JP7279678B2 - ドライバ回路及び電力変換装置 - Google Patents

ドライバ回路及び電力変換装置 Download PDF

Info

Publication number
JP7279678B2
JP7279678B2 JP2020066760A JP2020066760A JP7279678B2 JP 7279678 B2 JP7279678 B2 JP 7279678B2 JP 2020066760 A JP2020066760 A JP 2020066760A JP 2020066760 A JP2020066760 A JP 2020066760A JP 7279678 B2 JP7279678 B2 JP 7279678B2
Authority
JP
Japan
Prior art keywords
gain
voltage
timing
switching element
circuit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2020066760A
Other languages
English (en)
Other versions
JP2021164361A (ja
Inventor
周平 青山
義昭 石原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Industries Corp
Original Assignee
Toyota Industries Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Industries Corp filed Critical Toyota Industries Corp
Priority to JP2020066760A priority Critical patent/JP7279678B2/ja
Publication of JP2021164361A publication Critical patent/JP2021164361A/ja
Application granted granted Critical
Publication of JP7279678B2 publication Critical patent/JP7279678B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Power Conversion In General (AREA)
  • Inverter Devices (AREA)

Description

本発明は、ドライバ回路及び電力変換装置に関する。
例えば特許文献1には、スイッチング素子としてのIGBTを駆動させるドライバ回路が記載されている。特許文献1に記載のドライバ回路は、電力損失の低減とサージ電圧又はサージ電流の低減との両立を図るために、エミッタ配線のインダクタンス分で発生する逆起電力としての誘起電圧をフィードバックさせるアクティブゲート制御を行っている。
特開2004-48843号公報
ここで、逆起電力をフィードバックさせる場合であっても、スイッチング素子のターンオン時及びターンオフ時にはサージ及び電力損失が発生し得る。このため、サージの抑制と電力損失の低減とを両立させるための構成には未だ改善の余地がある。
本発明は、上述した事情を鑑みてなされたものであり、その目的はサージの抑制と電力損失の低減との両立を図ることができるドライバ回路及び当該ドライバ回路を備えた電力変換装置を提供することである。
