200a,200b,300a,300b)を介して熱交換する。そして、図2に示す如く、熱交換を終えた第一流体Aは、第一流路Raから他方の第一連通路Ra2を経て外部に排出され、熱交換を終えた第二流体Bは、第二流路Rbから他方の第二連通路Rb2を経て外部に排出される。 In this manner, the first fluid A flows through the first flow path Ra and the second fluid B flows through the second flow path Rb, so that the first fluid A and the second fluid B flow through the first flow path Heat is exchanged via the main heat transfer portions 20a, 30a (heat transfer regions 200a, 200b, 300a, 300b) that partition Ra and the second flow path Rb. Then, as shown in FIG. 2, the first fluid A that has completed heat exchange is discharged from the first flow path Ra to the outside through the other first communication path Ra2, and the second fluid B that has completed heat exchange is discharged to the outside. It is discharged to the outside from the second flow path Rb through the other second communication path Rb2.

以上のように、本実施形態に係るプレート式熱交換器1は、X軸方向の両面に伝熱領域200a,200b,300a,300bを含む伝熱プレート2,3であって、それぞれの伝熱領域200a,200b,300a,300bがX軸方向に重ね合わされた複数の伝熱プレート2,3を備え、該複数の伝熱プレート2,3のそれぞれを境にして、第一流体AをX軸方向と直交するZ軸方向に流通させる第一流路Raと、第二流体BをZ軸方向に流通させる第二流路RbとがX軸方向で交互に形成され、伝熱領域200a,200b,300a,300bは、Z軸方向に延びる自身の縦中心線CL1に対して傾斜する方向に長手を有する凸部201a,202a,301a,302a及び凹部201b,202b,301b,302bを含み且つ該凸部201a,202a,301a,302a及び凹部201b,202b,301b,302bが前記傾斜する方向に延びる仮想線VLに沿って交互に並ぶ凹凸群201,202,301,302であって、前記傾斜する方向と直交する方向に並ぶ複数の凹凸群201,202,301,302を有し、該複数の凹凸群201,202,301,302のそれぞれの凸部201a,202a,301a,302aは、前記傾斜する方向と直交する方向で隣り合う凹凸群201,202,301,302の凹部201b,202b,301b,302bに対して横並びに配置されるとともに、前記複数の凹凸群201,202,301,302のそれぞれの凹部201b,202b,301b,302bは、前記傾斜する方向と直交する方向で隣り合う凹凸群201,202,301,302の凸部201a,202a,301a,302aに対して横並びに配置され、伝熱領域200a,200b,300a,300bを対向させて隣り合う伝熱プレート2,3は、互いの凹凸群201,202,301,302の凸部201a,202a,301a,302a同士を交差衝合させている。 As described above, the plate heat exchanger 1 according to the present embodiment includes the heat transfer plates 2 and 3 including the heat transfer regions 200a, 200b, 300a, and 300b on both sides in the X-axis direction. The regions 200a, 200b, 300a, and 300b are provided with a plurality of heat transfer plates 2 and 3 superimposed in the X-axis direction, and the plurality of heat transfer plates 2 and 3 are separated from each other by the first fluid A in the X-axis direction. A first flow path Ra through which the second fluid B is circulated in the Z-axis direction perpendicular to the direction and a second flow path Rb through which the second fluid B is circulated in the Z-axis direction are alternately formed in the X-axis direction. Each of 300a and 300b includes projections 201a, 202a, 301a, 302a and recesses 201b, 202b, 301b, 302b each having a longitudinal direction inclined with respect to its longitudinal center line CL1 extending in the Z-axis direction, and the projections Concavo-convex groups 201, 202, 301, 302 in which 201a, 202a, 301a, 302a and concave portions 201b, 202b, 301b, 302b are alternately arranged along a virtual line VL extending in the inclined direction, It has a plurality of uneven groups 201, 202, 301, 302 arranged in orthogonal directions, and the convex portions 201a, 202a, 301a, 302a of the plurality of uneven groups 201, 202, 301, 302 are arranged in the inclined direction. are arranged side by side with respect to the concave portions 201b, 202b, 301b, and 302b of the concave and convex groups 201, 202, 301, and 302 adjacent in a direction orthogonal to the respective The concave portions 201b, 202b, 301b, and 302b are arranged side by side with the convex portions 201a, 202a, 301a, and 302a of the concave and convex groups 201, 202, 301, and 302 adjacent in the direction perpendicular to the direction of inclination, and are arranged side by side to facilitate heat transfer. Heat transfer plates 2 and 3 adjacent to each other with regions 200a, 200b, 300a, and 300b facing each other are arranged such that convex portions 201a, 202a, 301a, and 302a of concave and convex groups 201, 202, 301, and 302 cross-butt each other. there is

上記構成によれば、伝熱プレート2,3(伝熱領域200a,200b,300a,300b)にある複数の凹凸群201,202,301,302の凸部201a,202a,301a,302a及び凹部201b,202b,301b,302bのそれぞれが千鳥状に配置される。すなわち、複数の凸部201a,202a,301a,302aが伝熱領域200a,200b,300a,300b内に千鳥状に配置され、複数の凹部201b,202b,301b,302bが伝熱領域200a,200b,300a,300b内に複数の凸部201a,202a,301a,302aを躱して千鳥状に配置される。 According to the above configuration, the protrusions 201a, 202a, 301a, 302a and the recesses 201b of the plurality of uneven groups 201, 202, 301, 302 in the heat transfer plates 2, 3 (heat transfer regions 200a, 200b, 300a, 300b) , 202b, 301b, and 302b are arranged in a staggered manner. That is, the plurality of protrusions 201a, 202a, 301a, and 302a are arranged in a staggered manner within the heat transfer regions 200a, 200b, 300a, and 300b, and the plurality of recesses 201b, 202b, 301b, and 302b are arranged within the heat transfer regions 200a, 200b, and 300b. The projections 201a, 202a, 301a, and 302a are arranged in a staggered manner in the 300a and 300b.

これにより、第一流体Aは、第一流路RaでZ軸方向に流通するに当たり、第一流路Raを画定する伝熱プレート2,3(伝熱領域200a,300a)にある凹部201b,301bに沿って流れ、該凹部201b,301bの下流側で隣り合う凸部201a,301a(共通の凹凸群201,301の凸部201a,301a)と衝突する。 As a result, when the first fluid A circulates in the Z-axis direction in the first flow path Ra, the first fluid A flows into the recesses 201b and 301b in the heat transfer plates 2 and 3 (heat transfer regions 200a and 300a) that define the first flow path Ra. and collides with the adjacent convex portions 201a, 301a (convex portions 201a, 301a of the common concave-convex groups 201, 301) on the downstream side of the concave portions 201b, 301b.

そうすると、第一流体Aの流れが変わり、第一流体Aは、周辺の凹部201b,301b(例えば、両側の凹凸群201,301の凹部201b,301b、相手方の伝熱プレート2,3の凹凸群201,301の凹部201b,301b)に乗り移って該凹部201b,301bに沿って流れる。このように、第一流体Aは、凹部201b,301bに沿った流れと、凸部201a,301aに対する衝突を繰り返しつつ、下流側に流れる。 Then, the flow of the first fluid A changes, and the first fluid A flows into the peripheral recesses 201b, 301b (for example, the recesses 201b, 301b of the uneven groups 201, 301 on both sides, the uneven groups of the opposing heat transfer plates 2, 3). 201, 301, and flows along the recesses 201b, 301b. In this way, the first fluid A flows downstream while repeating the flow along the concave portions 201b and 301b and the collision with the convex portions 201a and 301a.

また、第二流体Bは、第二流路RbでZ軸方向に流通するに当たり、第二流路Rbを画定する伝熱プレート2,3(伝熱領域200b,300b)にある凹部202b,302bに沿って流れ、該凹部202b,302bの下流側で隣り合う凸部202a,302a(共通の凹凸群202,302の凸部202a,302a)と衝突する。 In addition, when the second fluid B flows in the Z-axis direction in the second flow path Rb, the recesses 202b and 302b in the heat transfer plates 2 and 3 (heat transfer regions 200b and 300b) defining the second flow path Rb , and collide with the adjacent convex portions 202a, 302a (convex portions 202a, 302a of the common concave-convex group 202, 302) on the downstream side of the concave portions 202b, 302b.

そうすると、第二流体Bの流れが変わり、第二流体Bは、周辺の凹部202b,302b(例えば、両側の凹凸群202,302の凹部202b,302b、相手方の伝熱プレート2,3の凹凸群202,302の凹部202b,302b)に乗り移って該凹部202b,302bに沿って流れる。このように、第二流体Bは、凹部202b,302bに沿った流れと、凸部202a,302aに対する衝突を繰り返しつつ、下流側に流れる。 Then, the flow of the second fluid B changes, and the second fluid B flows into the peripheral recesses 202b, 302b (for example, the recesses 202b, 302b of the uneven groups 202, 302 on both sides, the uneven groups of the opposing heat transfer plates 2, 3). 202, 302, and flows along the recesses 202b, 302b). Thus, the second fluid B flows downstream while repeating the flow along the concave portions 202b and 302b and the collision with the convex portions 202a and 302a.

以上のように、第一流体A及び第二流体Bのそれぞれが流路(第一流路Ra又は第二流路Rb)を画定する伝熱領域200a,200b,300a,300bにある凹部201b,202b,301b,302bに沿って流れるため、上記構成のプレート式熱交換器1では、流通抵抗の増大が抑えられる。また、第一流体A及び第二流体Bのそれぞれが、凹部201b,202b,301b,302bを含む凹凸群201,202,301,302の凸部201a,202a,301a,302aと衝突するため、上記構成のプレート式熱交換器1では、第一流体A及び第二流体Bのそれぞれの流れに乱れが生じることになり、高い伝熱性能が得られる。 As described above, the recesses 201b, 202b in the heat transfer regions 200a, 200b, 300a, 300b defining the flow paths (the first flow path Ra or the second flow path Rb) of the first fluid A and the second fluid B, respectively , 301b and 302b, the increase in flow resistance is suppressed in the plate heat exchanger 1 configured as described above. In addition, since the first fluid A and the second fluid B respectively collide with the convex portions 201a, 202a, 301a, and 302a of the concave and convex groups 201, 202, 301, and 302 including the concave portions 201b, 202b, 301b, and 302b, the above In the plate heat exchanger 1 having the configuration, turbulence occurs in the respective flows of the first fluid A and the second fluid B, and high heat transfer performance is obtained.

特に、本実施形態において、伝熱プレート2,3の伝熱領域200a,200b,300a,300bにある複数の凹凸群201,202,301,302の凸部201a,202a,301a,302aのそれぞれは、X軸方向で隣り合う相手方の伝熱プレート2,3の伝熱領域200a,200b,300a,300bにある複数の凹凸群201,202,301,302のうちの少なくとも二つの凹凸群201,202,301,302の凸部201a,202a,301a,302aと交差衝合している。 In particular, in the present embodiment, each of the projections 201a, 202a, 301a, 302a of the plurality of uneven groups 201, 202, 301, 302 in the heat transfer regions 200a, 200b, 300a, 300b of the heat transfer plates 2, 3 , at least two uneven groups 201, 202 among the plurality of uneven groups 201, 202, 301, 302 in the heat transfer regions 200a, 200b, 300a, 300b of the heat transfer plates 2, 3 adjacent in the X-axis direction , 301 and 302 are cross-matched.

このようにすれば、凸部201a,301aに衝突した第一流体Aが該凸部201a,301aを含む凹凸群201,301の両側にある凹凸群201,301の凹部201b,301bに誘導され、凸部202a,302aに衝突した第二流体Bが該凸部202a,302aを含む凹凸群202,302の両側にある凹凸群202,302の凹部202b,302bに誘導される。 In this way, the first fluid A that has collided with the convex portions 201a and 301a is guided to the concave portions 201b and 301b of the concave and convex groups 201 and 301 on both sides of the concave and convex groups 201 and 301 including the convex portions 201a and 301a, The second fluid B that collides with the protrusions 202a and 302a is guided to the recesses 202b and 302b of the protrusions 202 and 302 on both sides of the protrusions 202 and 302 that include the protrusions 202a and 302a.

具体的に説明すると、共通の伝熱領域200a,200b,300a,300b内にある複数の凹凸群201,202,301,302は、縦中心線CL1に対する傾斜方向(仮想線VLの延びる方向)に対して直交方向に並ぶため、異なる凹凸群201,202,301,302の凸部201a,202a,301a,302aは、凹凸群201,202,301,302の延びる方向(仮想線VLの延びる方向)に対して直交する方向の異なる位置に配置される。すなわち、異なる凹凸群201,202,301,302の凸部201a,202a,301a,302aは、縦中心線CL1に対する傾斜方向(仮想線VLの延びる方向)と直交する方向に間隔をあけて配置される。 Specifically, the plurality of uneven groups 201, 202, 301, 302 in the common heat transfer regions 200a, 200b, 300a, 300b are arranged in the direction of inclination with respect to the vertical center line CL1 (the direction in which the virtual line VL extends). Since the projections 201a, 202a, 301a, and 302a of the different uneven groups 201, 202, 301, and 302 are arranged in the direction perpendicular to each other, the convex portions 201a, 202a, 301a, and 302a of the uneven groups 201, 202, 301, and 302 extend in the direction in which the uneven groups 201, 202, 301, and 302 extend (the direction in which the virtual line VL extends). are placed at different positions in a direction perpendicular to the That is, the convex portions 201a, 202a, 301a, 302a of the different uneven groups 201, 202, 301, 302 are arranged at intervals in a direction orthogonal to the direction of inclination with respect to the vertical center line CL1 (the direction in which the virtual line VL extends). be.

