JP6799680B2 - Plate heat exchanger - Google Patents

Plate heat exchanger Download PDF

Info

Publication number
JP6799680B2
JP6799680B2 JP2019519901A JP2019519901A JP6799680B2 JP 6799680 B2 JP6799680 B2 JP 6799680B2 JP 2019519901 A JP2019519901 A JP 2019519901A JP 2019519901 A JP2019519901 A JP 2019519901A JP 6799680 B2 JP6799680 B2 JP 6799680B2
Authority
JP
Japan
Prior art keywords
heat transfer
ridges
plate
barrier
adjacent
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2019519901A
Other languages
Japanese (ja)
Other versions
JPWO2018216165A1 (en
Inventor
田中 信雄
信雄 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hisaka Works Ltd
Original Assignee
Hisaka Works Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hisaka Works Ltd filed Critical Hisaka Works Ltd
Publication of JPWO2018216165A1 publication Critical patent/JPWO2018216165A1/en
Application granted granted Critical
Publication of JP6799680B2 publication Critical patent/JP6799680B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D9/00Heat-exchange apparatus having stationary plate-like or laminated conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall
    • F28D9/0031Heat-exchange apparatus having stationary plate-like or laminated conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits for one heat-exchange medium being formed by paired plates touching each other
    • F28D9/0043Heat-exchange apparatus having stationary plate-like or laminated conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits for one heat-exchange medium being formed by paired plates touching each other the plates having openings therein for circulation of at least one heat-exchange medium from one conduit to another
    • F28D9/005Heat-exchange apparatus having stationary plate-like or laminated conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits for one heat-exchange medium being formed by paired plates touching each other the plates having openings therein for circulation of at least one heat-exchange medium from one conduit to another the plates having openings therein for both heat-exchange media
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F3/00Plate-like or laminated elements; Assemblies of plate-like or laminated elements
    • F28F3/02Elements or assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with recesses, with corrugations
    • F28F3/04Elements or assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with recesses, with corrugations the means being integral with the element
    • F28F3/042Elements or assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with recesses, with corrugations the means being integral with the element in the form of local deformations of the element
    • F28F3/046Elements or assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with recesses, with corrugations the means being integral with the element in the form of local deformations of the element the deformations being linear, e.g. corrugations
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F3/00Plate-like or laminated elements; Assemblies of plate-like or laminated elements
    • F28F3/02Elements or assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with recesses, with corrugations
    • F28F3/04Elements or assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with recesses, with corrugations the means being integral with the element
    • F28F3/048Elements or assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with recesses, with corrugations the means being integral with the element in the form of ribs integral with the element or local variations in thickness of the element, e.g. grooves, microchannels
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D21/00Heat-exchange apparatus not covered by any of the groups F28D1/00 - F28D20/00
    • F28D2021/0019Other heat exchangers for particular applications; Heat exchange systems not otherwise provided for
    • F28D2021/0068Other heat exchangers for particular applications; Heat exchange systems not otherwise provided for for refrigerant cycles
    • F28D2021/007Condensers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D21/00Heat-exchange apparatus not covered by any of the groups F28D1/00 - F28D20/00
    • F28D2021/0019Other heat exchangers for particular applications; Heat exchange systems not otherwise provided for
    • F28D2021/0068Other heat exchangers for particular applications; Heat exchange systems not otherwise provided for for refrigerant cycles
    • F28D2021/0071Evaporators

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)

Description

本発明は、凝縮器や蒸発器として使用されるプレート式熱交換器に関する。 The present invention relates to a plate heat exchanger used as a condenser or an evaporator.

従来から、プレート式熱交換器は、複数の伝熱プレートを備える。複数の伝熱プレートのそれぞれは、伝熱部を含む。伝熱部は、第一方向に第一面と第二面とを有する。具体的には、伝熱部は、凸条及び凹条の形成された第一面と、該第一面に対して反対側を向き、且つ第一面の凸条と表裏の関係にある凹条及び第一面の凹条と表裏の関係にある凸条の形成された第二面とを有する。 Traditionally, plate heat exchangers include a plurality of heat transfer plates. Each of the plurality of heat transfer plates includes a heat transfer unit. The heat transfer unit has a first surface and a second surface in the first direction. Specifically, the heat transfer portion is a concave portion that faces the first surface on which the ridges and ridges are formed and the opposite side to the first surface, and has a front-back relationship with the ridges on the first surface. It has a strip and a concave strip on the first surface and a second surface on which a convex strip is formed, which is in a front-to-back relationship.

伝熱部の第一面及び第二面のそれぞれにおいて、凸条は、第一方向と直交する第二方向に延びる伝熱部の中心線(以下、縦中心線という)と交差する。該凸条は、第一方向及び第二方向のそれぞれに直交する第三方向における伝熱部の全長に亘って形成される。 On each of the first surface and the second surface of the heat transfer portion, the ridge intersects the center line (hereinafter, referred to as the vertical center line) of the heat transfer portion extending in the second direction orthogonal to the first direction. The ridges are formed over the entire length of the heat transfer portion in the third direction orthogonal to each of the first direction and the second direction.

複数の伝熱プレートは、第一方向に重ね合わされる。すなわち、複数の伝熱プレートのそれぞれは、自身の伝熱部の第一面を第一方向の一方側で隣に並ぶ伝熱プレートの伝熱部の第一面と対向させる。また、複数の伝熱プレートのそれぞれは、自身の伝熱部の第二面を第一方向の他方側で隣に並ぶ伝熱プレートの伝熱部の第二面と対向させる。 The plurality of heat transfer plates are superposed in the first direction. That is, each of the plurality of heat transfer plates faces the first surface of its own heat transfer portion with the first surface of the heat transfer portions of the heat transfer plates arranged adjacent to each other on one side in the first direction. Further, each of the plurality of heat transfer plates has its own second surface of the heat transfer portion facing the second surface of the heat transfer portions of the heat transfer plates arranged adjacent to each other on the other side of the first direction.

この状態で、隣り合う伝熱プレートの伝熱部の凸条同士は、交差衝合し、伝熱部の凹条により、隣り合う伝熱プレートの伝熱部間に空間が形成される。すなわち、第一流体を第二方向に流通させる第一流路が隣り合う伝熱プレートの伝熱部の第一面間に形成される。また、第二流体を第二方向に流通させる第二流路が隣り合う伝熱プレートの伝熱部の第二面間に形成される。これに伴い、プレート式熱交換器は、第一流路と第二流路とを仕切る伝熱部を介して第一流路内の第一流体と第二流路内の第二流体とを熱交換させる(例えば、特許文献1参照)。 In this state, the protrusions of the heat transfer portions of the adjacent heat transfer plates intersect with each other, and the recesses of the heat transfer portion form a space between the heat transfer portions of the adjacent heat transfer plates. That is, the first flow path through which the first fluid flows in the second direction is formed between the first surfaces of the heat transfer portions of the adjacent heat transfer plates. Further, a second flow path for flowing the second fluid in the second direction is formed between the second surfaces of the heat transfer portions of the adjacent heat transfer plates. Along with this, the plate heat exchanger exchanges heat between the first fluid in the first flow path and the second fluid in the second flow path via the heat transfer portion that separates the first flow path and the second flow path. (See, for example, Patent Document 1).

ところで、この種のプレート式熱交換器は、第一流路内の第一流体と第二流路内の第二流体との熱交換により、第二流路内の第二流体を凝縮させる凝縮器として使用されることがある。また、この種のプレート式熱交換器は、第一流路内の第一流体と第二流路内の第二流体との熱交換により、第二流路内の第二流体を蒸発させる蒸発器として使用されることもある。 By the way, this type of plate heat exchanger is a condenser that condenses the second fluid in the second flow path by heat exchange between the first fluid in the first flow path and the second fluid in the second flow path. May be used as. Further, this type of plate heat exchanger is an evaporator that evaporates the second fluid in the second flow path by heat exchange between the first fluid in the first flow path and the second fluid in the second flow path. It may also be used as.

しかしながら、従来のプレート式熱交換器では、凝縮器や蒸発器として使用された場合、凝縮や蒸発の対象となる第二流体の特性との関係で、熱伝達性能を向上させるのに限界がある。 However, in the conventional plate heat exchanger, when used as a condenser or an evaporator, there is a limit in improving the heat transfer performance in relation to the characteristics of the second fluid to be condensed or evaporated. ..

具体的に説明すると、伝熱部の凸条は、該伝熱部の縦中心線を横切り、第三方向における伝熱部の全長に亘って形成される。そのため、伝熱部の凸条は、第一流路及び第二流路のそれぞれの流通抵抗を大きくする。 More specifically, the ridges of the heat transfer portion cross the vertical center line of the heat transfer portion and are formed over the entire length of the heat transfer portion in the third direction. Therefore, the ridges of the heat transfer portion increase the flow resistance of each of the first flow path and the second flow path.

一般的に、第一流体には、相変化を起こさない流体(単相流となる流体)が採用される。そのため、第一流路の流通抵抗の増加は、伝熱部に対して熱的な影響を及ぼす機会を増やす。従って、第一流路の流通抵抗の増加は、熱伝達性能を高める要因となる。 Generally, as the first fluid, a fluid that does not cause a phase change (a fluid that becomes a single-phase flow) is adopted. Therefore, an increase in the flow resistance of the first flow path increases the chance of having a thermal effect on the heat transfer part. Therefore, an increase in the flow resistance of the first flow path becomes a factor for enhancing the heat transfer performance.

これに対し、第二流体には、フロン等の相変化を起こす流体(液体と気体とを含む二相流となる流体)が採用される。これに伴い、第二流路を画定する伝熱部の第二面上に、第二流体の液膜が形成される。そのため、熱伝達性能を向上させるべく、第二流体の流速を速め、伝熱部の第二面上に形成される液膜の流れを乱す必要がある。 On the other hand, as the second fluid, a fluid that causes a phase change such as chlorofluorocarbon (a fluid that becomes a two-phase flow including a liquid and a gas) is adopted. Along with this, a liquid film of the second fluid is formed on the second surface of the heat transfer portion that defines the second flow path. Therefore, in order to improve the heat transfer performance, it is necessary to increase the flow velocity of the second fluid and disturb the flow of the liquid film formed on the second surface of the heat transfer portion.

しかしながら、伝熱部の凸条は、該伝熱部の縦中心線を横切って、第三方向における伝熱部の全長に亘って形成されるため、伝熱部の凸条は、第二流路内での第二流体の流れを阻害する。すなわち、伝熱部の第二面にある凸条は、第二流路内での第二流体の流れに対して横切る(交差する)ように形成されるため、第二流路内での第二流体の流通抵抗を大きくする。 However, since the ridges of the heat transfer portion are formed over the entire length of the heat transfer portion in the third direction across the vertical center line of the heat transfer portion, the ridges of the heat transfer portion are the second flow. It obstructs the flow of the second fluid in the path. That is, since the ridges on the second surface of the heat transfer portion are formed so as to cross (cross) the flow of the second fluid in the second flow path, the second in the second flow path. (2) Increase the flow resistance of the fluid.

そのため、従来のプレート式熱交換器では、第二流路内での第二流体の流速を速めるには限界があり、伝熱部の第二面上に形成される第二流体の液膜の流れを十分に乱すことができない。 Therefore, in the conventional plate heat exchanger, there is a limit in increasing the flow velocity of the second fluid in the second flow path, and the liquid film of the second fluid formed on the second surface of the heat transfer portion has a limit. The flow cannot be disturbed sufficiently.

従って、従来のプレート式熱交換器では、第二流路を流通する第二流体の伝熱部に対する熱伝達性能を高めるのに限界がある。 Therefore, in the conventional plate heat exchanger, there is a limit in improving the heat transfer performance of the second fluid flowing through the second flow path to the heat transfer portion.

日本国特開2001−99588号公報Japanese Patent Application Laid-Open No. 2001-99588

そこで、本発明は、第一流体との熱交換によって相変化する第二流体の伝熱部に対する熱伝達性能を向上させることのできるプレート式熱交換器を提供することを課題とする。 Therefore, it is an object of the present invention to provide a plate type heat exchanger capable of improving the heat transfer performance of the second fluid whose phase changes by heat exchange with the first fluid to the heat transfer portion.

本発明のプレート式熱交換器は、凸条及び凹条の形成された第一面と、該第一面に対して反対側を向き、且つ第一面の凸条と表裏の関係にある凹条及び第一面の凹条と表裏の関係にある凸条の形成された第二面とを有する伝熱部を含む伝熱プレートであって、それぞれの伝熱部が第一方向に重ね合わされた複数の伝熱プレートを備え、複数の伝熱プレートのそれぞれは、自身の伝熱部の第一面を第一方向の一方側で隣に並ぶ伝熱プレートにおける伝熱部の第一面と対向させるとともに、自身の伝熱部の第二面を第一方向の他方側で隣に並ぶ伝熱プレートにおける伝熱部の第二面と対向させ、第一流体を第一方向と直交する第二方向に流通させる第一流路が隣り合う伝熱プレートの伝熱部の第一面間に形成されるとともに、第二流体を第二方向に流通させる第二流路が隣り合う伝熱プレートの伝熱部の第二面間に形成され、隣り合う伝熱プレートのそれぞれの伝熱部は、第一面に形成される凸条として、第一方向及び第二方向と交差する方向に間隔をあけて配置された複数の第一凸条であって、それぞれが第二方向又は第二方向を成分に含む合成方向に延びる複数の第一凸条と、該第一面に形成される第一凸条よりも低い障壁用凸条であって、第一凸条と交差する方向に延びる少なくとも一つの障壁用凸条とを含むとともに、第一面に形成される凹条として、第一方向及び第二方向と交差する方向で隣り合う第一凸条間に形成される複数の第一凹条を含み、且つ第二面に形成される凹条として、第一凸条と表裏の関係にある複数の第二凹条を含み、隣り合う伝熱プレートのそれぞれの第一凸条は、相手方の伝熱プレートの第一凸条間に位置し、隣り合う伝熱プレートのそれぞれの障壁用凸条の長手方向の寸法が、伝熱部の第一方向及び第二方向と直交する第三方向の全長よりも短く設定され、隣り合う伝熱プレートの障壁用凸条は、第二方向及び第三方向の少なくとも何れか一方で互いに位置ずれした位置に配置され、相手方の伝熱プレートの第一凸条と交差衝合している。 In the plate-type heat exchanger of the present invention, the first surface on which the ridges and ridges are formed and the dents facing the opposite side to the first surface and having a front-back relationship with the ridges on the first surface. A heat transfer plate including a heat transfer portion having a strip and a concave strip on the first surface and a second surface on which a convex strip is formed, and the respective heat transfer portions are superposed in the first direction. A plurality of heat transfer plates are provided, and each of the plurality of heat transfer plates has the first surface of its own heat transfer portion as the first surface of the heat transfer portion in the heat transfer plate arranged next to each other on one side in the first direction. Along with facing each other, the second surface of its own heat transfer portion is opposed to the second surface of the heat transfer portion in the heat transfer plates arranged next to each other on the other side of the first direction, and the first fluid is orthogonal to the first direction. The first flow path that flows in two directions is formed between the first surfaces of the heat transfer parts of the adjacent heat transfer plates, and the second flow path that allows the second fluid to flow in the second direction is adjacent to the heat transfer plate. The heat transfer portions of the adjacent heat transfer plates formed between the second surfaces of the heat transfer portions are spaced as ridges formed on the first surface in the direction intersecting the first direction and the second direction. A plurality of first ridges arranged apart from each other, each of which extends in a synthetic direction including a second direction or a second direction as a component, and a first formed on the first surface. A barrier ridge lower than the ridge, including at least one barrier ridge extending in a direction intersecting the first ridge, and as a dent formed on the first surface in the first direction and It includes a plurality of first ridges formed between the first ridges adjacent to each other in the direction intersecting the second direction, and has a front-back relationship with the first ridge as a dent formed on the second surface. Each first ridge of an adjacent heat transfer plate, including multiple second ridges, is located between the first ridges of the other heat transfer plate and is a barrier ridge of each of the adjacent heat transfer plates. The longitudinal dimension of the heat transfer portion is set shorter than the total length of the first direction and the third direction orthogonal to the second direction of the heat transfer part, and the barrier ridges of the adjacent heat transfer plates are set in the second direction and the third direction. They are located at positions that are offset from each other in at least one of the directions and intersect the first ridge of the other heat transfer plate.