上記目的を達成するドライバ回路は、制御端子及び印加電流が流れる印加端子を有するスイッチング素子を駆動させるものであって、外部指令電圧が入力される外部入力端子と、前記印加電流の変化により前記スイッチング素子内の寄生インダクタンスを含むインダクタンス成分によって生じる逆起電力が入力されるフィードバック入力端子と、前記逆起電力をフィードバック電圧に変換するものであって、前記逆起電力に対する前記フィードバック電圧の比率である利得を変更可能な変換回路と、前記外部指令電圧と前記フィードバック電圧とが入力されるものであって、前記外部指令電圧及び前記フィードバック電圧を加算し、その加算された加算電圧を前記制御端子に向けて出力する加算回路と、前記変換回路の利得を制御する制御部と、を備え、前記変換回路が設定可能な前記利得には、第1利得と、前記第1利得よりも高い第2利得とが含まれており、前記外部指令電圧が立ち上がることに基づいて前記印加電流がピーク値となるタイミングを電流ピークタイミングとし、前記印加電流が流れ始めるタイミングよりも後であって前記電流ピークタイミングよりもオン時許容期間だけ前のタイミングを電流ピーク前タイミングとすると、前記制御部は、前記外部指令電圧が立ち上がる前に又は前記外部指令電圧が立ち上がることに基づいて前記利得を前記第1利得に設定し、前記電流ピーク前タイミングから前記電流ピークタイミングまでの前記オン時許容期間内に前記利得が前記第1利得から前記第2利得に変更されるように前記変換回路を制御することを特徴とする。
かかる構成によれば、外部指令電圧が立ち上がる前に又は外部指令電圧が立ち上がることに基づいて利得が第1利得に設定されることにより、利得が第2利得に設定されている状態と比較して、印加電流を早期に立ち上がらせることができる。これにより、ターンオンに係るスイッチングスピードを高くすることができ、ターンオン時における電力損失を低減できる。その後、電流ピークタイミングまでに利得が第1利得よりも大きい第2利得に変更される。これにより、印加電流の立ち上がりを緩やかにすることができるため、印加電流のサージを抑制できる。したがって、サージの抑制と電力損失の低減との両立を図ることができる。
特に、本構成によれば、電流ピーク前タイミングから電流ピークタイミングまでのオン時許容期間内に利得が第1利得から第2利得に変更される。これにより、オン時許容期間外に利得が変更される構成と比較して、より電力損失の低減を図ることができる。
上記ドライバ回路について、前記制御部は、前記電流ピークタイミングに対して前記オン時許容期間よりも短いオン時目標期間だけ前のオン時目標タイミングにて前記利得が前記第1利得から前記第2利得に変更されるように前記変換回路を制御するとよい。
かかる構成によれば、オン時目標タイミングとなるまでは利得は第1利得となっており、オン時目標タイミングにて利得が第1利得から第2利得に変更される。そして、オン時目標タイミングから電流ピークタイミングまでのオン時目標期間に亘って利得が第2利得となる。この場合、オン時目標タイミングと電流ピークタイミングとの間にはオン時目標期間が設けられているため、実際に利得が変更される変更タイミングとオン時目標タイミングとが多少ずれた場合であっても、当該変更タイミングが電流ピークタイミングよりも後になりにくく、オン時許容期間内に収まり易い。これにより、例えばオン時目標タイミングが変動すること等に起因して、変更タイミングとオン時目標タイミングとの間にずれが生じた場合であっても、オン時許容期間内に利得を変更できる。
上記ドライバ回路について、前記オン時目標期間は、前記外部指令電圧が立ち上がってから前記オン時目標タイミングまでの期間よりも短いとよい。
かかる構成によれば、外部指令電圧が立ち上がってから電流ピークタイミングとなるまでの期間内において、第1利得となっている期間が第2利得となっている期間よりも長くなり易い。これにより、印加電流の立ち上がり期間をより短くすることができ、スイッチングスピードの向上を図ることができる。
上記ドライバ回路について、前記制御部は、前記電流ピークタイミングをオン時目標タイミングとして当該オン時目標タイミングにて前記利得が前記第1利得から前記第2利得に変更されるように前記変換回路を制御するとよい。
かかる構成によれば、スイッチング素子のスイッチングスピードの更なる向上を図ることができる。また、この場合であっても、印加電流のサージをある程度抑制することができる。
上記ドライバ回路について、前記制御部は、前記外部指令電圧の第1立ち上がりにおいて、前記利得の変更タイミングと前記オン時目標タイミングとのずれ期間を把握し、前記第1立ち上がりの後の第2立ち上がりにおいて、前記変更タイミングが前記オン時目標タイミングに近づく又は一致するように前記ずれ期間に基づいて前記変更タイミングを調整するとよい。