従って、伝熱プレート2,3の伝熱領域200a,200b,300a,300bにある複数の凹凸群201,202,301,302の凸部201a,202a,301a,302aのそれぞれに対し、該凸部201a,202a,301a,302aの長手方向に間隔をあけて相手方の伝熱プレート2,3の少なくとも二つの凸部201a,202a,301a,302a(異なる凹凸群201,202,301,302の凸部201a,202a,301a,302a)が交差衝合する。 Therefore, for each of the projections 201a, 202a, 301a, 302a of the plurality of projections 201, 202, 301, 302 in the heat transfer regions 200a, 200b, 300a, 300b of the heat transfer plates 2, 3, the projections At least two convex portions 201a, 202a, 301a, 302a (convex portions of different uneven groups 201, 202, 301, 302) of the opposing heat transfer plates 2, 3 are spaced apart in the longitudinal direction of 201a, 202a, 301a, 302a. 201a, 202a, 301a, 302a) cross-match.

すなわち、伝熱プレート2,3の伝熱領域にある複数の凹凸群201,202,301,302の凸部201a,202a,301a,302aのそれぞれの端部又はその近傍に対し、相手方の伝熱プレート2,3の凸部201a,202a,301a,302a(異なる凹凸群201,202,301,302の凸部201a,202a,301a,302a)が交差衝合する。 That is, each end of each of the projections 201a, 202a, 301a, 302a of the plurality of uneven groups 201, 202, 301, 302 in the heat transfer regions of the heat transfer plates 2, 3, or the vicinity thereof Protrusions 201a, 202a, 301a, 302a of plates 2, 3 (protrusions 201a, 202a, 301a, 302a of different groups of protrusions 201, 202, 301, 302) intersect.

これにより、凸部201a,301aに衝突した第一流体Aが、相手方の伝熱プレート2,3側に流れようとしても該相手方の伝熱プレート2,3の凸部201a,301aによって阻止され、結果的に衝突した凸部201a,301aを含む凹凸群201,301の両側にある凹凸群201,301の凹部201b,301bに誘導(分岐)され、該凹部201b,301bに沿って流れる。そして、凹部201b,301bに沿って流れた第一流体Aは、該凹部201b,301bと隣り合う凸部201a,301aと衝突する。 As a result, even if the first fluid A that has collided with the projections 201a and 301a tries to flow toward the heat transfer plates 2 and 3 of the other party, it is blocked by the projections 201a and 301a of the heat transfer plates 2 and 3 of the other party, As a result, it is guided (branched) to the concave portions 201b and 301b of the concave/convex groups 201 and 301 on both sides of the concave/convex groups 201 and 301 including the bumps 201a and 301a, and flows along the concave portions 201b and 301b. Then, the first fluid A flowing along the concave portions 201b and 301b collides with the convex portions 201a and 301a adjacent to the concave portions 201b and 301b.

そうすると、ここでも第一流体Aは、相手方の伝熱プレート2,3側に流れようとするが、該相手方の伝熱プレート2,3の凸部201a,301aによって阻止され、結果的に衝突した凸部201a,301aを含む凹凸群201,301の両側にある凹凸群201,301の凹部201b,301bに誘導(分岐)される。すなわち、元の凹凸群201,301に含まれる凹部201b,301bに誘導(合流)される。これにより、第一流体Aは、凸部201a,301aとの衝突で分岐と合流とを繰り返して、下流側に流れる。この流れ(凸部201a,301aとの衝突で分岐と合流とを繰り返す流れ)は、第二流体Bも同様である。 As a result, the first fluid A tries to flow toward the heat transfer plates 2 and 3 of the other party, but is blocked by the protrusions 201a and 301a of the heat transfer plates 2 and 3 of the other party, resulting in a collision. It is guided (branched) to the concave portions 201b and 301b of the concave/convex groups 201 and 301 on both sides of the concave/convex groups 201 and 301 including the convex portions 201a and 301a. That is, they are guided (joined) to the recessed portions 201b and 301b included in the original uneven groups 201 and 301, respectively. As a result, the first fluid A repeats branching and merging due to collisions with the protrusions 201a and 301a, and flows downstream. The second fluid B is the same as this flow (flow that repeats branching and merging due to collisions with the convex portions 201a and 301a).

このように、第一流路Raに第一流体Aが凹部201b,301bを流れる機会があり、第二流路Rbに第二流体Bが凹部202b,302bを流れる機会があるため、それぞれの流路で流通抵抗が高くなることが抑制される。また、第一流路Ra内で第一流体Aが分岐と合流を繰り返し、第二流路Rb内で第二流体Bが分岐と合流を繰り返すことで、第一流体A及び第二流体Bのそれぞれの流れに乱れが生じる結果、第一流体Aと第二流体Bとの熱交換性能(伝熱性能)が高くなる。 In this way, the first fluid A has an opportunity to flow through the recesses 201b and 301b in the first flow path Ra, and the second fluid B has an opportunity to flow through the recesses 202b and 302b in the second flow path Rb. , the increase in flow resistance is suppressed. Further, the first fluid A repeats branching and merging in the first flow path Ra, and the second fluid B repeats branching and merging in the second flow path Rb, so that the first fluid A and the second fluid B As a result, the heat exchange performance (heat transfer performance) between the first fluid A and the second fluid B is enhanced.

さらに、本実施形態に係るプレート式熱交換器1は、第一流路Ra内で第一流体Aが分岐と合流を繰り返し、第二流路Rb内で第二流体Bが分岐と合流を繰り返すことで、第一流体A及び第二流体Bのそれぞれの流れに乱れが生じるため、この流れの乱れによって混合機能を発揮する。 Furthermore, in the plate heat exchanger 1 according to the present embodiment, the first fluid A repeats branching and joining in the first flow path Ra, and the second fluid B repeats branching and joining in the second flow path Rb. Since turbulence occurs in the respective flows of the first fluid A and the second fluid B, the mixing function is exhibited by this turbulence of the flows.

これにより、本実施形態に係るプレート式熱交換器1は、第一流体A又は第二流体Bの少なくとも何れか一方に含まれる成分が流通過程で分離することを防止できる。 Thereby, the plate heat exchanger 1 according to the present embodiment can prevent the components contained in at least one of the first fluid A and the second fluid B from separating during the flow process.

また、本実施形態に係るプレート式熱交換器1は、第一流路Ra又は第二流路Rbの何れか一方に対し、二種類以上の液体を合わせた流体、或いは一種類以上の液体と粉体とを合わせた流体を第一流体A又は第二流体Bとして流通させることで、第一流体A又は第二流体Bを構成する二種類以上の液体、或いは一種類以上の液体と粉体とを混合させる(ミキシングする)ことができる。 In addition, the plate heat exchanger 1 according to the present embodiment uses a fluid in which two or more types of liquids are combined, or one or more types of liquid and powder in one of the first flow path Ra and the second flow path Rb. By circulating the fluid combined with the body as the first fluid A or the second fluid B, two or more kinds of liquids constituting the first fluid A or the second fluid B, or one or more kinds of liquid and powder can be mixed.

従って、本実施形態に係るプレート式熱交換器1は、第一流体A又は第二流体Bの何れか一方に含まれる複数の成分を混合させる混合器(ミキサー)として機能することもできる。すなわち、本実施形態に係るプレート式熱交換器1は、第一流体A又は第二流体Bの何れか一方に含まれる複数の成分を混合させつつ、第一流体Aと第二流体Bとを熱交換させる(第一流体A又は第二流体Bの何れか一方を加熱又は冷却させる)ことで、第一流体A又は第二流体Bの何れか一方に含まれる成分同士を反応させる反応器として機能する。 Therefore, the plate heat exchanger 1 according to this embodiment can also function as a mixer that mixes a plurality of components contained in either the first fluid A or the second fluid B. That is, the plate heat exchanger 1 according to the present embodiment mixes a plurality of components contained in either the first fluid A or the second fluid B while mixing the first fluid A and the second fluid B. As a reactor for reacting components contained in either the first fluid A or the second fluid B by exchanging heat (heating or cooling either the first fluid A or the second fluid B) Function.

また、本実施形態において、凹凸群201,202,301,302の配置の基準となる仮想線VLは、Z軸方向に延びる縦中心線CL1に対して45°未満の角度で傾斜しているため、凹凸群201,202,301,302に含まれる凹部201b,202b,301b,302bの長手に延びる方向の成分に、第一流体A及び第二流体Bの流れ方向の成分の方が該流れ方向と直交する方向の成分よりも多く含まれる。 In addition, in the present embodiment, the imaginary line VL, which serves as a reference for the arrangement of the uneven groups 201, 202, 301, and 302, is inclined at an angle of less than 45° with respect to the vertical center line CL1 extending in the Z-axis direction. , the components in the longitudinal direction of the recesses 201b, 202b, 301b, and 302b included in the groups of protrusions and recesses 201, 202, 301, and 302, and the components in the flow direction of the first fluid A and the second fluid B. contains more components than those in the direction orthogonal to

これにより、第一流路Raで第一流体Aが流れ易く、第二流路Rbで第二流体Bが流れ易くなる。すなわち、第一流路Ra及び第二流路Rbのそれぞれにおいて、流通抵抗が高くなることが抑制される。 As a result, the first fluid A easily flows through the first flow path Ra, and the second fluid B easily flows through the second flow path Rb. That is, an increase in flow resistance is suppressed in each of the first flow path Ra and the second flow path Rb.

このように、本実施形態に係るプレート式熱交換器1によれば、流体の流通抵抗の増加を抑えつつ、高い伝熱性能を得ることができるという優れた効果を奏し得る。 As described above, according to the plate heat exchanger 1 of the present embodiment, it is possible to obtain the excellent effect of being able to obtain high heat transfer performance while suppressing an increase in fluid flow resistance.

次に、本発明の第二実施形態に係るプレート式熱交換器について、添付図面を参照しつつ説明する。本実施形態に係るプレート式熱交換器は、第一実施形態と同一の構成又は相当する構成を有する。これに伴い、本実施形態に係るプレート式熱交換器の説明に当たり、第一実施形態と同一の構成又は相当する構成については、同一名称及び同一符号を付すこととする。 Next, a plate heat exchanger according to a second embodiment of the present invention will be described with reference to the accompanying drawings. The plate heat exchanger according to this embodiment has the same or corresponding configuration as that of the first embodiment. Along with this, in describing the plate heat exchanger according to the present embodiment, the same names and the same reference numerals are given to the same or corresponding structures as those of the first embodiment.

プレート式熱交換器は、図11に示す如く、第一流体Aと第二流体Bとを熱交換させるもので、第一方向に重ね合わされた複数の伝熱プレート2,3を備える。 As shown in FIG. 11, the plate heat exchanger exchanges heat between a first fluid A and a second fluid B, and includes a plurality of heat transfer plates 2 and 3 stacked in a first direction.

なお、以下の説明においても、第一方向をX軸方向とし、第一方向と直交する第二方向をZ軸方向とし、第一方向及び第二方向のそれぞれと直交する第三方向をY軸方向とする。これに伴い、各図には、各方向に対応した直交三軸(X軸方向と対応するX軸、Y軸方向と対応するY軸、及びZ軸方向と対応するZ軸)を補助的に図示している。 In the following description, the first direction is the X-axis direction, the second direction orthogonal to the first direction is the Z-axis direction, and the third direction orthogonal to the first direction and the second direction is the Y-axis direction. direction. Along with this, in each figure, orthogonal three axes corresponding to each direction (X-axis corresponding to X-axis direction, Y-axis corresponding to Y-axis direction, and Z-axis corresponding to Z-axis direction) are shown as auxiliary Illustrated.

本実施形態に係るプレート式熱交換器1において、図12に示す如く、複数の伝熱プレート2,3のそれぞれを境にして、第一流体AをZ軸方向に流通させる第一流路Raと、第二流体BをZ軸方向に流通させる第二流路Rbとが、X軸方向で交互に形成されている。 In the plate heat exchanger 1 according to this embodiment, as shown in FIG. , and second flow paths Rb through which the second fluid B flows in the Z-axis direction are alternately formed in the X-axis direction.

複数の伝熱プレート2,3のそれぞれは、図13乃至図16に示す如く、X軸方向の両面S1,S2に伝熱領域200a,200b,300a,300bを含む。より具体的に説明すると、複数の伝熱プレート2,3のそれぞれは、X軸方向に第一面S1と該第一面S1の反対側の第二面S2を有する伝熱部20,30と、伝熱部20,30の外周全周から延出した環状部21,31とを備える。 Each of the plurality of heat transfer plates 2, 3 includes heat transfer regions 200a, 200b, 300a, 300b on both sides S1, S2 in the X-axis direction, as shown in FIGS. More specifically, each of the plurality of heat transfer plates 2 and 3 includes heat transfer portions 20 and 30 having a first surface S1 and a second surface S2 opposite to the first surface S1 in the X-axis direction. , and annular portions 21 and 31 extending from the entire outer periphery of the heat transfer portions 20 and 30 .

伝熱部20,30の第一面S1及び第二面S2は、第一流体Aと第二流体Bとの熱交換に寄与する伝熱領域200a,200b,300a,300bを含む。 The first surface S1 and the second surface S2 of the heat transfer portions 20, 30 include heat transfer regions 200a, 200b, 300a, 300b that contribute to heat exchange between the first fluid A and the second fluid B. As shown in FIG.