本発明の一態様として、隣り合う伝熱プレートのそれぞれの伝熱部は、障壁用凸条を複数含み、複数の障壁用凸条は、第二方向に間隔をあけて整列していてもよい。 As one aspect of the present invention, each heat transfer portion of adjacent heat transfer plates may include a plurality of barrier ridges, and the plurality of barrier ridges may be aligned in a second direction at intervals. ..

本発明の他態様として、隣り合う伝熱プレートのうちの一方の伝熱プレートの伝熱部は、第二方向に間隔をあけて配置された複数の障壁用凸条を含む列を少なくとも一列有し、隣り合う伝熱プレートのうちの他方の伝熱プレートの伝熱部は、第二方向に間隔をあけて配置された複数の障壁用凸条を含む列を少なくとも二列有し、隣り合う伝熱プレートのうちの一方の伝熱プレートにおける列が、他方の伝熱プレートの列間に位置していることが好ましい。 As another aspect of the present invention, the heat transfer portion of one of the adjacent heat transfer plates has at least one row including a plurality of barrier ridges arranged at intervals in the second direction. The heat transfer portion of the other heat transfer plate of the adjacent heat transfer plates has at least two rows including a plurality of barrier ridges arranged at intervals in the second direction and is adjacent to each other. It is preferred that the rows of heat transfer plates in one of the heat transfer plates are located between the rows of the other heat transfer plates.

この場合、隣り合う伝熱プレートのうちの一方の伝熱プレートにおける列を構成する複数の障壁用凸条のそれぞれは、隣り合う伝熱プレートのうちの他方の伝熱プレートにおける列を構成する複数の障壁用凸条の間に位置することが好ましい。 In this case, each of the plurality of barrier ridges forming a row in one of the adjacent heat transfer plates constitutes a row in the other heat transfer plate of the adjacent heat transfer plates. It is preferably located between the barrier ridges.

本発明の別の態様として、障壁用凸条は、第三方向に真っすぐに延びていてもよい。 In another aspect of the invention, the barrier ridges may extend straight in the third direction.

本発明のさらに別の態様として、隣り合う伝熱プレートのそれぞれの伝熱部は、第二面に形成される凸条として、第一凹条と表裏の関係にある複数の第二凸条を含み、隣り合う伝熱プレートのそれぞれの第二凸条は、相手方の伝熱プレートの第二凸条と重なり合い、該相手方の伝熱プレートの第二凸条の部と接触していることが好ましい。
As yet another aspect of the present invention, each heat transfer portion of the adjacent heat transfer plates has a plurality of second protrusions having a front-back relationship with the first recess as the protrusions formed on the second surface. Each second ridge of the adjacent heat transfer plate, including, overlaps the second ridge of the other heat transfer plate and is in contact with the top of the second ridge of the other heat transfer plate. preferable.

図1は、本発明の第一実施形態に係るプレート式熱交換器の斜視図である。FIG. 1 is a perspective view of a plate heat exchanger according to the first embodiment of the present invention. 図2は、同実施形態に係るプレート式熱交換器の分解斜視図であって、第一流体及び第二流体の流通経路を含む分解斜視図である。FIG. 2 is an exploded perspective view of the plate heat exchanger according to the same embodiment, which is an exploded perspective view including a flow path of the first fluid and the second fluid. 図3は、同実施形態に係るプレート式熱交換器の伝熱プレート(第一伝熱プレート)を第一面側から見た図である。FIG. 3 is a view of the heat transfer plate (first heat transfer plate) of the plate heat exchanger according to the same embodiment as viewed from the front surface side. 図4は、同実施形態に係るプレート式熱交換器の伝熱プレート(第一伝熱プレート)を第二面側から見た図である。FIG. 4 is a view of the heat transfer plate (first heat transfer plate) of the plate heat exchanger according to the same embodiment as viewed from the second surface side. 図5は、同実施形態に係るプレート式熱交換器の伝熱プレート(第二伝熱プレート)を第一面側から見た図である。FIG. 5 is a view of the heat transfer plate (second heat transfer plate) of the plate heat exchanger according to the same embodiment as viewed from the front surface side. 図6は、同実施形態に係るプレート式熱交換器の伝熱プレート(第二伝熱プレート)を第二面側から見た図である。FIG. 6 is a view of the heat transfer plate (second heat transfer plate) of the plate heat exchanger according to the same embodiment as viewed from the second surface side. 図7は、同実施形態に係るプレート式熱交換器の第一流路内での第一流体の流通経路及び第二流路内での第二流体の流通経路を示す概略図である。FIG. 7 is a schematic view showing a flow path of the first fluid in the first flow path and a flow path of the second fluid in the second flow path of the plate heat exchanger according to the same embodiment. 図8は、同実施形態に係るプレート式熱交換器の第二方向から見た概略部分断面図である。FIG. 8 is a schematic partial cross-sectional view of the plate heat exchanger according to the embodiment as viewed from the second direction. 図9は、図8のIX−IX断面図であって、第一流路及び第二流路での流体の流れを付記した断面図である。9 is a cross-sectional view of IX-IX of FIG. 8, which is a cross-sectional view showing the flow of fluid in the first flow path and the second flow path. 図9は、図8のX−X断面図であって、第一流路及び第二流路での流体の流れを付記した断面図である。9 is a cross-sectional view taken along the line XX of FIG. 8, which is a cross-sectional view showing the flow of fluid in the first flow path and the second flow path. 図11は、図8のXI−XI断面図であって、第一流路及び第二流路での流体の流れを付記した断面図である。FIG. 11 is a cross-sectional view taken along the line XI-XI of FIG. 8, which is a cross-sectional view showing the flow of fluid in the first flow path and the second flow path. 図12は、同実施形態に係るプレート式熱交換器における第一流路内での第一流体の流れを示す図である。FIG. 12 is a diagram showing the flow of the first fluid in the first flow path in the plate heat exchanger according to the same embodiment. 図13は、同実施形態に係るプレート式熱交換器における第二流路内での第二流体の流れを示す図である。FIG. 13 is a diagram showing the flow of the second fluid in the second flow path in the plate heat exchanger according to the same embodiment. 図14は、本発明の他実施形態に係るプレート式熱交換器の第二方向から見た概略部分断面図である。FIG. 14 is a schematic partial cross-sectional view of the plate heat exchanger according to another embodiment of the present invention as viewed from the second direction. 図15は、本発明の別の実施形態に係るプレート式熱交換器の第二方向から見た概略部分断面図である。FIG. 15 is a schematic partial cross-sectional view of the plate heat exchanger according to another embodiment of the present invention as viewed from the second direction. 図16は、本発明のさらに別の実施形態に係るプレート式熱交換器の第二方向から見た概略部分断面図である。FIG. 16 is a schematic partial cross-sectional view of the plate heat exchanger according to still another embodiment of the present invention as viewed from the second direction. 図17は、本発明のさらに別の実施形態に係るプレート式熱交換器の第一流路内での第一流体の流通経路及び第二流路内での第二流体の流通経路を示す概略図である。FIG. 17 is a schematic view showing a flow path of the first fluid in the first flow path and a flow path of the second fluid in the second flow path of the plate heat exchanger according to still another embodiment of the present invention. Is. 図18は、本発明のさらに別の実施形態に係るプレート式熱交換器の第一流路内での第一流体の流通経路及び第二流路内での第二流体の流通経路を示す概略図である。FIG. 18 is a schematic view showing a flow path of the first fluid in the first flow path and a flow path of the second fluid in the second flow path of the plate heat exchanger according to still another embodiment of the present invention. Is.

以下、本発明の第一実施形態に係るプレート式熱交換器について、添付図面を参照して説明する。 Hereinafter, the plate heat exchanger according to the first embodiment of the present invention will be described with reference to the accompanying drawings.

図1及び図2に示す如く、第一実施形態に係るプレート式熱交換器(以下、本実施形態において、単に熱交換器という)1は、三つ以上の伝熱プレート2,3を備える。 As shown in FIGS. 1 and 2, the plate heat exchanger 1 according to the first embodiment (hereinafter, simply referred to as a heat exchanger in the present embodiment) 1 includes three or more heat transfer plates 2 and 3.

三つ以上の伝熱プレート2,3は、第一方向に重ね合わされる。本実施形態に係る熱交換器1は、三つ以上の伝熱プレート2,3には、二種類の伝熱プレートが含まれる。二種類の伝熱プレート2,3は、第一方向において交互に配置される。 Three or more heat transfer plates 2 and 3 are superposed in the first direction. In the heat exchanger 1 according to the present embodiment, the three or more heat transfer plates 2 and 3 include two types of heat transfer plates. The two types of heat transfer plates 2 and 3 are arranged alternately in the first direction.

これに伴い、熱交換器1には、伝熱プレート2,3を境にして、第一流体Aを流通させる第一流路Raと、第二流体Bを流通させる第二流路Rbとが第一方向において交互に形成される。 Along with this, in the heat exchanger 1, the first flow path Ra through which the first fluid A is circulated and the second flow path Rb through which the second fluid B is circulated are located at the boundary of the heat transfer plates 2 and 3. It is formed alternately in one direction.

ここで、二種類の伝熱プレート2,3について具体的に説明する。二種類の伝熱プレート2,3は、共通点と、相違点とを有する。まず、二種類の伝熱プレート2,3の共通点について説明する。 Here, the two types of heat transfer plates 2 and 3 will be specifically described. The two types of heat transfer plates 2 and 3 have commonalities and differences. First, the common points between the two types of heat transfer plates 2 and 3 will be described.

伝熱プレート2,3は、図3乃至図6に示す如く、第一面Sa1,Sb1と該第一面Sa1,Sb1に対して反対向きの第二面Sa2,Sb2とを有する伝熱部20,30と、伝熱部20,30の外周縁全周から該伝熱部20,30と面交差する方向に延出した環状の嵌合部21,31とを備える。 As shown in FIGS. 3 to 6, the heat transfer plates 2 and 3 have a heat transfer portion 20 having a first surface Sa1 and Sb1 and a second surface Sa2 and Sb2 opposite to the first surface Sa1 and Sb1. , 30 and annular fitting portions 21, 31 extending from the entire outer peripheral edge of the heat transfer portions 20, 30 in a direction intersecting the heat transfer portions 20, 30.

伝熱部20,30は、第一方向に厚みを有する。これに伴い、伝熱部20,30の第一面Sa1,Sb1及び第二面Sa2,Sb2は、第一方向に並ぶ。伝熱部20,30の外形(輪郭)は、第一方向と直交する第二方向に延びる一対の長辺と、第二方向に間隔をあけて配置される一対の短辺であって、それぞれが第一方向及び第二方向と直交する第三方向に延びて一対の長辺を繋ぐ一対の短辺とによって画定される。すなわち、第一方向から見た伝熱部20,30の外形は、第二方向に長手をなす長方形状である。 The heat transfer portions 20 and 30 have a thickness in the first direction. Along with this, the first surfaces Sa1, Sb1 and the second surfaces Sa2, Sb2 of the heat transfer portions 20 and 30 are arranged in the first direction. The outer shapes (contours) of the heat transfer portions 20 and 30 are a pair of long sides extending in the second direction orthogonal to the first direction and a pair of short sides arranged at intervals in the second direction, respectively. Is defined by a pair of short sides that extend in a third direction orthogonal to the first and second directions and connect a pair of long sides. That is, the outer shape of the heat transfer portions 20 and 30 viewed from the first direction is a rectangular shape elongated in the second direction.

伝熱部20,30は、第二方向に一端部と該一端部の反対側の他端部を有する。伝熱部20,30は、第二方向の一端部及び他端部のそれぞれに少なくとも二つの開口200,201,202,203,300,301,302,303を有する。本実施形態において、伝熱部20,30は、第二方向の一端部に二つの開口200,203,300,303を有し、第二方向の他端部に二つの開口201,202,301,302を有する。 The heat transfer portions 20 and 30 have one end in the second direction and the other end on the opposite side of the one end. The heat transfer portions 20 and 30 have at least two openings 200, 201, 202, 203, 300, 301, 302 and 303 at one end and the other end in the second direction, respectively. In the present embodiment, the heat transfer portions 20 and 30 have two openings 200, 203, 300, 303 at one end in the second direction and two openings 201, 202, 301 at the other end in the second direction. , 302.

第二方向における伝熱部20,30の一端部にある二つの開口200,203,300,303は、第三方向に並んでいる。また、第二方向における伝熱部20,30の他端部にある二つの開口201,202,301,302は、第三方向に並んでいる。 The two openings 200, 203, 300, 303 at one end of the heat transfer portions 20, 30 in the second direction are arranged in the third direction. Further, the two openings 201, 202, 301 and 302 at the other ends of the heat transfer portions 20 and 30 in the second direction are arranged in the third direction.

伝熱部20,30における第二方向の一端部にある一方の開口200,300の周囲及び他端部にある一方の開口201,301の周囲は、第一面Sa1,Sb1側において窪んでいる。これに伴い、伝熱部20,30における第二方向の一端部にある一方の開口200,300の周囲及び他端部にある一方の開口201,301の周囲は、第二面Sa2,Sb2側において膨出している。 The periphery of one opening 200, 300 at one end in the second direction and the periphery of one opening 201, 301 at the other end of the heat transfer portions 20 and 30 are recessed on the first surface Sa1, Sb1 side. .. Along with this, the periphery of one opening 200, 300 at one end in the second direction and the periphery of one opening 201, 301 at the other end of the heat transfer portions 20, 30 are on the second surface Sa2, Sb2 side. Is bulging in.

伝熱部20,30における第二方向の一端部にある一方の開口200,300の周囲及び他端部にある一方の開口201,301の周囲の第二面Sa2,Sb2側への膨出量は、第一方向で隣に並ぶ伝熱プレート2,3の伝熱部20,30の開口200,201,300,301(一端部の一方の開口200,300及び他端部の一方の開口201,301)の周囲と接触可能に設定される。 Amount of swelling toward the second surface Sa2, Sb2 around one opening 200, 300 at one end in the second direction and around one opening 201, 301 at the other end of the heat transfer portions 20, 30. 200, 201, 300, 301 of the heat transfer portions 20, 30 of the heat transfer plates 2 and 3 arranged next to each other in the first direction (one opening 200, 300 at one end and one opening 201 at the other end). , 301) is set to be in contact with the surroundings.

これに対し、伝熱部20,30における第二方向の一端部にある他方の開口203,303の周囲及び他端部にある他方の開口202,302の周囲は、第二面Sa2,Sb2側において窪んでいる。これに伴い、伝熱部20,30における第二方向の一端部にある他方の開口203,303の周囲及び他端部にある他方の開口202,302の周囲は、第一面Sa1,Sb1側において膨出している。 On the other hand, the periphery of the other openings 203 and 303 at one end in the second direction of the heat transfer portions 20 and 30 and the periphery of the other openings 202 and 302 at the other end are on the second surface Sa2 and Sb2 sides. Is dented in. Along with this, the periphery of the other openings 203 and 303 at one end in the second direction of the heat transfer portions 20 and 30 and the periphery of the other openings 202 and 302 at the other end are on the first surface Sa1, Sb1 side. Is bulging in.

伝熱部20,30における第二方向の一端部にある他方の開口203,303の周囲及び他端部にある他方の開口202,302の周囲の第一面Sa1,Sb1側への膨出量は、第一方向で隣に並ぶ伝熱プレート2,3の伝熱部20,30の開口202,203,302,303(一端部の他方の開口202,302及び他端部にある他方の開口203,303)の周囲(膨出した部分)と接触可能に設定される。なお、図3乃至図6において、第一面Sa1,Sb1及び第二面Sa2,Sb2のそれぞれにおける凹凸関係を明確にすべく、開口200,201,202,203,300,301,302,303の周囲で窪んでいる領域、及び後述する凹条22,32の底部分に対してドットを付している。 Amount of swelling toward the first surfaces Sa1 and Sb1 around the other openings 203 and 303 at one end in the second direction and around the other openings 202 and 302 at the other end of the heat transfer portions 20 and 30. Is the openings 202, 203, 302, 303 of the heat transfer portions 20, 30 of the heat transfer plates 2 and 3 arranged next to each other in the first direction (the other openings 202, 302 at one end and the other openings at the other end). It is set so that it can come into contact with the periphery (bulging portion) of 203 and 303). In addition, in FIGS. 3 to 6, in order to clarify the unevenness relationship on each of the first surface Sa1, Sb1 and the second surface Sa2, Sb2, the openings 200, 201, 202, 203, 300, 301, 302, 303 Dots are attached to the peripherally recessed areas and the bottom portions of the recesses 22 and 32, which will be described later.