スイッチング素子の特性ばらつきや経年劣化等によって電流ピークタイミングが変動すると、オン時目標タイミングが変動する。この場合、変更タイミングとオン時目標タイミングとがずれる場合が生じ得る。
この点、本構成によれば、第1立ち上がりにおいて変更タイミングとオン時目標タイミングとがずれた場合には、ずれ期間に基づいて変更タイミングが調整される。これにより、第2立ち上がりにおいて、変更タイミングをオン時目標タイミングに近づけることができる。
上記目的を達成するドライバ回路は、制御端子及び印加電流が流れる印加端子を有するスイッチング素子を駆動させるものであって、外部からの指令電圧が入力される指令入力端子と、前記印加電流の変化により前記スイッチング素子内の寄生インダクタンスを含むインダクタンス成分によって生じる逆起電力が入力されるフィードバック入力端子と、前記逆起電力をフィードバック電圧に変換するものであって、前記逆起電力に対する前記フィードバック電圧との比率である利得を変更可能な変換回路と、前記指令電圧と前記フィードバック電圧とが入力されるものであって、前記指令電圧及び前記フィードバック電圧を加算し、その加算された加算電圧を前記制御端子に向けて出力する加算回路と、前記変換回路の利得を制御する制御部と、を備え、前記変換回路が設定可能な前記利得には、第1利得と、前記第1利得よりも高い第2利得とが含まれており、前記外部指令電圧が立ち下がることに基づいて前記スイッチング素子の印加電圧がピーク値となるタイミングを電圧ピークタイミングとし、前記電圧ピークタイミングよりもオフ時許容期間だけ後のタイミングを電圧ピーク後タイミングとすると、前記オフ時許容期間は、前記電圧ピークタイミングから前記印加電流が0となるタイミングまでの期間よりも短く設定されており、前記制御部は、前記外部指令電圧が立ち下がる前に又は前記外部指令電圧が立ち下がることに基づいて前記利得を前記第2利得に設定し、前記電圧ピークタイミングから前記電圧ピーク後タイミングまでの前記オフ時許容期間内に前記利得が前記第2利得から前記第1利得となるように前記変換回路を制御することを特徴とする。
かかる構成によれば、外部指令電圧が立ち下がる前に又は外部指令電圧が立ち下がることに基づいて利得が第2利得に設定されることにより、利得が第1利得に設定されている状態と比較して、スイッチング素子の印加電圧が緩やかに立ち上がる。これにより、印加電圧のサージを抑制できる。
その後、オフ時許容期間内に利得が第2利得から第1利得に変更されることにより、印加電流が急峻に立ち下がる。これにより、印加電流の立ち下がり期間を短縮化することができるため、ターンオフに係るスイッチングスピードを高くすることができ、ターンオフ時における電力損失の低減を図ることができる。したがって、サージの抑制と電力損失の低減との両立を図ることができる。
特に、本構成によれば、電圧ピークタイミングから電圧ピーク後タイミングまでのオフ時許容期間内に利得が第2利得から第1利得に変更される。これにより、オフ時許容期間外に利得が変更される構成と比較して、より電力損失の低減を図ることができる。
上記ドライバ回路について、前記制御部は、前記電圧ピークタイミングに対して前記オフ時許容期間よりも短いオフ時目標期間だけ後のオフ時目標タイミングにて前記利得が前記第2利得から前記第1利得に変更されるように前記変換回路を制御するとよい。
かかる構成によれば、電圧ピークタイミングからのオフ時目標期間に亘って利得が第2利得となっており、オフ時目標タイミングにて利得が第2利得から第1利得に変更される。この場合、電圧ピークタイミングとオフ時目標タイミングとの間にはオフ時目標期間が設けられているため、実際に利得が変更される変更タイミングとオフ時目標タイミングとが多少ずれた場合であっても、変更タイミングが電圧ピークタイミングよりも前になりにくく、オフ時許容期間内に収まり易い。これにより、例えばオフ時目標タイミングが変動すること等に起因して変更タイミングとオフ時目標タイミングとの間にずれが生じた場合であっても、オフ時許容期間内に利得を変更できる。
上記ドライバ回路について、前記オフ時目標期間は、前記オフ時目標タイミングから前記印加電流が0となるタイミングまでの期間よりも短いとよい。
