JP6492148B1 - Plate heat exchanger - Google Patents

Plate heat exchanger Download PDF

Info

Publication number
JP6492148B1
JP6492148B1 JP2017204900A JP2017204900A JP6492148B1 JP 6492148 B1 JP6492148 B1 JP 6492148B1 JP 2017204900 A JP2017204900 A JP 2017204900A JP 2017204900 A JP2017204900 A JP 2017204900A JP 6492148 B1 JP6492148 B1 JP 6492148B1
Authority
JP
Japan
Prior art keywords
heat transfer
portions
fluid
flow path
transfer plates
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2017204900A
Other languages
Japanese (ja)
Other versions
JP2019078441A (en
Inventor
正宗 柳原
正宗 柳原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hisaka Works Ltd
Original Assignee
Hisaka Works Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hisaka Works Ltd filed Critical Hisaka Works Ltd
Priority to JP2017204900A priority Critical patent/JP6492148B1/en
Application granted granted Critical
Publication of JP6492148B1 publication Critical patent/JP6492148B1/en
Publication of JP2019078441A publication Critical patent/JP2019078441A/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Details Of Heat-Exchange And Heat-Transfer (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)

Abstract

【課題】 本発明は、汎用性を高め、伝熱プレート全体を新たなに作製することなく、要求に応じた仕様にすることのできるプレート式熱交換器を提供する。
【解決手段】 本発明は、それぞれが平板部を含む伝熱部を有し且つ伝熱部の平板部同士が面対向するようにそれぞれの伝熱部が第一方向に重ね合わされた複数の伝熱プレートであって、隣り合う伝熱プレートの伝熱部間のそれぞれに流体を第一方向と直交する第二方向に流通させる流路を形成した複数の伝熱プレートと、隣り合う伝熱プレートの伝熱部の少なくとも平板部間に配置される流体拡散部材であって、流路内で流通する流体を拡散させる流体拡散部材とを備える。
【選択図】図2
PROBLEM TO BE SOLVED: To provide a plate type heat exchanger that can be made to meet specifications without increasing the versatility and without newly manufacturing a whole heat transfer plate.
The present invention provides a plurality of heat transfer units each having a heat transfer part including a flat plate part and each heat transfer part being overlapped in a first direction so that the flat plate parts of the heat transfer part face each other. A plurality of heat transfer plates, each having a flow path through which a fluid flows in a second direction orthogonal to the first direction between the heat transfer portions of adjacent heat transfer plates, and adjacent heat transfer plates A fluid diffusion member disposed between at least the flat plate portions of the heat transfer portion, and a fluid diffusion member for diffusing the fluid flowing in the flow path.
[Selection] Figure 2

Description

本発明は、熱交換器に関し、より詳しくは、重ね合わされた複数の伝熱プレートを備え、隣り合う伝熱プレート間に流体を流通させる流路の形成されたプレート式熱交換器に関する。   The present invention relates to a heat exchanger, and more particularly, to a plate heat exchanger that includes a plurality of stacked heat transfer plates and has a flow path that allows fluid to flow between adjacent heat transfer plates.

従来から、流体同士を熱交換させる熱交換器の一つとして、プレート式熱交換器が公知である。   Conventionally, a plate heat exchanger is known as one of heat exchangers for exchanging heat between fluids.

かかるプレート式熱交換器は、複数の伝熱プレートを備える。伝熱プレートは、第一方向において第一面と該第一面に対して反対側を向く第二面とを含む伝熱部を有する。伝熱プレートは、金属プレートをプレス成型したもので、伝熱部の第一面に複数の凹条及び複数の凸条が形成され、伝熱部の第二面に第一面の凹条と表裏の関係にある凸条及び第一面の凸条と表裏の関係にある凹条が形成されている。   Such a plate heat exchanger includes a plurality of heat transfer plates. The heat transfer plate has a heat transfer portion including a first surface in the first direction and a second surface facing the opposite side with respect to the first surface. The heat transfer plate is formed by press-molding a metal plate, and a plurality of recesses and a plurality of protrusions are formed on the first surface of the heat transfer unit, and the first surface recesses are formed on the second surface of the heat transfer unit. Convex ridges that are in a front-to-back relationship and ridges in a front-to-back relationship with the ridges on the first surface are formed.

かかるプレート式熱交換器において、複数の伝熱プレートは、それぞれの伝熱部を第一方向に重ね合わせ、隣り合う伝熱プレート(伝熱部)の凸条同士を交差衝合させる。これにより、隣り合う伝熱部間に流体を流通させる流路が形成される。すなわち、伝熱プレート(伝熱部)を境にして、第一流体を流通させる第一流路と、第二流体を流通させる第二流路とが交互に形成される。   In such a plate-type heat exchanger, the plurality of heat transfer plates overlap each other in the first direction, and the protrusions of adjacent heat transfer plates (heat transfer portions) cross each other. Thereby, the flow path which distribute | circulates a fluid between adjacent heat-transfer parts is formed. That is, the first flow path for circulating the first fluid and the second flow path for circulating the second fluid are alternately formed with the heat transfer plate (heat transfer section) as a boundary.

この種のプレート式熱交換器は、上述の如く、隣り合う伝熱プレート(伝熱部)の凸条同士を交差衝合させることで、伝熱部間に形成される流路(第一流路、第二流路)で流体(第流体、第二流体)を拡散させ、該流体の流れを乱す。これにより、この種のプレート式熱交換器は、要求される熱交換特性を発揮する。すなわち、この種のプレート式熱交換器は、伝熱プレート(伝熱部)の凸条の形態や配置によって、要求される熱交換特性を発揮するようになっている。   As described above, this type of plate heat exchanger has a flow path (first flow path) formed between heat transfer parts by cross-abutting protrusions of adjacent heat transfer plates (heat transfer parts). , The second flow path) diffuses the fluid (first fluid, second fluid) and disturbs the flow of the fluid. Thereby, this type of plate heat exchanger exhibits the required heat exchange characteristics. That is, this type of plate heat exchanger exhibits the required heat exchange characteristics depending on the shape and arrangement of the ridges of the heat transfer plate (heat transfer section).

これに伴い、従来のプレート式熱交換器では、熱交換の対象となる流体(第一流体及び第二流体)の特性や要求される熱交換特性に応じた伝熱プレートが採用される。   In connection with this, in the conventional plate type heat exchanger, the heat-transfer plate according to the characteristic of the fluid (1st fluid and 2nd fluid) used as the object of heat exchange and the required heat exchange characteristic is employ | adopted.

ところで、従来のプレート式熱交換器では、流路に流通させる流体の特性等に応じた伝熱プレートを複数作製し、その複数の伝熱プレートを重ね合わせることで組み立てられる。   By the way, the conventional plate heat exchanger is assembled by producing a plurality of heat transfer plates according to the characteristics of the fluid flowing through the flow path and the like, and superimposing the plurality of heat transfer plates.

そのため、従来のプレート式熱交換器では、組み立て前や組み立て後に仕様の変更が要求されたり、流通させる流体を変更することが要求されたりした場合、その要求に応じた伝熱プレートを新たに作製し直さなければならず、汎用性に乏しいといった問題がある。   Therefore, in the conventional plate heat exchanger, when it is required to change the specifications before or after assembly, or when it is required to change the fluid to be circulated, a new heat transfer plate that meets the requirements is created. There is a problem that it has to be reworked and the versatility is poor.

特開2012-122688号公報JP 2012-122688 A

そこで、本発明は、汎用性を高め、伝熱プレート全体を新たなに作製することなく、要求に応じた仕様にすることのできるプレート式熱交換器を提供することを課題とする。   Then, this invention makes it a subject to improve the versatility and to provide the plate type heat exchanger which can be made into the specification according to a request | requirement, without producing the whole heat exchanger plate newly.

本発明は、それぞれが平板部を含む伝熱部を有し且つ伝熱部の平板部同士が面対向するようにそれぞれの伝熱部が第一方向に重ね合わされた複数の伝熱プレートであって、隣り合う伝熱プレートの伝熱部間のそれぞれに流体を第一方向と直交する第二方向に流通させる流路を形成した複数の伝熱プレートと、隣り合う伝熱プレートの平板部間に取り外し可能に配置される流体拡散部材であって、流路内で流通する流体を拡散させる流体拡散部材とを備え、前記複数の伝熱プレートは、離間可能に重ね合わされ、前記隣り合う伝熱プレートのうちの少なくとも何れか一方の伝熱プレートには、凹部又は凸部の何れか一方で構成され且つ第一方向及び第二方向と直交する第三方向に間隔をあけて対をなす位置決部が、第二方向に間隔をあけて複数組設けられ、前記流体拡散部材は、前記位置決部に対して凹凸嵌合可能に構成された凹部又は凸部の何れか他方で構成された被位置決部を備え、前記位置決部の組毎に配置可能で且つ前記隣り合う伝熱プレートの前記平板部間に少なくとも一つ配置され、各位置決部は、前記流体拡散部材の前記被位置決め部と凹凸嵌合可能な配置部と、第二方向における前記配置部の両側に設けられることで前記配置部と凹凸嵌合する前記流体拡散部材の第二方向への移動を規制する一対の規制部と、を有することを特徴とする。 The present invention is a plurality of heat transfer plates each having a heat transfer portion including a flat plate portion and each heat transfer portion being overlapped in the first direction so that the flat plate portions of the heat transfer portion face each other. A plurality of heat transfer plates each having a flow path for flowing a fluid in a second direction orthogonal to the first direction between the heat transfer portions of adjacent heat transfer plates, and between the flat plate portions of the adjacent heat transfer plates A fluid diffusion member that is removably disposed in the flow path, the fluid diffusion member diffusing the fluid flowing in the flow path, wherein the plurality of heat transfer plates are detachably overlapped with each other and the adjacent heat transfer members At least one of the plates is a heat transfer plate that is configured with either a concave portion or a convex portion and is paired with a gap in a third direction perpendicular to the first direction and the second direction. Multiple parts at intervals in the second direction Provided, the fluid diffusing member, the positioning portion irregularities fittably provided with the positioning portion is constituted by the other one of the configured concave portions or the convex portions with respect to, for each set of the positioning unit At least one between the flat plate portions of the adjacent heat transfer plates , and each positioning portion includes a positioning portion that can be engaged with the positioned portion of the fluid diffusion member, and a second portion characterized Rukoto that Yusuke a pair of restricting portions for restricting the movement in the second direction of the fluid diffusion member that the placement portion and the recess-projection fitting by being provided on both sides of the placement portion in the direction.

上記構成によれば、隣り合う伝熱プレートの平板部間に、流路内で流体を拡散させる流体拡散部材が配置されるため、伝熱プレートの伝熱部間に形成される流路のうち、少なくとも伝熱部の平板部間で流体が流体拡散部材によって拡散される。   According to the above configuration, since the fluid diffusion member that diffuses the fluid in the flow path is disposed between the flat plate portions of the adjacent heat transfer plates, the flow path formed between the heat transfer parts of the heat transfer plate The fluid is diffused by the fluid diffusion member at least between the flat plate portions of the heat transfer unit.

これにより、流路内の流体が流路内で乱流となり、流体の熱が流路を形成する伝熱プレート(隣り合う伝熱プレート)の伝熱部に対して効率的に熱伝導する。   Thereby, the fluid in the flow path becomes a turbulent flow in the flow path, and the heat of the fluid efficiently conducts heat to the heat transfer portion of the heat transfer plate (adjacent heat transfer plate) forming the flow path.

そして、上記構成のプレート式熱交換器においては、流体を拡散させる流体拡散部材が伝熱プレートと別体であるため、仕様に応じた流体拡散部材を伝熱プレート間(平板部間)に配置することで、仕様に応じた流動特性や熱交換特性を得ることができる。   In the plate heat exchanger having the above configuration, the fluid diffusion member for diffusing the fluid is separate from the heat transfer plate, so the fluid diffusion member according to the specification is disposed between the heat transfer plates (between the flat plate portions). By doing so, flow characteristics and heat exchange characteristics according to the specifications can be obtained.

すなわち、仕様変更に伴って伝熱プレート全体を作り直すことなく、流体拡散部材を仕様に応じて選択乃至配置することで、仕様に応じた特性を得ることができる。この点、プレート式熱交換器の製造(組み立て)段階だけでなく、組み立て後の仕様変更にも対応することができる。   That is, the characteristics according to the specification can be obtained by selecting or arranging the fluid diffusion member according to the specification without recreating the entire heat transfer plate in accordance with the specification change. In this respect, not only the manufacturing (assembling) stage of the plate heat exchanger but also the specification change after assembling can be dealt with.

また、上記構成によれば、伝熱プレートの位置決部と流体拡散部材の被位置決部とが凹凸嵌合することによって、両者の相対的な位置関係が一定となる。従って、流体拡散部材を伝熱プレート(平板部)間に配置するに当たり、流体拡散部材の位置ずれによって、要求される仕様にならないことを防止することができる。 Moreover, according to the said structure, when the positioning part of a heat exchanger plate and the to-be-determined part of a fluid-diffusion member are uneven | corrugated fitting, both relative positional relationship becomes fixed. Therefore, when the fluid diffusion member is disposed between the heat transfer plates (flat plate portions), it is possible to prevent the required specification from being achieved due to the displacement of the fluid diffusion member.