本実施形態において、伝熱プレート2,3を重ね合わせる態様との関係で、伝熱部20,30における第二方向の一端部にある一方の開口200,300と他端部にある一方の開口201,301とは、対角位置にある。また、伝熱部20,30における第二方向の一端部にある他方の開口203,303と他端部にある他方の開口202,302とは、対角位置にある。 In the present embodiment, one opening 200, 300 at one end in the second direction and one opening at the other end of the heat transfer portions 20 and 30 are related to the aspect of superimposing the heat transfer plates 2 and 3. 201 and 301 are in diagonal positions. Further, the other openings 203 and 303 at one end in the second direction and the other openings 202 and 302 at the other end of the heat transfer portions 20 and 30 are diagonally located.

伝熱部20,30の第一面Sa1,Sb1及び第二面Sa2,Sb2のそれぞれには、凹条22,32及び凸条23,33が形成されている。伝熱部20,30の第一面Sa1,Sb1及び第二面Sa2,Sb2のそれぞれにおいて、凹条22,32及び凸条23,33のそれぞれは、複数(多数)ある。 Concavities 22, 32 and ridges 23, 33 are formed on the first surfaces Sa1, Sb1 and the second surfaces Sa2, Sb2 of the heat transfer portions 20 and 30, respectively. In each of the first surfaces Sa1 and Sb1 and the second surfaces Sa2 and Sb2 of the heat transfer portions 20 and 30, there are a plurality (many) of the recesses 22 and 32 and the protrusions 23 and 33, respectively.

より具体的には、伝熱プレート2,3は、金属プレートをプレス成形することで成形される。これに伴い、伝熱部20,30の第一面Sa1,Sb1に形成された凹条22,32と、伝熱部20,30の第二面Sa2,Sb2に形成された凸条23,33とは、表裏の関係にある。また、伝熱部20,30の第一面Sa1,Sb1に形成された凸条23,33と、伝熱部20,30の第二面Sa2,Sb2に形成された凹条22,32とは、表裏の関係にある。すなわち、プレス成形に伴う金属プレートの変形により、伝熱部20,30の第一面Sa1,Sb1に形成された凹条22,32は、伝熱部20,30の第二面Sa2,Sb2に形成された凸条23,33と対応した位置に形成される。また、プレス成形に伴う金属プレートの変形により、伝熱部20,30の第一面Sa1,Sb1に形成された凸条23,33は、伝熱部20,30の第二面Sa2,Sb2に形成された凹条22,32と対応した位置に形成される。 More specifically, the heat transfer plates 2 and 3 are formed by press-molding a metal plate. Along with this, the recesses 22 and 32 formed on the first surfaces Sa1 and Sb1 of the heat transfer portions 20 and 30, and the protrusions 23 and 33 formed on the second surfaces Sa2 and Sb2 of the heat transfer portions 20 and 30. There is a two-sided relationship with. Further, the ridges 23 and 33 formed on the first surfaces Sa1 and Sb1 of the heat transfer portions 20 and 30 and the dents 22 and 32 formed on the second surfaces Sa2 and Sb2 of the heat transfer portions 20 and 30 , There is a two-sided relationship. That is, the recesses 22 and 32 formed on the first surfaces Sa1 and Sb1 of the heat transfer portions 20 and 30 due to the deformation of the metal plate due to the press molding are formed on the second surfaces Sa2 and Sb2 of the heat transfer portions 20 and 30. It is formed at a position corresponding to the formed protrusions 23 and 33. Further, the ridges 23 and 33 formed on the first surfaces Sa1 and Sb1 of the heat transfer portions 20 and 30 due to the deformation of the metal plate due to the press molding are formed on the second surfaces Sa2 and Sb2 of the heat transfer portions 20 and 30. It is formed at a position corresponding to the formed recesses 22 and 32.

図3及び図5に示す如く、伝熱部20,30は、第一面Sa1,Sb1に形成される凹条22,32として、それぞれが第二方向に延びる複数の第一凹条220,320であって、第三方向に間隔をあけて配置された複数の第一凹条220,320を含む。また、伝熱部20,30は、第一面Sa1,Sb1に形成される凸条23,33として、第三方向で隣り合う第一凹条220,320間で第二方向に延びる複数の第一凸条230,330を含む。すなわち、伝熱部20,30の第一面Sa1,Sb1において、第一凹条220,320及び第一凸条230,330は、第三方向で交互に配置される。 As shown in FIGS. 3 and 5, the heat transfer portions 20 and 30 have a plurality of first recesses 220 and 320 extending in the second direction as recesses 22 and 32 formed on the first surfaces Sa1 and Sb1. It includes a plurality of first recesses 220, 320 arranged at intervals in the third direction. Further, the heat transfer portions 20 and 30 are a plurality of second portions extending in the second direction between the first recesses 220 and 320 adjacent to each other in the third direction as the protrusions 23 and 33 formed on the first surfaces Sa1 and Sb1. Includes one convex strip 230, 330. That is, on the first surfaces Sa1 and Sb1 of the heat transfer portions 20 and 30, the first recesses 220 and 320 and the first protrusions 230 and 330 are alternately arranged in the third direction.

さらに、伝熱部20,30は、第一面Sa1,Sb1に形成される凸条23,33として、該第一面Sa1,Sb1に形成される第一凸条230,330よりも低い障壁用凸条231,331であって、複数の第一凸条230,330と交差する方向に延びる少なくとも一つの障壁用凸条231,331を含む。 Further, the heat transfer portions 20 and 30 serve as the protrusions 23 and 33 formed on the first surfaces Sa1 and Sb1 for a barrier lower than the first protrusions 230 and 330 formed on the first surfaces Sa1 and Sb1. The ridges 231 and 331 include at least one barrier ridge 231 and 331 extending in a direction intersecting the plurality of first ridges 230 and 330.

複数の第一凹条220,320のそれぞれにおける第三方向の幅、及び複数の第一凸条230,330のそれぞれの第三方向の幅は、同一又は略同一である。第一凹条220,320を画定する内面と第一凸条230,330を画定する外面とは連続している。これにより、伝熱部20,30の第一面Sa1,Sb1は、第一方向に起伏した波形状に形成される。 The width of each of the plurality of first ridges 220 and 320 in the third direction and the width of each of the plurality of first ridges 230 and 330 in the third direction are the same or substantially the same. The inner surface defining the first recesses 220 and 320 and the outer surface defining the first protrusions 230 and 330 are continuous. As a result, the first surfaces Sa1 and Sb1 of the heat transfer portions 20 and 30 are formed in a wavy shape undulating in the first direction.

これを前提に、伝熱部20,30の第一面Sa1,Sb1において、複数の第一凹条220,320のうちの特定の第一凹条220,320と、複数の第一凸条230,330のうちの特定の第一凸条230,330であって、特定の第一凹条220,320と隣り合う第一凸条230,330との境界が、縦中心線CL上に位置している。 On the premise of this, on the first surfaces Sa1 and Sb1 of the heat transfer portions 20 and 30, the specific first recesses 220 and 320 of the plurality of first recesses 220 and 320 and the plurality of first protrusions 230 , 330, which is the specific first ridges 230 and 330, and the boundary between the specific first ridges 220 and 320 and the adjacent first ridges 230 and 330 is located on the vertical center line CL. ing.

すなわち、特定の第一凹条220,320又は特定の第一凸条230,330は、一つの第一凹条220,320を挟んで隣り合う第一凸条230,330同士の間隔、又は一つの第一凸条230,330を挟んで隣り合う第一凹条220,320同士の間隔の1/4の距離だけ縦中心線CLから第三方向にずれて配置される。 That is, the specific first ridges 220, 320 or the specific first ridges 230, 330 are spaced apart from each other or one of the first ridges 230, 330 adjacent to each other with the first ridge 220, 320 in between. It is arranged so as to be offset from the vertical center line CL in the third direction by a distance of 1/4 of the distance between the first concave grooves 220 and 320 adjacent to each other with the first convex grooves 230 and 330 in between.

本実施形態において、伝熱部20,30の第一面Sa1,Sb1には、複数の障壁用凸条231,331がある。複数の障壁用凸条231,331は、第二方向に間隔をあけて配置される。複数の障壁用凸条231,331のそれぞれは、上述の如く、第一凸条230,330よりも低い。具体的には、第二面Sa2,Sb2上に形成される後述する複数の第二凸条233,333の部を通る仮想面(第二方向及び第三方向に広がる仮想面)からの突出量が、第一凸条230,330よりも障壁用凸条231,331の方が少ない。これに伴い、障壁用凸条231,331の部は、第一凸条230,330の部よりも第一方向において第二面側に位置する。すなわち、障壁用凸条231,331の部は、第一凸条230,330の部と第一凹条220,320の底部との間に位置する。
In the present embodiment, the first surfaces Sa1 and Sb1 of the heat transfer portions 20 and 30 have a plurality of barrier protrusions 231 and 331. The plurality of barrier protrusions 231 and 331 are arranged at intervals in the second direction. Each of the plurality of barrier ridges 231 and 331 is lower than the first ridges 230 and 330, as described above. Specifically, protrusions from a virtual surface (a virtual surface extending in the second and third directions) passing through the tops of a plurality of second protrusions 233 and 333 formed on the second surfaces Sa2 and Sb2, which will be described later. The amount of the barrier ridges 231 and 331 is smaller than that of the first ridges 230 and 330. Along with this, the tops of the barrier ridges 231 and 331 are located on the second surface side in the first direction from the tops of the first ridges 230 and 330. That is, the tops of the barrier ridges 231 and 331 are located between the tops of the first ridges 230 and 330 and the bottoms of the first ridges 220 and 320.

詳細については後述するが、本実施形態において、複数の伝熱プレート2,3が重ね合わされた状態において、隣り合う伝熱プレート2,3の一方の伝熱プレート2,3の第一凸条230,330間(第一凹条220,320と対応する位置)に、隣り合う伝熱プレート2,3の他方の伝熱プレート2,3の第一凸条230,330が位置する。 Details will be described later, but in the present embodiment, in a state where the plurality of heat transfer plates 2 and 3 are superposed, the first protrusion 230 of one of the adjacent heat transfer plates 2 and 3 , 330 (positions corresponding to the first recesses 220 and 320) are located between the first protrusions 230 and 330 of the other heat transfer plates 2 and 3 of the adjacent heat transfer plates 2 and 3.

これに伴い、第一方向における第一凸条230,330の部と障壁用凸条231,331の部との間隔(距離)は、隣り合う伝熱プレート2,3のうちの一方の伝熱プレート2,3の第一凸条230,330と、他方の伝熱プレート2,3の第一凹条220,320との間隔が第一流体Aの流通を確保できる間隔となるように、設定される。
Along with this, the distance (distance) between the tops of the first protrusions 230 and 330 and the tops of the barrier protrusions 231 and 331 in the first direction is one of the adjacent heat transfer plates 2 and 3. The distance between the first protrusions 230 and 330 of the heat transfer plates 2 and 3 and the first recesses 220 and 320 of the other heat transfer plates 2 and 3 is such that the flow of the first fluid A can be secured. , Set.

具体的に説明すると、本実施形態において、各伝熱プレート2,3において、複数の第一凹条220,320が同幅に設定されるとともに、複数の第一凸条230,330が同幅に設定される。また、各伝熱プレート2,3において、第一凹条220,320と第一凸条230,330とが略同幅に設定される。 Specifically, in the present embodiment, in each of the heat transfer plates 2 and 3, the plurality of first recesses 220 and 320 are set to have the same width, and the plurality of first protrusions 230 and 330 have the same width. Is set to. Further, in each of the heat transfer plates 2 and 3, the first recesses 220 and 320 and the first protrusions 230 and 330 are set to have substantially the same width.

これに伴い、隣り合う伝熱プレート2,3のうちの一方の伝熱プレート2,3の第一凸条230,330が、隣り合う伝熱プレート2,3のうちの他方の伝熱プレート2,3の第一凹条220,320に近づきすぎると、第一凸条230,330の幅方向の両側と第一凹条220,320の幅方向の両側との間の隙間が無くなるか、或いは、第一凸条230,330の部と第一凹条220,320の底部との間にできる隙間に比して極端に狭くなってしまう。
Along with this, the first protrusions 230 and 330 of one of the adjacent heat transfer plates 2 and 3 of the heat transfer plates 2 and 3 become the other heat transfer plate 2 of the adjacent heat transfer plates 2 and 3. If the first ridges 220 and 320 of 3, 3 are too close to each other, there will be no gap between both sides of the first ridges 230 and 330 in the width direction and both sides of the first ridges 220 and 320 in the width direction. , It becomes extremely narrow compared to the gap formed between the top of the first ridges 230 and 330 and the bottom of the first ridges 220 and 320.

そのため、本実施形態において、第一凸条230,330の幅方向の両側と第一凹条220,320の幅方向の両側との間隔が、第一流体Aの流通性を確保できる間隔になるように、第一方向における第一凸条230,330の部と障壁用凸条231,331の部との間隔(距離)が設定される。
Therefore, in the present embodiment, the distance between both sides of the first ridges 230 and 330 in the width direction and the distance between both sides of the first ridges 220 and 320 in the width direction is a distance that can ensure the flowability of the first fluid A. As described above, the distance (distance) between the tops of the first protrusions 230 and 330 in the first direction and the tops of the barrier protrusions 231 and 331 is set.

本実施形態において、障壁用凸条231,331は、複数の第一凸条230,330及び第一凹条220,320と交差する。本実施形態において、障壁用凸条231,331は、第三方向に延びている。障壁用凸条231,331は、伝熱部20,30の第三方向の全長よりも短い長さに設定される。すなわち、伝熱部20,30の第三方向の全長に亘って並ぶ複数の複数の第一凸条230,330及び第一凹条220,320の総数よりも少ない数の第一凸条230,330及び第一凹条220,320と交差する長さに設定される。 In this embodiment, the barrier ridges 231 and 331 intersect the plurality of first ridges 230 and 330 and the first ridges 220 and 320. In this embodiment, the barrier ridges 231 and 331 extend in the third direction. The barrier ridges 231 and 331 are set to a length shorter than the total length of the heat transfer portions 20 and 30 in the third direction. That is, the number of the first ridges 230, which is smaller than the total number of the plurality of first ridges 230, 330 and the first ridges 220, 320 arranged over the entire length of the heat transfer portions 20, 30 in the third direction. It is set to a length that intersects 330 and the first recesses 220 and 320.

より具体的に説明すると、障壁用凸条231,331の延びる方向(長手方向)の長さは、伝熱部20,30の第三方向の全長の1/2以下に設定される。本実施形態においては、障壁用凸条231,331の延びる方向(長手方向)の長さは、伝熱部20,30の第三方向の全長の1/3以下に設定される。 More specifically, the length of the barrier ridges 231 and 331 in the extending direction (longitudinal direction) is set to 1/2 or less of the total length of the heat transfer portions 20 and 30 in the third direction. In the present embodiment, the length of the barrier ridges 231 and 331 in the extending direction (longitudinal direction) is set to 1/3 or less of the total length of the heat transfer portions 20 and 30 in the third direction.