かかる構成によれば、電圧ピークタイミングから印加電流が0となるまでの期間内において、第1利得となっている期間が第2利得となっている期間よりも長くなる。これにより、印加電流の立ち下がり期間をより短くすることができ、スイッチングスピードの向上を図ることができる。
上記ドライバ回路について、前記制御部は、前記電圧ピークタイミングをオフ時目標タイミングとして当該オフ時目標タイミングにて前記利得が前記第1利得から前記第2利得に変更されるように前記変換回路を制御するとよい。
かかる構成によれば、スイッチング素子のスイッチングスピードの更なる向上を図ることができる。また、この場合であっても、スイッチング素子の印加電圧のサージをある程度抑制することができる。
上記ドライバ回路について、前記制御部は、前記外部指令電圧の第1立ち下がりにおいて、前記利得の変更タイミングと前記オフ時目標タイミングとのずれ期間を把握し、前記第1立ち下がりの後の第2立ち下がりにおいて、前記利得の変更タイミングが前記オフ時目標タイミングに近づく又は一致するように前記ずれ期間に基づいて前記変更タイミングを調整するとよい。
スイッチング素子の特性ばらつきや経年劣化等によって電圧ピークタイミングが変動すると、オフ時目標タイミングが変動する。この場合、変更タイミングとオフ時目標タイミングとがずれる場合が生じ得る。
この点、本構成によれば、第1立ち下がりにおいて変更タイミングとオフ時目標タイミングとがずれた場合には、ずれ期間に基づいて変更タイミングが調整される。これにより、第2立ち下がりにおいて、変更タイミングをオフ時目標タイミングに近づけることができる。
上記ドライバ回路について、前記変換回路は、前記利得に関与する利得抵抗と、前記利得抵抗に対して並列に接続された利得可変用スイッチング素子及び利得可変用抵抗の直列接続体と、を備え、前記制御部は、前記利得可変用スイッチング素子を制御することにより前記利得を制御するとよい。
かかる構成によれば、利得可変用スイッチング素子がOFF状態である場合には、利得可変用抵抗には電流が流れないため、利得可変用抵抗は利得に影響を及ぼさない。一方、利得可変用スイッチング素子がON状態である場合には、利得可変用抵抗に電流が流れるため、利得可変用抵抗が利得に影響を及ぼす。これにより、利得可変用スイッチング素子の状態に応じて利得が変化する。したがって、制御部が利得可変用スイッチング素子を制御することによって利得を制御することができる。
上記ドライバ回路について、前記変換回路は、前記逆起電力を分圧する分圧回路を有し、前記分圧回路によって分圧された電圧を前記フィードバック電圧に変換するものであり、前記分圧回路は、前記利得抵抗として、互いに直列に接続された第1分圧抵抗及び第2分圧抵抗を備え、前記利得可変用スイッチング素子及び前記利得可変用抵抗の直列接続体は、前記第1分圧抵抗又は前記第2分圧抵抗に対して並列に接続されており、前記制御部は、前記利得可変用スイッチング素子を制御することにより前記分圧回路の分圧比を制御するとよい。
かかる構成によれば、利得可変用スイッチング素子の状態に応じて、分圧回路の分圧比が変化する。これにより、利得可変用スイッチング素子を制御することにより分圧比を制御することができ、それを通じて利得を制御することができる。また、利得可変用抵抗の抵抗値を調整することにより、第1利得と第2利得との差を調整することができる。
上記ドライバ回路について、前記変換回路は、前記逆起電力を分圧する分圧回路と、前記分圧回路によって分圧された電圧を増幅することにより前記フィードバック電圧を生成するものであって、増幅率が変更可能な電圧増幅回路と、を備え、前記制御部は、前記増幅率を制御することにより前記利得を制御するとよい。
かかる構成によれば、逆起電力は、分圧回路によって分圧され、電圧増幅回路によって増幅されることにより、フィードバック電圧に変換される。かかる構成において、制御部は、電圧増幅回路の増幅率を制御することにより、利得を制御する。これにより、上述した効果を得ることができる。