本発明の他態様として、流体拡散部材は、第一方向及び第二方向のそれぞれと直交する第三方向に並ぶ複数の流通部を備えるとともに、第三方向で隣り合う流通部の間に配置された流体拡散壁であって、第三方向と交差する方向に広がる流体拡散壁を備えてもよい。   As another aspect of the present invention, the fluid diffusion member includes a plurality of circulation portions arranged in a third direction orthogonal to the first direction and the second direction, and is disposed between the circulation portions adjacent in the third direction. A fluid diffusion wall that extends in a direction intersecting the third direction may be provided.

このようにすれば、流体が流路内で第二方向に流通するに際、流体が流体拡散壁によって分割されて流通部に進入する。これにより、流体の流れが乱流となるため、熱交換効率が高まる。   If it does in this way, when a fluid distribute | circulates in a 2nd direction within a flow path, a fluid will be divided | segmented by a fluid diffusion wall and will approach into a distribution part. Thereby, since the flow of the fluid becomes a turbulent flow, the heat exchange efficiency is increased.

本発明の別の態様として、隣り合う伝熱プレートの平板部間に複数の流体拡散部材が配置可能に構成されてもよい。   As another aspect of the present invention, a plurality of fluid diffusion members may be arranged between flat plate portions of adjacent heat transfer plates.

このようにすれば、各流体拡散部材が小型化するため、伝熱部間に配置するとき等において、ハンドリング性(取り扱い性)が高くなる。   In this way, each fluid diffusion member is miniaturized, so that handling properties (handleability) are enhanced when the fluid diffusion members are arranged between the heat transfer portions.

本発明のさらに別の態様として、流体拡散部材は、平板部に接触する接触部を有してもよい。このようにすれば、流通する流体の熱影響を受けた流体拡散部材の熱が接触部を介して伝熱プレートに伝達される。これにより、流体の熱を伝熱プレートに対して適正に伝達することができる。   As yet another aspect of the present invention, the fluid diffusion member may have a contact portion that contacts the flat plate portion. If it does in this way, the heat of the fluid diffusion member which received the heat influence of the fluid which distribute | circulates will be transmitted to a heat-transfer plate via a contact part. Thereby, the heat of the fluid can be appropriately transmitted to the heat transfer plate.

以上のように、本発明によれば、汎用性を高め、伝熱プレート全体を新たなに作製することなく、要求に応じた仕様にすることができるという優れた効果を奏し得る。   As described above, according to the present invention, it is possible to achieve an excellent effect that versatility is enhanced and specifications according to requirements can be achieved without newly creating the entire heat transfer plate.

図1は、本発明の一実施形態に係るプレート式熱交換器の斜視図である。FIG. 1 is a perspective view of a plate heat exchanger according to an embodiment of the present invention. 図2は、同実施形態に係るプレート式熱交換器の分解斜視図である。FIG. 2 is an exploded perspective view of the plate heat exchanger according to the embodiment. 図3は、同実施形態に係るプレート式熱交換器の伝熱プレート(一方の伝熱プレート)を第一面側から見た図である。FIG. 3 is a view of the heat transfer plate (one heat transfer plate) of the plate heat exchanger according to the embodiment as viewed from the first surface side. 図4は、同実施形態に係るプレート式熱交換器の伝熱プレート(一方の伝熱プレート)を第二面側から見た図である。FIG. 4 is a view of the heat transfer plate (one heat transfer plate) of the plate heat exchanger according to the embodiment viewed from the second surface side. 図5は、同実施形態に係るプレート式熱交換器の伝熱プレート(他方の伝熱プレート)を第二面側から見た図である。FIG. 5: is the figure which looked at the heat-transfer plate (other heat-transfer plate) of the plate type heat exchanger which concerns on the same embodiment from the 2nd surface side. 図6は、同実施形態に係るプレート式熱交換器の伝熱プレート(他方の伝熱プレート)を第一面側から見た図である。FIG. 6 is a view of the heat transfer plate (the other heat transfer plate) of the plate heat exchanger according to the same embodiment as viewed from the first surface side. 図7は、図3のVII部の拡大図である。FIG. 7 is an enlarged view of a portion VII in FIG. 図8は、図5のVIII部の拡大図である。FIG. 8 is an enlarged view of a part VIII in FIG. 図9は、図7のIX−IX断面図である。9 is a cross-sectional view taken along the line IX-IX in FIG. 図10は、図8のX−X断面図である。10 is a cross-sectional view taken along the line XX in FIG. 図11は、同実施形態に係るプレート式熱交換器の流体拡散部材(一方の流体拡散部材)の側面図である。FIG. 11 is a side view of a fluid diffusion member (one fluid diffusion member) of the plate heat exchanger according to the embodiment. 図12は、同実施形態に係るプレート式熱交換器の流体拡散部材(他方の流体拡散部材)の側面図である。FIG. 12 is a side view of the fluid diffusion member (the other fluid diffusion member) of the plate heat exchanger according to the embodiment. 図13は、同実施形態に係るプレート式熱交換器の部分断面図である。FIG. 13 is a partial cross-sectional view of the plate heat exchanger according to the embodiment. 図14は、同実施形態に係るプレート式熱交換器の第一流路で流通する第一流体の流れを説明するための説明図である。FIG. 14 is an explanatory diagram for explaining the flow of the first fluid flowing in the first flow path of the plate heat exchanger according to the embodiment. 図15は、同実施形態に係るプレート式熱交換器の第二流路で流通する第二流体の流れを説明するための説明図である。FIG. 15 is an explanatory diagram for explaining the flow of the second fluid flowing in the second flow path of the plate heat exchanger according to the embodiment. 図16は、本発明の他実施形態に係るプレート式熱交換器の分解斜視図である。FIG. 16 is an exploded perspective view of a plate heat exchanger according to another embodiment of the present invention.

以下、本発明の一実施形態について、添付図面を参照しつつ説明する。   Hereinafter, an embodiment of the present invention will be described with reference to the accompanying drawings.

図1に示す如く、プレート式熱交換器1は、第一方向に重ね合わされた複数の伝熱プレート2,3を備える。   As shown in FIG. 1, the plate heat exchanger 1 includes a plurality of heat transfer plates 2 and 3 stacked in the first direction.

より具体的には、プレート式熱交換器1は、図2に示す如く、それぞれが平板部200,300を含む伝熱部20,30を有し且つ伝熱部20,30の平板部200,300同士が面対向するようにそれぞれの伝熱部20,30が第一方向に重ね合わされた複数の伝熱プレート2,3であって、隣り合う伝熱プレート2,3の伝熱部20,30間のそれぞれに流体A,Bを第一方向と直交する第二方向に流通させる流路Ra,Rbを形成した複数の伝熱プレート2,3と、隣り合う伝熱プレート2,3の平板部200,300間に配置される流体拡散部材4,5であって、流路Ra内で流通する流体A、Bを拡散させる流体拡散部材4,5とを備える   More specifically, as shown in FIG. 2, the plate heat exchanger 1 has heat transfer portions 20 and 30 including flat plate portions 200 and 300, respectively, and the flat plate portions 200 and 30 of the heat transfer portions 20 and 30, respectively. A plurality of heat transfer plates 2 and 3 in which the heat transfer portions 20 and 30 are overlapped in the first direction so that the 300 faces each other, and the heat transfer portions 20 and 30 of the adjacent heat transfer plates 2 and 3 A plurality of heat transfer plates 2 and 3 having flow paths Ra and Rb for flowing fluids A and B in a second direction orthogonal to the first direction, and flat plates of adjacent heat transfer plates 2 and 3, respectively. Fluid diffusing members 4 and 5 disposed between the portions 200 and 300, and fluid diffusing members 4 and 5 for diffusing the fluids A and B flowing in the flow channel Ra.

本実施形態において、プレート式熱交換器1は、上記構成に加え、伝熱プレート2,3間に配置される環状のガスケット6であって、流体A,Bを流通させる流路Ra,Rb,Ra1,Ra2,Rb1,Rb2を画定するための環状のガスケット6を更に備える。また、プレート式熱交換器1は、第一方向に重ね合わされた複数の伝熱プレート2,3を第一方向から挟み込む一対のエンドプレート7,8を備える。   In the present embodiment, the plate heat exchanger 1 is an annular gasket 6 disposed between the heat transfer plates 2 and 3 in addition to the above-described configuration, and the flow paths Ra, Rb, An annular gasket 6 is further provided for defining Ra1, Ra2, Rb1, and Rb2. The plate heat exchanger 1 includes a pair of end plates 7 and 8 that sandwich a plurality of heat transfer plates 2 and 3 stacked in the first direction from the first direction.

なお、以下の説明において、第一方向をX軸方向とし、第一方向と直交する第二方向をZ軸方向とし、第一方向及び第二方向のそれぞれと直交する第三方向をY軸方向とする。これに伴い、各図面に対し、X軸方向、Z軸方向、Y軸方向に対応した直交三軸(X軸、Z軸、Y軸)、又は直交二軸(X軸、Z軸、Y軸のうちの何れか二軸)を補助的に図示している。   In the following description, the first direction is the X-axis direction, the second direction orthogonal to the first direction is the Z-axis direction, and the third direction orthogonal to each of the first direction and the second direction is the Y-axis direction. And Accordingly, for each drawing, three orthogonal axes (X axis, Z axis, Y axis) or two orthogonal axes (X axis, Z axis, Y axis) corresponding to the X axis direction, the Z axis direction, and the Y axis direction. Any one of the two axes) is shown in an auxiliary manner.

複数の伝熱プレート2,3のそれぞれは、金属プレートをプレス成型して作製されたもので、図3〜図6に示す如く、X軸方向において、第一面S1と、該第一面S1の反対側の第二面S2とを有する。本実施形態において、伝熱プレート2,3の輪郭は、Z軸方向に間隔をあけてY軸方向に延びる一対の第一端縁E1と、Y軸方向に間隔をあけてZ軸方向に延びる一対の第二端縁E2とを含む。第一端縁E1及び第二端縁E2は、直線状である。これに伴い、伝熱プレート2,3は、X軸方向から見て四角形状に形成される。本実施形態において、第一端縁E1よりも第二端縁E2が長く設定される。すなわち、伝熱プレート2,3は、Z軸方向で長手となる長方形状に形成される。   Each of the plurality of heat transfer plates 2 and 3 is produced by press-molding a metal plate. As shown in FIGS. 3 to 6, in the X-axis direction, the first surface S1 and the first surface S1 And a second surface S2 on the opposite side. In the present embodiment, the contours of the heat transfer plates 2 and 3 extend in the Z-axis direction with a pair of first end edges E1 extending in the Y-axis direction with an interval in the Z-axis direction and spaced in the Y-axis direction. A pair of second edges E2. The first end edge E1 and the second end edge E2 are linear. Accordingly, the heat transfer plates 2 and 3 are formed in a square shape when viewed from the X-axis direction. In the present embodiment, the second end edge E2 is set longer than the first end edge E1. That is, the heat transfer plates 2 and 3 are formed in a rectangular shape that is long in the Z-axis direction.

伝熱プレート2,3のZ軸方向の両端部のそれぞれには、X軸方向に貫通した貫通孔21,31が二つずつ設けられている。各端部にある二つの貫通孔21,31は、Y軸方向に間隔をあけて配置される。   Two through holes 21 and 31 penetrating in the X-axis direction are provided in each of both end portions in the Z-axis direction of the heat transfer plates 2 and 3. The two through-holes 21 and 31 at each end are arranged with an interval in the Y-axis direction.

伝熱プレート2,3の伝熱部20,30は、Z軸方向の両端部の間に配置される。すなわち、伝熱部20,30は、当該伝熱プレート2,3のZ軸方向に延びる中心線(以下、縦中心線という)CL1と、Y軸方向に延びる中心線(以下、横中心線という)CL2とを含む領域に配置される。   The heat transfer portions 20 and 30 of the heat transfer plates 2 and 3 are disposed between both end portions in the Z-axis direction. That is, the heat transfer parts 20 and 30 are center lines (hereinafter referred to as vertical center lines) CL1 extending in the Z-axis direction of the heat transfer plates 2 and 3 and center lines (hereinafter referred to as horizontal center lines) extending in the Y-axis direction. ) It is arranged in a region including CL2.

より具体的に説明すると、図3及び図6に示す如く、伝熱プレート2,3の第一面S1には、流体である第一流体Aを流通させる流路(以下、第一流路という:図2参照)Raを画定する第一流路画定領域DAであって、Z軸方向の両端部のそれぞれにある二つの貫通孔21,31のうちの一方の貫通孔21,31を含む第一流路画定領域DAが設定される。   More specifically, as shown in FIGS. 3 and 6, a flow path (hereinafter, referred to as a first flow path) through which the first fluid A, which is a fluid, circulates on the first surface S <b> 1 of the heat transfer plates 2 and 3. 2) A first flow path defining region DA that defines Ra, and includes a first through hole 21, 31 of two through holes 21, 31 at both ends in the Z-axis direction. A demarcation area DA is set.

これに伴い、伝熱プレート2,3の第一面S1には、ガスケット6を配置するための第一ガスケット配置部22,32であって、第一流路画定領域DAの輪郭に沿って形成される第一ガスケット配置部22,32と、第一流路画定領域DAから外れた貫通孔21,31のそれぞれを包囲する一対の第一環状ガスケット配置部23,33とが形成される。   Accordingly, the first surface S1 of the heat transfer plates 2 and 3 is formed along the contour of the first flow path defining region DA, which are first gasket placement portions 22 and 32 for placing the gasket 6. First gasket placement portions 22 and 32 and a pair of first annular gasket placement portions 23 and 33 surrounding each of the through holes 21 and 31 deviated from the first flow path defining area DA.