このように、障壁用凸条231,331の延びる方向(長手方向)の長さは、伝熱部20,30の第三方向の全長の1/3以下に設定されるに伴い、伝熱部20,30の第一面Sa1,Sb1において、第二方向に間隔をあけて並ぶ複数の障壁用凸条231,331の列が第三方向に間隔をあけて複数列設けられる。すなわち、伝熱部20,30の第一面Sa1,Sb1において複数の障壁用凸条231,331がマトリックス状に配置されている。 As described above, the length of the barrier ridges 231 and 331 in the extending direction (longitudinal direction) is set to 1/3 or less of the total length of the heat transfer portions 20 and 30 in the third direction. On the first surfaces Sa1 and Sb1 of 20 and 30, a plurality of rows of barrier ridges 231 and 331 arranged at intervals in the second direction are provided at intervals in the third direction. That is, a plurality of barrier protrusions 231 and 331 are arranged in a matrix on the first surfaces Sa1 and Sb1 of the heat transfer portions 20 and 30.

各列の障壁用凸条231,331の数及び位置は対応している。これに伴い、異なる列同士の対応する障壁用凸条231,331は、第三方向で一列に並んでいる。 The numbers and positions of the barrier ridges 231 and 331 in each row correspond. Along with this, the corresponding barrier protrusions 231 and 331 of different rows are lined up in a row in the third direction.

ここで隣り合う障壁用凸条231,331の列の間隔(第三方向で隣り合う障壁用凸条231,331の間隔)は、単一の障壁用凸条231,331の延びる方向(長手方向)の長さ以下に設定される。本実施形態において、隣り合う障壁用凸条231,331の列の間隔(第三方向で隣り合う障壁用凸条231,331の間隔)は、単一の障壁用凸条231,331の延びる方向(長手方向)の長さよりも小さく設定される。 Here, the distance between rows of adjacent barrier ridges 231 and 331 (distance between adjacent barrier ridges 231 and 331 in the third direction) is the extending direction (longitudinal direction) of a single barrier ridge 231 and 331. ) Is set to the length or less. In the present embodiment, the distance between rows of adjacent barrier ridges 231 and 331 (distance between adjacent barrier ridges 231 and 331 in the third direction) is the extending direction of a single barrier ridge 231 and 331. It is set smaller than the (longitudinal direction) length.

このように、障壁用凸条231,331の延びる方向(長手方向)の長さは、伝熱部20,30の第三方向の全長の1/3以下(本実施形態においては1/2以下)に設定されるに伴い、伝熱部20,30の第一面Sa1,Sb1上の第一凹条220,320及び第一凸条230,330には、第二方向で連続したものと、障壁用凸条231,331によって第二方向の複数個所で分断されたものとが含まれる。分断された第一凹条220,320及び第一凸条230,330の少なくとも一端は、障壁用凸条231,331に繋がる。 As described above, the length of the barrier protrusions 231 and 331 in the extending direction (longitudinal direction) is 1/3 or less of the total length of the heat transfer portions 20 and 30 in the third direction (1/2 or less in the present embodiment). ), The first recesses 220, 320 and the first protrusions 230, 330 on the first surfaces Sa1 and Sb1 of the heat transfer portions 20 and 30 are continuous in the second direction. Included are those separated at a plurality of places in the second direction by the ridges 231 and 331 for the barrier. At least one end of the divided first recesses 220, 320 and the first protrusions 230, 330 is connected to the barrier protrusions 231 and 331.

本実施形態において、分断された第一凹条220,320は、第二方向で整列している。これに伴い、分断された第一凸条230,330も、第二方向で整列している。 In the present embodiment, the divided first recesses 220 and 320 are aligned in the second direction. Along with this, the divided first protrusions 230 and 330 are also aligned in the second direction.

図4及び図6に示す如く、伝熱部20,30は、第二面Sa2,Sb2に形成される凹条22,32として、それぞれが第二方向に延びる複数の第二凹条221,321であって、第三方向に間隔をあけて配置された複数の第二凹条221,321を含む。また、伝熱部20,30は、第二面Sa2,Sb2に形成される凸条23,33として、第三方向で隣り合う第二凹条221,321間で第二方向に延びて形成された複数の第二凸条233,333を含む。すなわち、伝熱部20,30の第二面Sa2,Sb2において、第二凹条221,321及び第二凸条233,333は、第三方向で交互に配置される。 As shown in FIGS. 4 and 6, the heat transfer portions 20 and 30 have a plurality of second recesses 221, 321 each extending in the second direction as recesses 22 and 32 formed on the second surfaces Sa2 and Sb2. It includes a plurality of second recesses 221 and 321 arranged at intervals in the third direction. Further, the heat transfer portions 20 and 30 are formed as protrusions 23 and 33 formed on the second surfaces Sa2 and Sb2 so as to extend in the second direction between the second recesses 221, 321 adjacent to each other in the third direction. Includes a plurality of second ridges 233,333. That is, on the second surfaces Sa2 and Sb2 of the heat transfer portions 20 and 30, the second recesses 221, 321 and the second protrusions 233 and 333 are alternately arranged in the third direction.

さらに、伝熱部20,30は、第二面Sa2,Sb2に形成される凹条22,32として、第一面Sa1,Sb1上の障壁用凸条231,331の裏側に形成される凹条(以下、裏側凹条という)222,322を含む。 Further, the heat transfer portions 20 and 30 are recesses 22 and 32 formed on the second surfaces Sa2 and Sb2, and are recesses formed on the back side of the barrier protrusions 231 and 331 on the first surfaces Sa1 and Sb1. Includes 222,322 (hereinafter referred to as the backside recess).

第二凹条221,321は、第一面Sa1,Sb1上の第一凸条230,330の裏側に形成される凹条22,32である。これに伴い、第二凹条221,321は、第二方向に延びている。第二凸条233,333は、第一面Sa1,Sb1上の第一凹条220,320の裏側に形成される凸条23,33である。これに伴い、第二凸条233,333は、第二方向に延びている。 The second recesses 221, 321 are recesses 22 and 32 formed on the back side of the first protrusions 230 and 330 on the first surfaces Sa1 and Sb1. Along with this, the second recesses 221, 321 extend in the second direction. The second ridges 233 and 333 are ridges 23 and 33 formed on the back side of the first ridges 220 and 320 on the first surfaces Sa1 and Sb1. Along with this, the second ridges 233 and 333 extend in the second direction.

第二凹条221,321を画定する内面と第二凸条233,333を画定する外面とは連続している。これにより、伝熱部20,30の第二面Sa2,Sb2は、第三方向に起伏した波形状に形成される。 The inner surface defining the second recesses 221 and 321 and the outer surface defining the second protrusions 233 and 333 are continuous. As a result, the second surfaces Sa2 and Sb2 of the heat transfer portions 20 and 30 are formed in a wavy shape undulating in the third direction.

裏側凹条222,322は、障壁用凸条231,331と凹凸関係を逆にする以外は同形態で形成される。 The back side recesses 222 and 322 are formed in the same form as the barrier protrusions 231 and 331 except that the unevenness relationship is reversed.

本実施形態において、裏側凹条222,322は、複数の第二凸条233,333及び第二凹条221,321と交差する。本実施形態において、裏側凹条222,322は、伝熱部20,30の第三方向の全長よりも短い長さに設定される。すなわち、伝熱部20,30の第三方向の全長に亘って並ぶ複数の複数の第二凸条233,333及び第二凹条221,321の総数よりも少ない数の第二凸条233,333及び第二凹条221,321と交差する長さに設定される。 In the present embodiment, the back side recess 222,322 intersects the plurality of second protrusions 233,333 and the second recesss 221,321. In the present embodiment, the back side recesses 222 and 322 are set to a length shorter than the total length of the heat transfer portions 20 and 30 in the third direction. That is, the number of the second ridges 233, which is smaller than the total number of the plurality of second ridges 233,333 and the second dents 221,321 arranged over the entire length of the heat transfer portions 20 and 30 in the third direction. The length is set so as to intersect with 333 and the second recesses 221, 321.

より具体的に説明すると、裏側凹条222,322の延びる方向(長手方向)の長さは、伝熱部20,30の第三方向の全長の1/2以下に設定される。本実施形態においては、裏側凹条222,322の延びる方向(長手方向)の長さは、伝熱部20,30の第三方向の全長の1/3以下に設定される。 More specifically, the length of the back side recess 222,322 in the extending direction (longitudinal direction) is set to 1/2 or less of the total length of the heat transfer portions 20 and 30 in the third direction. In the present embodiment, the length of the back side recess 222,322 in the extending direction (longitudinal direction) is set to 1/3 or less of the total length of the heat transfer portions 20 and 30 in the third direction.

このように、裏側凹条222,322の延びる方向(長手方向)の長さは、伝熱部20,30の第三方向の全長の1/3以下に設定されるに伴い、伝熱部20,30の第二面Sa2,Sb2において、第二方向に間隔をあけて並ぶ複数の裏側凹条222,322の列が第三方向に間隔をあけて複数列設けられる。すなわち、伝熱部20,30の第二面Sa2,Sb2において複数の裏側凹条222,322がマトリックス状に配置されている。 As described above, the length of the back side recess 222,322 in the extending direction (longitudinal direction) is set to 1/3 or less of the total length of the heat transfer portions 20 and 30 in the third direction, and the heat transfer portion 20 On the second surfaces Sa2 and Sb2 of No. 30, a plurality of rows of back side recesses 222 and 322 arranged at intervals in the second direction are provided at intervals in the third direction. That is, a plurality of backside recesses 222 and 322 are arranged in a matrix on the second surfaces Sa2 and Sb2 of the heat transfer portions 20 and 30.

各列の裏側凹条222,322の数及び位置は対応している。これに伴い、異なる列同士の対応する裏側凹条222,322は、第三方向で一列に並んでいる。 The numbers and positions of the backside indentations 222,322 in each row correspond. Along with this, the corresponding backside recesses 222,322 of the different rows are lined up in a row in the third direction.

ここで隣り合う裏側凹条222,322の列の間隔(第三方向で隣り合う裏側凹条222,322の間隔)は、単一の裏側凹条222,322の延びる方向(長手方向)の長さ以下に設定される。本実施形態において、隣り合う裏側凹条222,322の列の間隔(第三方向で隣り合う裏側凹条222,322の間隔)は、単一の裏側凹条222,322の延びる方向(長手方向)の長さよりも小さく設定される。 Here, the distance between rows of adjacent backside recesses 222,322 (distance between adjacent backside recesses 222 and 322 in the third direction) is the length of a single backside recess 222,322 in the extending direction (longitudinal direction). It is set to the following. In the present embodiment, the spacing between rows of adjacent backside recesses 222,322 (distance between adjacent backside recesses 222,322 in the third direction) is the extending direction (longitudinal direction) of a single backside recess 222,322. ) Is set smaller than the length.

このように、裏側凹条222,322の延びる方向(長手方向)の長さは、伝熱部20,30の第三方向の全長の1/3以下(本実施形態においては1/2以下)に設定されるに伴い、伝熱部20,30の第二面Sa2,Sb2上の第二凹条221,321及び第二凸条233,333には、第二方向で連続したものと、裏側凹条222,322によって第二方向の複数個所で分断されたものとが含まれる。分断された第二凹条221,321及び第二凸条233,333の少なくとも一端は、裏側凹条222,322に繋がる。すなわち、分断された第二凹条221,321は、裏側凹条222,322内に向けて開放している。 As described above, the length of the back side recess 222,322 in the extending direction (longitudinal direction) is 1/3 or less of the total length of the heat transfer portions 20 and 30 in the third direction (1/2 or less in this embodiment). The second recesses 221 and 321 and the second ridges 233 and 333 on the second surfaces Sa2 and Sb2 of the heat transfer portions 20 and 30 are continuous in the second direction and the back side. The ones separated by the dents 222 and 322 at a plurality of places in the second direction are included. At least one end of the divided second recesses 221 and 321 and the second protrusions 233 and 333 is connected to the back side recesses 222 and 322. That is, the divided second recesses 221 and 321 are opened toward the inside of the back side recesses 222 and 322.

本実施形態において、分断された第二凹条221,321は、第二方向で整列している。これに伴い、分断された第二凸条233,333も、第二方向で整列している。 In the present embodiment, the divided second recesses 221 and 321 are aligned in the second direction. Along with this, the divided second ridges 233 and 333 are also aligned in the second direction.

二種類の伝熱プレート2,3の共通点は、以上の通りである。次に、二種類の伝熱プレート2,3の相違点について説明する。 The common points between the two types of heat transfer plates 2 and 3 are as described above. Next, the differences between the two types of heat transfer plates 2 and 3 will be described.

図3及び図5に示す如く、二種類の伝熱プレート2,3のうちの一方の伝熱プレート(以下、第一伝熱プレートという)2の第一面Sa1上の第一凸条230と、二種類の伝熱プレート2,3のうちの他方の伝熱プレート(以下、第二伝熱プレートという)3の第一面Sb1上の第一凸条330とは、第三方向において位置ずれして配置される。すなわち、第一伝熱プレート2の伝熱部20の第一面Sa1と第二伝熱プレート3の伝熱部30の第一面Sb1とが対向した状態で、第一伝熱プレート2の第一凸条230が第二伝熱プレート3の第一凹条320と対応するとともに、第二伝熱プレート3の第一凸条330が第一伝熱プレート2の第一凹条220と対応するように、それぞれの第一凹条220,320及び第一凸条230,330の配置が設定されている。 As shown in FIGS. 3 and 5, the first protrusion 230 on the first surface Sa1 of one of the two types of heat transfer plates 2 and 3 (hereinafter referred to as the first heat transfer plate) 2 , The first ridge 330 on the first surface Sb1 of the other heat transfer plate (hereinafter referred to as the second heat transfer plate) 3 of the two types of heat transfer plates 2 and 3 is displaced in the third direction. Is placed. That is, with the first surface Sa1 of the heat transfer portion 20 of the first heat transfer plate 2 and the first surface Sb1 of the heat transfer portion 30 of the second heat transfer plate 3 facing each other, the first heat transfer plate 2 The one ridge 230 corresponds to the first ridge 320 of the second heat transfer plate 3, and the first ridge 330 of the second heat transfer plate 3 corresponds to the first ridge 220 of the first heat transfer plate 2. As described above, the arrangement of the first recesses 220 and 320 and the first protrusions 230 and 330 is set.

そして、本実施形態において、第一伝熱プレート2及び第二伝熱プレート3は、第一面Sa1,Sb1上の障壁用凸条231,331の数及び配置を異にする。すなわち、第一伝熱プレート2及び第二伝熱プレート3は、第一面Sa1,Sb1上の障壁用凸条231,331の列数と、各列における障壁用凸条231,331の配置を異にする。 Then, in the present embodiment, the first heat transfer plate 2 and the second heat transfer plate 3 have different numbers and arrangements of the barrier protrusions 231 and 331 on the first surfaces Sa1 and Sb1. That is, in the first heat transfer plate 2 and the second heat transfer plate 3, the number of rows of the barrier ridges 231 and 331 on the first surfaces Sa1 and Sb1 and the arrangement of the barrier ridges 231 and 331 in each row are arranged. Make it different.

具体的には、第一伝熱プレート2の第一面Sa1において、第三方向に間隔をあけて並ぶ障壁用凸条231の列数よりも、第二伝熱プレート3の第一面Sb1において、第三方向に間隔をあけて並ぶ障壁用凸条331の列数の方が一列少ない。また、第一伝熱プレート2の第一面Sa1における各列の障壁用凸条231の数よりも、第二伝熱プレート3の第一面Sb1における各列の障壁用凸条231の数の方が一つ少ない。 Specifically, on the first surface Sa1 of the first heat transfer plate 2, the number of rows of the barrier protrusions 231 arranged at intervals in the third direction is increased on the first surface Sb1 of the second heat transfer plate 3. , The number of rows of barrier ridges 331 arranged at intervals in the third direction is one less. Further, the number of barrier ridges 231 in each row on the first surface Sb1 of the second heat transfer plate 3 is larger than the number of barrier ridges 231 in each row on the first surface Sa1 of the first heat transfer plate 2. There is one less.