上記ドライバ回路について、前記スイッチング素子はMOSFETであり、前記制御端子はゲート端子であり、前記印加電流は、前記スイッチング素子のソース-ドレイン間に流れるドレイン電流であり、前記印加端子はソース端子であるとよい。
上記ドライバ回路について、前記スイッチング素子はIGBTであり、前記制御端子はゲート端子であり、前記印加電流は、前記スイッチング素子のコレクタ-エミッタ間に流れるコレクタ電流であり、前記印加端子はエミッタ端子であるとよい。
上記目的を達成する電力変換装置は、前記スイッチング素子と、上述したドライバ回路と、を備えていることを特徴とする。
この発明によれば、サージの抑制と電力損失の低減との両立を図ることができる。
電力変換装置の電気的構成の概要を示す回路図。 回路基板上に実装されたスイッチング素子とドライバ回路とを模式的に示す正面図。 第1実施形態のドライバ回路の回路図。 (a)ターンオン時における外部指令電圧の波形、(b)ターンオン時における利得の変化を示すタイムチャート、(c)ターンオン時におけるゲート電圧のグラフ、(d)ターンオン時におけるドレイン電流のグラフ、(e)ターンオン時におけるソース-ドレイン間電圧のグラフ。 (a)ターンオン時における外部指令電圧の波形、(b)ターンオン時における利得の変化を示すタイムチャート、(c)ターンオン時におけるゲート電圧のグラフ、(d)ターンオン時におけるドレイン電流のグラフ、(e)ターンオン時におけるソース-ドレイン間電圧のグラフ。 (a)ターンオフ時における外部指令電圧の波形、(b)ターンオフ時における利得の変化を示すタイムチャート、(c)ターンオフ時におけるゲート電圧のグラフ、(d)ターンオフ時におけるソース-ドレイン間電圧のグラフ、(e)ターンオフ時におけるドレイン電流のグラフ。 (a)ターンオフ時における外部指令電圧の波形、(b)ターンオフ時における利得の変化を示すタイムチャート、(c)ターンオフ時におけるゲート電圧のグラフ、(d)ターンオフ時におけるソース-ドレイン間電圧のグラフ、(e)ターンオフ時におけるドレイン電流のグラフ。 第2実施形態のドライバ回路の回路図。 第3実施形態のドライバ回路の回路図。
以下、ドライバ回路、当該ドライバ回路を備えた電力変換装置の一実施形態について説明する。
本実施形態の電力変換装置10は、例えば車両200に搭載されており、車両200に設けられている電動モータ201を駆動するのに用いられる。
本実施形態の電動モータ201は、車両200の車輪を回転させるための走行用モータである。本実施形態の電動モータ201は、3相コイル202u,202v,202wを有している。3相コイル202u,202v,202wは例えばY結線されている。3相コイル202u,202v,202wが所定のパターンで通電されることにより、電動モータ201が回転する。なお、3相コイル202u,202v,202wの結線態様は、Y結線に限られず任意であり、例えばデルタ結線でもよい。
図1に示すように、車両200は蓄電装置203を有している。本実施形態の電力変換装置10は、蓄電装置203の直流電力を電動モータ201が駆動可能な交流電力に変換するインバータ装置である。換言すれば、電力変換装置10は、蓄電装置203を用いて電動モータ201を駆動させる駆動装置とも言える。なお、蓄電装置203の電圧を電源電圧Vdcとする。
電力変換装置10は、スイッチング素子11を有している。本実施形態の電力変換装置10は、スイッチング素子11を複数有しており、詳細には、u相コイル202uに対応するu相スイッチング素子11u1,11u2と、v相コイル202vに対応するv相スイッチング素子11v1,11v2と、w相コイル202wに対応するw相スイッチング素子11w1,11w2と、を備えている。
各スイッチング素子11u1,11u2,11v1,11v2,11w1,11w2(以下、「各スイッチング素子11u1~11w2」という。)は、例えばパワースイッチング素子であり、一例としてはMOSFETである。各スイッチング素子11u1~11w2が「スイッチング素子」に対応する。スイッチング素子11u1~11w2は、還流ダイオード(ボディダイオード)Du1~Dw2を有している。