伝熱プレート2,3の第一面S1には、第一ガスケット配置部22,32に配置されるガスケット6(後述する第一流路画定ガスケット60)の位置ずれを防止するための複数の凸部26a,36aが第一ガスケット配置部22,32に沿って形成されるとともに、第一環状ガスケット配置部23,33に配置されるガスケット6(後述する第二連通路画定ガスケット62)の位置ずれを防止するための複数の凸部26a,36aが第一環状ガスケット配置部23,33に沿って形成される。   On the first surface S1 of the heat transfer plates 2 and 3, a plurality of convex portions for preventing displacement of the gasket 6 (first flow path defining gasket 60 described later) arranged in the first gasket arrangement portions 22 and 32. 26a and 36a are formed along the first gasket placement portions 22 and 32, and the displacement of the gasket 6 (second communication passage defining gasket 62 described later) placed on the first annular gasket placement portions 23 and 33 is shifted. A plurality of convex portions 26a, 36a for preventing are formed along the first annular gasket arrangement portions 23, 33.

図4及び図5に示す如く、伝熱プレート2,3の第二面S2には、流体である第二流体Bを流通させる流路(以下、第二流路という)Rbを画定する第二流路画定領域DBであって、Z軸方向の両端部のそれぞれにある二つの貫通孔21,31のうちの他方の貫通孔21,31を含む第二流路画定領域DBが設定される。   4 and 5, the second surface S2 of the heat transfer plates 2 and 3 defines a second channel (hereinafter referred to as a second channel) Rb through which the second fluid B, which is a fluid, flows. A second flow path defining region DB that is the flow path defining area DB and includes the other through holes 21 and 31 of the two through holes 21 and 31 at both ends in the Z-axis direction is set.

伝熱プレート2,3の第二面S2には、ガスケット6を配置するための第二ガスケット配置部24,34であって、第二流路画定領域DBの輪郭に沿って形成される第二ガスケット配置部24,34と、第一流路画定領域DAから外れた貫通孔21,31のそれぞれを包囲する一対の第二環状ガスケット配置部25,35とが形成される。   The second surfaces S2 of the heat transfer plates 2 and 3 are second gasket placement portions 24 and 34 for placing the gasket 6, and are formed along the contour of the second flow path defining region DB. Gasket arrangement portions 24 and 34 and a pair of second annular gasket arrangement portions 25 and 35 surrounding each of the through holes 21 and 31 removed from the first flow path defining area DA are formed.

第一ガスケット配置部22,32、第二ガスケット配置部24,34、第一環状ガスケット配置部23,33、及び第二環状ガスケット配置部25,35のそれぞれは、凹凸のない平板状に形成される。   Each of the first gasket arrangement portions 22, 32, the second gasket arrangement portions 24, 34, the first annular gasket arrangement portions 23, 33, and the second annular gasket arrangement portions 25, 35 is formed in a flat plate shape having no irregularities. The

伝熱プレート2,3の第二面S2には、第二ガスケット配置部24,34に配置されるガスケット6(後述する第二流路画定ガスケット61)の位置ずれを防止するための複数の凸部26b,36bが第二ガスケット配置部24,34に沿って形成されるとともに、第二環状ガスケット配置部25,35に配置されるガスケット6(後述する第一連通路画定ガスケット63)の位置ずれを防止するための複数の凸部26b,36bが第二環状ガスケット配置部25,35に沿って形成される。   On the second surface S2 of the heat transfer plates 2 and 3, a plurality of protrusions for preventing displacement of the gasket 6 (second flow path defining gasket 61 described later) arranged in the second gasket arrangement portions 24 and 34. The portions 26b and 36b are formed along the second gasket placement portions 24 and 34, and the position of the gasket 6 (first series passage defining gasket 63 to be described later) displaced in the second annular gasket placement portions 25 and 35 is shifted. A plurality of convex portions 26b, 36b are formed along the second annular gasket arrangement portions 25, 35.

伝熱プレート2,3は、上述の如く、金属プレートをプレス成型したものであるため、第一面S1の凸部26a,36aの裏側(第二面S2側)は窪みになり、第二面S2の凸部26b,36bの裏側(第一面S1側)は窪みになる。これに伴い、図3〜図6に示す如く、第一面S1側の凸部26a,36aと第二面S2側の凸部26b,36bとは、互いに重複することのないように、位置ずれして配置される   Since the heat transfer plates 2 and 3 are formed by press-molding a metal plate as described above, the back side (the second surface S2 side) of the convex portions 26a and 36a of the first surface S1 becomes a depression, and the second surface The back side (first surface S1 side) of the convex portions 26b and 36b of S2 is a depression. Accordingly, as shown in FIGS. 3 to 6, the first surface S1 side convex portions 26a and 36a and the second surface S2 side convex portions 26b and 36b are not displaced from each other. Arranged

第一面S1の凸部26a,26b,36a,36bと第二面S2の凸部26a,26b,36a,36bの突出量は、第一ガスケット配置部22,32及び第二ガスケット配置部24,34を基準にして同一又は略同一に設定される。すなわち、第一ガスケット配置部22,32、第二ガスケット配置部24,34は、X軸方向における第一面S1の凸部26a,36aの頂部と第二面S2の凸部26b,36bの頂部との中間位置を通る仮想の基準面BLに沿って配置される(図9、図10参照)。   The protruding amounts of the convex portions 26a, 26b, 36a, 36b on the first surface S1 and the convex portions 26a, 26b, 36a, 36b on the second surface S2 are the first gasket arranging portions 22, 32 and the second gasket arranging portion 24, 34 is set to be the same or substantially the same. That is, the first gasket placement portions 22, 32 and the second gasket placement portions 24, 34 are the top portions of the convex portions 26a, 36a on the first surface S1 and the top portions of the convex portions 26b, 36b on the second surface S2 in the X-axis direction. Are arranged along a virtual reference plane BL passing through an intermediate position (see FIGS. 9 and 10).

本実施形態において、第一流路画定領域DAは、図3及び図6に示す如く、Y軸方向の一端側にある貫通孔21,31を含み、Y軸方向の一端から他端に向けて縮小した台形状の領域に設定される。これに対し、第二流路画定領域DBは、図4及び図5に示す如く、Y軸方向の他端側にある貫通孔21,31を含み、Y軸方向の他端から一端に向けて縮小した台形状の領域に設定される。   In the present embodiment, as shown in FIGS. 3 and 6, the first flow path defining area DA includes through holes 21 and 31 on one end side in the Y-axis direction, and shrinks from one end to the other end in the Y-axis direction. The trapezoidal area is set. On the other hand, as shown in FIGS. 4 and 5, the second flow path defining region DB includes through holes 21 and 31 on the other end side in the Y-axis direction, from the other end in the Y-axis direction toward one end. Set to a reduced trapezoidal area.

本実施形態において、図3〜図6に示す如く、台形状の第一流路画定領域DAの底辺と、台形状の第二流路画定領域DBの上辺とがX軸方向で一致し、台形状の第一流路画定領域DAの上辺と、台形状の第二流路画定領域DBの底辺とがX軸方向で一致している。すなわち、第一流路画定領域DA及び第二流路画定領域DBは、縦中心線CL1を基準とした対称領域であり、X軸方向から見て互いに重複する領域であって、第一流路Raを流通する第一流体Aと第二流路Rbを流通する第二流体Bとを熱交換させる領域を含む。従って、第一流路画定領域DAと第二流路画定領域DBとの重複する領域が伝熱部20,30とされる。   In the present embodiment, as shown in FIGS. 3 to 6, the bottom side of the trapezoidal first flow path defining area DA and the top side of the trapezoidal second flow path defining area DB coincide with each other in the X-axis direction. The upper side of the first flow path defining area DA and the bottom side of the trapezoidal second flow path defining area DB coincide with each other in the X-axis direction. That is, the first flow path defining area DA and the second flow path defining area DB are symmetric areas with respect to the longitudinal center line CL1, and are areas overlapping each other when viewed from the X-axis direction. It includes a region where the first fluid A that circulates and the second fluid B that circulates through the second flow path Rb exchange heat. Accordingly, the overlapping area between the first flow path defining area DA and the second flow path defining area DB is defined as the heat transfer units 20 and 30.

本実施形態において、台形状の第一流路画定領域DAの底辺と、台形状の第二流路画定領域DBの上辺とがX軸方向で一致し、台形状の第一流路画定領域DAの上辺と、台形状の第二流路画定領域DBの底辺とがX軸方向で一致しているため、伝熱部20,30は、台形状の第一流路画定領域DAの上辺と、台形状の第二流路画定領域DBの上辺とを一対の対向辺とした四角形状の主伝熱領域D1と、Z軸方向における主伝熱領域D1の両側にある三角形状の分散領域D2とを含む。   In the present embodiment, the bottom side of the trapezoidal first flow path defining area DA and the top side of the trapezoidal second flow path defining area DB coincide with each other in the X-axis direction, and the top side of the trapezoidal first flow path defining area DA And the bottom side of the trapezoidal second flow path defining region DB coincide with each other in the X-axis direction, so that the heat transfer sections 20 and 30 have the top side of the trapezoidal first flow path defining region DA and the trapezoidal shape. A quadrangular main heat transfer region D1 having a pair of opposing sides on the upper side of the second flow path defining region DB and a triangular dispersion region D2 on both sides of the main heat transfer region D1 in the Z-axis direction are included.

本実施形態において、主伝熱領域D1が平板状に形成される。すなわち、伝熱部20,30の主伝熱領域D1が平板部200,300とされる。平板部200,300は、基準面BLに沿って配置される(図9、図10参照)。   In the present embodiment, the main heat transfer region D1 is formed in a flat plate shape. That is, the main heat transfer area D1 of the heat transfer parts 20 and 30 is the flat plate parts 200 and 300. The flat plate portions 200 and 300 are disposed along the reference plane BL (see FIGS. 9 and 10).

伝熱プレート2,3は、図3及び図5に示す如く、凹部又は凸部の何れか一方で構成される位置決部27,37を備える。本実施形態において、位置決部27,37は、凸部により構成される。より具体的には、本実施形態に係る伝熱プレート2,3は、複数の位置決部27,37を備える。複数の位置決部27,37は、平板部200,300をX軸方向に部分的に突出させて形成される。本実施形態において、複数の位置決部27,37は、主伝熱領域D1の外縁に沿って配置される。   As shown in FIGS. 3 and 5, the heat transfer plates 2 and 3 are provided with positioning portions 27 and 37 configured with either a concave portion or a convex portion. In this embodiment, the positioning parts 27 and 37 are comprised by the convex part. More specifically, the heat transfer plates 2 and 3 according to the present embodiment include a plurality of positioning portions 27 and 37. The plurality of positioning portions 27 and 37 are formed by partially projecting the flat plate portions 200 and 300 in the X-axis direction. In the present embodiment, the plurality of positioning portions 27 and 37 are arranged along the outer edge of the main heat transfer region D1.

具体的には、伝熱プレート2,3は、主伝熱領域D1におけるY軸方向の一端部に沿って配置された複数の位置決部27,37と、主伝熱領域D1におけるY軸方向の他端部に沿って配置された複数の位置決部27,37とを備える。主伝熱領域D1のY軸方向の一端部に沿って配置された複数の位置決部27,37の配置と、主伝熱領域D1のY軸方向の他端部に沿って配置された複数の位置決部27,37の配置とは、対応関係にある。すなわち、伝熱プレート2,3には、主伝熱領域D1内においてY軸方向に間隔をあけて対をなす位置決部27,37が、Z軸方向に間隔をあけて複数組設けられている。   Specifically, the heat transfer plates 2 and 3 include a plurality of positioning portions 27 and 37 arranged along one end portion in the Y-axis direction in the main heat transfer region D1, and the Y-axis direction in the main heat transfer region D1. And a plurality of positioning portions 27 and 37 arranged along the other end of the. Arrangement of a plurality of positioning portions 27 and 37 arranged along one end portion in the Y-axis direction of the main heat transfer region D1 and plural arrangements arranged along the other end portion in the Y-axis direction of the main heat transfer region D1 The positions of the positioning units 27 and 37 are in a correspondence relationship. That is, the heat transfer plates 2 and 3 are provided with a plurality of pairs of positioning portions 27 and 37 that are paired with an interval in the Y-axis direction in the main heat transfer region D1. Yes.

これに伴い、本実施形態に係るプレート式熱交換器1は、対となる位置決部27,37の組数に応じた数の流体拡散部材4,5を配置可能になっている。すなわち、プレート式熱交換器1は、隣り合う伝熱プレート2,3の伝熱部20,30の平板部200,300間に複数の流体拡散部材4,5が配置可能に構成される。   Accordingly, the plate-type heat exchanger 1 according to the present embodiment can arrange the number of fluid diffusion members 4 and 5 according to the number of pairs of positioning portions 27 and 37 that form a pair. That is, the plate heat exchanger 1 is configured such that a plurality of fluid diffusion members 4 and 5 can be disposed between the flat plate portions 200 and 300 of the heat transfer portions 20 and 30 of the adjacent heat transfer plates 2 and 3.