具体的に説明すると、伝熱部20,30は、X軸方向から見て四角形状に形成される。本実施形態において、伝熱部20,30は、X軸方向から見てZ軸方向に長手をなした長方形状に形成される。そして、伝熱部20,30は、Z軸方向に延びる中心線(以下、縦中心線という)CL1と、Y軸方向に延びる中心線(以下、横中心線という)CL2との交点を含む主伝熱部20a,30aと、Z軸方向の主伝熱部20a,30aの両側にある一対の端部20b,30bとを含む。 Specifically, the heat transfer portions 20 and 30 are formed in a square shape when viewed from the X-axis direction. In this embodiment, the heat transfer parts 20 and 30 are formed in a rectangular shape elongated in the Z-axis direction when viewed from the X-axis direction. The heat transfer portions 20 and 30 each include a main line including an intersection point between a center line CL1 extending in the Z-axis direction (hereinafter referred to as a vertical center line) and a center line CL2 extending in the Y-axis direction (hereinafter referred to as a horizontal center line) CL2. It includes a heat transfer portion 20a, 30a and a pair of ends 20b, 30b on either side of the main heat transfer portion 20a, 30a in the Z-axis direction.

主伝熱部20a,30aは、X軸方向から見て四角形状に形成される。本実施形態において、主伝熱部20a,30aは、Z軸方向に長手をなした長方形状に形成される。一対の端部20b,30bは、主伝熱部20a,30aと連続し、伝熱部20,30全体をX軸方向から見て四角形状(長方形状)に形成している。 The main heat transfer portions 20a and 30a are formed in a rectangular shape when viewed from the X-axis direction. In this embodiment, the main heat transfer portions 20a and 30a are formed in a rectangular shape elongated in the Z-axis direction. The pair of end portions 20b and 30b are continuous with the main heat transfer portions 20a and 30a, and form the entire heat transfer portions 20 and 30 in a square shape (rectangular shape) when viewed from the X-axis direction.

伝熱部20,30のうちの主伝熱部20a,30aの第一面S1及び第二面S2は、伝熱領域200a,200b,300a,300bとされる。第一面S1及び第二面S2の伝熱領域200a,200b,300a,300bのそれぞれは、縦中心線CL1に対して傾斜する方向(以下、傾斜方向という)に長手を有する凸部201a,202a,301a,302a及び凹部201b,202b,301b,302bを含み且つ該凸部201a,202a,301a,302a及び凹部201b,202b,301b,302bが傾斜方向に延びる仮想線VLに沿って交互に並ぶ凹凸群201,202,301,302であって、傾斜方向と直交する方向に並ぶ複数の凹凸群201,202,301,302を有する。 The first surface S1 and the second surface S2 of the main heat transfer portions 20a, 30a of the heat transfer portions 20, 30 are heat transfer regions 200a, 200b, 300a, 300b. Each of the heat transfer regions 200a, 200b, 300a, and 300b of the first surface S1 and the second surface S2 has projections 201a and 202a having longitudinal sides in a direction inclined with respect to the longitudinal center line CL1 (hereinafter referred to as an inclination direction). , 301a, 302a and concave portions 201b, 202b, 301b, 302b, and the convex portions 201a, 202a, 301a, 302a and concave portions 201b, 202b, 301b, 302b are alternately arranged along a virtual line VL extending in the inclination direction. It is a group 201, 202, 301, 302, and has a plurality of uneven groups 201, 202, 301, 302 arranged in a direction orthogonal to the tilt direction.

複数の凹凸群201,202,301,302のそれぞれの凸部201a,202a,301a,302aは、傾斜方向と直交する方向で隣り合う凹凸群201,202,301,302の凹部201b,202b,301b,302bと横並びに配置される。これに対し、複数の凹凸群201,202,301,302のそれぞれの凹部201b,202b,301b,302bは、傾斜方向と直交する方向で隣り合う凹凸群201,202,301,302の凸部201a,202a,301a,302aと横並びに配置される。 The convex portions 201a, 202a, 301a, and 302a of the plurality of uneven groups 201, 202, 301, and 302 are adjacent to each other in the direction perpendicular to the inclination direction. , 302b. On the other hand, the concave portions 201b, 202b, 301b, and 302b of the plurality of uneven groups 201, 202, 301, and 302 are adjacent to each other in the direction perpendicular to the inclination direction, and the convex portions 201a of the uneven groups 201, 202, 301, and 302 are adjacent to each other. , 202a, 301a, 302a are arranged side by side.

すなわち、複数列の凹凸群201,202,301,302の凸部201a,202a,301a,302aは、伝熱領域200a,200b,300a,300b内で千鳥状に配置され、複数列の凹凸群201,202,301,302の凹部201b,202b,301b,302bは、伝熱領域200a,200b,300a,300b内で凸部201a,202a,301a,302aの間に配置され、該伝熱領域200a,200b,300a,300b内で千鳥状に配置されている。 That is, the convex portions 201a, 202a, 301a, and 302a of the groups of unevenness 201, 202, 301, and 302 in the plurality of rows are arranged in a staggered manner within the heat transfer regions 200a, 200b, 300a, and 300b. , 202, 301, and 302 are arranged between the protrusions 201a, 202a, 301a, and 302a in the heat transfer areas 200a, 200b, 300a, and 300b. 200b, 300a, and 300b are staggered.

より正確に説明すると、本実施形態において、複数の凹凸群201,202,301,302のそれぞれの凸部201a,202a,301a,302aは、隣り合う凹凸群201,202,301,302の凹部201b,202b,301b,302bとY軸方向で横並びに配置される。これに対し、複数の凹凸群201,202,301,302のそれぞれの凹部201b,202b,301b,302bは、隣り合う凹凸群201,202,301,302の凸部201a,202a,301a,302aとY軸方向で横並びに配置される。 More precisely, in the present embodiment, the protrusions 201a, 202a, 301a, and 302a of the plurality of groups of protrusions and recesses 201, 202, 301, and 302 correspond to the recesses 201b of the adjacent groups of protrusions and recesses 201, 202, 301, and 302. , 202b, 301b, and 302b are arranged side by side in the Y-axis direction. On the other hand, the concave portions 201b, 202b, 301b, and 302b of the plurality of concave and convex groups 201, 202, 301, and 302, respectively, correspond to the convex portions 201a, 202a, 301a, and 302a of the adjacent concave and convex groups 201, 202, 301, and 302. They are arranged side by side in the Y-axis direction.

これにより、異なる凹凸群201,202,301,302の凸部201a,202a,301a,302aと凹部201b,202b,301b,302bとがY軸方向に交互に配置された複数の群(行)が、Z軸方向に複数並んで形成されている。 Thereby, a plurality of groups (rows) in which the convex portions 201a, 202a, 301a, 302a and the concave portions 201b, 202b, 301b, 302b of the different uneven groups 201, 202, 301, 302 are alternately arranged in the Y-axis direction are formed. , are arranged side by side in the Z-axis direction.

傾斜方向は、縦中心線CL1に対して45°未満の角度で傾斜する方向に設定される。これに伴い、縦中心線CL1に対する仮想線VLの傾斜角度θ1は、45°未満に設定される。すなわち、横中心線CL2に対する仮想線VLの傾斜角度θ2は、45°よりも大きく設定される。本実施形態において、縦中心線CL1に対する仮想線VLの傾斜角度θ1は、30°乃至40°に設定される。本実施形態において、横中心線CL2に対する仮想線VLの傾斜角度θ2は、60°乃至70°に設定される。 The direction of inclination is set at an angle of less than 45° with respect to the longitudinal center line CL1. Accordingly, the inclination angle θ1 of the virtual line VL with respect to the vertical center line CL1 is set to less than 45°. That is, the inclination angle θ2 of the virtual line VL with respect to the horizontal center line CL2 is set to be larger than 45°. In this embodiment, the inclination angle θ1 of the virtual line VL with respect to the vertical center line CL1 is set to 30° to 40°. In this embodiment, the inclination angle θ2 of the virtual line VL with respect to the horizontal center line CL2 is set to 60° to 70°.

これにより、複数の伝熱プレート2,3は、伝熱部20,30(伝熱領域200a,200b,300a,300b)を対向させた状態で重ね合わされることで、隣り合う伝熱プレート2,3の互いの凹凸群201,202,301,302の凸部201a,202a,301a,302a同士を交差衝合させるようになっている。 As a result, the plurality of heat transfer plates 2 and 3 are overlapped with the heat transfer portions 20 and 30 (heat transfer regions 200a, 200b, 300a and 300b) facing each other, so that the adjacent heat transfer plates 2 and 3 The protrusions 201a, 202a, 301a, 302a of the three groups of protrusions 201, 202, 301, 302 are cross-matched with each other.

ここで、各凹凸群201,202,301,302に含まれる凸部201a,202a,301a,302aの長手方向の長さ及び凹部201b,202b,301b,302bの長手方向の長さ(仮想線VLの延びる方向に並ぶ凸部201a,202a,301a,302a同士の間隔)は、一つの凸部201a,202a,301a,302aが隣り合う(相手方の)伝熱プレート2,3の伝熱領域200a,200b,300a,300bに含まれる一つ(一列)の凹凸群201,202,301,302と交差(一つの凹凸群201,202,301,302の凸部201a,202a,301a,302aに対して交差衝合)するように設定される。 Here, the longitudinal lengths of the convex portions 201a, 202a, 301a, 302a and the longitudinal lengths of the concave portions 201b, 202b, 301b, 302b (virtual line VL The distance between the protrusions 201a, 202a, 301a, and 302a arranged in the extending direction of each of the protrusions 201a, 202a, 301a, and 302a is the heat transfer region 200a, 200b, 300a, and 300b, one row of uneven groups 201, 202, 301, and 302 intersect (one uneven group 201, 202, 301, and cross mate).

凸部201a,202a,301a,302a(凸部201a,202a,301a,302aの頂上)と凹部201b,202b,301b,302b(凹部201b,202b,301b,302bの底)とは、X軸方向における位置を異にする。そのため、凸部201a,202a,301a,302aと凹部201b,202b,301b,302bとの間には、凸部201a,202a,301a,302aの頂上から凹部201b,202b,301b,302bの底(或いは、凹部201b,202b,301b,302bの底から凸部201a,202a,301a,302aの頂上)に繋がる中間領域(採番しない)が形成されている。 Protrusions 201a, 202a, 301a, 302a (tops of protrusions 201a, 202a, 301a, 302a) and recesses 201b, 202b, 301b, 302b (bottoms of recesses 201b, 202b, 301b, 302b) Different position. Therefore, between the convex portions 201a, 202a, 301a, 302a and the concave portions 201b, 202b, 301b, 302b, there is a gap from the top of the convex portions 201a, 202a, 301a, 302a to the bottom of the concave portions 201b, 202b, 301b, 302b (or , from the bottoms of the concave portions 201b, 202b, 301b, 302b to the tops of the convex portions 201a, 202a, 301a, 302a).

この中間領域は、凹凸群201,202,301,302にある凸部201a,202a,301a,302aと凹部201b,202b,301b,302bとの間や、隣り合う凹凸群201,202,301,302の凸部201a,202a,301a,302aと凹部201b,202b,301b,302bとの間に配置される。 This intermediate area is between the convex portions 201a, 202a, 301a, 302a and the concave portions 201b, 202b, 301b, 302b in the uneven groups 201, 202, 301, 302, or between the adjacent uneven groups 201, 202, 301, 302. are arranged between the convex portions 201a, 202a, 301a, 302a and the concave portions 201b, 202b, 301b, 302b.

中間領域は、凸部201a,202a,301a,302aの頂上と凹部201b,202b,301b,302bの底との途中位置にZ軸方向及びY軸方向に広がる中段部位が含まれてもよいが、本実施形態においては、凸部201a,202a,301a,302aの頂上から凹部201b,202b,301b,302bの底に向けて(或いは、凹部201b,202b,301b,302bの底から凸部201a,202a,301a,302aの頂上に向けて)連続的に傾斜している。 The intermediate region may include a middle stage portion extending in the Z-axis direction and the Y-axis direction at a position halfway between the tops of the projections 201a, 202a, 301a, 302a and the bottoms of the recesses 201b, 202b, 301b, 302b. In the present embodiment, from the top of the projections 201a, 202a, 301a, 302a toward the bottom of the recesses 201b, 202b, 301b, 302b (or from the bottom of the recesses 201b, 202b, 301b, 302b to the projections 201a, 202a) , 301a, 302a) are continuously sloping.

一対の端部20b,30bのそれぞれには、X軸方向に貫通した一対の貫通孔203,204,303,304が設けられている。一対の端部20b,30bのそれぞれにおいて、一対の貫通孔203,204,303,304は、Y軸方向に間隔をあけて配置されている。本実施形態において、一対の貫通孔203,204,303,304は、縦中心線CL1を挟んで配置されている。 A pair of through holes 203, 204, 303, 304 are provided in each of the pair of end portions 20b, 30b, penetrating in the X-axis direction. The pair of through holes 203, 204, 303, 304 are spaced apart in the Y-axis direction in each of the pair of end portions 20b, 30b. In this embodiment, the pair of through-holes 203, 204, 303, 304 are arranged across the vertical center line CL1.