各u相スイッチング素子11u1,11u2は接続線を介して互いに直列に接続されている。詳細には、上アームu相スイッチング素子11u1と下アームu相スイッチング素子11u2とが接続線を介して接続されており、その接続線はu相コイル202uに接続されている。上アームu相スイッチング素子11u1は、蓄電装置203の高圧側である正極端子(+端子)に接続されている。下アームu相スイッチング素子11u2は、蓄電装置203の低圧側である負極端子(-端子)に接続されている。
なお、他のスイッチング素子11v1,11v2,11w1,11w2の接続態様は、対応するコイルが異なる点を除いて、u相スイッチング素子11u1,11u2と同様である。
図1及び図2に示すように、電力変換装置10は、スイッチング素子11を駆動させるドライバ回路12と、スイッチング素子11及びドライバ回路12が実装される回路基板13と、を備えている。
本実施形態のドライバ回路12は所謂ゲートドライバ回路である。本実施形態の電力変換装置10は、複数のスイッチング素子11に対応させてドライバ回路12を複数有している。詳細には、電力変換装置10は、複数のスイッチング素子11u1~11w2に対応させて複数のドライバ回路12u1~12w2を有している。ドライバ回路12u1~12w2は、スイッチング素子11u1~11w2のゲートに接続されており、ゲート電圧Vgを制御することによりスイッチング素子11u1~11w2をON/OFFさせる。
図1に示すように、車両200は、電力変換装置10を制御する変換制御装置14を備えている。本実施形態の変換制御装置14はインバータ制御装置である。変換制御装置14は、外部からの指令(例えば要求回転速度)に基づいて、電動モータ201に流れる目標電流を決定し、その目標電流が流れるための外部指令電圧Vpを導出する。そして、変換制御装置14は、外部指令電圧Vpをドライバ回路12に向けて出力する。
本実施形態では、変換制御装置14は、スイッチング素子11u1~11w2ごとに外部指令電圧Vpを導出し、各ドライバ回路12u1~12w2に外部指令電圧Vpを出力する。これにより、各スイッチング素子11u1~11w2が個別に制御される。
外部指令電圧Vpは所定のパルス幅を有するパルス電圧である。例えば、外部指令電圧Vpは、LOWからHIに切り替わり、一定期間HI状態を維持した後に、HIからLOWに切り替わる。以降の説明において、LOWからHIの切り替わりを「立ち上がり」といい、HIからLOWの切り替わりを「立ち下がり」という。
なお、本実施形態の変換制御装置14は、回路基板13に実装されている。ただし、これに限られず、変換制御装置14は、回路基板13とは別の基板に実装されていてもよい。
ドライバ回路12u1~12w2は、それぞれ個別に入力される外部指令電圧Vpに基づいて、スイッチング素子11u1~11w2に対してゲート電圧Vgを印加する。これにより、各スイッチング素子11u1~11w2が周期的にON/OFFし、蓄電装置203の直流電力が3相の交流電力に変換されて電動モータ201に供給される。すなわち、変換制御装置14は、電力変換装置10をPWM制御するものである。
次にドライバ回路12u1~12w2及びスイッチング素子11u1~11w2について詳細に説明する。
ここで、各スイッチング素子11u1~11w2は基本的に同一構成であり、各ドライバ回路12u1~12w2は基本的に同一の構成である。このため、以下では、各スイッチング素子11u1~11w2のうち1つのスイッチング素子11(下アームu相スイッチング素子11u2)と、それに対応するドライバ回路12(下アームu相ドライバ回路12u2)とについて詳細に説明する。
図2に示すように、スイッチング素子11は、例えば直方体状に形成されている。スイッチング素子11は、制御端子としてのゲート端子21と、印加電流としてのドレイン電流Idが流れるドレイン端子22及び複数のソース端子23と、を有している。ドレイン電流Idは、スイッチング素子11のソース-ドレイン間に流れる電流である。
本実施形態では、ドレイン端子22は1つであり、スイッチング素子11の一辺に亘ってタブ状に形成されている。
ゲート端子21と複数のソース端子23とは、スイッチング素子11におけるドレイン端子22とは反対側の部分に設けられており、所定のピッチで配列されている。なお、ソース端子23の数は任意である。