本実施形態において、図7〜図10に示す如く、各位置決部27,37は、流体拡散部材4,5(後述する被位置決部41,51:図11、図12参照))が重ね合わされる配置部27a,37aと、Z軸方向における配置部27a,37aの両側に設けられた一対の規制部27b,37bであって、配置部27a,37aよりもX軸方向に突出した一対の規制部27b,37bを備える。これにより、位置決部27,37は、配置部27a,37aに重ね合わされた流体拡散部材4,5のZ軸方向への移動を一対の規制部27b,37bによって規制するようになっている。   In this embodiment, as shown in FIGS. 7 to 10, the positioning units 27 and 37 are superposed on the fluid diffusion members 4 and 5 (positioned positioning units 41 and 51 described later: refer to FIGS. 11 and 12). A pair of restricting portions 27b and 37b provided on both sides of the placement portions 27a and 37a in the Z-axis direction, and a pair of protrusions projecting in the X-axis direction from the placement portions 27a and 37a. Restricting portions 27b and 37b are provided. Thereby, the positioning parts 27 and 37 restrict | limit the movement to the Z-axis direction of the fluid diffusion members 4 and 5 superimposed on the arrangement | positioning parts 27a and 37a by a pair of control parts 27b and 37b.

本実施形態において、図3〜図6に示す如く、分散領域D2の第一面S1及び第二面S2には、複数の凸部28a,28b,38a,38bが配置される。上述の如く、伝熱プレート2,3は、金属プレートをプレス成型したものであるため、分散領域D2の第一面S1及び第二面S2の凸部28a,28b、38a,38bの裏側は窪んでいる、これに伴い、第一面S1の凸部28a,38aは、第二面S2の凸部28b,38bに対してX軸方向と直交する方向に位置ずれして配置され、第二面S2の凸部28b,38bは、第一面S1の凸部28a,38aに対してX軸方向と直交する方向に位置ずれして配置される。   In the present embodiment, as shown in FIGS. 3 to 6, a plurality of convex portions 28a, 28b, 38a, 38b are arranged on the first surface S1 and the second surface S2 of the dispersion region D2. As described above, since the heat transfer plates 2 and 3 are press-molded metal plates, the back sides of the convex portions 28a, 28b, 38a, and 38b of the first surface S1 and the second surface S2 of the dispersion region D2 are recessed. Accordingly, the convex portions 28a and 38a of the first surface S1 are arranged so as to be displaced in the direction perpendicular to the X-axis direction with respect to the convex portions 28b and 38b of the second surface S2. The convex portions 28b and 38b of S2 are arranged so as to be displaced in the direction orthogonal to the X-axis direction with respect to the convex portions 28a and 38a of the first surface S1.

本実施形態のプレート式熱交換器1において、複数の伝熱プレート2,3には、二種類の伝熱プレート2,3が含まれる。二種類の伝熱プレート2,3は、伝熱部20,30における平板部200,300の配置を異にするとともに位置決部27,37の配置及び形態を異にし、それ以外の構成は共通している。   In the plate heat exchanger 1 of the present embodiment, the plurality of heat transfer plates 2 and 3 include two types of heat transfer plates 2 and 3. The two types of heat transfer plates 2 and 3 differ in the arrangement of the flat plate portions 200 and 300 in the heat transfer portions 20 and 30 and in the arrangement and form of the positioning portions 27 and 37, and the other configurations are common. doing.

具体的には、図9に示す如く、二種類の伝熱プレート2,3のうちの一方の伝熱プレート2において、伝熱部20の平板部200は、基準面BLよりもX軸方向の一方側(第一面S1側)に配置される。二種類の伝熱プレート2,3のうちの一方の伝熱プレート2の位置決部27は、伝熱部20(平板部200)の第一面S1側に突出している。   Specifically, as shown in FIG. 9, in one heat transfer plate 2 of the two types of heat transfer plates 2 and 3, the flat plate portion 200 of the heat transfer section 20 is closer to the X-axis direction than the reference plane BL. It arrange | positions at one side (1st surface S1 side). The positioning portion 27 of one of the two types of heat transfer plates 2 and 3 protrudes toward the first surface S1 side of the heat transfer portion 20 (flat plate portion 200).

図10に示す如く、二種類の伝熱プレート2,3のうちの他方の伝熱プレート3において、伝熱部30の平板部300は、基準面BLよりもX軸方向の一方側(第一面S1側)に配置される。そして、二種類の伝熱プレート2,3のうちの他方の伝熱プレート3の位置決部37は、伝熱部30(平板部300)の第二面S2側に突出している。   As shown in FIG. 10, in the other heat transfer plate 3 of the two types of heat transfer plates 2, 3, the flat plate portion 300 of the heat transfer portion 30 is one side in the X-axis direction (first side) than the reference plane BL (first It is arranged on the surface S1 side). And the positioning part 37 of the other heat-transfer plate 3 of the two types of heat-transfer plates 2 and 3 protrudes to the second surface S2 side of the heat-transfer part 30 (flat plate part 300).

図9及び図10に示す如く、二種類の伝熱プレート2,3のうちの一方の伝熱プレート2の位置決部27のX軸方向の突出量(平板部200からの突出量)は、二種類の伝熱プレート2,3のうちの他方の伝熱プレート3の位置決部37のX軸方向の突出量(平板部300からの突出量)より少なく設定される。   As shown in FIGS. 9 and 10, the amount of protrusion in the X-axis direction (the amount of protrusion from the flat plate portion 200) of the positioning portion 27 of one of the two types of heat transfer plates 2 and 3 is: The amount of protrusion of the positioning portion 37 of the other heat transfer plate 3 of the two types of heat transfer plates 2 and 3 is set to be smaller than the amount of protrusion in the X-axis direction (the amount of protrusion from the flat plate portion 300).

図7〜図10に示す如く、一方の伝熱プレート2のY軸方向における端縁から位置決部27までの距離X1は、他方の伝熱プレート3のY軸方向における端縁から位置決部27,37までの距離X2よりも短く設定されている。すなわち、二種類の伝熱プレート2,3の位置決部27,37は、一方の伝熱プレート2と他方の伝熱プレート3とをX軸方向に重ね合わせた状態で、互いにY軸方向で位置ずれるように配置されている。   As shown in FIGS. 7 to 10, the distance X <b> 1 from the edge in the Y-axis direction of one heat transfer plate 2 to the positioning portion 27 is determined from the edge in the Y-axis direction of the other heat transfer plate 3 to the positioning portion. 27 and 37 are set shorter than the distance X2. That is, the positioning portions 27 and 37 of the two types of heat transfer plates 2 and 3 are mutually in the Y-axis direction with one heat transfer plate 2 and the other heat transfer plate 3 being overlapped in the X-axis direction. It is arranged so as to be displaced.

図11及び図12に示す如く、流体拡散部材4,5は、位置決部27,37に対して凹凸嵌合可能に構成された被位置決部41,51を備える。流体拡散部材4,5は、流体A,BをZ軸方向に流通させる流通部40,50を有する。本実施形態において、流体拡散部材4,5は、Y軸方向に並ぶ複数の流通部40,50を備える。これに伴い、流体拡散部材4,5は、Y軸方向で隣り合う流通部40,50の間に配置された流体拡散壁42,52であって、Y軸方向と交差する方向に広がる流体拡散壁42,52を備える。また、流体拡散部材4,5は、伝熱部20,30の平板部200,300に接触する接触部43,53を有する。   As shown in FIGS. 11 and 12, the fluid diffusion members 4, 5 include positioned portions 41, 51 configured to be able to be unevenly fitted to the positioning portions 27, 37. The fluid diffusion members 4 and 5 have flow portions 40 and 50 that allow the fluids A and B to flow in the Z-axis direction. In the present embodiment, the fluid diffusion members 4 and 5 include a plurality of flow portions 40 and 50 arranged in the Y-axis direction. Accordingly, the fluid diffusion members 4 and 5 are fluid diffusion walls 42 and 52 disposed between the circulation portions 40 and 50 adjacent in the Y-axis direction, and spread in the direction intersecting with the Y-axis direction. Walls 42 and 52 are provided. Moreover, the fluid diffusion members 4 and 5 have contact portions 43 and 53 that come into contact with the flat plate portions 200 and 300 of the heat transfer portions 20 and 30.

本実施形態において、流体拡散部材4,5は、Y軸方向に長手に形成される。これに伴い、流体拡散部材4,5は、長手方向(Y軸方向)の両端部に被位置決部41,51を有する。この両端部の被位置決部41,51のY軸方向の間隔Lb1,Lb2は、伝熱プレート2,3(伝熱部20,30)の対となる位置決部27,37の間隔La1,La2(図3、図5参照)と対応している。本実施形態において、位置決部27,37が凸部によって形成されるため、被位置決部41,51は、位置決部27,37と凹凸嵌合可能な凹部によって構成される。すなわち、被位置決部41,51は、位置決部27,37における配置部27a,37aを覆うことができるように谷折り形状に形成される。   In the present embodiment, the fluid diffusion members 4 and 5 are formed long in the Y-axis direction. Accordingly, the fluid diffusion members 4 and 5 have positioned portions 41 and 51 at both ends in the longitudinal direction (Y-axis direction). The distances Lb1 and Lb2 in the Y-axis direction between the positioned portions 41 and 51 at both ends are the distances La1 and La1 between the positioning portions 27 and 37 that form a pair of the heat transfer plates 2 and 3 (heat transfer portions 20 and 30). This corresponds to La2 (see FIGS. 3 and 5). In this embodiment, since the positioning parts 27 and 37 are formed by convex parts, the positioned parts 41 and 51 are constituted by concave parts that can be engaged with the positioning parts 27 and 37. That is, the positioned portions 41 and 51 are formed in a valley fold shape so as to cover the placement portions 27 a and 37 a in the positioning portions 27 and 37.

流体拡散部材4,5は、両端部の被位置決部41,51間において、X軸方向の一方側には、複数の接触部43,53がY軸方向に間隔をあけて配置され、X軸方向の他方側にも、複数の接触部43,53がY軸方向に間隔をあけて配置される。X軸方向の一方側にある複数の接触部43,53は、X軸方向の他方側にある複数の接触部43,53の間に位置する。本実施形態において、各接触部43,53は、Z軸方向及びY軸方向に広がる平面状に形成される。流体拡散壁42,52は、X軸方向の一方側にある接触部43,53の端部と、X軸方向の他方側にある接触部43,53の端部とを繋ぐ。これに伴い、流体拡散壁42,52は、Y軸方向に延びる仮想線に対して傾斜する方向に広がっている。   In the fluid diffusing members 4 and 5, a plurality of contact parts 43 and 53 are arranged on one side in the X-axis direction between the positioned portions 41 and 51 at both ends, with an interval in the Y-axis direction. On the other side in the axial direction, a plurality of contact portions 43 and 53 are arranged at intervals in the Y-axis direction. The plurality of contact portions 43 and 53 on one side in the X-axis direction are located between the plurality of contact portions 43 and 53 on the other side in the X-axis direction. In this embodiment, each contact part 43 and 53 is formed in the planar shape extended in a Z-axis direction and a Y-axis direction. The fluid diffusion walls 42 and 52 connect the end portions of the contact portions 43 and 53 on one side in the X-axis direction and the end portions of the contact portions 43 and 53 on the other side in the X-axis direction. Accordingly, the fluid diffusion walls 42 and 52 are spread in a direction inclined with respect to an imaginary line extending in the Y-axis direction.

本実施形態において、接触部43,53の両端に繋がる一対の流体拡散壁42,52は、接続された接触部43,53から遠ざかるにつれて間隔を拡大させている。すなわち、接触部43,53と一対の流体拡散壁42,52は、Z軸方向から見て台形状の流通部40,50であって、Z軸方向の両側で開放し且つX軸方向の何れか一方側で開放した流通部40,50を画定する。   In the present embodiment, the distance between the pair of fluid diffusion walls 42 and 52 connected to both ends of the contact portions 43 and 53 is increased as the distance from the connected contact portions 43 and 53 increases. That is, the contact portions 43 and 53 and the pair of fluid diffusion walls 42 and 52 are trapezoidal flow portions 40 and 50 as viewed from the Z-axis direction, open on both sides in the Z-axis direction and any of the X-axis directions. The flow parts 40 and 50 opened on either side are defined.

本実施形態に係る流体拡散部材4,5は、帯板状の金属材料をプレス成型したもので、Y軸方向に長手をなし、Z軸方向から見てX軸方向に起伏した波形状に形成される。これに伴い、被位置決部41,51、流体拡散壁42,52、及び接触部43,53が一体的に成型されている。すなわち、本実施形態に流体拡散部材4,5の接触部43,53は、X軸方向に突出した部分の頂部であり、流体拡散壁42,52は、X軸方向の一方側の接触部43,53(頂部)とX軸方向の他方側の接触部43,53(頂部)とを繋ぐ部分であり、両端部の被位置決部41,51は、長手方向の両端部にある山折りされた部分である。   The fluid diffusing members 4 and 5 according to the present embodiment are formed by press-molding a strip-shaped metal material, have a long shape in the Y-axis direction, and are undulated in the X-axis direction when viewed from the Z-axis direction. Is done. Accordingly, the positioned portions 41 and 51, the fluid diffusion walls 42 and 52, and the contact portions 43 and 53 are integrally molded. That is, the contact portions 43 and 53 of the fluid diffusion members 4 and 5 in the present embodiment are the tops of the portions protruding in the X-axis direction, and the fluid diffusion walls 42 and 52 are the contact portions 43 on one side in the X-axis direction. , 53 (top portion) and the contact portions 43, 53 (top portion) on the other side in the X-axis direction, and the positioned portions 41, 51 at both ends are folded at both ends in the longitudinal direction. Part.