これに伴い、第一伝熱プレート2の第一面Sa1の障壁用凸条231の列の位置は、第二伝熱プレート3の第一面Sb1の障壁用凸条331の列間の位置と対応し、第二伝熱プレート3の第一面Sb1の障壁用凸条331の列の位置は、第一伝熱プレート2の第一面Sa1の障壁用凸条231の列間の位置と対応している。また、第一伝熱プレート2の第一面Sa1の各列の障壁用凸条231は、第二伝熱プレート3の第一面Sb1の各列の障壁用凸条331間(第二方向で隣り合う障壁用凸条331の中間位置)と対応し、第二伝熱プレート3の第一面Sb1の各列の障壁用凸条331は、第一伝熱プレート2の第一面Sa1の各列の障壁用凸条231間(第二方向で隣り合う障壁用凸条231の中間位置)と対応している。 Along with this, the positions of the rows of the barrier ridges 231 on the first surface Sa1 of the first heat transfer plate 2 are the positions between the rows of the barrier ridges 331 on the first surface Sb1 of the second heat transfer plate 3. Correspondingly, the position of the row of the barrier ridges 331 on the first surface Sb1 of the second heat transfer plate 3 corresponds to the position between the rows of the barrier ridges 231 on the first surface Sa1 of the first heat transfer plate 2. doing. Further, the barrier ridges 231 in each row of the first surface Sa1 of the first heat transfer plate 2 are between the barrier ridges 331 of each row of the first surface Sb1 of the second heat transfer plate 3 (in the second direction). Corresponding to the intermediate position of the adjacent barrier ridges 331), the barrier ridges 331 of each row of the first surface Sb1 of the second heat transfer plate 3 are each of the first surface Sa1 of the first heat transfer plate 2. It corresponds to the space between the barrier ridges 231 of the row (intermediate position between the barrier ridges 231 adjacent to each other in the second direction).

そして、第一伝熱プレート2においては、図3に示す如く、嵌合部21は伝熱部20の第一面Sa1側に延出する。これに対し、第二伝熱プレート3においては、図6に示す如く、嵌合部31は伝熱部30の第二面Sb2側に延出する。 Then, in the first heat transfer plate 2, as shown in FIG. 3, the fitting portion 21 extends to the first surface Sa1 side of the heat transfer portion 20. On the other hand, in the second heat transfer plate 3, as shown in FIG. 6, the fitting portion 31 extends to the second surface Sb2 side of the heat transfer portion 30.

複数の伝熱プレート2,3(第一伝熱プレート2及び第二伝熱プレート3)のそれぞれは、以上の通りである。複数の伝熱プレート2,3(第一伝熱プレート2及び第二伝熱プレート3)のそれぞれは、図2に示す如く、第一方向に重ね合わされる。本実施形態において、第一伝熱プレート2と第二伝熱プレート3とが、第一方向で交互に重ね合わされる。このとき、複数の伝熱プレート2,3のそれぞれは、自身の伝熱部20,30の第一面Sa1,Sb1を第一方向の一方側で隣に並ぶ伝熱プレート2,3における伝熱部20,30の第一面Sa1,Sb1と対向させる。また、複数の伝熱プレート2,3のそれぞれは、自身の伝熱部20,30の第二面Sa2,Sb2を第一方向の他方側で隣に並ぶ伝熱プレート2,3における伝熱部20,30の第二面Sa2,Sb2と対向させる。 Each of the plurality of heat transfer plates 2 and 3 (first heat transfer plate 2 and second heat transfer plate 3) is as described above. Each of the plurality of heat transfer plates 2 and 3 (first heat transfer plate 2 and second heat transfer plate 3) is superposed in the first direction as shown in FIG. In the present embodiment, the first heat transfer plate 2 and the second heat transfer plate 3 are alternately overlapped in the first direction. At this time, each of the plurality of heat transfer plates 2 and 3 is heat transfer in the heat transfer plates 2 and 3 in which the first surfaces Sa1 and Sb1 of the heat transfer portions 20 and 30 are arranged adjacent to each other on one side in the first direction. The first surfaces Sa1 and Sb1 of the portions 20 and 30 are opposed to each other. Further, each of the plurality of heat transfer plates 2 and 3 is a heat transfer portion in the heat transfer plates 2 and 3 in which the second surfaces Sa2 and Sb2 of the heat transfer portions 20 and 30 are arranged adjacent to each other on the other side in the first direction. It faces the second surfaces Sa2 and Sb2 of 20 and 30.

これにより、図2及び図7に示す如く、第一流体Aを第二方向に流通させる第一流路Raと、第二流体B第二方向に流通させる第二流路Rbとが伝熱プレート2,3の伝熱部20,30を境にして交互に形成される。すなわち、第一流体Aに流通させる第一流路Raが隣り合う伝熱プレート2,3の伝熱部20,30の第一面Sa1,Sb1間に形成されるとともに、第二流体Bを流通させる第二流路Rbが隣り合う伝熱プレート2,3の伝熱部20,30の第二面Sa2,Sb2間に形成される。 As a result, as shown in FIGS. 2 and 7, the first flow path Ra that circulates the first fluid A in the second direction and the second flow path Rb that circulates the second fluid B in the second direction are transferred to the heat transfer plate 2. , 3 are alternately formed with the heat transfer portions 20 and 30 as boundaries. That is, the first flow path Ra to be circulated to the first fluid A is formed between the first surfaces Sa1 and Sb1 of the heat transfer portions 20 and 30 of the adjacent heat transfer plates 2 and 3, and the second fluid B is circulated. The second flow path Rb is formed between the second surfaces Sa2 and Sb2 of the heat transfer portions 20 and 30 of the adjacent heat transfer plates 2 and 3.

また、この状態において、図2に示す如く、伝熱部20,30の対応する位置にある開口200,201,202,203,300,301,302,303が第一方向に連なる。また、互いに対向する開口200,201,202,203,300,301,302,303の周囲であって、相手方に向かって膨出した部分が接触する。これにより、第一流路Raに第一流体Aを供給する第一流入路Pa1と、第一流路Raから第一流体Aを流出させる第一流出路Pa2と、第二流路Rbに第二流体Bを供給する第二流入路Pb1と、第二流路Rbから第二流体Bを流出させる第二流出路Pb2とが形成される。 Further, in this state, as shown in FIG. 2, the openings 200, 201, 202, 203, 300, 301, 302, 303 at the corresponding positions of the heat transfer portions 20 and 30 are connected in the first direction. Further, the portions around the openings 200, 201, 202, 203, 300, 301, 302, 303 facing each other and bulging toward the other side come into contact with each other. As a result, the first inflow path Pa1 that supplies the first fluid A to the first flow path Ra, the first outflow path Pa2 that causes the first fluid A to flow out from the first flow path Ra, and the second fluid B to the second flow path Rb. A second inflow path Pb1 for supplying the fluid and a second outflow path Pb2 for discharging the second fluid B from the second flow path Rb are formed.

より具体的に説明すると、複数の伝熱プレート2,3を重ね合わせる際、一つの第一伝熱プレート2と一つの第二伝熱プレート3とを重ね合わせて一組とされる。この組を複数組重ね合わせるに際し、一組おきに第一方向に延びる仮想線周りで180度回転させて重ね合わされる。この状態において、第一方向で隣り合う伝熱プレート2,3のうちの一方の伝熱プレート2,3(第一伝熱プレート2又は第二伝熱プレート3)の嵌合部21,31は、第一方向で隣り合う伝熱プレート2,3のうちの他方の伝熱プレート2,3(第一伝熱プレート2又は第二伝熱プレート3)の嵌合部21,31に外嵌される。 More specifically, when a plurality of heat transfer plates 2 and 3 are superposed, one first heat transfer plate 2 and one second heat transfer plate 3 are superposed to form a set. When a plurality of sets are superposed, every other set is rotated 180 degrees around a virtual line extending in the first direction and superposed. In this state, the fitting portions 21, 31 of one of the heat transfer plates 2, 3 (first heat transfer plate 2 or second heat transfer plate 3) of the heat transfer plates 2, 3 adjacent to each other in the first direction , Outerly fitted to the fitting portions 21, 31 of the other heat transfer plates 2, 3 (first heat transfer plate 2 or second heat transfer plate 3) of the heat transfer plates 2, 3 adjacent to each other in the first direction. To.

これにより、図8乃至図11に示す如く、隣り合う伝熱プレート2,3の第一面Sa1,Sb1側において、第一伝熱プレート2(伝熱部20)の第一凸条230は、第二伝熱プレート(伝熱部30)の第一凹条320と対向し、第一伝熱プレート2(伝熱部20)の第一凹条220は、第二伝熱プレート(伝熱部30)の第一凸条330と対向する。 As a result, as shown in FIGS. 8 to 11, on the first surface Sa1 and Sb1 sides of the adjacent heat transfer plates 2 and 3, the first protrusion 230 of the first heat transfer plate 2 (heat transfer portion 20) is formed. The first recess 220 of the first heat transfer plate 2 (heat transfer section 20) faces the first recess 320 of the second heat transfer plate (heat transfer section 30), and the first recess 220 of the first heat transfer plate 2 (heat transfer section 20) faces the second heat transfer plate (heat transfer section). It faces the first ridge 330 of 30).

第一伝熱プレート2において、障壁用凸条231が第一凸条230よりも低く、第二伝熱プレート3において、障壁用凸条331が第一凸条330よりも低いため、第一伝熱プレート2の障壁用凸条231は、第二伝熱プレート3の第一凸条330と交差衝合し、第二伝熱プレート3の障壁用凸条331は、第一伝熱プレート2の第一凸条230と交差衝合する。 In the first heat transfer plate 2, the barrier ridge 231 is lower than the first ridge 230, and in the second heat transfer plate 3, the barrier ridge 331 is lower than the first ridge 330. The barrier ridge 231 of the heat plate 2 intersects with the first ridge 330 of the second heat transfer plate 3, and the barrier ridge 331 of the second heat transfer plate 3 is of the first heat transfer plate 2. Interact with the first ridge 230.

これに対し、隣り合う伝熱プレート2,3の第二面Sa2,Sb2側において、第一伝熱プレート2(伝熱部20)の第二凸条233は、第二伝熱プレート(伝熱部30)の第二凸条333と対向し、第一伝熱プレート2(伝熱部20)の第二凹条221は、第二伝熱プレート(伝熱部30)の第二凹条321と対向する。すなわち、第一伝熱プレート2及び第二伝熱プレート3のそれぞれの伝熱部20,30の第一面Sa1,Sb1において、複数の第一凹条220,320のうちの特定の第一凹条220,320と、複数の第一凸条230,330のうちの特定の第一凸条230,330であって、特定の第一凹条220,320と隣り合う第一凸条230,330との境界が、縦中心線CL上に位置しているため、上記の通り、第一伝熱プレート2及び第二伝熱プレート3を180°回転させることで、隣り合う伝熱プレート2,3の第二凸条233,333同士が対向し、互いの部同士を接触させる。
On the other hand, on the second surfaces Sa2 and Sb2 sides of the adjacent heat transfer plates 2 and 3, the second ridge 233 of the first heat transfer plate 2 (heat transfer portion 20) is the second heat transfer plate (heat transfer). The second recess 221 of the first heat transfer plate 2 (heat transfer portion 20) is opposed to the second protrusion 333 of the portion 30), and the second recess 321 of the second heat transfer plate (heat transfer portion 30) is Facing. That is, on the first surfaces Sa1 and Sb1 of the heat transfer portions 20 and 30, respectively of the first heat transfer plate 2 and the second heat transfer plate 3, a specific first recess among the plurality of first recesses 220 and 320. The first ridges 230 and 330, which are specific first ridges 230 and 330 among the plurality of first ridges 230 and 330, and which are adjacent to the specific first ridges 220 and 320. Since the boundary with and is located on the vertical center line CL, as described above, by rotating the first heat transfer plate 2 and the second heat transfer plate 3 by 180 °, the adjacent heat transfer plates 2 and 3 The second ridges 233 and 333 of the above face each other and bring the tops of each other into contact with each other.

これにより、図2に示す如く、第一流体Aを第一方向と直交する第二方向に流通させる第一流路Raが隣り合う伝熱プレート2,3の伝熱部20,30の第一面Sa1,Sb1間に形成される。また、第二流体Bを第二方向に流通させる第二流路Rbが隣り合う伝熱プレート2,3の伝熱部20,30の第二面Sa2,Sb2間に形成される。 As a result, as shown in FIG. 2, the first surfaces of the heat transfer portions 20 and 30 of the heat transfer plates 2 and 3 adjacent to each other are the first flow paths Ra that circulate the first fluid A in the second direction orthogonal to the first direction. It is formed between Sa1 and Sb1. Further, a second flow path Rb for circulating the second fluid B in the second direction is formed between the second surfaces Sa2 and Sb2 of the heat transfer portions 20 and 30 of the adjacent heat transfer plates 2 and 3.

そして、上述の如く、複数の伝熱プレート2,3が第一方向に重ね合わされることで、伝熱部20,30の対応する位置にある開口200,201,202,203,300,301,302,303が第一方向に連なる。また、互いに対向する開口200,201,202,203,300,301,302,303の周囲であって、相手方に向かって膨出した部分が接触する。これにより、第一流路Raに第一流体Aを供給する第一流入路Pa1と、第一流路Raから第一流体Aを流出させる第一流出路Pa2と、第二流路Rbに第二流体Bを供給する第二流入路Pb1と、第二流路Rbから第二流体Bを流出させる第二流出路Pb2とが形成される。 Then, as described above, by superimposing the plurality of heat transfer plates 2 and 3 in the first direction, the openings 200, 201, 202, 203, 300, 301, which are located at the corresponding positions of the heat transfer portions 20, 30. 302 and 303 are connected in the first direction. Further, the portions around the openings 200, 201, 202, 203, 300, 301, 302, 303 facing each other and bulging toward the other side come into contact with each other. As a result, the first inflow path Pa1 that supplies the first fluid A to the first flow path Ra, the first outflow path Pa2 that causes the first fluid A to flow out from the first flow path Ra, and the second fluid B to the second flow path Rb. A second inflow path Pb1 for supplying the fluid and a second outflow path Pb2 for discharging the second fluid B from the second flow path Rb are formed.

なお、本実施形態に係る熱交換器1において、隣り合う伝熱プレート2,3の接触した部分同士がロウ付けされる。これにより、複数の伝熱プレート2,3が一体的(機械的)に接続されるとともに、隣り合う伝熱プレート2,3の対向面間(接触部分)が封止される。 In the heat exchanger 1 according to the present embodiment, the contacted portions of the adjacent heat transfer plates 2 and 3 are brazed to each other. As a result, the plurality of heat transfer plates 2 and 3 are integrally (mechanically) connected, and the facing surfaces (contact portions) of the adjacent heat transfer plates 2 and 3 are sealed.

本実施形態に係る熱交換器1は、以上の通りである。第一流体Aは、図2、図7、及び図12に示す如く、第一流入路Pa1から複数の第一流路Raに流入する。第一流体Aは、複数の第一流路Raのぞれぞれで第二方向に流通し、第一流出路Pa2に流出する。これに対し、第二流体Bは、図2、図7、及び図13に示す如く、第二流入路Pb1から複数の第二流路Rbに流入する。第二流体Bは、該複数の第二流路Rbのぞれぞれで第二方向に流通し、第二流出路Pb2に流出する。 The heat exchanger 1 according to the present embodiment is as described above. As shown in FIGS. 2, 7, and 12, the first fluid A flows into the plurality of first flow paths Ra from the first inflow path Pa1. The first fluid A circulates in the second direction in each of the plurality of first flow paths Ra, and flows out to the first outflow path Pa2. On the other hand, as shown in FIGS. 2, 7, and 13, the second fluid B flows into the plurality of second flow paths Rb from the second inflow path Pb1. The second fluid B circulates in the second direction in each of the plurality of second flow paths Rb, and flows out to the second outflow path Pb2.

本実施形態において、第一流体Aは、図12に示す如く、第一流路Raにおいて、伝熱部20,30の対角を結ぶ対角線を中心として流通する。これに対し、第二流体Bは、図13に示す如く、第二流路Rbにおいて、伝熱部20,30の対角を結ぶ対角線であって、第一流体Aの流れの中心となる対角線とは別の対角線を中心に流通する。 In the present embodiment, as shown in FIG. 12, the first fluid A circulates in the first flow path Ra about the diagonal line connecting the diagonals of the heat transfer portions 20 and 30. On the other hand, as shown in FIG. 13, the second fluid B is a diagonal line connecting the diagonals of the heat transfer portions 20 and 30 in the second flow path Rb, and is a diagonal line which is the center of the flow of the first fluid A. It circulates mainly on a diagonal line different from that.