図2に示すように、回路基板13には、複数の配線パターン30が形成されている。これら複数の配線パターン30によってスイッチング素子11とドライバ回路12及び蓄電装置203とが電気的に接続されているとともに、スイッチング素子11と負荷としての電動モータ201とが電気的に接続されている。
本実施形態では、複数の配線パターン30は、ドレインパターン31と、メインソースパターン32とを含む。ドレインパターン31は、ドレイン端子22と、電動モータ201(詳細にはu相コイル202u)及び上アームu相スイッチング素子11u1とを電気的に接続する配線パターン30である。メインソースパターン32は、複数のソース端子23の一部と蓄電装置203の低圧側である負極端子(-端子)とを電気的に接続するものであってドレイン電流Idが流れる配線パターン30である。
ちなみに、説明の便宜上、複数のソース端子23のうちメインソースパターン32に接続されるものをメインソース端子23aとする。メインソース端子23aは、ドレイン電流Idが流れる端子である。本実施形態では、メインソース端子23aが「印加端子」に対応する。
ここで、電力変換装置10は、ドレイン電流Idが変化することによって逆起電力Vbを生じさせるインダクタンス成分L1を有している。インダクタンス成分L1は、ドレイン電流Idが流れる電流経路上に設けられている。インダクタンス成分L1は、スイッチング素子11内の寄生インダクタンスLsを含む。寄生インダクタンスLsは、例えばスイッチング素子11内の配線パターン、ワイヤー及びソース端子23などによって構成されている。
また、インダクタンス成分L1は、メインソースパターン32に含まれる寄生インダクタンス等の他のインダクタンスを含んでいてもよいし、含まなくてもよい。なお、ドレイン電流Idの変化とは、ドレイン電流Idが流れ始める場合と、ドレイン電流Idが停止する場合とを含む。
次にドライバ回路12及びドライバ回路12とスイッチング素子11との接続について説明する。
図2及び図3に示すように、ドライバ回路12は、外部入力端子41と、加算出力端子42と、基準電位端子43と、フィードバック入力端子44と、を備えている。
外部入力端子41は、変換制御装置14と電気的に接続されている。外部入力端子41には、変換制御装置14からの外部指令電圧Vpが入力される。
加算出力端子42は、ドライバ回路12からゲート電圧Vg(換言すればゲート電流)を出力するための端子である。複数の配線パターン30は、加算出力端子42とゲート端子21とを電気的に接続するゲートパターン33を含む。加算出力端子42から出力されるゲート電圧Vgは、ゲートパターン33を介してゲート端子21に入力される。
図3に示すように、基準電位端子43は、ドライバ回路12内において基準電位V0に接続されている。図2に示すように、複数の配線パターン30は、基準電位端子43と複数のソース端子23のうちメインソース端子23a以外の少なくとも1つの端子とを電気的に接続する信号ソースパターン34を含む。信号ソースパターン34とメインソースパターン32とは絶縁されている。
ここで、説明の便宜上、基準電位端子43に接続されるソース端子23を信号ソース端子23bという。すなわち、本実施形態の複数のソース端子23は、蓄電装置203の負極端子に接続されるメインソース端子23aと、基準電位端子43(換言すれば基準電位V0)に接続される信号ソース端子23bと、を含む。スイッチング素子11は、信号ソース端子23bに入力される基準電位V0とゲート端子21に入力されるゲート電圧Vg(本実施形態では加算電圧Vad)との電位差に基づいて駆動(換言すればスイッチング動作)する。
上記のように基準電位端子43と信号ソース端子23bとが信号ソースパターン34を介して電気的に接続されることにより、スイッチング素子11のソース電位が基準電位V0となる。この場合、信号ソース端子23b及び信号ソースパターン34には、印加電流としてのドレイン電流Idが流れない。これにより、信号ソース端子23b及び信号ソースパターン34を介する経路上には寄生インダクタンスLs(換言すれば逆起電力Vb)は存在しないとみなすことができる。よって、ゲート端子21に入力されるゲート電圧Vgが寄生インダクタンスLsの影響を受けにくい。