本実施形態において、複数の伝熱プレート2,3のそれぞれは、金属プレートをプレス成型したものである。これに伴い、各伝熱プレート2,3において、第一面S1の伝熱領域200a,300aの凸部201a,301aと第二面S2の伝熱領域200b,300bの凹部202b,302bとが表裏の関係にあり、第一面S1の伝熱領域200a,300aの凹部201b,301bと第二面S2の伝熱領域200b,300bの凸部202a,302aとが表裏の関係にある。すなわち、伝熱プレート2,3の第一面S1の伝熱領域200a,300aにある凹凸群201,301と、伝熱プレート2,3の第二面S2の伝熱領域200b,300bにある凹凸群202,302とは、対応する位置で凹凸関係が反対で形成されている。 In this embodiment, each of the plurality of heat transfer plates 2 and 3 is formed by press-molding a metal plate. Accordingly, in each of the heat transfer plates 2 and 3, the convex portions 201a and 301a of the heat transfer regions 200a and 300a of the first surface S1 and the concave portions 202b and 302b of the heat transfer regions 200b and 300b of the second surface S2 are aligned. , and the concave portions 201b and 301b of the heat transfer regions 200a and 300a of the first surface S1 and the convex portions 202a and 302a of the heat transfer regions 200b and 300b of the second surface S2 are in a front and back relationship. That is, the groups of unevenness 201, 301 in the heat transfer areas 200a, 300a of the first surfaces S1 of the heat transfer plates 2, 3 and the unevennesses in the heat transfer areas 200b, 300b of the second surfaces S2 of the heat transfer plates 2, 3 The groups 202 and 302 are formed with the concave-convex relationship opposite at corresponding positions.

本実施形態に係るプレート式熱交換器1は、二種類の伝熱プレート2,3を含む。この二種類の伝熱プレート2,3は、環状部21,31の伝熱部20,30からの延出方向及び凹凸群201,202,301,302の凹凸の位置を異にする以外は、同一構成である。 A plate heat exchanger 1 according to this embodiment includes two types of heat transfer plates 2 and 3 . These two types of heat transfer plates 2 and 3 are different except that the extending directions of the annular portions 21 and 31 from the heat transfer portions 20 and 30 and the positions of the uneven groups 201, 202, 301 and 302 are different. They have the same configuration.

具体的に説明すると、二種類の伝熱プレート2,3は、主伝熱部20a,30a及び一対の端部20b,30bを含む伝熱部20,30と、環状部21,31とを備え、主伝熱部20a,30aの第一面S1及び第二面S2の伝熱領域200a,200b,300a,300bが複数の凹凸群201,202,301,302を有する点で共通している。 Specifically, the two types of heat transfer plates 2 and 3 include heat transfer portions 20 and 30 including main heat transfer portions 20a and 30a and a pair of end portions 20b and 30b, and annular portions 21 and 31. , the heat transfer regions 200a, 200b, 300a, 300b of the first surface S1 and the second surface S2 of the main heat transfer portions 20a, 30a have a plurality of uneven groups 201, 202, 301, 302 in common.

二種類の伝熱プレート2,3のうちの一方の伝熱プレート(以下、第一伝熱プレートという)2において、環状部21は、伝熱部20の第二面S2側に延出し、二種類の伝熱プレート2,3のうちの他方の伝熱プレート(以下、第二伝熱プレートという)3において、環状部31は、伝熱部30の第一面S1側に延出している。 In one heat transfer plate (hereinafter referred to as the first heat transfer plate) 2 of the two types of heat transfer plates 2 and 3, the annular portion 21 extends toward the second surface S2 of the heat transfer portion 20, In the other heat transfer plate (hereinafter referred to as the second heat transfer plate) 3 of the heat transfer plates 2 and 3 of the type, the annular portion 31 extends toward the first surface S1 of the heat transfer portion 30 .

第一伝熱プレート2の伝熱部20(主伝熱部20a)の第一面S1及び第二面S2のそれぞれの伝熱領域200a,200bにおいて、複数の凹凸群201,202は、X軸方向から見てY軸方向における伝熱部20の一端側から他端側に向けて先下りに傾斜している。これに対し、第二伝熱プレート3の伝熱部30(主伝熱部30a)の第一面S1及び第二面S2のそれぞれの伝熱領域300a,300bにおいて、複数の凹凸群301,302は、X軸方向から見てY軸方向における伝熱部30の他端側から一端側に向けて先下りに傾斜している。本実施形態において、第二伝熱プレート3の複数の凹凸群301,302は、X軸方向における同一側から見て、第一伝熱プレート2の複数の凹凸群201,202を縦中心線CL1で反転させた配置になっている。 In the heat transfer regions 200a and 200b of the first surface S1 and the second surface S2 of the heat transfer portion 20 (main heat transfer portion 20a) of the first heat transfer plate 2, the plurality of uneven groups 201 and 202 are arranged along the X axis. It is inclined downward from one end side of the heat transfer section 20 toward the other end side in the Y-axis direction when viewed from the direction. On the other hand, in the heat transfer regions 300a and 300b of the first surface S1 and the second surface S2 of the heat transfer portion 30 (main heat transfer portion 30a) of the second heat transfer plate 3, a plurality of uneven groups 301 and 302 is inclined downward from the other end side to the one end side of the heat transfer section 30 in the Y-axis direction when viewed from the X-axis direction. In this embodiment, the plurality of uneven groups 301 and 302 of the second heat transfer plate 3 are aligned with the longitudinal center line CL1 of the plurality of uneven groups 201 and 202 of the first heat transfer plate 2 when viewed from the same side in the X-axis direction. The arrangement is reversed with .

そして、第一伝熱プレート2及び第二伝熱プレート3は、図12に示す如く、X軸方向で交互に配置され、隣り合う第一伝熱プレート2及び第二伝熱プレート3の環状部21,31同士が嵌合される(図13参照)。この状態で、第一伝熱プレート2の伝熱部20の第一面S1は、第二伝熱プレート3の伝熱部30の第一面S1と対向し、第一伝熱プレート2の伝熱部20の第二面S2は、第二伝熱プレート3の伝熱部30の第二面S2と対向する。 As shown in FIG. 12, the first heat transfer plates 2 and the second heat transfer plates 3 are alternately arranged in the X-axis direction. 21 and 31 are fitted together (see FIG. 13). In this state, the first surface S1 of the heat transfer portion 20 of the first heat transfer plate 2 faces the first surface S1 of the heat transfer portion 30 of the second heat transfer plate 3, The second surface S2 of the heat section 20 faces the second surface S2 of the heat transfer section 30 of the second heat transfer plate 3 .

この状態において、第一伝熱プレート2の伝熱部20の第一面S1(伝熱領域200a)にある複数の凹凸群201のそれぞれの凸部201aに対し、第二伝熱プレート3の伝熱部30の第一面S1(伝熱領域300a)に含まれる一列の凹凸群301が交差し、その凹凸群301の凸部301aが交差衝合する。すなわち、第一伝熱プレート2の伝熱部20の第一面S1(伝熱領域200a)にある複数の凹凸群201のそれぞれの凸部201aに対し、第二伝熱プレート3の伝熱部30の第一面S1(伝熱領域300a)にある一つの凸部301aが交差衝合する。 In this state, the projections 201a of the plurality of uneven groups 201 on the first surface S1 (heat transfer region 200a) of the heat transfer portion 20 of the first heat transfer plate 2 are applied to the projections 201a of the second heat transfer plate 3. A row of unevenness groups 301 included in the first surface S1 (heat transfer area 300a) of the heating section 30 intersects, and the protrusions 301a of the unevenness groups 301 intersect. That is, the heat transfer part of the second heat transfer plate 3 One convex portion 301a on the first surface S1 (heat transfer area 300a) of 30 crosses and abuts.

また、第一伝熱プレート2の伝熱部20の第二面S2(伝熱領域200b)にある複数の凹凸群202のそれぞれの凸部202aに対し、第二伝熱プレート3の伝熱部30の第二面S2(伝熱領域300b)に含まれる一列の凹凸群302が交差し、その凹凸群302の凸部302aが交差衝合する。すなわち、第一伝熱プレート2の伝熱部20の第二面S2(伝熱領域200b)にある複数の凹凸群202のそれぞれの凸部202aに対し、第二伝熱プレート3の伝熱部30の第二面S2(伝熱領域300b)にある一つの凸部302aが交差衝合する。 Further, the heat transfer portion of the second heat transfer plate 3 is applied to each of the convex portions 202a of the plurality of uneven groups 202 on the second surface S2 (heat transfer region 200b) of the heat transfer portion 20 of the first heat transfer plate 2. A row of uneven groups 302 included in the second surface S2 (heat transfer area 300b) of 30 intersects, and the convex portions 302a of the uneven groups 302 intersect. That is, the heat transfer portion of the second heat transfer plate 3 One protrusion 302a on the second surface S2 (heat transfer area 300b) of 30 crosses and abuts.

そして、X軸方向に重ね合わされた複数の伝熱プレート2,3(第一伝熱プレート2、第二伝熱プレート3)の環状部21,31間や、貫通孔203,204,303,304の周囲等が適宜液密にシールされる。本実施形態において、X軸方向に重ね合わされた複数の伝熱プレート2,3は、ロウ付けにより一体にされ、該ロウ付けによって環状部21,31間や貫通孔203,204,303,304の周囲等がシールされる。 Between the annular portions 21 and 31 of the plurality of heat transfer plates 2 and 3 (the first heat transfer plate 2 and the second heat transfer plate 3) superimposed in the X-axis direction, and through holes 203, 204, 303, and 304 is liquid-tightly sealed as appropriate. In this embodiment, the plurality of heat transfer plates 2 and 3 superimposed in the X-axis direction are integrated by brazing. The surroundings are sealed.

これにより、複数の伝熱プレート2,3の伝熱部20,30(第一伝熱プレート2の伝熱部20、第二伝熱プレート3の伝熱部30)を境にして、第一流体AをZ軸方向に流通させる第一流路Raと、第二流体BをZ軸方向に流通させる第二流路RbとがX軸方向で交互に形成される。すなわち、第一伝熱プレート2の伝熱部20の第一面S1に含まれる伝熱領域200aの凹部201b及び第二伝熱プレート3の伝熱部30の第一面S1に含まれる伝熱領域300aの凹部301bによって形成される空間が、第一流路Raを構成するとともに、第一伝熱プレート2の伝熱部20の第二面S2に含まれる伝熱領域200bの凹部202b及び第二伝熱プレート3の伝熱部30の第二面S2に含まれる伝熱領域300bの凹部302bによって形成される空間が、第二流路Rbを構成する。 Thereby, the first A first flow path Ra through which the fluid A flows in the Z-axis direction and a second flow path Rb through which the second fluid B flows in the Z-axis direction are alternately formed in the X-axis direction. That is, the recesses 201b of the heat transfer region 200a included in the first surface S1 of the heat transfer portion 20 of the first heat transfer plate 2 and the heat transfer included in the first surface S1 of the heat transfer portion 30 of the second heat transfer plate 3 The space formed by the recessed portion 301b of the region 300a constitutes the first flow path Ra, and the recessed portion 202b of the heat transfer region 200b included in the second surface S2 of the heat transfer portion 20 of the first heat transfer plate 2 and the second A space formed by the concave portion 302b of the heat transfer region 300b included in the second surface S2 of the heat transfer portion 30 of the heat transfer plate 3 constitutes the second flow path Rb.

また、複数の伝熱プレート2,3(第一伝熱プレート2、第二伝熱プレート3)の対応する貫通孔203,204,303,304同士がX軸方向に連なり、第一流路Raのみに連通した一対の第一連通路Ra1,Ra2であって、第一流路Raに対して第一流体Aを流出入させる一対の第一連通路Ra1,Ra2が形成されるとともに、第二流路Rbのみに連通した一対の第二連通路Rb1,Rb2であって、第二流路Rbに対して第二流体Bを流出入させる一対の第二連通路Rb1,Rb2が形成される。 Further, the corresponding through holes 203, 204, 303, 304 of the plurality of heat transfer plates 2, 3 (the first heat transfer plate 2, the second heat transfer plate 3) are connected to each other in the X-axis direction, and only the first flow path Ra A pair of first communication passages Ra1 and Ra2 communicating with the first flow passage Ra and allowing the first fluid A to flow into and out of the first flow passage Ra are formed, and the second flow passage A pair of second communication passages Rb1, Rb2 communicating only with Rb and allowing the second fluid B to flow into and out of the second flow path Rb are formed.

本実施形態に係るプレート式熱交換器1は、以上の通りであり、一方の第一連通路Ra1に第一流体Aを供給するとともに、一方の第二連通路Rb1に第二流体Bを供給すると、第一流体Aは、一方の第一連通路Ra1から複数の第一流路Raのそれぞれに流入し、第二流体Bは、一方の第二連通路Rb1から複数の第二流路Rbのそれぞれに流入する。 The plate heat exchanger 1 according to the present embodiment is as described above. The first fluid A is supplied to one first communication passage Ra1, and the second fluid B is supplied to one second communication passage Rb1. Then, the first fluid A flows from one of the first communication passages Ra1 into each of the plurality of first flow passages Ra, and the second fluid B flows from one of the second communication passages Rb1 to the plurality of second flow passages Rb. flow into each.