本実施形態に係るプレート式熱交換器1が二種類の伝熱プレート2,3を含むに伴い、当該プレート式熱交換器1は、二種類の流体拡散部材4,5を備える。すなわち、第一流路Raを画定する平板部200,300間に配置される流体拡散部材4と、第二流路Rbを画定する平板部200,300間に配置される流体拡散部材5とを備える(図2、図13参照)。   As the plate heat exchanger 1 according to this embodiment includes two types of heat transfer plates 2 and 3, the plate heat exchanger 1 includes two types of fluid diffusion members 4 and 5. That is, the fluid diffusion member 4 disposed between the flat plate portions 200 and 300 defining the first flow path Ra and the fluid diffusion member 5 disposed between the flat plate portions 200 and 300 defining the second flow path Rb are provided. (See FIGS. 2 and 13).

この二種類の流体拡散部材4,5は、X軸方向の寸法を異にするとともに、両端部にある被位置決部41,51の形態及び間隔を異にし、それ以外は共通している。   The two types of fluid diffusion members 4 and 5 have different dimensions in the X-axis direction, and have different forms and intervals of the positioned portions 41 and 51 at both ends, and are otherwise common.

具体的には、二種類の流体拡散部材4,5のうち、一方の流体拡散部材4における一対の被位置決部41の間隔(Y軸方向の間隔)Lb1は、二種類の伝熱プレート2,3のうち、一方の伝熱プレート2における一対の位置決部27の間隔(対をなす位置決部27のY軸方向の間隔)La1(図3参照)と対応する。これに対し、二種類の流体拡散部材4,5のうち、他方の流体拡散部材5における一対の被位置決部51の間隔(Y軸方向の間隔)Lb2は、二種類の伝熱プレート2,3のうち、他方の伝熱プレート3における一対の位置決部37の間隔(対をなす位置決部37のY軸方向の間隔)La2(図5参照)と対応している。   Specifically, of the two types of fluid diffusion members 4 and 5, the distance (interval in the Y-axis direction) Lb1 between the pair of positioned portions 41 in one fluid diffusion member 4 is the two types of heat transfer plates 2. , 3 corresponds to the interval between the pair of positioning portions 27 in the one heat transfer plate 2 (interval in the Y-axis direction of the positioning portions 27 forming a pair) La1 (see FIG. 3). On the other hand, among the two types of fluid diffusion members 4 and 5, the distance between the pair of positioned portions 51 in the other fluid diffusion member 5 (interval in the Y-axis direction) Lb2 is the two types of heat transfer plates 2, 3 corresponds to the interval between the pair of positioning portions 37 in the other heat transfer plate 3 (interval in the Y-axis direction of the positioning portions 37 forming a pair) La2 (see FIG. 5).

二種類の流体拡散部材4,5のうちの一方の流体拡散部材4のX軸方向における一方側の接触部43と他方側の接触部43との間隔(距離)は、他方の流体拡散部材5のX軸方向における一方側の接触部53と他方側の接触部53との間隔(距離)よりも短く設定されている。すなわち、二種類の流体拡散部材4,5のうちの一方の流体拡散部材4におけるX軸方向の起伏量は、第一流路Raを画定する平板部200,300の間隔に対応し、二種類の流体拡散部材4,5のうちの他方の流体拡散部材5におけるX軸方向の起伏量は、第二流路Rbを画定する平板部200,300の間隔に対応している。   The distance (distance) between the contact portion 43 on one side and the contact portion 43 on the other side in the X-axis direction of one fluid diffusion member 4 of the two types of fluid diffusion members 4, 5 is the other fluid diffusion member 5. Is set shorter than the distance (distance) between the contact portion 53 on one side and the contact portion 53 on the other side in the X-axis direction. That is, the undulation amount in the X-axis direction in one fluid diffusion member 4 of the two types of fluid diffusion members 4 and 5 corresponds to the interval between the flat plate portions 200 and 300 that define the first flow path Ra. The undulation amount in the X-axis direction of the other fluid diffusion member 5 among the fluid diffusion members 4 and 5 corresponds to the interval between the flat plate portions 200 and 300 that define the second flow path Rb.

そして、本実施形態においては、二種類の伝熱プレート2,3のそれぞれは、対となる位置決部27,37を複数組有するため、一方の伝熱プレート2の平板部200上には、位置決部27の配置に合わせて一方の流体拡散部材4が複数配置され、他方の伝熱プレート3の平板部300上には、位置決部37の配置に合わせて他方の流体拡散部材5が複数配置される。   And in this embodiment, since each of two types of heat-transfer plates 2 and 3 has multiple sets of the positioning parts 27 and 37 used as a pair, on the flat plate part 200 of one heat-transfer plate 2, A plurality of one fluid diffusion member 4 is arranged in accordance with the arrangement of the positioning portion 27, and the other fluid diffusion member 5 is arranged on the flat plate portion 300 of the other heat transfer plate 3 in accordance with the arrangement of the positioning portion 37. Several are arranged.

図2に戻り、本実施形態に係るプレート式熱交換器1は、ガスケット6として、第一ガスケット配置部22,32の平面形状(X軸方向から見たい形態)に対応して無端環状に形成された第一流路画定ガスケット60と、第二ガスケット配置部24,34の平面形状(X軸方向から見たい形態)に対応して無端環状に形成された第二流路画定ガスケット61と、第一環状ガスケット配置部23,33の平面形状(X軸方向から見たい形態)に対応して無端環状に形成された第二連通路画定ガスケット62と、第二環状ガスケット配置部25,35の平面形状(X軸方向から見たい形態)に対応して無端環状に形成された第一連通路画定ガスケット63とを備える。   Returning to FIG. 2, the plate heat exchanger 1 according to the present embodiment is formed as an endless ring corresponding to the planar shape of the first gasket arrangement portions 22, 32 (the form to be viewed from the X-axis direction) as the gasket 6. The first flow path defining gasket 60, the second flow path defining gasket 61 formed in an endless ring shape corresponding to the planar shape (the form desired to be viewed from the X-axis direction) of the second gasket arrangement portions 24, 34, The second communication passage defining gasket 62 formed in an endless ring corresponding to the planar shape of the single annular gasket placement portions 23, 33 (the shape desired to be viewed from the X-axis direction), and the flat surfaces of the second annular gasket placement portions 25, 35 And a first series of passage defining gaskets 63 that are formed in an endless annular shape corresponding to the shape (the shape that the user wants to see from the X-axis direction).

第一流路画定ガスケット60及び第二連通路画定ガスケット62は、伝熱プレート2,3の第一面S1間に配置され、第二流路画定ガスケット61及び第一連通路画定ガスケット63は、伝熱プレート2,3の第二面S2間に配置される。これに伴い、本実施形態においては、第一流路画定ガスケット60及び第二連通路画定ガスケット62は一体成型され、第二流路画定ガスケット61及び第一連通路画定ガスケット63は一体成型されている。   The first flow path defining gasket 60 and the second communication path defining gasket 62 are disposed between the first surfaces S1 of the heat transfer plates 2 and 3, and the second flow path defining gasket 61 and the first series of passage defining gaskets 63 are transmitted. It arrange | positions between the 2nd surfaces S2 of the heat plates 2 and 3. FIG. Accordingly, in the present embodiment, the first flow path defining gasket 60 and the second communication path defining gasket 62 are integrally molded, and the second flow path defining gasket 61 and the first series of passage defining gaskets 63 are integrally molded. .

本実施形態においては、上述の如く、第一流路画定領域DAと第二流路画定領域DBとが縦中心線CL1を基準に対称関係にあるため、第一流路画定ガスケット60及び第二連通路画定ガスケット62を一体成型したものと、第二流路画定ガスケット61及び第一連通路画定ガスケット63を一体成型したものとは共通の部品とされる。   In the present embodiment, as described above, since the first flow path defining area DA and the second flow path defining area DB are symmetrical with respect to the longitudinal center line CL1, the first flow path defining gasket 60 and the second communication path are provided. The integral molding of the definition gasket 62 and the integral molding of the second flow path defining gasket 61 and the first series passage defining gasket 63 are common parts.

なお、エンドプレート7,8と伝熱プレート2,3との間にもガスケット6が配置されるが、エンドプレート7,8と伝熱プレート2,3との間に配置されるガスケット6は、第一連通路画定ガスケット63と第二連通路画定ガスケット62とを一体成型したものとされる。   In addition, although the gasket 6 is arrange | positioned also between the end plates 7 and 8 and the heat-transfer plates 2 and 3, the gasket 6 arrange | positioned between the end plates 7 and 8 and the heat-transfer plates 2 and 3 is The first series passage defining gasket 63 and the second communication passage defining gasket 62 are integrally molded.

一対のエンドプレート7,8のうち、一方のエンドプレート7は、伝熱プレート2,3の第一面S1又は第二面S2(本実施形態においては、一方の伝熱プレート2の第一面S1)の全面と対向可能にサイズ設定された板状のプレート本体70であって、伝熱プレート2,3の貫通孔21,31と対応した位置に貫通孔(図示しない)を有するプレート本体70と、自身の内孔がプレート本体70の貫通孔と同心又は略同心になるようにプレート本体70に接続された筒状のノズル71であって、プレート本体70の貫通孔21,31のそれぞれに対応して設けられたノズル71とを備える。   Of the pair of end plates 7, 8, one end plate 7 is the first surface S 1 or the second surface S 2 of the heat transfer plates 2, 3 (in this embodiment, the first surface of the one heat transfer plate 2. The plate-shaped plate body 70 is sized so as to be opposed to the entire surface of S1), and has a through hole (not shown) at a position corresponding to the through holes 21 and 31 of the heat transfer plates 2 and 3. A cylindrical nozzle 71 connected to the plate body 70 such that its own inner hole is concentric or substantially concentric with the through hole of the plate body 70, and is formed in each of the through holes 21, 31 of the plate body 70. Corresponding nozzles 71 are provided.

これに対し、一対のエンドプレート7,8のうち、他方のエンドプレート8は、伝熱プレート2,3の第一面S1又は第二面S2(本実施形態においては、一方の伝熱プレート2の第二面S2)の全面と対向可能にサイズ設定された貫通孔のない板状の部材である。   On the other hand, of the pair of end plates 7 and 8, the other end plate 8 is the first surface S1 or the second surface S2 of the heat transfer plates 2 and 3 (in this embodiment, one heat transfer plate 2). This is a plate-like member having no through hole and sized so as to be able to face the entire surface of the second surface S2).

本実施形態を説明するための図(例えば、図1及び図2等)において、簡略化して一部を省略して図示しているが、本実施形態に係るプレート式熱交換器1において、複数の伝熱プレート2,3を挟み込んだ一対のエンドプレート7,8がボルト締結される。これにより、プレート式熱交換器1は、ガスケット6を伝熱プレート2,3及びエンドプレート7,8に対して密接させ、流路(第一流路Ra、第二流路Rb、第一連通路Ra1,Ra2、第二連通路Rb1,Rb2)の液密性を確保する。   In the drawings for explaining the present embodiment (for example, FIG. 1 and FIG. 2 and the like), a part of the plate heat exchanger 1 according to the present embodiment is simplified. A pair of end plates 7 and 8 sandwiching the heat transfer plates 2 and 3 are fastened with bolts. Accordingly, the plate heat exchanger 1 causes the gasket 6 to be in intimate contact with the heat transfer plates 2 and 3 and the end plates 7 and 8, and the flow paths (first flow path Ra, second flow path Rb, first series flow path). Ra1 and Ra2 and the second communication passages Rb1 and Rb2) are secured.

本実施形態に係るプレート式熱交換器1の各構成は、以上の通りであり、図13に示す如く、伝熱プレート2,3間にガスケット6(第一流路画定ガスケット60、第二流路画定ガスケット61)が介装されることで、伝熱プレート2,3間が封止され、隣り合う伝熱プレート2,3の第一面S1間に第一流路Raが形成されるとともに、隣り合う伝熱プレート2,3の第二面S2間に第二流路Rbが形成される。すなわち、伝熱プレート2,3を境にして第一流路Raと第二流路Rbとが交互に形成される。   Each configuration of the plate heat exchanger 1 according to the present embodiment is as described above. As shown in FIG. 13, the gasket 6 (first flow path defining gasket 60, second flow path is provided between the heat transfer plates 2 and 3. Since the demarcating gasket 61) is interposed, the heat transfer plates 2 and 3 are sealed, and the first flow path Ra is formed between the first surfaces S1 of the adjacent heat transfer plates 2 and 3, and adjacent to each other. A second flow path Rb is formed between the second surfaces S2 of the matching heat transfer plates 2 and 3. That is, the first flow path Ra and the second flow path Rb are alternately formed with the heat transfer plates 2 and 3 as a boundary.

本実施形態において、上述の如く、二種類の伝熱プレート2,3のうちの一方の伝熱プレート2において、伝熱部20の平板部200は、基準面BLよりもX軸方向の一方側(第一面S1側)に配置され、二種類の伝熱プレート2,3のうちの他方の伝熱プレート3において、伝熱部30の平板部300は、基準面BLよりもX軸方向の一方側(第一面S1側)に配置される。これにより、第一流体Aを流通させる第一流路Raと、X軸方向における流路幅(平板部200,300の間隔)が第一流路RaのX軸方向における流路幅(平板部の間隔)よりも広い第二流路Rbであって、第二流体Bを流通させる第二流路Rbとが交互に形成される。   In the present embodiment, as described above, in one heat transfer plate 2 of the two types of heat transfer plates 2 and 3, the flat plate portion 200 of the heat transfer section 20 is on one side in the X-axis direction with respect to the reference plane BL. In the other heat transfer plate 3 of the two types of heat transfer plates 2 and 3, which is arranged on the (first surface S1 side), the flat plate portion 300 of the heat transfer portion 30 is closer to the X-axis direction than the reference surface BL. It arrange | positions at one side (1st surface S1 side). Accordingly, the first flow path Ra through which the first fluid A is circulated, and the flow path width in the X-axis direction (the distance between the flat plate portions 200 and 300) are the flow width in the X-axis direction of the first flow path Ra (the distance between the flat plate portions). ) Wider than the second flow path Rb through which the second fluid B is circulated.