このとき、第一流路Raを流通する第一流体A、及び第二流路Rbを流通する第二流体Bは、第一流路Raと第二流路Rbとを仕切る伝熱プレート2,3(伝熱部20,30)を介して熱交換する。これにより、第二流体Bは、第二流路Rb内で第二方向に流通する過程において、凝縮或いは蒸発する。 At this time, the first fluid A flowing through the first flow path Ra and the second fluid B flowing through the second flow path Rb are heat transfer plates 2 and 3 (which separate the first flow path Ra and the second flow path Rb). Heat is exchanged via the heat transfer units 20 and 30). As a result, the second fluid B condenses or evaporates in the process of flowing in the second direction in the second flow path Rb.

以上のように、本実施形態に係る熱交換器1は、凸条23,33及び凹条22,32の形成された第一面Sa1,Sb1と、該第一面Sa1,Sb1に対して反対側を向き、且つ第一面Sa1,Sb1の凸条23,33と表裏の関係にある凹条22,32及び第一面Sa1,Sb1の凹条22,32と表裏の関係にある凸条23,33の形成された第二面Sa2,Sb2とを有する伝熱部20,30を含む伝熱プレート2,3であって、それぞれの伝熱部20,30が第一方向に重ね合わされた複数の伝熱プレート2,3を備え、複数の伝熱プレート2,3のそれぞれは、自身の伝熱部20,30の第一面Sa1,Sb1を第一方向の一方側で隣に並ぶ伝熱プレート2,3における伝熱部20,30の第一面Sa1,Sb1と対向させるとともに、自身の伝熱部20,30の第二面Sa2,Sb2を第一方向の他方側で隣に並ぶ伝熱プレート2,3における伝熱部20,30の第二面Sa2,Sb2と対向させ、第一流体Aを第一方向と直交する第二方向に流通させる第一流路Raが隣り合う伝熱プレート2,3の伝熱部20,30の第一面Sa1,Sb1間に形成されるとともに、第二流体Bを第二方向に流通させる第二流路Rbが隣り合う伝熱プレート2,3の伝熱部20,30の第二面Sa2,Sb2間に形成され、隣り合う伝熱プレート2,3のそれぞれの伝熱部20,30は、第一面Sa1,Sb1に形成される凸条23,33として、第一方向及び第二方向と交差する方向に間隔をあけて配置された複数の第一凸条230,330であって、それぞれが第二方向又は第二方向を成分に含む合成方向に延びる複数の第一凸条230,330と、該第一面Sa1,Sb1に形成される第一凸条230,330よりも低い障壁用凸条231,331であって、第一凸条230,330と交差する方向に延びる少なくとも一つの障壁用凸条231,331とを含むとともに、第一面Sa1,Sb1に形成される凹条22,32として、第一方向及び第二方向と交差する方向で隣り合う第一凸条230,230,330,330間に形成される複数の第一凹条220,320を含み、且つ第二面Sa2,Sb2に形成される凹条22,32として、第一凸条230,330と表裏の関係にある複数の第二凹条221,321を含み、隣り合う伝熱プレート2,3のそれぞれの第一凸条230,330は、相手方の伝熱プレート2,3の第一凸条230,330間に位置し、隣り合う伝熱プレート2,3のそれぞれの障壁用凸条231,331の長手方向の寸法が、伝熱部20,30の第一方向及び第二方向と直交する第三方向の全長よりも短く設定され、隣り合う伝熱プレート2,3の障壁用凸条231,331は、第二方向及び第三方向の少なくとも何れか一方で互いに位置ずれした位置に配置され、相手方の伝熱プレート2,3の第一凸条230,330と交差衝合している。 As described above, the heat transfer device 1 according to the present embodiment is opposite to the first surfaces Sa1 and Sb1 on which the ridges 23 and 33 and the dents 22 and 32 are formed and the first surfaces Sa1 and Sb1. The ridges 22 and 32 facing sideways and having a front-back relationship with the ridges 23 and 33 of the first surfaces Sa1 and Sb1 and the ridges 23 having a front-back relationship with the ridges 22 and 32 of the first surfaces Sa1 and Sb1. , 33 are the heat transfer plates 2 and 3 including the heat transfer portions 20 and 30 having the second surfaces Sa2 and Sb2 formed by 33, and the respective heat transfer portions 20 and 30 are superposed in the first direction. Heat transfer plates 2 and 3 are provided, and each of the plurality of heat transfer plates 2 and 3 has heat transfer portions Sa1 and Sb1 of its own heat transfer portions 20 and 30 arranged next to each other on one side in the first direction. The first surfaces Sa1 and Sb1 of the heat transfer portions 20 and 30 in the plates 2 and 3 face each other, and the second surfaces Sa2 and Sb2 of their own heat transfer portions 20 and 30 are arranged next to each other on the other side in the first direction. A heat transfer plate adjacent to a first flow path Ra that faces the second surfaces Sa2 and Sb2 of the heat transfer portions 20 and 30 in the heat plates 2 and 3 and allows the first fluid A to flow in the second direction orthogonal to the first direction. A heat transfer plate 2 or 3 formed between the first surfaces Sa1 and Sb1 of the heat transfer portions 20 and 30 of the heat transfer portions 2 and 3 and adjacent to the second flow path Rb for flowing the second fluid B in the second direction. Convex 23 formed between the second surfaces Sa2 and Sb2 of the heat transfer portions 20 and 30, and the heat transfer portions 20 and 30 of the adjacent heat transfer plates 2 and 3 are formed on the first surfaces Sa1 and Sb1. , 33, a plurality of first ridges 230 and 330 arranged at intervals in a direction intersecting the first direction and the second direction, each of which includes the second direction or the second direction as a component. A plurality of first ridges 230 and 330 extending in the direction and barrier ridges 231 and 331 formed on the first surfaces Sa1 and Sb1 and lower than the first ridges 230 and 330, the first ridges. Includes at least one barrier ridge 231 and 331 extending in a direction intersecting 230, 330, and intersects the first and second directions as recesses 22 and 32 formed on the first surfaces Sa1 and Sb1. As the recesses 22 and 32 formed on the second surfaces Sa2 and Sb2, including a plurality of first recesses 220 and 320 formed between the first protrusions 230, 230, 330 and 330 adjacent to each other in the direction in which they are formed. , The first ridges 230 and 330 of the adjacent heat transfer plates 2 and 3 include a plurality of second ridges 221 and 321 that are in a front-to-back relationship with the first ridges 230 and 330, respectively. Pre The longitudinal dimensions of the barrier ridges 231 and 331 of the adjacent heat transfer plates 2 and 3 located between the first ridges 230 and 330 of the heat transfer plates 2 and 3 are the dimensions of the heat transfer portions 20 and 30. The barrier ridges 231 and 331 of the adjacent heat transfer plates 2 and 3 which are set shorter than the total length of the first direction and the third direction orthogonal to the second direction are at least one of the second direction and the third direction. On the other hand, they are arranged at positions that are offset from each other, and intersect with the first protrusions 230 and 330 of the heat transfer plates 2 and 3 of the other party.

上記構成の熱交換器1によれば、隣り合う伝熱プレート2,3のそれぞれの障壁用凸条231,331の長手方向の寸法が、伝熱部20,30の第三方向の全長よりも短く設定され、隣り合う伝熱プレート2,3の障壁用凸条231,331は、第二方向及び第三方向の少なくとも何れか一方で互いに位置ずれした位置に配置されているため、障壁用凸条231,331同士が一致する(重なる)ことがない。これにより、第一流路Raは、第二方向に連通した状態で形成される。 According to the heat exchanger 1 having the above configuration, the longitudinal dimension of the barrier protrusions 231 and 331 of the adjacent heat transfer plates 2 and 3 is larger than the total length of the heat transfer portions 20 and 30 in the third direction. The barrier protrusions 231 and 331 of the adjacent heat transfer plates 2 and 3 are set short and are arranged at positions that are offset from each other in at least one of the second direction and the third direction, so that the barrier protrusions are convex. Articles 231 and 331 do not match (overlap) with each other. As a result, the first flow path Ra is formed in a state of communicating in the second direction.

そして、図9乃至図11に示す如く、隣り合う伝熱部20,30の第一面Sa1,Sb1間に形成される第一流路Raの途中位置において、障壁用凸条231,331が相手方の伝熱部20,30に向けて突出した状態で存在する。これに伴い、障壁用凸条231,331は、第一流路Ra内で第一流体Aの流通を阻害し、第一流路Ra内における第一流体Aの流通抵抗を増大させる。 Then, as shown in FIGS. 9 to 11, at the intermediate position of the first flow path Ra formed between the first surfaces Sa1 and Sb1 of the adjacent heat transfer portions 20 and 30, the barrier ridges 231 and 331 are on the other side. It exists in a state of protruding toward the heat transfer portions 20 and 30. Along with this, the barrier ridges 231 and 331 hinder the flow of the first fluid A in the first flow path Ra, and increase the flow resistance of the first fluid A in the first flow path Ra.

特に、本実施形態に係る熱交換器1によれば、隣り合う伝熱プレート2,3のそれぞれの第一凸条230,330は、相手方の伝熱プレート2,3の第一凸条230,330間に位置し、伝熱プレート2,3の障壁用凸条231,331(第一凸条230,330よりも低い障壁用凸条231,331)と、相手方の伝熱プレート2,3の第一凸条230,330とが交差衝合している。 In particular, according to the heat exchanger 1 according to the present embodiment, the first protrusions 230 and 330 of the adjacent heat transfer plates 2 and 3 are the first protrusions 230 of the heat transfer plates 2 and 3 of the other party. Located between 330, the barrier ridges 231 and 331 of the heat transfer plates 2 and 3 (the barrier ridges 231 and 331 lower than the first ridges 230 and 330) and the heat transfer plates 2 and 3 of the other party The first ridges 230 and 330 intersect with each other.

そのため、隣り合う伝熱プレート2,3の第一面Sa1,Sb1の間隔が狭くなる。すなわち、障壁用凸条231,331の突出量が第一凸条230,330の突出量よりも少ない分、第一流路Raを画定する伝熱プレート2,3同士が接近した状態になる。これに伴い、第一流路Raの流路幅が狭くなる結果、第一流路Ra内における第一流体Aの流通抵抗を増大させる。 Therefore, the distance between the first surfaces Sa1 and Sb1 of the adjacent heat transfer plates 2 and 3 becomes narrow. That is, since the amount of protrusion of the barrier protrusions 231 and 331 is smaller than the amount of protrusion of the first protrusions 230 and 330, the heat transfer plates 2 and 3 defining the first flow path Ra are in close contact with each other. Along with this, as a result of narrowing the flow path width of the first flow path Ra, the flow resistance of the first fluid A in the first flow path Ra is increased.

従って、本実施形態に係る熱交換器1は、障壁用凸条231,331の存在と第一流路Raの流路幅とによって、第一流体Aの流通抵抗を増大させる結果、第一流体Aが伝熱部20,30に対して熱的な影響を及ぼす機会が増え、第二流体B側への熱伝達性能が高くなる。 Therefore, the heat exchanger 1 according to the present embodiment increases the flow resistance of the first fluid A due to the presence of the ridges 231 and 331 for the barrier and the flow path width of the first flow path Ra, and as a result, the first fluid A Has more opportunities to have a thermal effect on the heat transfer portions 20 and 30, and the heat transfer performance to the second fluid B side is improved.

これに対し、各伝熱プレート2,3の第二面Sa2,Sb2においては、第一凸条230,330と表裏の関係にある複数の第二凹条221,321が形成され、また、第一面Sa1,Sb1の障壁用凸条231,331と表裏の関係にある凹条が形成されるため、隣り合う伝熱プレート2,3の第二面Sa2,Sb2間に形成される第二流路Rb内には、第二流体Bの流通抵抗となるものがない。従って、第二流路Rbでの第二流体Bの流通抵抗が小さくなり、第二流体Bの流速を速めることができる。 On the other hand, on the second surfaces Sa2 and Sb2 of the heat transfer plates 2 and 3, a plurality of second recesses 221 and 321 having a front-back relationship with the first protrusions 230 and 330 are formed, and the first Since the concave ridges on the front and back sides are formed with the barrier ridges 231 and 331 on the one surface Sa1 and Sb1, the second flow formed between the second surfaces Sa2 and Sb2 of the adjacent heat transfer plates 2 and 3. There is nothing in the path Rb that acts as a flow resistance for the second fluid B. Therefore, the flow resistance of the second fluid B in the second flow path Rb is reduced, and the flow velocity of the second fluid B can be increased.

これにより、相変化を起こす流体(液体と気体とを含む二相流となる流体)が第二流体Bとして採用されとしても、第二流体Bの流速により、伝熱部20,30の表面上に形成された第二流体Bの液膜の流れが乱される。 As a result, even if a fluid that causes a phase change (a fluid that becomes a two-phase flow containing a liquid and a gas) is adopted as the second fluid B, the flow velocity of the second fluid B causes the heat transfer portions 20 and 30 to be on the surface. The flow of the liquid film of the second fluid B formed in is disturbed.

従って、上記構成の熱交換器1では、第二流路Rbを流通する第二流体Bの伝熱部20,30(第一流体A側)に対する熱伝達性能が高まる。 Therefore, in the heat exchanger 1 having the above configuration, the heat transfer performance of the second fluid B flowing through the second flow path Rb to the heat transfer portions 20 and 30 (first fluid A side) is enhanced.

そして、本実施形態において、隣り合う伝熱プレート2,3のそれぞれの伝熱部20,30は、障壁用凸条231,331を複数含み、複数の障壁用凸条231,331は、第二方向に間隔をあけて整列しているため、第一流路Ra内の複数個所(障壁用凸条231,331のある場所)で流通抵抗を高めることができる。これにより、第一流体Aが伝熱部20,30に対して熱的な影響を及ぼす機会が増え、第二流体B側への熱伝達性能が高くなる。 In the present embodiment, the heat transfer portions 20 and 30 of the adjacent heat transfer plates 2 and 3 include a plurality of barrier ridges 231 and 331, and the plurality of barrier ridges 231 and 331 are second. Since they are arranged at intervals in the direction, the flow resistance can be increased at a plurality of places (where the barrier ridges 231 and 331 are located) in the first flow path Ra. As a result, the chance that the first fluid A has a thermal effect on the heat transfer portions 20 and 30 increases, and the heat transfer performance to the second fluid B side is improved.

特に、本実施形態において、隣り合う伝熱プレート2,3のうちの一方の伝熱プレート2の伝熱部20は、第二方向に間隔をあけて配置された複数の障壁用凸条331を含む列を少なくとも一列(本実施形態において二列)有し、隣り合う伝熱プレート2,3のうちの他方の伝熱プレート3の伝熱部30は、第二方向に間隔をあけて配置された複数の障壁用凸条331を含む列を少なくとも二列(本実施形態においては三列)有し、隣り合う伝熱プレート2,3のうちの一方の伝熱プレート2における列が、他方の伝熱プレート3の列間に位置しているため、第一流体Aが第一流路Ra全体で拡散する。従って、伝熱部20,30における伝熱に寄与する領域が増え、第一流路Raにおける第一流体Aの熱伝達性能が向上する。 In particular, in the present embodiment, the heat transfer portion 20 of one of the adjacent heat transfer plates 2 and 3 has a plurality of barrier ridges 331 arranged at intervals in the second direction. The heat transfer portions 30 of the other heat transfer plate 3 of the adjacent heat transfer plates 2 and 3 having at least one row (two rows in the present embodiment) are arranged at intervals in the second direction. It has at least two rows (three rows in this embodiment) including a plurality of barrier ridges 331, and the row in one of the adjacent heat transfer plates 2 and 3 is the other. Since it is located between the rows of heat transfer plates 3, the first fluid A diffuses throughout the first flow path Ra. Therefore, the regions that contribute to heat transfer in the heat transfer units 20 and 30 increase, and the heat transfer performance of the first fluid A in the first flow path Ra is improved.