そうすると、図17及び図18に示す如く、第一流体Aは、第一流路Ra内でZ軸方向に流通し、第二流体Bは、第二流路Rb内でZ軸方向に流通する。すなわち、第一流体Aは、第一流路Ra内において、Z軸方向における伝熱領域200a,300aの一端側から他端側に向けて流通し、第二流体Bは、第二流路Rb内において、Z軸方向における伝熱領域200b,300bの他端側から一端側に向けて流通する。 Then, as shown in FIGS. 17 and 18, the first fluid A flows in the first flow path Ra in the Z-axis direction, and the second fluid B flows in the second flow path Rb in the Z-axis direction. That is, the first fluid A flows in the first flow path Ra from one end side to the other end side of the heat transfer regions 200a and 300a in the Z-axis direction, and the second fluid B flows in the second flow path Rb. , the heat flows from the other end side to the one end side of the heat transfer regions 200b and 300b in the Z-axis direction.

より具体的に説明すると、図19に示す如く、第一流路Ra内で流通する第一流体Aは、伝熱領域200a,300aにある凹部201b,301bに沿って流れ、その凹部201b,301bの含まれる凹凸群201,301の凸部201a,301a(凹部201b,301bと隣り合う凸部201a,301a)に衝突する。その結果、第一流体Aは、凸部201a,301aを乗り超えようとする。 More specifically, as shown in FIG. 19, the first fluid A flowing in the first flow path Ra flows along the recesses 201b and 301b in the heat transfer regions 200a and 300a, and the recesses 201b and 301b It collides with the protrusions 201a and 301a (the protrusions 201a and 301a adjacent to the recesses 201b and 301b) of the uneven groups 201 and 301 included. As a result, the first fluid A tries to ride over the protrusions 201a and 301a.

そうすると、第一流体Aは、流通していた凹部201b,301bのある伝熱プレート2,3に対する相手方の伝熱プレート2,3側に流れようとする。 Then, the first fluid A tries to flow toward the heat transfer plates 2 and 3 opposite to the heat transfer plates 2 and 3 having the concave portions 201b and 301b through which it flows.

本実施形態において、隣り合う伝熱プレート2,3の単一の凸部201a,301a同士が交差衝合し、相手方の伝熱プレート2,3の凸部201a,301aに対して、該凸部201a,301aを含む凹凸群201,301と横並びにある別の凹凸群201,301の凹部201b,301bが横並びで存在する。 In this embodiment, the single protrusions 201a and 301a of the heat transfer plates 2 and 3 adjacent to each other are cross-matched, and the protrusions 201a and 301a of the heat transfer plates 2 and 3 on the other side are engaged with the protrusions 201a and 301a. Concave-and-convex group 201, 301 containing 201a, 301a and concave part 201b, 301b of another concave-and-convex group 201, 301 side by side exist side by side.

そのため、凸部201a,301aに衝突して流通方向を変更した第一流体Aは、相手方の伝熱プレート2,3の凹部201b,301bに乗り移り、該凹部201b,301bに沿って流通する。そして、その凹部201b,301bの含まれる凹凸群201,301の凸部201a,301a(凹部201b,301bと隣り合う凸部201a,301a)に衝突する。これに伴い、第一流体Aは、凸部201a,301aを乗り超えようとし、流通していた凹部201b,301bのある伝熱プレート2,3に対する相手方の伝熱プレート2,3側に流れようとする。 Therefore, the first fluid A, which collides with the convex portions 201a and 301a and changes its flow direction, transfers to the concave portions 201b and 301b of the opposing heat transfer plates 2 and 3, and flows along the concave portions 201b and 301b. Then, it collides with the convex portions 201a and 301a (the convex portions 201a and 301a adjacent to the concave portions 201b and 301b) of the concave/convex groups 201 and 301 including the concave portions 201b and 301b. Along with this, the first fluid A tries to ride over the convex portions 201a and 301a, and flows toward the heat transfer plates 2 and 3 opposite to the heat transfer plates 2 and 3 having the concave portions 201b and 301b through which it flows. and

本実施形態において、隣り合う伝熱プレート2,3の単一の凸部201a,202a,301a,302a同士が中央で交差衝合し、相手方の伝熱プレート2,3の凸部201a,301aに対し、該凸部201a,301aを含む凹凸群201,301と横並びにある別の凹凸群201,301の凹部201b,301bが横並びで存在するため、凸部201a,301aに衝突して流通方向を変更した第一流体Aは、相手方の伝熱プレート2,3の凹部201b,301bに乗り移り、該凹部201b,301bに沿って流通する。 In this embodiment, the single protrusions 201a, 202a, 301a, 302a of the heat transfer plates 2, 3 adjacent to each other cross-butt at the center, and the protrusions 201a, 301a of the heat transfer plates 2, 3 of the other party On the other hand, since the recessed portions 201b, 301b of the uneven groups 201, 301 including the projected portions 201a, 301a and the recessed portions 201b, 301b of the other uneven groups 201, 301 are arranged side by side, the flow direction is changed by colliding with the projected portions 201a, 301a. The changed first fluid A is transferred to the concave portions 201b and 301b of the heat transfer plates 2 and 3 of the other party and flows along the concave portions 201b and 301b.

このように、第一流体Aは、隣り合う伝熱プレート2,3の複数の凹部201b,301b(隣り合う伝熱プレート2,3の傾斜方向を異にした凹部201b,301b)を順々に乗り移りながら下流側に向けて移動する。すなわち、第一流体Aは、螺旋流を作りながら下流側に向けて流通する。これにより、第一流路Ra内において、第一流体Aの流れに乱れが生じる。 In this way, the first fluid A sequentially flows through the plurality of recesses 201b and 301b of the adjacent heat transfer plates 2 and 3 (the recesses 201b and 301b in which the adjacent heat transfer plates 2 and 3 are inclined in different directions). Move toward the downstream side while transferring. That is, the first fluid A flows downstream while creating a spiral flow. This causes turbulence in the flow of the first fluid A in the first flow path Ra.

特に、本実施形態において、凹凸群201,301(凹凸群201,301の沿う仮想線VL)が縦中心線CL1に対して45°未満で傾斜しているため、第一流体Aが流れる方向の成分を多く含んだ角度で配置される。これにより、第一流体Aが下流側に向けて流通するに当たり、凹部201b,301bに沿って流通し易くなるため、流通抵抗の増加が抑えられる。 In particular, in the present embodiment, since the uneven groups 201 and 301 (virtual line VL along the uneven groups 201 and 301) are inclined at an angle of less than 45° with respect to the longitudinal center line CL1, the direction in which the first fluid A flows Arranged at an angle that contains many components. As a result, when the first fluid A circulates toward the downstream side, it becomes easier to circulate along the concave portions 201b and 301b, so an increase in circulation resistance is suppressed.

本実施形態において、第二流路Rbを画定する主伝熱部20a,30a(第二面S2にある伝熱領域200b,300b)の複数の凹凸群202,302は、第一流路Raを画定する主伝熱部20a,30a(第一面S1にある伝熱領域200a,300a)の複数の凹凸群201,301に対して凹凸関係を逆にした態様であり、単一の凸部201a,301aに対して単一の凸部201a,301aが交差衝合しているため、図20に示す如く、第二流路Rb内で流通する第二流体Bについても、第一流路Ra内で流通する第一流体Aと同様に、螺旋流を作りつつ、下流側に流通する。 In the present embodiment, the plurality of uneven groups 202, 302 of the main heat transfer portions 20a, 30a (heat transfer regions 200b, 300b on the second surface S2) defining the second flow path Rb define the first flow path Ra. 201a, 30a (heat transfer regions 200a, 300a on the first surface S1) are opposite to each other. Since the single protrusions 201a, 301a are cross-colliding with 301a, as shown in FIG. Like the first fluid A, it circulates downstream while forming a spiral flow.

このように、第一流体Aが第一流路Ra内を流通し、第二流体Bが第二流路Rb内を流通することで、第一流体Aと第二流体Bとは、第一流路Raと第二流路Rbとを区画する主伝熱部20a,30a(伝熱領域200a,200b,300a,300b)を介して熱交換する。そして、図12に示す如く、熱交換を終えた第一流体Aは、第一流路Raから他方の第一連通路Ra2を経て外部に排出され、熱交換を終えた第二流体Bは、第二流路Rbから他方の第二連通路Rb2を経て外部に排出される。 In this manner, the first fluid A flows through the first flow path Ra and the second fluid B flows through the second flow path Rb, so that the first fluid A and the second fluid B flow through the first flow path Heat is exchanged via the main heat transfer portions 20a, 30a (heat transfer regions 200a, 200b, 300a, 300b) that partition Ra and the second flow path Rb. Then, as shown in FIG. 12, the first fluid A that has completed heat exchange is discharged from the first flow passage Ra through the other first communication passage Ra2 to the outside, and the second fluid B that has completed heat exchange is discharged to the outside. It is discharged to the outside from the second flow path Rb through the other second communication path Rb2.

以上のように、本実施形態に係るプレート式熱交換器1は、X軸方向の両面に伝熱領域200a,200b,300a,300bを含む伝熱プレート2,3であって、それぞれの伝熱領域200a,200b,300a,300bがX軸方向に重ね合わされた複数の伝熱プレート2,3を備え、該複数の伝熱プレート2,3のそれぞれを境にして、第一流体AをX軸方向と直交するZ軸方向に流通させる第一流路Raと、第二流体BをZ軸方向に流通させる第二流路RbとがX軸方向で交互に形成され、伝熱領域200a,200b,300a,300bは、Z軸方向に延びる自身の縦中心線CL1に対して傾斜する方向に長手を有する凸部201a,202a,301a,302a及び凹部201b,202b,301b,302bを含み且つ該凸部201a,202a,301a,302a及び凹部201b,202b,301b,302bが前記傾斜する方向に延びる仮想線VLに沿って交互に並ぶ凹凸群201,202,301,302であって、前記傾斜する方向と直交する方向に並ぶ複数の凹凸群201,202,301,302を有し、該複数の凹凸群201,202,301,302のそれぞれの凸部201a,202a,301a,302aは、前記傾斜する方向と直交する方向で隣り合う凹凸群201,202,301,302の凹部201b,202b,301b,302bに対して横並びに配置されるとともに、前記複数の凹凸群201,202,301,302のそれぞれの凹部201b,202b,301b,302bは、前記傾斜する方向と直交する方向で隣り合う凹凸群201,202,301,302の凸部201a,202a,301a,302aに対して横並びに配置され、伝熱領域200a,200b,300a,300bを対向させて隣り合う伝熱プレート2,3は、互いの凹凸群201,202,301,302の凸部201a,202a,301a,302a同士を交差衝合させていることを特徴とする。 As described above, the plate heat exchanger 1 according to the present embodiment includes the heat transfer plates 2 and 3 including the heat transfer regions 200a, 200b, 300a, and 300b on both sides in the X-axis direction. The regions 200a, 200b, 300a, and 300b are provided with a plurality of heat transfer plates 2 and 3 superimposed in the X-axis direction, and the plurality of heat transfer plates 2 and 3 are separated from each other by the first fluid A in the X-axis direction. A first flow path Ra through which the second fluid B is circulated in the Z-axis direction perpendicular to the direction and a second flow path Rb through which the second fluid B is circulated in the Z-axis direction are alternately formed in the X-axis direction. Each of 300a and 300b includes projections 201a, 202a, 301a, 302a and recesses 201b, 202b, 301b, 302b each having a longitudinal direction inclined with respect to its longitudinal center line CL1 extending in the Z-axis direction, and the projections Concavo-convex groups 201, 202, 301, 302 in which 201a, 202a, 301a, 302a and concave portions 201b, 202b, 301b, 302b are alternately arranged along a virtual line VL extending in the inclined direction, It has a plurality of uneven groups 201, 202, 301, 302 arranged in orthogonal directions, and the convex portions 201a, 202a, 301a, 302a of the plurality of uneven groups 201, 202, 301, 302 are arranged in the inclined direction. are arranged side by side with respect to the concave portions 201b, 202b, 301b, and 302b of the concave and convex groups 201, 202, 301, and 302 adjacent in a direction orthogonal to the respective The concave portions 201b, 202b, 301b, and 302b are arranged side by side with the convex portions 201a, 202a, 301a, and 302a of the concave and convex groups 201, 202, 301, and 302 adjacent in the direction perpendicular to the direction of inclination, and are arranged side by side to facilitate heat transfer. Heat transfer plates 2 and 3 adjacent to each other with regions 200a, 200b, 300a, and 300b facing each other are arranged such that convex portions 201a, 202a, 301a, and 302a of concave and convex groups 201, 202, 301, and 302 cross-butt each other. It is characterized by

上記構成によれば、伝熱プレート2,3(伝熱領域200a,200b,300a,300b)にある複数の凹凸群201,202,301,302の凸部201a,202a,301a,302a及び凹部201b,202b,301b,302bのそれぞれが千鳥状に配置される。すなわち、複数の凸部201a,202a,301a,302aが伝熱領域200a,200b,300a,300b内に千鳥状に配置され、複数の凹部201b,202b,301b,302bが伝熱領域200a,200b,300a,300b内に複数の凸部201a,202a,301a,302aを躱して千鳥状に配置される。 According to the above configuration, the protrusions 201a, 202a, 301a, 302a and the recesses 201b of the plurality of uneven groups 201, 202, 301, 302 in the heat transfer plates 2, 3 (heat transfer regions 200a, 200b, 300a, 300b) , 202b, 301b, and 302b are arranged in a staggered manner. That is, the plurality of protrusions 201a, 202a, 301a, and 302a are arranged in a staggered manner within the heat transfer regions 200a, 200b, 300a, and 300b, and the plurality of recesses 201b, 202b, 301b, and 302b are arranged within the heat transfer regions 200a, 200b, and 300b. The projections 201a, 202a, 301a, and 302a are arranged in a staggered manner in the 300a and 300b.