また、図2に示す如く、伝熱プレート2,3の貫通孔21,31が連なり、第一流路Raのみに連通する一対の第一連通路Ra1,Ra2が形成されるとともに、第二流路Rbのみに連通する一対の第二連通路Rb1,Rb2が形成される。   Further, as shown in FIG. 2, the through holes 21 and 31 of the heat transfer plates 2 and 3 are connected to form a pair of first series passages Ra1 and Ra2 that communicate only with the first flow passage Ra, and the second flow passage. A pair of second communication passages Rb1, Rb2 communicating with only Rb is formed.

これにより、図14に示す如く、一方の第一連通路Ra1から第一流体Aが供給されると、第一流体Aが第一流路Ra内を他方の第一連通路Ra2に向けて流通する。この際、伝熱部20,30の平板部200,300間ある流体拡散部材4の存在により、第一流体Aの流れは乱流となる。   Thereby, as shown in FIG. 14, when the first fluid A is supplied from one first series passage Ra1, the first fluid A flows in the first flow path Ra toward the other first series passage Ra2. . At this time, the flow of the first fluid A becomes turbulent due to the presence of the fluid diffusion member 4 between the flat plate portions 200 and 300 of the heat transfer portions 20 and 30.

本実施形態においては、流体拡散部材4が流体拡散壁42を有するため、第一流体Aが第一流路Ra内で一方の第一連通路Ra1側から他方の第一連通路Ra2側に向けて流通する際、第一流体Aが流体拡散壁42によってZ軸方向と直交する方向に分割されつつ下流側に流れる。これにより、第一流体Aが第一流路Ra内で拡散されて乱流となる。   In the present embodiment, since the fluid diffusion member 4 has the fluid diffusion wall 42, the first fluid A is directed from the one first series passage Ra1 side to the other first series passage Ra2 side in the first flow path Ra. When flowing, the first fluid A flows downstream while being divided by the fluid diffusion wall 42 in the direction perpendicular to the Z-axis direction. Thereby, the first fluid A is diffused in the first flow path Ra and becomes a turbulent flow.

これにより、第一流体Aの熱が伝熱部20,30に効率的に熱伝達されつつ他方の第一連通路Ra2に向けて流通し、最終的に該他方の第一連通路Ra2から流出する。   Thus, the heat of the first fluid A is circulated toward the other first series passage Ra2 while being efficiently transferred to the heat transfer sections 20 and 30, and finally flows out from the other first series passage Ra2. To do.

また、図15に示す如く、一方の第二連通路Rb1から第二流体Bが供給されると、第二流体Bが第二流路Rb内を他方の第二連通路Rb2に向けて流通する。この際、伝熱部20,30間ある流体拡散部材5の存在により、第二流体Bの流れは乱流となる。   Further, as shown in FIG. 15, when the second fluid B is supplied from one second communication passage Rb1, the second fluid B flows in the second flow path Rb toward the other second communication passage Rb2. . At this time, the flow of the second fluid B becomes a turbulent flow due to the presence of the fluid diffusion member 5 between the heat transfer portions 20 and 30.

本実施形態においては、流体拡散部材5が流体拡散壁52を有するため、第二流体Bが第二流路Rb内で一方の第二連通路Rb1側から他方の第二連通路Rb2側に向けて流通する際、第二流体Bが流体拡散壁52によってZ軸方向と直交する方向に分割されつつ下流側に流れる。   In the present embodiment, since the fluid diffusion member 5 has the fluid diffusion wall 52, the second fluid B is directed from the one second communication path Rb1 side to the other second communication path Rb2 side in the second flow path Rb. The second fluid B flows downstream while being divided by the fluid diffusion wall 52 in a direction perpendicular to the Z-axis direction.

これにより、第二流体Bが第二流路Rb内で拡散されて乱流となる。特に、本実施形態においては、複数の流体拡散部材5が配置されるため、第二流体Bが第二流路Rbの広い範囲に拡散される。   Thereby, the second fluid B is diffused in the second flow path Rb and becomes a turbulent flow. In particular, in the present embodiment, since the plurality of fluid diffusion members 5 are arranged, the second fluid B is diffused over a wide range of the second flow path Rb.

これにより、第二流体Bの熱が伝熱部20,30に効率的に熱伝達されつつ他方の第二連通路Rb2に向けて流通し、最終的に該他方の第二連通路Rb2から流出する。   Thereby, the heat of the second fluid B is circulated toward the other second communication path Rb2 while being efficiently transferred to the heat transfer sections 20 and 30, and finally flows out from the other second communication path Rb2. To do.

従って、本実施形態に係るプレート式熱交換器1では、第一流体Aと第二流体Bとの熱交換性が良好である。   Therefore, in the plate heat exchanger 1 according to the present embodiment, the heat exchange between the first fluid A and the second fluid B is good.

以上のように、本実施形態に係るプレート式熱交換器1は、それぞれが平板部200,300を含む伝熱部20,30を有し且つ伝熱部20,30の平板部200,300同士が面対向するようにそれぞれの伝熱部20,30が第一方向に重ね合わされた複数の伝熱プレート2,3であって、隣り合う伝熱プレート2,3の伝熱部20,30間のそれぞれに流体(第一流体A、第二流体B)をZ軸方向に流通させる流路(第一流路Ra、第二流路Rb)を形成した複数の伝熱プレート2,3と、隣り合う伝熱プレート2,3の平板部200,300間に配置される流体拡散部材4,5であって、流路(第一流路Ra、第二流路Rb)で流通する流体(第一流体A、第二流体B)を拡散させる流体拡散部材4,5とを備える。   As described above, the plate heat exchanger 1 according to the present embodiment includes the heat transfer portions 20 and 30 including the flat plate portions 200 and 300, respectively, and the flat plate portions 200 and 300 of the heat transfer portions 20 and 30 are each other. Are the plurality of heat transfer plates 2 and 3 that are superposed in the first direction such that the heat transfer portions 20 and 30 face each other, and between the heat transfer portions 20 and 30 of the adjacent heat transfer plates 2 and 3. Adjacent to the plurality of heat transfer plates 2 and 3, each of which has a flow path (first flow path Ra, second flow path Rb) through which the fluid (first fluid A, second fluid B) flows in the Z-axis direction. Fluid diffusion members 4, 5 disposed between the flat plate portions 200, 300 of the matching heat transfer plates 2, 3, the fluid (first fluid) flowing through the flow paths (first flow path Ra, second flow path Rb) A, fluid diffusion members 4 and 5 for diffusing the second fluid B).

上記構成によれば、隣り合う伝熱プレート2,3の平板部200,300間に、流路(第一流路Ra、第二流路Rb)内で流体(第一流体A、第二流体B)を拡散させる流体拡散部材4,5が配置されるため、伝熱プレート2,3の伝熱部20,30間に形成される流路(第一流路Ra、第二流路Rb)のうち、少なくとも伝熱部20,30の平板部200,300間で流体(第一流体A、第二流体B)が流体拡散部材4,5によって拡散される。   According to the said structure, between the flat plate part 200,300 of the adjacent heat-transfer plates 2 and 3, fluid (1st fluid A, 2nd fluid B) in a flow path (1st flow path Ra, 2nd flow path Rb). Of the flow paths (the first flow path Ra and the second flow path Rb) formed between the heat transfer portions 20 and 30 of the heat transfer plates 2 and 3. The fluid (first fluid A, second fluid B) is diffused by the fluid diffusion members 4 and 5 at least between the flat plate portions 200 and 300 of the heat transfer portions 20 and 30.

これにより、流路(第一流路Ra、第二流路Rb)内の流体(第一流体A及び第二流体B)が流路(第一流路Ra、第二流路Rb)内で乱流となり、流体(第一流体A、第二流体B)の熱が流路(第一流路Ra、第二流路Rb)を形成する伝熱プレート2,3(隣り合う伝熱プレート2,3)の伝熱部20,30に対して効率的に熱伝導する。   Thereby, the fluid (first fluid A and second fluid B) in the flow channel (first flow channel Ra, second flow channel Rb) is turbulent in the flow channel (first flow channel Ra, second flow channel Rb). The heat transfer plates 2 and 3 (adjacent heat transfer plates 2 and 3) in which the heat of the fluid (first fluid A and second fluid B) forms the flow paths (first flow path Ra and second flow path Rb) It efficiently conducts heat to the heat transfer parts 20 and 30.

そして、上記構成のプレート式熱交換器1においては、流体(第一流体A、第二流体B)を拡散させる流体拡散部材4,5が伝熱プレート2,3と別体であるため、仕様に応じた流体拡散部材4,5を伝熱プレート2,3間(平板部200,300間)に配置することで、仕様に応じた流動特性や熱交換特性を得ることができる。   And in the plate type heat exchanger 1 of the said structure, since the fluid diffusion members 4 and 5 which diffuse a fluid (1st fluid A, 2nd fluid B) are a different body from the heat-transfer plates 2 and 3, specification By disposing the fluid diffusion members 4 and 5 according to the conditions between the heat transfer plates 2 and 3 (between the flat plate portions 200 and 300), flow characteristics and heat exchange characteristics according to specifications can be obtained.

すなわち、仕様変更に伴って伝熱プレート2,3全体を作り直すことなく、流体拡散部材4,5を仕様に応じて選択乃至配置することで、仕様に応じた特性を得ることができる。この点、プレート式熱交換器1の製造(組み立て)段階だけでなく、組み立て後の仕様変更にも対応することができる。   That is, characteristics according to the specifications can be obtained by selecting or arranging the fluid diffusion members 4 and 5 according to the specifications without recreating the entire heat transfer plates 2 and 3 in accordance with the change in the specifications. In this respect, not only the manufacturing (assembling) stage of the plate heat exchanger 1 but also the specification change after assembling can be dealt with.

本実施形態において、隣り合う伝熱プレート2,3のうちの少なくとも何れか一方の伝熱プレート2は、凸部で構成される位置決部27,37を備え、流体拡散部材4,5は、位置決部27,37に対して凹凸嵌合可能に構成された凹部で構成された被位置決部41,51を備える。   In the present embodiment, at least one of the adjacent heat transfer plates 2 and 3 includes positioning portions 27 and 37 formed of convex portions, and the fluid diffusion members 4 and 5 are Positioned portions 41 and 51 each including a concave portion configured to be able to be fitted to the positioning portions 27 and 37 are provided.

このようにすれば、伝熱プレート2,3の位置決部27,37と流体拡散部材4,5の被位置決部41,51とが凹凸嵌合することによって、両者の相対的な位置関係が一定となる。従って、流体拡散部材4,5を伝熱プレート2,3(平板部200,300)間に配置するに当たり、流体拡散部材4,5の位置ずれによって、要求される仕様にならないことを防止することができる。   By doing so, the positioning portions 27 and 37 of the heat transfer plates 2 and 3 and the positioned portions 41 and 51 of the fluid diffusion members 4 and 5 are fitted into the concave and convex portions, so that the relative positional relationship between the two is determined. Is constant. Therefore, when the fluid diffusion members 4 and 5 are disposed between the heat transfer plates 2 and 3 (flat plate portions 200 and 300), it is prevented that the required specifications are not achieved due to the displacement of the fluid diffusion members 4 and 5. Can do.

本実施形態において、流体拡散部材4,5は、Y軸方向に並ぶ複数の流通部40,50を備えるとともに、Y軸方向で隣り合う流通部40,50の間に配置された流体拡散壁42,52であって、Y軸方向と交差する方向に広がる流体拡散壁42,52を備える。   In the present embodiment, the fluid diffusion members 4 and 5 include a plurality of flow portions 40 and 50 arranged in the Y-axis direction, and a fluid diffusion wall 42 disposed between the flow portions 40 and 50 adjacent in the Y-axis direction. , 52 and fluid diffusion walls 42, 52 extending in the direction intersecting the Y-axis direction.

これにより、流体(第一流体A、第二流体B)が第二方向に流通するに際、流体(第一流体A、第二流体B)が流体拡散壁42,52によって分割されて流通部40,50に進入する。これにより、流体(第一流体A、第二流体B)の流れが乱流となるため、熱交換効率が高まる。   Thereby, when the fluid (first fluid A, second fluid B) flows in the second direction, the fluid (first fluid A, second fluid B) is divided by the fluid diffusion walls 42, 52, and the flow portion. Enter 40,50. Thereby, since the flow of the fluid (the first fluid A, the second fluid B) becomes a turbulent flow, the heat exchange efficiency is increased.

本実施形態において、隣り合う伝熱プレート2,3の平板部200,300間に複数の流体拡散部材4,5が配置可能に構成される。   In the present embodiment, a plurality of fluid diffusion members 4 and 5 are configured to be arranged between the flat plate portions 200 and 300 of the adjacent heat transfer plates 2 and 3.