特に、隣り合う伝熱プレート2,3のうちの一方の伝熱プレート2における列を構成する複数の障壁用凸条231のそれぞれは、隣り合う伝熱プレート2,3のうちの他方の伝熱プレート3における列を構成する複数の障壁用凸条331の間に位置するため、第一流路Raを流通する第一流体Aは、下流側に進むのに併せて各障壁用凸条231,331の周囲に分散する。従って、第一流体Aが第一流路Ra全体で拡散し、伝熱部20,30における伝熱に寄与する領域が増える。これにより、第一流路Raにおける第一流体Aの熱伝達性能が向上する。 In particular, each of the plurality of barrier ridges 231 forming a row in one of the adjacent heat transfer plates 2 and 3 transfers heat to the other of the adjacent heat transfer plates 2 and 3. Since it is located between the plurality of barrier ridges 331 forming the row in the plate 3, the first fluid A flowing through the first flow path Ra advances to the downstream side and each barrier ridge 231 and 331. Disperse around. Therefore, the first fluid A diffuses in the entire first flow path Ra, and the regions contributing to heat transfer in the heat transfer portions 20 and 30 increase. As a result, the heat transfer performance of the first fluid A in the first flow path Ra is improved.

また、障壁用凸条231,331は、第三方向に真っすぐに延びるため、第一流路Raにおける第一流体Aの流通方向と直交する方向に延びて存在する。これにより、第一流体が障壁用凸条231,331に衝突する割合が多くなるため、流通抵抗が大きくなるだけでなく、第一流体Aが第三方向に効率的に拡散する。 Further, since the barrier ridges 231 and 331 extend straight in the third direction, they extend in a direction orthogonal to the flow direction of the first fluid A in the first flow path Ra. As a result, the ratio of the first fluid colliding with the barrier protrusions 231 and 331 increases, so that not only the flow resistance increases, but also the first fluid A efficiently diffuses in the third direction.

また、本実施形態において、隣り合う伝熱プレート2,3のそれぞれの伝熱部20,30は、第二面Sa2,Sb2に形成される凸条23,33として、第一凹条220,320と表裏の関係にある複数の第二凸条233,333を含み、隣り合う伝熱プレート2,3のそれぞれの第二凸条233,333は、相手方の伝熱プレート2,3の第二凸条233,333と重なり合い、該相手方の伝熱プレート2,3の第二凸条233,333の部と接触しているため、第一流路Ra内を流通する第一流体Aの流動圧が伝熱部20,30に作用しても、該伝熱部20,30が押し広げられることがない。従って、第二流路Rbを構成する空間が確保され、第二流体Bの流通の円滑性が確保される。
Further, in the present embodiment, the heat transfer portions 20 and 30 of the adjacent heat transfer plates 2 and 3 are the first recesses 220 and 320 as the protrusions 23 and 33 formed on the second surfaces Sa2 and Sb2. The second convex strips 233 and 333 of the adjacent heat transfer plates 2 and 3 include a plurality of second convex strips 233 and 333 which are in a front-to-back relationship with each other. Since it overlaps with the strips 233 and 333 and is in contact with the tops of the second convex strips 233 and 333 of the heat transfer plates 2 and 3 of the other party, the flow pressure of the first fluid A flowing in the first flow path Ra is increased. Even if it acts on the heat transfer portions 20 and 30, the heat transfer portions 20 and 30 are not expanded. Therefore, the space constituting the second flow path Rb is secured, and the smooth flow of the second fluid B is ensured.

なお、本発明は、上記実施形態に限定されるものではなく、本発明の要旨を逸脱しない範囲内で、適宜変更を加え得ることは勿論のことである。 It should be noted that the present invention is not limited to the above embodiment, and it goes without saying that modifications can be made as appropriate without departing from the gist of the present invention.

上記実施形態において、隣り合う伝熱プレート2,3(第一伝熱プレート2及び第二伝熱プレート3)の第二凸条233,333の部同士が接触乃至接続されたが、これに限定されない。例えば、隣り合う伝熱プレート2,3(第一伝熱プレート2及び第二伝熱プレート3)の第二凸条233,333の部同士が第一方向或いは第二方向で離間していてもよい。但し、第一流路Ra内の流動圧の上昇等に対抗し得る剛性を得るには、上記実施形態と同様に、隣り合う伝熱プレート2,3(第一伝熱プレート2及び第二伝熱プレート3)の第二凸条233,333の部同士が接触乃至接続されることが好ましい。
In the above embodiment, the tops of the second protrusions 233 and 333 of the adjacent heat transfer plates 2 and 3 (first heat transfer plate 2 and second heat transfer plate 3) are in contact with each other or connected to each other. Not limited. For example, the tops of the second protrusions 233 and 333 of the adjacent heat transfer plates 2 and 3 (first heat transfer plate 2 and second heat transfer plate 3) are separated from each other in the first direction or the second direction. May be good. However, in order to obtain rigidity that can withstand an increase in flow pressure in the first flow path Ra, etc., adjacent heat transfer plates 2 and 3 (first heat transfer plate 2 and second heat transfer plate 2 and second heat transfer plate 2) are obtained in the same manner as in the above embodiment. It is preferable that the tops of the second protrusions 233 and 333 of the plate 3) are in contact with each other or connected to each other.

上記実施形態において、第一凹条220,320、第一凸条230,330、第二凹条221,321、及び第二凸条233,333が第二方向に真っ直ぐに延びて形成されたが、これに限定されない。例えば、第二凹条221,321は、裏側凹条222,322と連続していることを前提に、第二方向を成分に含む合成方向(第二方向に延びる仮想線に対して傾斜する方向)に延びていてもよい。但し、第二流体Bの流速を速めるためには、第二方向に延びる仮想線に対する傾き成分(角度)が第三方向に延びる仮想線に対する傾き成分(角度)よりも小さい状態で傾斜することが条件である。 In the above embodiment, the first ridges 220, 320, the first ridges 230, 330, the second ridges 221, 321 and the second ridges 233, 333 are formed so as to extend straight in the second direction. , Not limited to this. For example, on the premise that the second recesses 211 and 321 are continuous with the backside recesses 222 and 322, the synthesis direction including the second direction as a component (the direction inclined with respect to the virtual line extending in the second direction). ) May be extended. However, in order to increase the flow velocity of the second fluid B, it is necessary to incline in a state where the inclination component (angle) with respect to the virtual line extending in the second direction is smaller than the inclination component (angle) with respect to the virtual line extending in the third direction. It is a condition.

上記実施形態において、各伝熱プレート2,3に対して障壁用凸条231,331が第二方向に間隔をあけて二つ以上設けられが、これに限定されない。例えば、一つの伝熱部20,30に対して一つの障壁用凸条231,331が設けられてもよい。また、上記第二実施形態において、伝熱部20,30の第一面Sa1,Sb1に対し、第二方向に間隔をあけた複数の障壁用凸条231,331の列が、第三方向に間隔をあけて二列以上設けられたが、これに限定されない。例えば、伝熱部20,30の第一面Sa1,Sb1に対し、第二方向に間隔をあけた複数の障壁用凸条231,331の列が一列設けられてもよい。さらに、上記第二実施形態において、伝熱部20,30の第一面Sa1,Sb1に対し、第二方向に間隔をあけた複数の障壁用凸条231,331が第二方向において整列したが、これに限定されない。例えば、第二方向に間隔をあけて配置された複数の障壁用凸条231,331は、第三方向において位置ずれして配置されていてもよい。 In the above embodiment, two or more barrier ridges 231 and 331 are provided on the heat transfer plates 2 and 3 at intervals in the second direction, but the present invention is not limited to this. For example, one barrier ridge 231 and 331 may be provided for one heat transfer portion 20 and 30. Further, in the second embodiment, a row of a plurality of barrier ridges 231 and 331 spaced in the second direction with respect to the first surfaces Sa1 and Sb1 of the heat transfer portions 20 and 30 is arranged in the third direction. Two or more rows are provided at intervals, but the present invention is not limited to this. For example, a row of a plurality of barrier ridges 231 and 331 spaced apart from each other in the second direction may be provided on the first surfaces Sa1 and Sb1 of the heat transfer portions 20 and 30. Further, in the second embodiment, a plurality of barrier ridges 231 and 331 spaced in the second direction are aligned in the second direction with respect to the first surfaces Sa1 and Sb1 of the heat transfer portions 20 and 30. , Not limited to this. For example, the plurality of barrier protrusions 231 and 331 arranged at intervals in the second direction may be arranged so as to be displaced in the third direction.

上記実施形態において、伝熱部20,30の第一面Sa1,Sb1上に形成される複数の障壁用凸条231,331が同一形態にされたが、これに限定されない。例えば、伝熱部20,30の第一面Sa1,Sb1上に形態を異にする複数の障壁用凸条231,331が形成されてもよい。 In the above embodiment, the plurality of barrier ridges 231 and 331 formed on the first surfaces Sa1 and Sb1 of the heat transfer portions 20 and 30 are made into the same embodiment, but the present invention is not limited to this. For example, a plurality of barrier ridges 231 and 331 having different forms may be formed on the first surfaces Sa1 and Sb1 of the heat transfer portions 20 and 30.

上記実施形態において、第一凹条220,320及び第一凸条230,330の幅寸法(長手方向と直交する方向の寸法)が同一に設定されたが、これに限定されない。例えば、図14乃至図16に示す如く、第一凸条230,330の幅寸法よりも第一凹条220,320の幅寸法が大きく設定されてもよい。具体的には、図14に示す如く、第一凹条220,320及び第一凸条230,330を断面円弧状に形成することを前提に、第一凹条220,320の曲率半径を第一凸条230,330の曲率半径よりも大きく設定してもよい。また、図15及び図16に示す如く、第一凹条220,320の底部を平坦状に形成し、第一凹条220,320の幅寸法を第一凸条230,330の幅寸法よりも大きく設定してもよい。この場合、図15に示す如く、第一凸条230,330を断面円弧状にしてもよいし、図16に示す如く、第一凸条230,330の部を平坦状にしてもよい。このようにすれば、第一凸条230,330よりも低い障壁用凸条231,331に対して相手方の伝熱プレート2,3の第一凸条230,330が交差衝合することで、第一凹条220,320に対して第一凸条230,330が接近或いは入り込んだ状態になっても、第一凹条220,320と第一凸条230,330との間に極端に間隔の狭まった部分が形成されることがなく、第一流体Aの流通性が確保される。
In the above embodiment, the width dimensions (dimensions in the direction orthogonal to the longitudinal direction) of the first recesses 220, 320 and the first protrusions 230, 330 are set to be the same, but the present invention is not limited thereto. For example, as shown in FIGS. 14 to 16, the width dimension of the first recesses 220, 320 may be set larger than the width dimension of the first protrusions 230, 330. Specifically, as shown in FIG. 14, the radius of curvature of the first recesses 220 and 320 is set on the premise that the first recesses 220 and 320 and the first protrusions 230 and 330 are formed in an arc shape in cross section. It may be set larger than the radius of curvature of the single protrusions 230 and 330. Further, as shown in FIGS. 15 and 16, the bottoms of the first recesses 220 and 320 are formed flat, and the width dimension of the first recess 220 and 320 is larger than the width dimension of the first protrusions 230 and 330. It may be set large. In this case, as shown in FIG. 15, the first ridges 230 and 330 may have an arcuate cross section, and as shown in FIG. 16, the tops of the first ridges 230 and 330 may be flat. In this way, the first protrusions 230 and 330 of the other heat transfer plates 2 and 3 intersect with the barrier protrusions 231 and 331, which are lower than the first protrusions 230 and 330. Even if the first ridges 230 and 330 approach or enter the first ridges 220 and 320, the distance between the first ridges 220 and 320 and the first ridges 230 and 330 is extremely large. The narrowed portion of the first fluid A is not formed, and the flowability of the first fluid A is ensured.

上記実施形態において、第一流路Raが第一流入路Pa1と第一流出路Pa2とを直接連通させるとともに、第二流路Rbが第二流入路Pb1と第二流出路Pb2とを直接連通させたが、これに限定されない。例えば、図17及び図18に示す如く、第二流入路Pb1及び第二流出路Pb2と異なる位置で第一方向に延びる接続流路PJによって少なくとも二つの第二流路Rb同士を連通させ、接続流路PJを含む第二流体Bの流通経路の最上流に位置する第二流路Rbを第二流入路Pb1に接続するとともに、接続流路PJを含む第二流体Bの流通経路の最下流に位置する第二流路Rbを第二流出路Pb2に接続してもよい。 In the above embodiment, the first flow path Ra directly communicates the first inflow path Pa1 and the first outflow path Pa2, and the second flow path Rb directly communicates the second inflow path Pb1 and the second outflow path Pb2. However, it is not limited to this. For example, as shown in FIGS. 17 and 18, at least two second flow paths Rb are communicated with each other and connected by a connection flow path PJ extending in the first direction at a position different from the second inflow path Pb1 and the second outflow path Pb2. The second flow path Rb located at the uppermost stream of the flow path of the second fluid B including the flow path PJ is connected to the second inflow path Pb1, and the most downstream of the flow path of the second fluid B including the connection flow path PJ. The second flow path Rb located at may be connected to the second outflow path Pb2.

より詳しくは、伝熱プレート2,3の重ね合わせ方向(第一方向)の途中位置で隣り合う伝熱プレート2,3間に分岐基準空間Ds1が形成される。これを前提に、第一方向において分岐基準空間Ds1よりも一方側にある第二流路Rbと分岐基準空間Ds1とが接続流路PJを介して接続され、第一方向において分岐基準空間Ds1よりも他方側にある第二流路Rbと分岐基準空間Ds1とが接続流路PJを介して接続されてもよい。このようにすれば、第二流体Bの流通経路が、分岐基準空間Ds1から第一方向の一方側で連続する少なくとも一つの第一系統S1と、分岐基準空間Ds1から第一方向の他方側で連続する少なくとも一つの第二系統S2とに分岐される。 More specifically, the branch reference space Ds1 is formed between the adjacent heat transfer plates 2 and 3 at an intermediate position in the overlapping direction (first direction) of the heat transfer plates 2 and 3. On the premise of this, the second flow path Rb on one side of the branch reference space Ds1 in the first direction and the branch reference space Ds1 are connected via the connection flow path PJ, and from the branch reference space Ds1 in the first direction. The second flow path Rb on the other side and the branch reference space Ds1 may be connected via the connection flow path PJ. In this way, the flow path of the second fluid B is at least one first system S1 continuous from the branch reference space Ds1 on one side in the first direction and on the other side of the branch reference space Ds1 in the first direction. It is branched into at least one continuous second system S2.

また、第二流体Bの流通経路が第一系統S1と第二系統S2とを含む場合、第一系統S1及び第二系統S2のそれぞれにおいて、第一方向の途中位置にある少なくとも一つの第二流路Rbであって、接続流路PJを介して上流の分岐基準空間Ds1と直接的又は間接的に接続された第二流路Rbを画定する伝熱プレート2,3間に分岐基準空間(下流側の分岐基準空間)Ds2を形成してもよい。この場合、第一方向において分岐基準空間Ds2よりも一方側にある第二流路Rbと下流側の分岐基準空間Ds2とが接続流路PJを介して接続され、第一方向において分岐基準空間Ds2よりも他方側にある第二流路Rbと下流側の分岐基準空間Ds2とが接続流路PJを介して接続される。これにより、第一系統S1及び第二系統S2のそれぞれにおける第二流体Bの流通経路が、さらに少なくとも二系統S1a,S1b,S2a,S2bに分岐し、その系統S1a,S1b,S2a,S2bにおける最下流にある第二流路Rbが第二流出路Pb2に接続される。なお、各系統S1a,S1b,S2a,S2bにおける最下流にある第二流路Rb(第二流出路Pb2に接続される第二流路Rb)は、一つに限らず、複数であってもよい。 When the flow path of the second fluid B includes the first system S1 and the second system S2, at least one second in the middle position in the first direction in each of the first system S1 and the second system S2. A branch reference space (branch reference space) between the heat transfer plates 2 and 3 which is the flow path Rb and defines the second flow path Rb which is directly or indirectly connected to the upstream branch reference space Ds1 via the connection flow path PJ. The branch reference space on the downstream side) Ds2 may be formed. In this case, the second flow path Rb on one side of the branch reference space Ds2 in the first direction and the branch reference space Ds2 on the downstream side are connected via the connection flow path PJ, and the branch reference space Ds2 in the first direction. The second flow path Rb on the other side and the branch reference space Ds2 on the downstream side are connected via the connection flow path PJ. As a result, the flow path of the second fluid B in each of the first system S1 and the second system S2 is further branched into at least two systems S1a, S1b, S2a, and S2b, and the most in the systems S1a, S1b, S2a, and S2b. The second flow path Rb located downstream is connected to the second outflow path Pb2. The number of the second flow path Rb (second flow path Rb connected to the second outflow path Pb2) at the most downstream side in each system S1a, S1b, S2a, S2b is not limited to one, and may be a plurality. Good.