これにより、第一流体Aは、第一流路RaでZ軸方向に流通するに当たり、第一流路Raを画定する伝熱プレート2,3(伝熱領域200a,300a)にある凹部201b,301bに沿って流れ、該凹部201b,301bの下流側で隣り合う凸部201a,301a(共通の凹凸群201,301の凸部201a,301a)と衝突する。 As a result, when the first fluid A circulates in the Z-axis direction in the first flow path Ra, the first fluid A flows into the recesses 201b and 301b in the heat transfer plates 2 and 3 (heat transfer regions 200a and 300a) that define the first flow path Ra. and collides with the adjacent convex portions 201a, 301a (convex portions 201a, 301a of the common concave-convex groups 201, 301) on the downstream side of the concave portions 201b, 301b.

そうすると、第一流体Aの流れが変わり、第一流体Aは、周辺の凹部201b,301b(例えば、両側の凹凸群201,301の凹部201b,301b、相手方の伝熱プレート2,3の凹凸群201,301の凹部201b,301b)に乗り移って該凹部201b,301bに沿って流れる。このように、第一流体Aは、凹部201b,301bに沿った流れと、凸部201a,301aに対する衝突を繰り返しつつ、下流側に流れる。 Then, the flow of the first fluid A changes, and the first fluid A flows into the peripheral recesses 201b, 301b (for example, the recesses 201b, 301b of the uneven groups 201, 301 on both sides, the uneven groups of the opposing heat transfer plates 2, 3). 201, 301, and flows along the recesses 201b, 301b. In this way, the first fluid A flows downstream while repeating the flow along the concave portions 201b and 301b and the collision with the convex portions 201a and 301a.

また、第二流体Bは、第二流路RbでZ軸方向に流通するに当たり、第二流路Rbを画定する伝熱プレート2,3(伝熱領域200b,300b)にある凹部202b,302bに沿って流れ、該凹部202b,302bの下流側で隣り合う凸部202a,302a(共通の凹凸群202,302の凸部202a,302a)と衝突する。 In addition, when the second fluid B flows in the Z-axis direction in the second flow path Rb, the recesses 202b and 302b in the heat transfer plates 2 and 3 (heat transfer regions 200b and 300b) defining the second flow path Rb , and collide with the adjacent convex portions 202a, 302a (convex portions 202a, 302a of the common concave-convex group 202, 302) on the downstream side of the concave portions 202b, 302b.

そうすると、第二流体Bの流れが変わり、第二流体Bは、周辺の凹部202b,302b(例えば、両側の凹凸群202,302の凹部202b,302b、相手方の伝熱プレート2,3の凹凸群202,302の凹部202b,302b)に乗り移って該凹部202b,302bに沿って流れる。このように、第二流体Bは、凹部202b,302bに沿った流れと、凸部202a,302aに対する衝突を繰り返しつつ、下流側に流れる。 Then, the flow of the second fluid B changes, and the second fluid B flows into the peripheral recesses 202b, 302b (for example, the recesses 202b, 302b of the uneven groups 202, 302 on both sides, the uneven groups of the opposing heat transfer plates 2, 3). 202, 302, and flows along the recesses 202b, 302b). Thus, the second fluid B flows downstream while repeating the flow along the concave portions 202b and 302b and the collision against the convex portions 202a and 302a.

以上のように、第一流体A及び第二流体Bのそれぞれが流路(第一流路Ra又は第二流路Rb)を画定する伝熱領域200a,200b,300a,300bにある凹部201b,202b,301b,302bに沿って流れるため、上記構成のプレート式熱交換器1では、流通抵抗の増大が抑えられる。 As described above, the recesses 201b, 202b in the heat transfer regions 200a, 200b, 300a, 300b defining the flow paths (the first flow path Ra or the second flow path Rb) of the first fluid A and the second fluid B, respectively , 301b and 302b, the increase in flow resistance is suppressed in the plate heat exchanger 1 configured as described above.

また、第一流体A及び第二流体Bのそれぞれが、凹部201b,202b,301b,302bを含む凹凸群201,202,301,302の凸部201a,202a,301a,302aと衝突するため、上記構成のプレート式熱交換器1では、第一流体A及び第二流体Bのそれぞれの流れに乱れが生じることになり、高い伝熱性能が得られる。 In addition, since the first fluid A and the second fluid B respectively collide with the convex portions 201a, 202a, 301a, and 302a of the concave and convex groups 201, 202, 301, and 302 including the concave portions 201b, 202b, 301b, and 302b, the above In the plate heat exchanger 1 having the configuration, turbulence occurs in the respective flows of the first fluid A and the second fluid B, and high heat transfer performance is obtained.

特に、本実施形態において、伝熱プレート2,3の伝熱領域200a,200b,300a,300bにある複数の凹凸群201,202,301,302の凸部201a,202a,301a,302aのそれぞれは、X軸方向で隣り合う相手方の伝熱プレート2,3の伝熱領域200a,200b,300a,300bにある複数の凹凸群201,202,301,302のうちの一つの凹凸群201,202,301,302の一つの凸部201a,202a,301a,302aと交差衝合している。 In particular, in the present embodiment, each of the projections 201a, 202a, 301a, 302a of the plurality of uneven groups 201, 202, 301, 302 in the heat transfer regions 200a, 200b, 300a, 300b of the heat transfer plates 2, 3 , one uneven group 201, 202 among the plurality of uneven groups 201, 202, 301, 302 in the heat transfer regions 200a, 200b, 300a, 300b of the opposing heat transfer plates 2, 3 adjacent in the X-axis direction, 301 and 302 are cross-matched with one projection 201a, 202a, 301a, 302a.

上記構成によれば、凸部201a,301aに衝突した第一流体Aが該凸部201a,301aを含む凹凸群201,301のある伝熱プレート2,3に対して相手方の伝熱プレート2,3の凹凸群201,301の凹部201b,301bに誘導され、凸部202a,302aに衝突した第二流体Bが該凸部202a,302aを含む凹凸群202,302のある伝熱プレート2,3に対して相手方の伝熱プレート2,3の凹凸群202,302の凹部202b,302bに誘導される。 According to the above configuration, the first fluid A that has collided with the protrusions 201a and 301a is caused to collide with the heat transfer plates 2 and 3 having the uneven groups 201 and 301 including the protrusions 201a and 301a. The heat transfer plates 2, 3 having the uneven groups 202, 302 including the convex portions 202a, 302a are guided by the concave portions 201b, 301b of the uneven groups 201, 301 of No. 3 and collide with the convex portions 202a, 302a. are guided to the recessed portions 202b, 302b of the uneven groups 202, 302 of the heat transfer plates 2, 3 of the counterpart.

具体的に説明すると、共通の伝熱領域200a,200b,300a,300b内にある複数の凹凸群201,202,301,302は、縦中心線CL1に対して傾斜する方向(仮想線VLの延びる方向)に対して直交方向に並ぶため、異なる凹凸群201,202,301,302の凸部201a,202a,301a,302aは、凹凸群201,202,301,302の延びる方向(仮想線VLの延びる方向)に対して直交する方向の異なる位置に配置される。すなわち、異なる凹凸群201,202,301,302の凸部201a,202a,301a,302aは、仮想線VLの延びる方向と直交する方向に間隔をあけて配置される。 More specifically, the plurality of uneven groups 201, 202, 301, 302 in the common heat transfer regions 200a, 200b, 300a, 300b are inclined with respect to the vertical center line CL1 (the direction in which the imaginary line VL extends). direction), the convex portions 201a, 202a, 301a, 302a of the different uneven groups 201, 202, 301, 302 are aligned in the direction in which the uneven groups 201, 202, 301, 302 extend (the direction of the imaginary line VL). extending direction). That is, the convex portions 201a, 202a, 301a, 302a of the different concave-convex groups 201, 202, 301, 302 are arranged at intervals in the direction perpendicular to the extending direction of the virtual line VL.

これに伴い、凹凸群201,202,301,302に含まれる凸部201a,202a,301a,302aのそれぞれには、相手方の伝熱プレート2,3の異なる凹凸群201,202,301,302の一つの凸部201a,202a,301a,302aが交差する。これに伴い、隣り合う伝熱プレート2,3の凸部201a,202a,301a,302a同士は交差衝合し、隣り合う伝熱プレート2,3の凹部201b,202b,301b,302b同士は間隔をあけた状態で交差する。 Along with this, each of the convex portions 201a, 202a, 301a, 302a included in the uneven groups 201, 202, 301, 302 has different uneven groups 201, 202, 301, 302 of the other heat transfer plates 2, 3. One convex portion 201a, 202a, 301a, 302a intersects. Along with this, the convex portions 201a, 202a, 301a, 302a of the adjacent heat transfer plates 2, 3 intersect each other, and the concave portions 201b, 202b, 301b, 302b of the adjacent heat transfer plates 2, 3 are separated from each other. Cross open.

これにより、凹部201b,301bに沿って流れる第一流体Aが凸部201a,301aに衝突することで流れを変えようとすると、相手方の伝熱プレート2,3の凹部201b,301b(第一流体Aが衝突する凸部201a,301aと横並びの凹部201b,301bと交差する凹部201b,301b)に入り込み、該相手方の伝熱プレート2,3の凹部201b,301bに沿って流れる。 As a result, when the first fluid A flowing along the concave portions 201b and 301b tries to change the flow by colliding with the convex portions 201a and 301a, the concave portions 201b and 301b (first fluid A enters the recesses 201b, 301b crossing the colliding protrusions 201a, 301a and the horizontally aligned recesses 201b, 301b), and flows along the recesses 201b, 301b of the heat transfer plates 2, 3 of the other party.

そして、相手方の伝熱プレート2,3の凹部201b,301bに沿って流れる第一流体Aが該相手方の伝熱プレート2,3の凸部201a,301aに衝突することで流れを変えようとすると、元の伝熱プレート2,3の凹部201b,301b(第一流体Aが衝突する凸部201a,301aと横並びの凹部201b,301bと交差する凹部201b,301b)に入り込み、該元の伝熱プレート2,3の凹部201b,301bに沿って流れる。このように、第一流体Aは、隣り合う伝熱プレート2,3の凹部201b,301bを順々に乗り移りつつ下流側に流れる。 Then, when the first fluid A flowing along the concave portions 201b and 301b of the heat transfer plates 2 and 3 of the other party collides with the convex portions 201a and 301a of the heat transfer plates 2 and 3 of the other party and tries to change the flow , enter the recesses 201b, 301b of the original heat transfer plates 2, 3 (recesses 201b, 301b intersecting the protrusions 201a, 301a with which the first fluid A collides and the recesses 201b, 301b arranged horizontally), It flows along the recesses 201b, 301b of the plates 2,3. In this manner, the first fluid A flows downstream while sequentially passing through the concave portions 201b and 301b of the adjacent heat transfer plates 2 and 3 .

そして、本実施形態に係るプレート式熱交換器1において、凹凸群201,202,301,302(凸部201a,202a,301a,302a、凹部201b,202b,301b,302b)は、Z軸方向に延びる(第一流体Aの流れ方向に延びる)縦中心線CL1に対して傾斜した仮想線VLに沿っている(凹部201b,301bが傾斜方向に長手をなす)ため、上述の如く、第一流体Aが隣り合う伝熱プレート2,3の凹部201b,301bを順々に乗り移りつつ下流側に流れることで、第一流体Aの流れが螺旋流になる。この流れ(螺旋流)は、第二流体Bも同様である。 In the plate heat exchanger 1 according to the present embodiment, the uneven groups 201, 202, 301, 302 (projections 201a, 202a, 301a, 302a, recesses 201b, 202b, 301b, 302b) are arranged in the Z-axis direction. Since it is along the imaginary line VL (the concave portions 201b and 301b are longitudinal in the direction of inclination) with respect to the longitudinal center line CL1 extending (extending in the flow direction of the first fluid A), as described above, the first fluid The flow of the first fluid A turns into a helical flow as A flows downstream while sequentially transferring between the concave portions 201b and 301b of the adjacent heat transfer plates 2 and 3 . This flow (spiral flow) is the same for the second fluid B as well.

このように、第一流路Raに第一流体Aが凹部201b,301bを流れる機会があり、第二流路Rbに第二流体Bが凹部202b,302bを流れる機会があるため、それぞれの流路で流通抵抗が高くなることが抑制される。また、第一流路Ra内で第一流体Aが螺旋流を作り、第二流路Rb内で第二流体Bが螺旋流を作ることで、第一流体A及び第二流体Bのそれぞれの流れにさらなる乱れが生じる結果、伝熱プレート2,3(伝熱領域200a,200b,300a,300b)を介しての第一流体Aと第二流体Bとの熱交換性能(伝熱性能)が高くなる。 In this way, the first fluid A has an opportunity to flow through the recesses 201b and 301b in the first flow path Ra, and the second fluid B has an opportunity to flow through the recesses 202b and 302b in the second flow path Rb. , the increase in flow resistance is suppressed. In addition, the first fluid A creates a spiral flow in the first flow path Ra, and the second fluid B creates a spiral flow in the second flow path Rb. As a result of further turbulence in Become.