これにより、各流体拡散部材4,5が小型化し、伝熱部20,30間に配置するとき等において、ハンドリング性(取り扱い性)が高くなる。   Thereby, when each fluid diffusion member 4 and 5 is reduced in size and arrange | positioned between the heat-transfer parts 20 and 30, handling property (handleability) becomes high.

本実施形態において、流体拡散部材4,5は、平板部200,300に接触する接触部43,53を有する。   In the present embodiment, the fluid diffusion members 4 and 5 have contact portions 43 and 53 that contact the flat plate portions 200 and 300.

これにより、流通する流体(第一流体A、第二流体B)の熱影響を受けた流体拡散部材4,5の熱が接触部43,53を介して伝熱プレート2,3に伝達される。これにより、流体(第一流体A、第二流体B)の熱を伝熱プレート2,3に対して適正に伝達することができる。   Thereby, the heat of the fluid diffusion members 4 and 5 affected by the heat of the circulating fluid (first fluid A and second fluid B) is transmitted to the heat transfer plates 2 and 3 via the contact portions 43 and 53. . Thereby, the heat of the fluid (first fluid A, second fluid B) can be properly transmitted to the heat transfer plates 2 and 3.

なお、本発明は、上記実施形態に限定されるものではなく、本発明の要旨を逸脱しない範囲で適宜変更を加え得ることは勿論である。   In addition, this invention is not limited to the said embodiment, Of course, it can add suitably in the range which does not deviate from the summary of this invention.

例えば、上記実施形態において、第一流路Ra(第一流路画定領域DA)及び第二流路Rb(第二流路画定領域DB)のそれぞれがX軸方向から見て台形状に形成されたが、これに限定されない。   For example, in the above embodiment, each of the first flow path Ra (first flow path defining area DA) and the second flow path Rb (second flow path defining area DB) is formed in a trapezoidal shape when viewed from the X-axis direction. However, the present invention is not limited to this.

例えば、第一流路Ra(第一流路画定領域DA)が、Z軸方向の一端部にある二つの貫通孔21,31のうちのY軸方向の一端側にある貫通孔21,31と、Z軸方向の他端部にある二つの貫通孔21,31のうちのY軸方向の他端側にある貫通孔21,31とを含んで平行四辺形状(菱形状)に形成され、第二流路Rb(第二流路画定領域DB)が、Z軸方向の一端部にある二つの貫通孔21,31のうちのY軸方向の他端側にある貫通孔21,31と、Z軸方向の他端部にある二つの貫通孔21,31のうちのY軸方向の一端側にある貫通孔21,31とを含んで平行四辺形状(菱形状)に形成されてもよい。この場合においても、第一流路画定領域DAと第二流路画定領域DBとが縦中心線CL1を基準にして対称にされることは勿論である。   For example, the first flow path Ra (the first flow path defining area DA) has through holes 21 and 31 on one end side in the Y axis direction of the two through holes 21 and 31 on one end section in the Z axis direction, and Z Of the two through-holes 21 and 31 at the other end in the axial direction, the through-holes 21 and 31 at the other end in the Y-axis direction are formed in a parallelogram shape (rhombus shape), and the second flow The path Rb (second flow path defining region DB) has through holes 21 and 31 on the other end side in the Y axis direction of the two through holes 21 and 31 on one end in the Z axis direction, and the Z axis direction. It may be formed in a parallelogram shape (rhombus shape) including the through holes 21 and 31 on one end side in the Y-axis direction of the two through holes 21 and 31 in the other end portion of the. Even in this case, of course, the first flow path defining area DA and the second flow path defining area DB are made symmetrical with respect to the longitudinal center line CL1.

上記実施形態において、伝熱部20,30の一部の領域である主伝熱領域D1(四角形状の領域)が平板部200,300とされたが、これに限定されない。例えば、伝熱部20,30全体(第一流路画定領域DAと第二流路画定領域DBとの重複領域全体)が平板部200,300にされてもよい。従って、一つ以上の流体拡散部材4,5が、伝熱部20,30の全領域に対して配置されてもよい。   In the above embodiment, the main heat transfer region D1 (rectangular region) that is a partial region of the heat transfer units 20 and 30 is the flat plate portions 200 and 300, but is not limited thereto. For example, the entire heat transfer sections 20 and 30 (the entire overlapping area of the first flow path defining area DA and the second flow path defining area DB) may be made into the flat plate portions 200 and 300. Accordingly, one or more fluid diffusion members 4, 5 may be arranged for the entire region of the heat transfer units 20, 30.

上記実施形態において、隣り合う伝熱プレート2,3の平板部200,300の間隔を異ならせる(第一流路Raと第二流路Rbとの流路幅を異ならせる)ために、二種類の伝熱プレート2,3が交互に配置されたが、これに限定されない。例えば、それぞれの伝熱部20,30が基準面BLに沿った平板部200,300を有する同一種類の伝熱プレート2,3をX軸方向に重ね合わせるようにしてもよい。   In the above embodiment, in order to make the interval between the flat plate portions 200, 300 of the adjacent heat transfer plates 2, 3 different (the flow passage widths of the first flow passage Ra and the second flow passage Rb are made different), Although the heat transfer plates 2 and 3 are alternately arranged, the present invention is not limited to this. For example, the same type of heat transfer plates 2 and 3 having the flat plate portions 200 and 300 along the reference plane BL may be superposed in the X-axis direction.

この場合、隣り合う伝熱プレート2,3の平板部200,300の間隔(第一流路Ra及び第二流路Rbの流路幅)が同一になるため、平板部200,300の間隔に対応した同一の流体拡散部材4,5を各平板部200,300間に配置してもよい。これに伴い、二種類の伝熱プレート2,3の位置決部27,37のX軸方向の突出量(平板部200からの突出量)は、同一に設定されてもよい。なお、言うまでもないが、第一流体Aと第二流体Bとの性状の違いにより、第一流路Raを画定する平板部200,300間に配置される流体拡散部材4,5と、第二流路Rbを画定する平板部200,300間に配置される流体拡散部材4,5とを異ならせても勿論よい。   In this case, since the interval between the flat plate portions 200 and 300 of the adjacent heat transfer plates 2 and 3 (the flow channel width of the first flow channel Ra and the second flow channel Rb) is the same, it corresponds to the interval between the flat plate portions 200 and 300. The same fluid diffusion members 4 and 5 may be disposed between the flat plate portions 200 and 300. Accordingly, the amount of protrusion in the X-axis direction (the amount of protrusion from the flat plate portion 200) of the positioning portions 27 and 37 of the two types of heat transfer plates 2 and 3 may be set to be the same. Needless to say, due to the difference in properties between the first fluid A and the second fluid B, the fluid diffusion members 4 and 5 disposed between the flat plate portions 200 and 300 defining the first flow path Ra, and the second flow Of course, the fluid diffusion members 4 and 5 disposed between the flat plate portions 200 and 300 defining the path Rb may be different.

上記実施形態において、隣り合う伝熱プレート2,3の平板部200,300間に複数の流体拡散部材4,5をZ軸方向に間隔をあけて配置したが、これに限定されない。流体拡散部材4,5は、流体の性状等に応じて隣り合う伝熱プレート2,3の平板部200,300間に少なくとも一つ配置されればよい。   In the above embodiment, the plurality of fluid diffusion members 4 and 5 are arranged at intervals in the Z-axis direction between the flat plate portions 200 and 300 of the adjacent heat transfer plates 2 and 3, but the present invention is not limited to this. At least one fluid diffusing member 4, 5 may be disposed between the flat plate portions 200, 300 of the adjacent heat transfer plates 2, 3 according to the properties of the fluid.

また、伝熱部20,30全域又は伝熱部20,30の一部(例えば、主伝熱領域D1)を平板部200,300にする場合、例えば、図16に示す如く、第一面と該第一面の裏側の第二面と有する流体拡散部材4,5であって、第一面に複数の凹条及び凸条が形成されるとともに第二面に第一面の凹条と表裏の関係にある凸条及び第一面の凸条と表裏の関係にある凹条が形成された流体拡散部材4,5を二枚重ね合わせ、平板部200,300間に介装してもよい。なお、この場合に限らず、流体拡散部材4,5は、パンチングメタル(多数の穴を有する板材)等を必要な形態に形成したものであってもよい。   Further, in the case where the entire heat transfer parts 20 and 30 or a part of the heat transfer parts 20 and 30 (for example, the main heat transfer region D1) is the flat plate parts 200 and 300, for example, as shown in FIG. A fluid diffusion member 4 and 5 having a second surface on the back side of the first surface, wherein a plurality of grooves and ridges are formed on the first surface, and the grooves and front and back surfaces of the first surface are formed on the second surface. The fluid diffusion members 4 and 5 formed with the ridges having the above relationship and the ridges having the front and back relationship with the ridges on the first surface may be overlapped and interposed between the flat plate portions 200 and 300. However, the present invention is not limited to this, and the fluid diffusion members 4 and 5 may be formed by punching metal (a plate having a large number of holes) or the like in a necessary form.

この場合、二枚の流体拡散部材4,5の互いの凸条同士を交差衝合させることで、相互の凹条及び凸条による起伏で流体の流れを乱流にでき、対向する凹条によって流体(第一流体A、第二流体B)の流通が確保される。また、第一面又は第二面の凸条が平板部200,300に接触することにより、流体拡散部材4,5に作用した熱を伝熱プレート2,3(平板部200,300)に伝達でき、熱交換効率が高められる。   In this case, the flow of the fluid can be made turbulent by the undulation caused by the mutual ridges and ridges by crossing the ridges of the two fluid diffusion members 4 and 5 with each other, Distribution of the fluid (first fluid A, second fluid B) is ensured. Further, when the protrusions on the first surface or the second surface are in contact with the flat plate portions 200 and 300, heat applied to the fluid diffusion members 4 and 5 is transmitted to the heat transfer plates 2 and 3 (flat plate portions 200 and 300). And heat exchange efficiency is increased.

上記実施形態において、伝熱プレート2,3が位置決部27,37を備え、流体拡散部材4,5が位置決部27,37に対して凹凸嵌合可能に構成された被位置決部41,51を備えたが、これに限定されない。位置決部27,37及び被位置決部41,51は、必要に応じて設けられればよい。   In the above-described embodiment, the heat transfer plates 2 and 3 include the positioning portions 27 and 37, and the fluid diffusion members 4 and 5 are configured to be concavo-convexly fitted to the positioning portions 27 and 37. , 51, but is not limited to this. The positioning units 27 and 37 and the positioned units 41 and 51 may be provided as necessary.

上記実施形態において、伝熱プレート2,3の位置決部27,37が凸部で構成され、これに伴って、流体拡散部材4,5の被位置決部41,51が位置決部27,37に対して凹凸嵌合可能な凹部で構成されたが、これに限定されない。例えば、位置決部27,37及び被位置決部41,51を設ける場合、伝熱プレート2,3の位置決部27,37が凹部で構成され、これに伴って、流体拡散部材4,5の被位置決部41,51が位置決部27,37に対して凹凸嵌合可能な凸部で構成されてもよい。   In the said embodiment, the positioning parts 27 and 37 of the heat-transfer plates 2 and 3 are comprised by the convex part, and with this, the to-be-positioned parts 41 and 51 of the fluid diffusion members 4 and 5 are the positioning parts 27, Although it was comprised by the recessed part which can be unevenly fitted with respect to 37, it is not limited to this. For example, when the positioning portions 27 and 37 and the positioned portions 41 and 51 are provided, the positioning portions 27 and 37 of the heat transfer plates 2 and 3 are constituted by concave portions, and accordingly, the fluid diffusion members 4 and 5 are formed. The positioned portions 41 and 51 may be formed as convex portions that can be engaged with the positioning portions 27 and 37.

上記実施形態において、隣り合う伝熱プレート2,3のうちの一方が位置決部27,37を備えたが、これに限定されない。例えば、隣り合う伝熱プレート2,3のそれぞれが位置決部27,37を備えてもよい。この場合、流体拡散部材4,5は、隣り合う伝熱プレート2,3のそれぞれの位置決部27,37と凹凸嵌合可能な被位置決部41,51を備えることは勿論である。   In the said embodiment, although one of the adjacent heat-transfer plates 2 and 3 was equipped with the positioning parts 27 and 37, it is not limited to this. For example, each of the adjacent heat transfer plates 2 and 3 may include the positioning portions 27 and 37. In this case, of course, the fluid diffusion members 4 and 5 are provided with positioned portions 41 and 51 that can be engaged with the positioning portions 27 and 37 of the adjacent heat transfer plates 2 and 3, respectively.

上記実施形態において、流体拡散部材4,5が接触部43,53を備え、隣り合う伝熱プレート2,3の伝熱部20,30(平板部200,300)のそれぞれに流体拡散部材4,5(接触部43,53)が接触したが、これに限定されない。流体拡散部材4,5は、隣り合う伝熱プレート2,3の伝熱部20,30の何れか一方に接触(支持)されてもよい。   In the said embodiment, the fluid diffusion members 4 and 5 are provided with the contact parts 43 and 53, and the fluid diffusion members 4 and 30 (flat plate part 200 and 300) of the adjacent heat transfer plates 2 and 3 are each in the fluid diffusion member 4 and 3. Although 5 (contact part 43,53) contacted, it is not limited to this. The fluid diffusion members 4 and 5 may be brought into contact (supported) with any one of the heat transfer portions 20 and 30 of the adjacent heat transfer plates 2 and 3.