上記実施形態において、複数の障壁用凸条231,331のそれぞれが、第三方向に真っすぐに延びたが、これに限定されない。例えば、複数の障壁用凸条231,331のそれぞれが、第一実施形態と同様に、屈曲凸条部232,332を含んでいてもよい。
この場合において、隣り合う伝熱プレート2,3の障壁用凸条231,331同士が第一方向から見て交差した態様であってもよい。
In the above embodiment, each of the plurality of barrier ridges 231 and 331 extends straight in the third direction, but is not limited thereto. For example, each of the plurality of barrier ridges 231 and 331 may include bent ridges 232 and 332 as in the first embodiment.
In this case, the barrier protrusions 231 and 331 of the adjacent heat transfer plates 2 and 3 may intersect each other when viewed from the first direction.

上記実施形態において、障壁用凸条231,331が複数の第一凸条230,330と交差して設けられたが、これに限定されない。障壁用凸条231,331は、第一凸条230,330と交差する方向に延びていればよい。すなわち、隔壁用凸条231,331は、第一凸条230,330と交差する方向に延びること(隔壁用凸条231,331の部(稜線)が第一凸条230,330と交差する方向に延びること)を前提に、極端に短く形成され、単一の第一凸条230,330のみと交差したり、隣り合う第一凸条230,230,330,330間(単一の第一凹条220,320内)に存在したりしてもよい。 In the above embodiment, the barrier ridges 231 and 331 are provided intersecting with the plurality of first ridges 230 and 330, but the present invention is not limited to this. The barrier ridges 231 and 331 may extend in a direction intersecting the first ridges 230 and 330. That is, the partition wall ridges 231 and 331 extend in the direction intersecting the first ridges 230 and 330 (the tops (ridges) of the partition wall ridges 231 and 331 intersect the first ridges 230 and 330. It is formed extremely short on the premise of extending in the direction), intersecting only a single first ridge 230, 330, or between adjacent first ridges 230, 230, 330, 330 (single first ridge 230, 230, 330, 330). It may exist in one concave line 220, 320).

1…プレート式熱交換器(熱交換器)、2…第一伝熱プレート(伝熱プレート)、3…第二伝熱プレート(伝熱プレート)、20,30…伝熱部、21,31…嵌合部、22,32…凹条、23,33…凸条、200,201,202,203,300,301,302,303…開口、220,320…第一凹条、221,321…第二凹条、222,322…裏側凹条、230,330…第一凸条、231,331…障壁用凸条、233,333…第二凸条、A…第一流体、B…第二流体、CL…縦中心線、Pa1…第一流入路、Pa2…第一流出路、Pb1…第二流入路、Pb2…第二流出路、Ra…第一流路、Rb…第二流路、Sa1,Sb1…第一面、Sa2,Sb2…第二面 1 ... Plate type heat exchanger (heat exchanger), 2 ... First heat transfer plate (heat transfer plate), 3 ... Second heat transfer plate (heat transfer plate), 20, 30 ... Heat transfer section, 21, 31 ... Fitting portion, 22, 32 ... Concave, 23, 33 ... Convex, 200, 201, 202, 203, 300, 301, 302, 303 ... Opening, 220, 320 ... First concave, 221, 321 ... Second ridge, 222,322 ... Backside ridge, 230,330 ... First ridge, 231,331 ... Barrier ridge, 233,333 ... Second ridge, A ... First fluid, B ... Second Fluid, CL ... vertical center line, Pa1 ... first inflow path, Pa2 ... first outflow path, Pb1 ... second inflow path, Pb2 ... second outflow path, Ra ... first flow path, Rb ... second flow path, Sa1, Sb1 ... 1st surface, Sa2, Sb2 ... 2nd surface

Claims (6)

凸条及び凹条の形成された第一面と、該第一面に対して反対側を向き、且つ第一面の凸条と表裏の関係にある凹条及び第一面の凹条と表裏の関係にある凸条の形成された第二面とを有する伝熱部を含む伝熱プレートであって、それぞれの伝熱部が第一方向に重ね合わされた複数の伝熱プレートを備え、
複数の伝熱プレートのそれぞれは、自身の伝熱部の第一面を第一方向の一方側で隣に並ぶ伝熱プレートにおける伝熱部の第一面と対向させるとともに、自身の伝熱部の第二面を第一方向の他方側で隣に並ぶ伝熱プレートにおける伝熱部の第二面と対向させ、
第一流体を第一方向と直交する第二方向に流通させる第一流路が隣り合う伝熱プレートの伝熱部の第一面間に形成されるとともに、第二流体を第二方向に流通させる第二流路が隣り合う伝熱プレートの伝熱部の第二面間に形成され、
隣り合う伝熱プレートのそれぞれの伝熱部は、第一面に形成される凸条として、第一方向及び第二方向と交差する方向に間隔をあけて配置された複数の第一凸条であって、それぞれが第二方向又は第二方向を成分に含む合成方向に延びる複数の第一凸条と、該第一面に形成される第一凸条よりも低い障壁用凸条であって、第一凸条と交差する方向に延びる少なくとも一つの障壁用凸条とを含むとともに、第一面に形成される凹条として、第一方向及び第二方向と交差する方向で隣り合う第一凸条間に形成される複数の第一凹条を含み、且つ第二面に形成される凹条として、第一凸条と表裏の関係にある複数の第二凹条を含み、
隣り合う伝熱プレートのそれぞれの第一凸条は、相手方の伝熱プレートの第一凸条間に位置し、
隣り合う伝熱プレートのそれぞれの障壁用凸条の長手方向の寸法が、伝熱部の第一方向及び第二方向と直交する第三方向の全長よりも短く設定され、
隣り合う伝熱プレートの障壁用凸条は、第二方向及び第三方向の少なくとも何れか一方で互いに位置ずれした位置に配置され、相手方の伝熱プレートの第一凸条と交差衝合している、
プレート式熱交換器。
The first surface on which the ridges and ridges are formed, the dents facing the opposite side of the first surface, and the ridges on the first surface and the front and back, and the dents on the first surface and the front and back It is a heat transfer plate including a heat transfer portion having a second surface on which a convex stripe is formed, and each heat transfer portion is provided with a plurality of heat transfer plates in which the heat transfer portions are overlapped in the first direction.
Each of the plurality of heat transfer plates faces the first surface of its own heat transfer part with the first surface of the heat transfer part in the heat transfer plates arranged next to each other on one side in the first direction, and also has its own heat transfer part. Face the second surface of the heat transfer part in the heat transfer plates arranged next to each other on the other side of the first direction.
A first flow path for circulating the first fluid in the second direction orthogonal to the first direction is formed between the first surfaces of the heat transfer portions of adjacent heat transfer plates, and the second fluid is allowed to flow in the second direction. A second flow path is formed between the second surfaces of the heat transfer portions of adjacent heat transfer plates.
Each heat transfer portion of the adjacent heat transfer plate is a plurality of first convex stripes arranged at intervals in the direction intersecting the first direction and the second direction as the convex stripes formed on the first surface. There are a plurality of first ridges extending in the synthetic direction, each of which contains a second direction or a second direction as a component, and a barrier ridge lower than the first ridge formed on the first surface. A first, which includes at least one barrier ridge extending in a direction intersecting the first ridge, and adjacent as a dent formed on the first surface in a direction intersecting the first and second directions. A plurality of first dents formed between the ridges are included, and the dents formed on the second surface include a plurality of second dents having a front-back relationship with the first ridge.
The first ridges of the adjacent heat transfer plates are located between the first ridges of the other heat transfer plate.
The longitudinal dimension of each barrier ridge of adjacent heat transfer plates is set shorter than the total length of the heat transfer portion in the first direction and the third direction orthogonal to the second direction.
The barrier ridges of adjacent heat transfer plates are arranged at positions that are offset from each other in at least one of the second and third directions, and intersect with the first ridge of the other heat transfer plate. Yes,
Plate heat exchanger.
隣り合う伝熱プレートのそれぞれの伝熱部は、障壁用凸条を複数含み、複数の障壁用凸条は、第二方向に間隔をあけて整列している、
請求項1に記載のプレート式熱交換器。
Each heat transfer portion of the adjacent heat transfer plate contains a plurality of barrier ridges, and the plurality of barrier ridges are arranged at intervals in the second direction.
The plate heat exchanger according to claim 1.
隣り合う伝熱プレートのうちの一方の伝熱プレートの伝熱部は、第二方向に間隔をあけて配置された複数の障壁用凸条を含む列を少なくとも一列有し、
隣り合う伝熱プレートのうちの他方の伝熱プレートの伝熱部は、第二方向に間隔をあけて配置された複数の障壁用凸条を含む列を少なくとも二列有し、
隣り合う伝熱プレートのうちの一方の伝熱プレートにおける列が、他方の伝熱プレートの列間に位置している、
請求項1に記載のプレート式熱交換器。
The heat transfer portion of one of the adjacent heat transfer plates has at least one row containing a plurality of barrier ridges spaced apart from each other in the second direction.
The heat transfer portion of the other heat transfer plate of the adjacent heat transfer plates has at least two rows containing a plurality of barrier ridges spaced apart from each other in the second direction.
A row of heat transfer plates in one of the adjacent heat transfer plates is located between the rows of the other heat transfer plates.
The plate heat exchanger according to claim 1.
隣り合う伝熱プレートのうちの一方の伝熱プレートにおける列を構成する複数の障壁用凸条のそれぞれは、隣り合う伝熱プレートのうちの他方の伝熱プレートにおける列を構成する複数の障壁用凸条の間に位置する、
請求項3に記載のプレート式熱交換器。
Each of the plurality of barrier ridges forming a row in one of the adjacent heat transfer plates is for a plurality of barriers forming a row in the other heat transfer plate of the adjacent heat transfer plates. Located between the ridges,
The plate heat exchanger according to claim 3.
障壁用凸条は、第三方向に真っすぐに延びる、
請求項1乃至4の何れか一項に記載のプレート式熱交換器。
Barrier ridges extend straight in the third direction,
The plate heat exchanger according to any one of claims 1 to 4.
隣り合う伝熱プレートのそれぞれの伝熱部は、第二面に形成される凸条として、第一凹条と表裏の関係にある複数の第二凸条を含み、
隣り合う伝熱プレートのそれぞれの第二凸条は、相手方の伝熱プレートの第二凸条と重なり合い、該相手方の伝熱プレートの第二凸条の部と接触している、
請求項1乃至5の何れか一項に記載のプレート式熱交換器。
Each heat transfer portion of the adjacent heat transfer plate includes a plurality of second ridges having a front-back relationship with the first dent as ridges formed on the second surface.
Each second ridge of an adjacent heat transfer plate overlaps the second ridge of the other heat transfer plate and is in contact with the top of the second ridge of the other heat transfer plate.
The plate heat exchanger according to any one of claims 1 to 5.
JP2019519901A 2017-05-25 2017-05-25 Plate heat exchanger Active JP6799680B2 (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2017/019549 WO2018216165A1 (en) 2017-05-25 2017-05-25 Plate type heat exchanger

Publications (2)

Publication Number Publication Date
JPWO2018216165A1 JPWO2018216165A1 (en) 2020-04-23
JP6799680B2 true JP6799680B2 (en) 2020-12-16

Family

ID=64396349

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019519901A Active JP6799680B2 (en) 2017-05-25 2017-05-25 Plate heat exchanger

Country Status (4)

Country Link
EP (1) EP3647710B1 (en)
JP (1) JP6799680B2 (en)
CN (1) CN110691954B (en)
WO (1) WO2018216165A1 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3671096B1 (en) * 2018-12-21 2022-10-26 InnoHeat Sweden AB Heat exchanger plate and heat exchanger
JP7181241B2 (en) * 2020-02-05 2022-11-30 株式会社日阪製作所 plate heat exchanger
KR102667381B1 (en) * 2023-03-31 2024-05-20 이상준 The plate type heat exchanger with improved fluid flow

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB580368A (en) * 1944-01-01 1946-09-05 Separator Ab Improvements in or relating to plate heat exchangers
JPS5710353B2 (en) * 1972-12-21 1982-02-25
US4182411A (en) * 1975-12-19 1980-01-08 Hisaka Works Ltd. Plate type condenser
JPS55107898A (en) * 1979-02-12 1980-08-19 Union Carbide Corp Heat exchanger wall member and heat exchanger using same
JPS5664292A (en) * 1979-10-30 1981-06-01 Hisaka Works Ltd Plate type heat exchanger
JPS5699293U (en) * 1979-12-22 1981-08-05
JPS6176889A (en) * 1984-09-19 1986-04-19 Mitsubishi Heavy Ind Ltd Plate type heat exchanger
JP3212350B2 (en) * 1992-03-30 2001-09-25 株式会社日阪製作所 Plate heat exchanger
JP3543992B2 (en) * 1994-03-28 2004-07-21 株式会社日阪製作所 Plate heat exchanger
US5899261A (en) * 1997-09-15 1999-05-04 Abb Air Preheater, Inc. Air preheater heat transfer surface
JP3976418B2 (en) * 1998-10-13 2007-09-19 本田技研工業株式会社 Multi-plate heat exchanger
JP2001099588A (en) 1999-09-29 2001-04-13 Hisaka Works Ltd Plate type heat exchanger
SE533310C2 (en) * 2008-11-12 2010-08-24 Alfa Laval Corp Ab Heat exchanger plate and heat exchanger including heat exchanger plates
DK2508831T3 (en) * 2011-04-07 2016-03-07 Alfa Laval Corp Ab PLATE HEAT EXCHANGE
CN106440890A (en) * 2016-11-30 2017-02-22 广东芬尼克兹节能设备有限公司 Plate type heat exchanger structure

Also Published As

Publication number Publication date
CN110691954B (en) 2021-05-11
EP3647710A1 (en) 2020-05-06
CN110691954A (en) 2020-01-14
EP3647710A4 (en) 2021-01-06
EP3647710B1 (en) 2024-04-10
WO2018216165A1 (en) 2018-11-29
JPWO2018216165A1 (en) 2020-04-23

Similar Documents

Publication Publication Date Title
JP3675475B2 (en) Plate heat exchanger
US6823934B2 (en) Heat transfer plate and plate pack for use in a plate heat exchanger
JP6770200B2 (en) Heat exchanger and heat exchanger
JP6799680B2 (en) Plate heat exchanger
EP3404350B1 (en) Plate heat exchanger
JP6987074B2 (en) Plate heat exchanger with heat transfer plate and multiple such heat transfer plates
JP2021528625A (en) Heat transfer plate and gasket
JP2019530845A (en) Heat exchange plate and heat exchanger
TW201839344A (en) Heat transfer plate and heat exchanger comprising a plurality of such heat transfer plates
JP6799681B2 (en) Plate heat exchanger
JP4504092B2 (en) Plate heat exchanger
JP5356927B2 (en) Plate heat exchanger
JP7100074B2 (en) Plate heat exchanger
JP6069425B2 (en) Plate heat exchanger
WO2021157514A1 (en) Plate heat exchanger
JP7280798B2 (en) plate mixer
WO2020045595A1 (en) Plate heat exchanger
JP6235645B2 (en) Plate heat exchanger
JP5244162B2 (en) Plate heat exchanger
JP6857108B2 (en) Plate heat exchanger

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20191030

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200305

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20201106

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20201120

R150 Certificate of patent or registration of utility model

Ref document number: 6799680

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250