さらに、本実施形態に係るプレート式熱交換器1は、第一流路Ra内で第一流体Aが螺旋流を作り、第二流路Rb内で第二流体Bが螺旋流を作ることで、第一流体A及び第二流体Bのそれぞれの流れにさらなる乱れが生じるため、この流れの乱れによって混合機能を発揮する。 Furthermore, in the plate heat exchanger 1 according to the present embodiment, the first fluid A creates a spiral flow in the first flow path Ra, and the second fluid B creates a spiral flow in the second flow path Rb. Since further turbulence occurs in the respective flows of the first fluid A and the second fluid B, the mixing function is exhibited by this turbulence of the flows.

これにより、本実施形態に係るプレート式熱交換器1は、第一流体A又は第二流体Bの少なくとも何れか一方に含まれる成分が流通過程で分離することを防止できる。 Thereby, the plate heat exchanger 1 according to the present embodiment can prevent the components contained in at least one of the first fluid A and the second fluid B from separating during the flow process.

また、本実施形態に係るプレート式熱交換器1は、第一流路Ra又は第二流路Rbの何れか一方に対し、二種類以上の液体を合わせた流体、或いは一種類以上の液体と粉体とを合わせた流体を第一流体A又は第二流体Bとして流通させることで、第一流体A又は第二流体Bを構成する二種類以上の液体、或いは一種類以上の液体と粉体とを混合させる(ミキシングする)ことができる。 In addition, the plate heat exchanger 1 according to the present embodiment uses a fluid in which two or more types of liquids are combined, or one or more types of liquid and powder in one of the first flow path Ra and the second flow path Rb. By circulating the fluid combined with the body as the first fluid A or the second fluid B, two or more kinds of liquids constituting the first fluid A or the second fluid B, or one or more kinds of liquid and powder can be mixed.

従って、本実施形態に係るプレート式熱交換器1は、第一流体A又は第二流体Bの何れか一方に含まれる複数の成分を混合させる混合器(ミキサー)として機能することもできる。すなわち、本実施形態に係るプレート式熱交換器1は、第一流体A又は第二流体Bの何れか一方に含まれる複数の成分を混合させつつ、第一流体Aと第二流体Bとを熱交換させる(第一流体A又は第二流体Bの何れか一方を加熱又は冷却させる)ことで、第一流体A又は第二流体Bの何れか一方に含まれる成分同士を反応させる反応器として機能する。 Therefore, the plate heat exchanger 1 according to this embodiment can also function as a mixer that mixes a plurality of components contained in either the first fluid A or the second fluid B. That is, the plate heat exchanger 1 according to the present embodiment mixes a plurality of components contained in either the first fluid A or the second fluid B while mixing the first fluid A and the second fluid B. As a reactor for reacting components contained in either the first fluid A or the second fluid B by exchanging heat (heating or cooling either the first fluid A or the second fluid B) Function.

また、本実施形態において、凹凸群201,202,301,302の配置の基準となる仮想線VLは、Z軸方向に延びる縦中心線CL1に対して45°未満の角度で傾斜しているため、凹凸群201,202,301,302に含まれる凹部201b,202b,301b,302bの長手に延びる方向の成分に、第一流体A及び第二流体Bの流れ方向の成分の方が該流れ方向と直交する方向の成分よりも多く含まれる。 In addition, in the present embodiment, the imaginary line VL, which serves as a reference for the arrangement of the uneven groups 201, 202, 301, and 302, is inclined at an angle of less than 45° with respect to the vertical center line CL1 extending in the Z-axis direction. , the components in the longitudinal direction of the recesses 201b, 202b, 301b, and 302b included in the groups of protrusions and recesses 201, 202, 301, and 302, and the components in the flow direction of the first fluid A and the second fluid B. contains more components than those in the direction orthogonal to

これにより、第一流路Raで第一流体Aが流れ易く、第二流路Rbで第二流体Bが流れ易くなる。すなわち、第一流路Ra及び第二流路Rbのそれぞれにおいて、流通抵抗が高くなることが抑制される。 As a result, the first fluid A easily flows through the first flow path Ra, and the second fluid B easily flows through the second flow path Rb. That is, an increase in flow resistance is suppressed in each of the first flow path Ra and the second flow path Rb.

このように、本実施形態に係るプレート式熱交換器1によれば、流体の流通抵抗の増加を抑えつつ、高い伝熱性能を得ることができるという優れた効果を奏し得る。 As described above, according to the plate heat exchanger 1 of the present embodiment, it is possible to obtain the excellent effect of being able to obtain high heat transfer performance while suppressing an increase in fluid flow resistance.

なお、本発明は、上記各実施形態に限定されるものではなく、本発明の要旨を逸脱しない範囲において適宜変更を加え得ることは勿論である。 It should be noted that the present invention is not limited to the above-described embodiments, and it goes without saying that modifications can be made as appropriate without departing from the scope of the present invention.

上記各実施形態において、第一方向に重ね合わされた複数の伝熱プレート2,3同士がロウ付けされ、伝熱プレート2,3間が液密にシールされたが、これに限定されない。例えば、隣り合う伝熱プレート2,3間に流路を画定する環状のガスケットが配置され、該ガスケットによって伝熱プレート2,3間がシールされてもよい。 In each of the above-described embodiments, the plurality of heat transfer plates 2 and 3 superimposed in the first direction are brazed and the space between the heat transfer plates 2 and 3 is liquid-tightly sealed, but the present invention is not limited to this. For example, an annular gasket defining a flow path may be arranged between adjacent heat transfer plates 2 and 3, and the heat transfer plates 2 and 3 may be sealed by the gasket.

上記各実施形態において、プレート式熱交換器1が凹凸群201,202,301,302の凹凸の位置を異にする二種類の伝熱プレート2,3を含み、この二種類の伝熱プレート2,3(第一伝熱プレート2、第二伝熱プレート3)が交互に重ね合わされたが、これに限定されない。 In each of the above embodiments, the plate heat exchanger 1 includes two types of heat transfer plates 2 and 3 in which the uneven positions of the uneven groups 201, 202, 301, and 302 are different, and these two types of heat transfer plates 2 , 3 (first heat transfer plate 2, second heat transfer plate 3) are alternately superimposed, but not limited to this.

例えば、伝熱プレート2,3の伝熱領域200a,200b,300a,300bにある複数の凹凸群201,202,301,302の凸部201a,202a,301a,302aのそれぞれが、第一方向で隣り合う相手方の伝熱プレート2,3の伝熱領域200a,200b,300a,300bにある複数の凹凸群201,202,301,302のうちの少なくとも二つの凹凸群201,202,301,302の凸部201a,202a,301a,302aと交差衝合する、或いは、伝熱プレート2,3の伝熱領域200a,200b,300a,300bにある複数の凹凸群201,202,301,302の凸部201a,202a,301a,302aのそれぞれが第一方向で隣り合う相手方の伝熱プレート2,3の伝熱領域200a,200b,300a,300bにある複数の凹凸群201,202,301,302のうちの一つの凹凸群201,202,301,302の一つの凸部201a,202a,301a,302aと交差衝合するように、伝熱プレート2,3の凹凸群201,202,301,302の凹凸の位置や、サイズ(長さ、幅)、間隔(ピッチ)等が設定されることを前提に、同一の伝熱プレート2,3(共通の伝熱プレート2,3)がX軸方向で重ね合わせられてもよい。 For example, each of the protrusions 201a, 202a, 301a, 302a of the plurality of uneven groups 201, 202, 301, 302 in the heat transfer regions 200a, 200b, 300a, 300b of the heat transfer plates 2, 3 is At least two uneven groups 201, 202, 301, 302 out of the plurality of uneven groups 201, 202, 301, 302 in the heat transfer regions 200a, 200b, 300a, 300b of the adjacent heat transfer plates 2, 3 Protrusions of a plurality of protrusions 201, 202, 301, 302 that intersect with the protrusions 201a, 202a, 301a, 302a or are located in the heat transfer regions 200a, 200b, 300a, 300b of the heat transfer plates 2, 3 201a, 202a, 301a, 302a of the plurality of uneven groups 201, 202, 301, 302 in the heat transfer regions 200a, 200b, 300a, 300b of the heat transfer plates 2, 3 that are adjacent to each other in the first direction Asperities of the uneven groups 201, 202, 301, 302 of the heat transfer plates 2, 3 so as to intersect with one convex part 201a, 202a, 301a, 302a of one uneven group 201, 202, 301, 302 , size (length, width), interval (pitch), etc. are set, the same heat transfer plates 2, 3 (common heat transfer plates 2, 3) are stacked in the X-axis direction. may be combined.

なお、この場合において、上記各実施形態と同様に、複数の伝熱プレート2,3同士がロウ付けされる場合には、各伝熱プレート2,3が環状部21,31を含むため、X軸方向で一つおきに伝熱プレート2,3がX軸方向に延びる仮想線を中心にして180°回転させて配置される。これに対し、隣り合う伝熱プレート2,3間に流路を画定する環状のガスケットが配置され、該ガスケットによって伝熱プレート2,3間がシールされる場合には、伝熱プレート2,3が環状部21,31を含まないため、X軸方向で一つおきに伝熱プレート2,3がX軸方向に延びる仮想線を中心にして180°回転、或いは、縦中心線CL1又は横中心線CL2を基準(中心)にして180°反転させて配置される。 In this case, when the heat transfer plates 2 and 3 are brazed to each other as in each of the above embodiments, since the heat transfer plates 2 and 3 include the annular portions 21 and 31, X The heat transfer plates 2 and 3 are arranged alternately in the axial direction and rotated by 180° around a virtual line extending in the X-axis direction. On the other hand, when an annular gasket defining a flow path is arranged between the adjacent heat transfer plates 2 and 3 and the heat transfer plates 2 and 3 are sealed by the gasket, the heat transfer plates 2 and 3 does not include the annular portions 21 and 31, the heat transfer plates 2 and 3 are rotated 180° around the virtual line extending in the X-axis direction alternately in the X-axis direction, or the vertical center line CL1 or the horizontal center The line CL2 is used as a reference (center) and arranged by being inverted 180°.

上記各実施形態において、伝熱プレート2,3の凹凸群201,202,301,302に含まれる凸部201a,202a,301a,302a及び凹部201b,202b,301b,302bのそれぞれがZ軸方向に延びる縦中心線CL1に対して45°未満の傾斜角度で傾斜する仮想線VLに沿って延びたが、これに限定されない。 In each of the above embodiments, each of the protrusions 201a, 202a, 301a, 302a and the recesses 201b, 202b, 301b, 302b included in the uneven groups 201, 202, 301, 302 of the heat transfer plates 2, 3 extends in the Z-axis direction. Although it extends along the imaginary line VL inclined at an inclination angle of less than 45° with respect to the extending longitudinal center line CL1, it is not limited to this.

例えば、伝熱プレート2,3の凹凸群201,202,301,302に含まれる凸部201a,202a,301a,302a及び凹部201b,202b,301b,302bのそれぞれがZ軸方向に延びる縦中心線CL1に対して45°以上の傾斜角度で傾斜する仮想線VLに沿って延びてもよい。但し、仮想線VLは、Z軸方向に延びる縦中心線CL1に対して傾斜していなければならないため、仮想線VLは、Z軸方向に延びる縦中心線CL1に対して90°未満で傾斜しなければならないことは言うまでもない。 For example, each of the protrusions 201a, 202a, 301a, 302a and the recesses 201b, 202b, 301b, 302b included in the uneven groups 201, 202, 301, 302 of the heat transfer plates 2, 3 extends in the Z-axis direction. It may extend along a virtual line VL inclined at an inclination angle of 45° or more with respect to CL1. However, since the virtual line VL must be inclined with respect to the vertical center line CL1 extending in the Z-axis direction, the virtual line VL is inclined at less than 90° with respect to the vertical center line CL1 extending in the Z-axis direction. It goes without saying that we must.

上記各実施形態において、複数の凹凸群201,202,301,302のそれぞれの凸部201a,202a,301a,302aが隣り合う凹凸群201,202,301,302の凹部201b,202b,301b,302bとY軸方向で横並びに配置され、複数の凹凸群201,202,301,302のそれぞれの凹部201b,202b,301b,302bが隣り合う凹凸群201,202,301,302の凸部201a,202a,301a,302aとY軸方向で横並びに配置されたが、これに限定されない。 In each of the above-described embodiments, the convex portions 201a, 202a, 301a, and 302a of the plurality of uneven groups 201, 202, 301, and 302 are adjacent to the concave portions 201b, 202b, 301b, and 302b of the uneven groups 201, 202, 301, and 302. and convex portions 201a, 202a of the uneven groups 201, 202, 301, 302 arranged side by side in the Y-axis direction, and the concave portions 201b, 202b, 301b, 302b of the plurality of uneven groups 201, 202, 301, 302 are adjacent to each other. , 301a and 302a are arranged side by side in the Y-axis direction, but the present invention is not limited to this.

例えば、複数の凹凸群201,202,301,302のそれぞれの凸部201a,202a,301a,302aが隣り合う凹凸群201,202,301,302の凹部201b,202b,301b,302bと傾斜方向に対して直交方向(Y軸方向及びZ軸方向の合成方向)で横並びに配置され、複数の凹凸群201,202,301,302のそれぞれの凹部201b,202b,301b,302bが隣り合う凹凸群201,202,301,302の凸部201a,202a,301a,302aと傾斜方向に対して直交方向(Y軸方向及びZ軸方向の合成方向)で横並びに配置されてもよい。 For example, the projections 201a, 202a, 301a, and 302a of the plurality of groups of protrusions and recesses 201, 202, 301, and 302 are inclined with respect to the recesses 201b, 202b, 301b, and 302b of the adjacent groups of protrusions and recesses 201, 202, 301, and 302. 201, 201b, 202b, 301b, and 302b of the plurality of groups of protrusions and recesses 201, 202, 301, and 302, which are arranged side by side in the orthogonal direction (combined direction of the Y-axis direction and the Z-axis direction). , 202, 301, and 302 may be arranged side by side in a direction perpendicular to the direction of inclination (combined direction of Y-axis direction and Z-axis direction).