上記実施形態において、特に言及しなかったが、第一流体A及び第二流体Bのそれぞれが液体であってもよいし、第一流体A又は第二流体Bの何れか一方が液体で、第一流体A又は第二流体Bの何れか他方が気体であってもよい。   Although not particularly mentioned in the above embodiment, each of the first fluid A and the second fluid B may be a liquid, and either one of the first fluid A or the second fluid B is a liquid, Either the first fluid A or the second fluid B may be a gas.

また、第一流体A又は第二流体Bの何れか一方が液体で、第一流体A又は第二流体Bの何れか他方が気液混合体であってもよいし、第一流体A又は第二流体Bの何れか一方が気体で、第一流体A又は第二流体Bの何れか他方が気液混合体であってもよい。   Further, either the first fluid A or the second fluid B may be a liquid, and the other of the first fluid A or the second fluid B may be a gas-liquid mixture. Either one of the two fluids B may be a gas, and either the first fluid A or the second fluid B may be a gas-liquid mixture.

なお、第一流体A又は第二流体Bの何れか一方が気体である場合、その気体を流通させる流路(第一流路Ra,第二流路Rb)内の複数の流体拡散部材4,5の間に熱影響によって発電する熱電素子(熱電変換デバイス)を配置してもよい。このようにすれば、流路(第一流路Ra、第二流路Rb)で流通する流体が伝熱プレート2,3を介して隣り合う流路(第一流路Ra、第二流路Rb)で流通する流体と熱交換するため、その流路内を流通する流体(気体)の温度変化によって、熱電素子を発電させることもできる。   In addition, when either one of the first fluid A or the second fluid B is a gas, a plurality of fluid diffusion members 4 and 5 in a flow path (first flow path Ra, second flow path Rb) through which the gas flows. A thermoelectric element (thermoelectric conversion device) that generates electric power due to thermal effects may be disposed between the two. If it does in this way, the fluid which distribute | circulates in a flow path (1st flow path Ra, 2nd flow path Rb) will adjoin via the heat-transfer plates 2 and 3 (1st flow path Ra, 2nd flow path Rb). In order to exchange heat with the fluid flowing through the thermoelectric element, the thermoelectric element can be caused to generate electric power by changing the temperature of the fluid (gas) flowing through the flow path.

1…プレート式熱交換器、2,3…伝熱プレート、4,5…流体拡散部材、6…ガスケット、7,8…エンドプレート、20,30…伝熱部、21,31…貫通孔、22,32…第一ガスケット配置部、23,33…第一環状ガスケット配置部、24,34…第二ガスケット配置部、25,35…第二環状ガスケット配置部、26a,26b,36a,36b…凸部、27,37…位置決部、27a,37a…配置部、27b,37b…規制部、28a,28b,38a,38b…凸部、40,50…流通部、41,51…被位置決部、42,52…流体拡散壁、43,53…接触部、60…第一流路画定ガスケット、61…第二流路画定ガスケット、62…第二連通路画定ガスケット、63…第一連通路画定ガスケット、70…プレート本体、71…ノズル、200,300…平板部、A…第一流体、B…第二流体、BL…基準面、CL1…縦中心線、CL2…横中心線、D1…主伝熱領域、D2…分散領域、DA…第一流路画定領域、DB…第二流路画定領域、E1…第一端縁、E2…第二端縁、Ra…第一流路、Ra1,Ra2…第一連通路、Rb…第二流路、Rb1,Rb2…第二連通路、S1…第一面、S2…第二面   DESCRIPTION OF SYMBOLS 1 ... Plate type heat exchanger, 2, 3 ... Heat-transfer plate, 4, 5 ... Fluid diffusion member, 6 ... Gasket, 7, 8 ... End plate, 20, 30 ... Heat-transfer part, 21, 31 ... Through-hole, 22, 32 ... first gasket placement portion, 23, 33 ... first annular gasket placement portion, 24, 34 ... second gasket placement portion, 25, 35 ... second annular gasket placement portion, 26a, 26b, 36a, 36b ... Convex part, 27, 37 ... Position determination part, 27a, 37a ... Arrangement part, 27b, 37b ... Restriction part, 28a, 28b, 38a, 38b ... Convex part, 40, 50 ... Distribution part, 41, 51 ... Position determination Part, 42, 52 ... fluid diffusion wall, 43, 53 ... contact part, 60 ... first channel defining gasket, 61 ... second channel defining gasket, 62 ... second communication channel defining gasket, 63 ... first series channel defining Gasket, 70 ... Plate book 71 ... Nozzle, 200, 300 ... Flat plate portion, A ... First fluid, B ... Second fluid, BL ... Reference plane, CL1 ... Vertical center line, CL2 ... Horizontal center line, D1 ... Main heat transfer area, D2 ... Dispersion area, DA ... first flow path defining area, DB ... second flow path defining area, E1 ... first end edge, E2 ... second end edge, Ra ... first flow path, Ra1, Ra2 ... first series path, Rb ... second flow path, Rb1, Rb2 ... second communication path, S1 ... first surface, S2 ... second surface

Claims (4)

それぞれが平板部を含む伝熱部を有し且つ伝熱部の平板部同士が面対向するようにそれぞれの伝熱部が第一方向に重ね合わされた複数の伝熱プレートであって、隣り合う伝熱プレートの伝熱部間のそれぞれに流体を第一方向と直交する第二方向に流通させる流路を形成した複数の伝熱プレートと、隣り合う伝熱プレートの平板部間に取り外し可能に配置される流体拡散部材であって、流路内で流通する流体を拡散させる流体拡散部材とを備え、
前記複数の伝熱プレートは、離間可能に重ね合わされ、
前記隣り合う伝熱プレートのうちの少なくとも何れか一方の伝熱プレートには、凹部又は凸部の何れか一方で構成され且つ第一方向及び第二方向と直交する第三方向に間隔をあけて対をなす位置決部が、第二方向に間隔をあけて複数組設けられ、
前記流体拡散部材は、前記位置決部に対して凹凸嵌合可能に構成された凹部又は凸部の何れか他方で構成された被位置決部を備え、前記位置決部の組毎に配置可能で且つ前記隣り合う伝熱プレートの前記平板部間に少なくとも一つ配置され
各位置決部は、前記流体拡散部材の前記被位置決め部と凹凸嵌合可能な配置部と、第二方向における前記配置部の両側に設けられることで前記配置部と凹凸嵌合する前記流体拡散部材の第二方向への移動を規制する一対の規制部と、を有することを特徴とするプレート式熱交換器。
A plurality of heat transfer plates, each having a heat transfer portion including a flat plate portion, and each heat transfer portion being overlapped in the first direction so that the flat plate portions of the heat transfer portion face each other, adjacent to each other Removable between the heat transfer plates between the heat transfer plates of each heat transfer plate, and a plurality of heat transfer plates that have a flow path for flowing fluid in the second direction perpendicular to the first direction, and between the flat plate portions of the adjacent heat transfer plates A fluid diffusing member to be disposed, the fluid diffusing member diffusing the fluid flowing in the flow path,
The plurality of heat transfer plates are detachably stacked,
At least one of the adjacent heat transfer plates is configured with either a concave portion or a convex portion and spaced in a third direction perpendicular to the first direction and the second direction. A plurality of pairs of positioning portions are provided at intervals in the second direction,
The fluid diffusion member, the positioning portion irregularities fittably provided with the positioning portion is constituted by the other one of the configured concave portions or the convex portions with respect to, positionable for each set of the positioning unit And at least one is arranged between the flat plate portions of the adjacent heat transfer plates ,
Each positioning portion is provided on both sides of the positioning portion in the second direction with the positioning portion of the fluid diffusion member, and the fluid diffusion member that is unevenly fitted with the positioning portion. plate heat exchanger according to claim Rukoto that Yusuke a pair of restricting portions for restricting the movement in the second direction of the member.
流体拡散部材は、第三方向に並ぶ複数の流通部を備えるとともに、第三方向で隣り合う流通部の間に配置された流体拡散壁であって、第三方向と交差する方向に広がる流体拡散壁を備える請求項1に記載のプレート式熱交換器。   The fluid diffusion member includes a plurality of flow portions arranged in the third direction, and is a fluid diffusion wall disposed between flow portions adjacent to each other in the third direction, and fluid diffusion spreading in a direction intersecting the third direction The plate heat exchanger according to claim 1, further comprising a wall. 隣り合う伝熱プレートの平板部間に複数の流体拡散部材が配置可能に構成される請求項1又は2に記載のプレート式熱交換器。   The plate-type heat exchanger according to claim 1 or 2, wherein a plurality of fluid diffusion members can be arranged between flat plate portions of adjacent heat transfer plates. 流体拡散部材は、平板部に接触する接触部を有する請求項1乃至3の何れか1項に記載のプレート式熱交換器。
The plate-type heat exchanger according to any one of claims 1 to 3, wherein the fluid diffusion member has a contact portion that contacts the flat plate portion.
JP2017204900A 2017-10-24 2017-10-24 Plate heat exchanger Active JP6492148B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017204900A JP6492148B1 (en) 2017-10-24 2017-10-24 Plate heat exchanger

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017204900A JP6492148B1 (en) 2017-10-24 2017-10-24 Plate heat exchanger

Publications (2)

Publication Number Publication Date
JP6492148B1 true JP6492148B1 (en) 2019-03-27
JP2019078441A JP2019078441A (en) 2019-05-23

Family

ID=65895265

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017204900A Active JP6492148B1 (en) 2017-10-24 2017-10-24 Plate heat exchanger

Country Status (1)

Country Link
JP (1) JP6492148B1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6872598B1 (en) * 2019-12-09 2021-05-19 株式会社日阪製作所 Plate heat exchanger
WO2023095349A1 (en) * 2021-11-29 2023-06-01 東京濾器株式会社 Heat exchanger

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54114866U (en) * 1978-01-31 1979-08-11
JP2005083623A (en) * 2003-09-05 2005-03-31 Calsonic Kansei Corp Heat exchange unit and multilayer heat exchanger
JP2008530495A (en) * 2005-02-15 2008-08-07 アルファ ラヴァル コーポレイト アクチボラゲット Heat exchanger
JP2009139053A (en) * 2007-12-10 2009-06-25 Tokyo Radiator Mfg Co Ltd Heat exchanger for cooling exhaust gas
WO2011148505A1 (en) * 2010-05-28 2011-12-01 トヨタ自動車株式会社 Heat exchanger and method for manufacturing same
WO2014125566A1 (en) * 2013-02-12 2014-08-21 三菱電機株式会社 Plate-type heat exchanger and refrigeration cycle device
JP2017154106A (en) * 2016-03-03 2017-09-07 株式会社Ihi Reactor

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54114866U (en) * 1978-01-31 1979-08-11
JP2005083623A (en) * 2003-09-05 2005-03-31 Calsonic Kansei Corp Heat exchange unit and multilayer heat exchanger
JP2008530495A (en) * 2005-02-15 2008-08-07 アルファ ラヴァル コーポレイト アクチボラゲット Heat exchanger
JP2009139053A (en) * 2007-12-10 2009-06-25 Tokyo Radiator Mfg Co Ltd Heat exchanger for cooling exhaust gas
WO2011148505A1 (en) * 2010-05-28 2011-12-01 トヨタ自動車株式会社 Heat exchanger and method for manufacturing same
WO2014125566A1 (en) * 2013-02-12 2014-08-21 三菱電機株式会社 Plate-type heat exchanger and refrigeration cycle device
JP2017154106A (en) * 2016-03-03 2017-09-07 株式会社Ihi Reactor

Also Published As

Publication number Publication date
JP2019078441A (en) 2019-05-23

Similar Documents

Publication Publication Date Title
US3661203A (en) Plates for directing the flow of fluids
KR101483837B1 (en) Plate heat exchanger plate and plate heat exchanger
JP6420140B2 (en) Oil cooler
CN111316057B (en) Multi-fluid heat exchanger
KR20200048648A (en) Structure for cooling battery cell and battery system comprising the same
JP2008116138A (en) Heat exchange plate
JP6492148B1 (en) Plate heat exchanger
KR20070001819A (en) Heat exchange unit
JP2011007411A (en) Oil cooler
JP5468827B2 (en) Oil cooler
CN103930742A (en) Heat exchanger and corresponding flat tube and plate
JPWO2018216165A1 (en) Plate heat exchanger
US20240151475A1 (en) Heat Exchanger
JP6069425B2 (en) Plate heat exchanger
CN112146484B (en) Plate heat exchanger
JP2023534156A (en) double wall plate heat exchanger
JP2019095124A (en) Plate type heat exchanger
JP6626547B1 (en) Plate heat exchanger
CN114608368A (en) Heat exchanger
CN111765786A (en) Heat exchanger and heat exchanger assembly
JP6155364B1 (en) Plate heat exchanger
JPS5941428Y2 (en) Plate heat exchanger element
WO2023095349A1 (en) Heat exchanger
JP6097865B1 (en) Plate heat exchanger
JP2020034270A (en) Plate-type heat exchanger

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20171024

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180608

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180802

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20181012

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190111

C60 Trial request (containing other claim documents, opposition documents)

Free format text: JAPANESE INTERMEDIATE CODE: C60

Effective date: 20190111

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20190121

C21 Notice of transfer of a case for reconsideration by examiners before appeal proceedings

Free format text: JAPANESE INTERMEDIATE CODE: C21

Effective date: 20190125

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190208

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190304

R150 Certificate of patent or registration of utility model

Ref document number: 6492148

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250