上記第二実施形態において、凹凸群201,202,301,302の凹部201b,202b,301b,302b及び凸部201a,202a,301a,302aが、仮想線VLに沿って真っ直ぐに延びたが、これに限定されない。例えば、図21及び図22に示す如く、第一流体A及び第二流体Bの螺旋流の連続性を向上させるべく、凹部201b,202b,301b,302b及び凸部201a,202a,301a,302aのそれぞれがX軸方向から見て湾曲形状(S字状又は逆S字状)に形成されてもよい。 In the second embodiment, the concave portions 201b, 202b, 301b, 302b and the convex portions 201a, 202a, 301a, 302a of the uneven groups 201, 202, 301, 302 extend straight along the virtual line VL. is not limited to For example, as shown in FIGS. 21 and 22, in order to improve the continuity of spiral flows of the first fluid A and the second fluid B, the concave portions 201b, 202b, 301b, 302b and the convex portions 201a, 202a, 301a, 302a Each may be formed in a curved shape (S-shape or inverted S-shape) when viewed from the X-axis direction.

上記各実施形態において、特に言及しなかったが、上述の如く、プレート式熱交換器1を混合器(ミキサー)として機能させる場合、一方の第一連通路Ra1又は一方の第二連通路Rb1に対して、混合の対象となる二種類以上の液体を合わせた流体、或いは一種類以上の液体と粉体とを合わせた流体を第一流体A又は第二流体Bとして供給してもよい。また、流体の供給元となる一方の第一連通路Ra1又は一方の第二連通路Rb1の何れか一方を二つ以上設け、これらのそれぞれに混合の対象となる液体等を供給し、第一流路Ra又は第二流路Rbで合流させ、第一流路Ra又は第二流路Rbの一方で第一流体A又は第二流体Bとして流通させるようにしてもよい。 Although not specifically mentioned in each of the above embodiments, when the plate heat exchanger 1 functions as a mixer (mixer) as described above, one of the first communication passages Ra1 or one of the second communication passages Rb1 On the other hand, a fluid obtained by combining two or more types of liquids to be mixed, or a fluid obtained by combining one or more types of liquid and powder may be supplied as the first fluid A or the second fluid B. In addition, two or more of either one of the first communication passage Ra1 and the one of the second communication passage Rb1 serving as fluid supply sources are provided, and the liquid to be mixed is supplied to each of these, and the first flow The first fluid A or the second fluid B may be made to flow through either the first flow path Ra or the second flow path Rb by merging at the path Ra or the second flow path Rb.

1…プレート式熱交換器、2…第一伝熱プレート(伝熱プレート)、3…第二伝熱プレート(伝熱プレート)、20,30…伝熱部、20a,30a…主伝熱部、20b,30b…端部、21,31…環状部、200a,200b,300a,300b…伝熱領域、201,202,301,302…凹凸群、201a,202a,301a,302a…凸部、201b,202b,301b,302b…凹部、203,204,303,304…貫通孔、A…第一流体、B…第二流体、CL1…縦中心線(中心線)、CL2…横中心線(中心線)、Ra…第一流路、Ra1,Ra2…第一連通路、Rb…第二流路、Rb1,Rb2…第二連通路、S1…第一面、S2…第二面、VL…仮想線、θ1…傾斜角度、θ2…傾斜角度 DESCRIPTION OF SYMBOLS 1... Plate type heat exchanger, 2... 1st heat transfer plate (heat transfer plate), 3... 2nd heat transfer plate (heat transfer plate), 20, 30... Heat transfer part, 20a, 30a... Main heat transfer part , 20b, 30b... end 21, 31... annular part 200a, 200b, 300a, 300b... heat transfer region 201, 202, 301, 302... uneven group, 201a, 202a, 301a, 302a... convex part, 201b , 202b, 301b, 302b... concave portion, 203, 204, 303, 304... through hole, A... first fluid, B... second fluid, CL1... vertical center line (center line), CL2... horizontal center line (center line ), Ra... first flow path, Ra1, Ra2... first communication passage, Rb... second flow path, Rb1, Rb2... second communication path, S1... first surface, S2... second surface, VL... virtual line, θ1: tilt angle, θ2: tilt angle

Claims (4)

第一方向の両面に伝熱領域を含む伝熱プレートであって、それぞれの伝熱領域が第一方向に重ね合わされた複数の伝熱プレートを備え、
該複数の伝熱プレートのそれぞれを境にして、第一流体を第一方向と直交する第二方向に流通させる第一流路と、第二流体を第二方向に流通させる第二流路とが第一方向で交互に形成され、
前記第一流体又は前記第二流体は、二種以上の液体を合わせた流体、或いは一種類以上の液体と粉体とを合わせた流体であり、
伝熱領域は、第二方向に延びる自身の中心線に対して傾斜する方向に長手を有する凸部及び第二方向に延びる前記中心線に対して前記傾斜する方向に長手を有する凹部を含み且つ該凸部及び凹部が前記傾斜する方向に延びる仮想線に沿って交互に並ぶ凹凸群であって、前記傾斜する方向と直交する方向に並ぶ複数の凹凸群を有し、
前記複数の凹凸群における各凸部と各凹部との前記傾斜する方向の長さは同じであり、
該複数の凹凸群のそれぞれの凸部は、前記傾斜する方向と直交する方向で隣り合う凹凸群の凹部に対して第一方向及び第二方向のそれぞれと直交する第三方向に横並びに配置されるとともに、前記複数の凹凸群のそれぞれの凹部は、前記傾斜する方向と直交する方向で隣り合う凹凸群の凸部に対して第三方向に横並びに配置され、
伝熱領域を対向させて隣り合う伝熱プレートは、互いの凹凸群の凸部同士を交差衝合させていることを特徴とするプレート式混合器。
A plurality of heat transfer plates including heat transfer regions on both sides in a first direction, the heat transfer regions being superimposed in the first direction,
A first flow path through which the first fluid flows in a second direction orthogonal to the first direction, and a second flow path through which the second fluid flows in the second direction, with each of the plurality of heat transfer plates as a boundary. alternately formed in the first direction,
The first fluid or the second fluid is a fluid obtained by combining two or more liquids, or a fluid obtained by combining one or more liquids and powder,
the heat transfer region includes a convex portion having a longitudinal direction in a direction inclined with respect to its centerline extending in a second direction and a concave portion having a longitudinal direction in a direction inclined with respect to the centerline extending in the second direction; A group of protrusions and recesses in which the protrusions and recesses are alternately arranged along a virtual line extending in the direction of inclination, wherein a plurality of groups of protrusions and recesses are arranged in a direction perpendicular to the direction of inclination;
each protrusion and each recess in the plurality of groups of protrusions and recesses have the same length in the direction of inclination;
The protrusions of each of the plurality of uneven groups are arranged side by side in a third direction orthogonal to each of the first direction and the second direction with respect to the recesses of the adjacent uneven groups in a direction orthogonal to the direction of inclination. In addition, each concave portion of the plurality of uneven groups is arranged side by side in the third direction with respect to the convex portions of the uneven groups adjacent in the direction orthogonal to the inclined direction,
1. A plate-type mixer characterized in that adjacent heat transfer plates with their heat transfer areas facing each other are cross-matched with each other on the convex portions of the groups of protrusions and recesses.
伝熱プレートの伝熱領域にある複数の凹凸群の凸部のそれぞれは、第一方向で隣り合う相手方の伝熱プレートの伝熱領域にある複数の凹凸群のうちの少なくとも二つの凹凸群の凸部と交差衝合している請求項1に記載のプレート式混合器。 Each of the protrusions of the plurality of uneven groups in the heat transfer region of the heat transfer plate is the protrusion of at least two of the plurality of uneven groups in the heat transfer region of the heat transfer plate adjacent in the first direction. 2. A plate mixer according to claim 1, wherein the plate mixer cross-butts the ridges. 伝熱プレートの伝熱領域にある複数の凹凸群の凸部のそれぞれは、第一方向で隣り合う相手方の伝熱プレートの伝熱領域にある複数の凹凸群のうちの一つの凹凸群の一つの凸部と交差衝合している請求項1に記載のプレート式混合器。 Each of the protrusions of the plurality of groups of protrusions and recesses in the heat transfer region of the heat transfer plate is one of the groups of protrusions and recesses of the groups of protrusions and recesses in the heat transfer region of the heat transfer plate adjacent to each other in the first direction. 2. A plate mixer according to claim 1, wherein the plate mixer cross-butts the two projections. 凹凸群の配置の基準となる前記仮想線は、第二方向に延びる前記中心線に対して45°未満の角度で傾斜している請求項1乃至3の何れか1項に記載のプレート式混合器。 4. The plate-type mixer according to any one of claims 1 to 3, wherein the imaginary line serving as a reference for arranging the concavo-convex group is inclined at an angle of less than 45° with respect to the center line extending in the second direction. vessel.
JP2019186844A 2019-10-10 2019-10-10 plate mixer Active JP7280798B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019186844A JP7280798B2 (en) 2019-10-10 2019-10-10 plate mixer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019186844A JP7280798B2 (en) 2019-10-10 2019-10-10 plate mixer

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2018160542A Division JP6626547B1 (en) 2018-08-29 2018-08-29 Plate heat exchanger

Publications (3)

Publication Number Publication Date
JP2020034270A JP2020034270A (en) 2020-03-05
JP2020034270A5 JP2020034270A5 (en) 2021-09-16
JP7280798B2 true JP7280798B2 (en) 2023-05-24

Family

ID=69667667

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019186844A Active JP7280798B2 (en) 2019-10-10 2019-10-10 plate mixer

Country Status (1)

Country Link
JP (1) JP7280798B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021079316A (en) * 2019-11-15 2021-05-27 株式会社日阪製作所 Plate-type mixer

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017003173A (en) 2015-06-09 2017-01-05 株式会社日阪製作所 Heat transfer plate for plate type heat exchanger, and plate type heat exchanger having the same
JP2017504780A (en) 2014-01-29 2017-02-09 ダンフォス・マイクロ・チャンネル・ヒート・エクスチェンジャー・(ジャシン)・カンパニー・リミテッド Heat exchange plate and plate heat exchanger provided with heat exchange plate

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4044796A (en) * 1976-02-09 1977-08-30 Smick Ronald H Turbulator
JP3654669B2 (en) * 1994-09-28 2005-06-02 株式会社日阪製作所 Plate heat exchanger

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017504780A (en) 2014-01-29 2017-02-09 ダンフォス・マイクロ・チャンネル・ヒート・エクスチェンジャー・(ジャシン)・カンパニー・リミテッド Heat exchange plate and plate heat exchanger provided with heat exchange plate
JP2017003173A (en) 2015-06-09 2017-01-05 株式会社日阪製作所 Heat transfer plate for plate type heat exchanger, and plate type heat exchanger having the same

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021079316A (en) * 2019-11-15 2021-05-27 株式会社日阪製作所 Plate-type mixer
JP7373362B2 (en) 2019-11-15 2023-11-02 株式会社日阪製作所 plate mixer

Also Published As

Publication number Publication date
JP2020034270A (en) 2020-03-05

Similar Documents

Publication Publication Date Title
CN101346597B (en) Heat transfer plate for plate heat exchanger with even load distribution in port regions
JP5096134B2 (en) Heat exchanger cross rib plate pair
JP2006214646A (en) Heat exchanging plate
GB2303910A (en) Heat exchanger with a stacked plate structure
KR20200056479A (en) Heat transfer plate and heat exchanger comprising a plurality of heat transfer plates
JP7280798B2 (en) plate mixer
EP3404350B1 (en) Plate heat exchanger
CN117043538A (en) Heat exchanger
JP6626547B1 (en) Plate heat exchanger
JP5947959B1 (en) Heat transfer plate for plate heat exchanger and plate heat exchanger equipped with the same
US20060162915A1 (en) Heat exchange plate
JP6799680B2 (en) Plate heat exchanger
JP6857261B1 (en) Plate heat exchanger
JP6069425B2 (en) Plate heat exchanger
WO2023090078A1 (en) Heat exchanger
JP7373362B2 (en) plate mixer
JP6492148B1 (en) Plate heat exchanger
CN1979078A (en) Heat exchange plate
WO2018216166A1 (en) Plate type heat exchanger
JP7018299B2 (en) Plate heat exchanger
CN114930108A (en) Heat exchanger
JP6235645B2 (en) Plate heat exchanger
JP2017211156A (en) Plate type heat exchanger
JP7461508B2 (en) Dumbbell-shaped plate fins
WO2024071222A1 (en) Heat exchanger

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210805

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210826

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20220719

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220722

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220818

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20221209

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230303

C60 Trial request (containing other claim documents, opposition documents)

Free format text: JAPANESE INTERMEDIATE CODE: C60

Effective date: 20230303

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20230313

C21 Notice of transfer of a case for reconsideration by examiners before appeal proceedings

Free format text: JAPANESE INTERMEDIATE CODE: C21

Effective date: 20230317

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230428

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230512

R150 Certificate of patent or registration of utility model

Ref document number: 7280798

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150