フィードバック入力端子44は、ドレイン電流Idが変化することによりインダクタンス成分L1によって発生する逆起電力Vbが入力される端子である。詳細には、メインソースパターン32の一部は分岐しており、その分岐部分はフィードバック入力端子44に接続されている。つまり、メインソースパターン32は、蓄電装置203の負極端子とフィードバック入力端子44との双方に接続されている。
念の為に説明すると、上アームu相スイッチング素子11u1に接続されるメインソースパターン32は、下アームu相スイッチング素子11u2のドレイン端子22と負荷としての電動モータ(詳細にはu相コイル202u)との双方に接続されている。なお、上アームu相スイッチング素子11u1に接続されるメインソースパターン32と、下アームu相スイッチング素子11u2に接続されるドレインパターン31とは同一である。また、上アームu相スイッチング素子11u1に接続されるドレインパターン31は、蓄電装置203の正極端子に接続されている。
図3に示すように、ドライバ回路12は、外部入力端子41から入力される外部指令電圧Vpと、フィードバック入力端子44から入力される逆起電力Vbとに基づいて加算電圧Vadを生成し、その加算電圧Vadをゲート電圧Vgとして加算出力端子42から出力するように構成されている。
加算電圧Vadを出力するドライバ回路12の一例について以下に説明する。
ドライバ回路12は、フィルタ回路50と、加算回路60と、フィルタ回路50と加算回路60とを接続する外部入力ライン71と、フィードバック入力端子44と加算回路60とを接続するフィードバックライン72と、電流増幅回路80と、を備えている。そして、本実施形態のドライバ回路12は、フィードバック入力端子44に入力される逆起電力Vbをフィードバック電圧Vfbに変換する変換回路100と、を備えている。
フィルタ回路50は、外部入力端子41から入力された外部指令電圧Vpに含まれるノイズを低減させるものである。フィルタ回路50は、例えばローパスフィルタ回路である。
一例として、フィルタ回路50は、フィルタオペアンプ51と、第1フィルタ抵抗52と、第2フィルタ抵抗53と、フィルタコンデンサ54と、を備えている。
外部入力端子41は、フィルタオペアンプ51の+端子(非反転入力端子)に接続されている。
フィルタオペアンプ51における-端子(反転入力端子)及び出力端子は、第1フィルタ抵抗52を介して接続されており、第1フィルタ抵抗52に対して並列にフィルタコンデンサ54が接続されている。第2フィルタ抵抗53は、第1フィルタ抵抗52及びフィルタコンデンサ54に対して直列となるように接続されているとともに基準電位V0に接続されている。
かかる構成によれば、フィルタ回路50、詳細にはフィルタオペアンプ51の出力端子から、外部指令電圧Vpが出力される。当該外部指令電圧Vpは、第1フィルタ抵抗52及びフィルタコンデンサ54によって構成されるRC回路によってカットオフ周波数以上のノイズが低減(換言すれば除去)され且つ両フィルタ抵抗52,53の抵抗値の比率に対応した増幅率で増幅されている。ただし、フィルタ回路50の具体的な構成は任意である。
図3に示すように、加算回路60は、フィルタ回路50から出力された外部指令電圧Vpと、逆起電力Vbを変換させることによって得られるフィードバック電圧Vfbとが入力されるように構成されている。加算回路60は、外部指令電圧Vpとフィードバック電圧Vfbとを加算し、その加算された加算電圧Vadをゲート端子21に向けて出力するように構成されている。
詳細には、本実施形態の加算回路60は、例えば加算オペアンプ61と、第1加算抵抗62と、第2加算抵抗63と、加算コンデンサ64と、を備えている。
本実施形態の外部入力ライン71は、フィルタオペアンプ51の出力端子と加算オペアンプ61の+端子(非反転入力端子)とを接続している。外部入力ライン71は、外部指令電圧Vpが伝送されるラインである。外部入力端子41と加算回路60とは、フィルタ回路50及び外部入力ライン71を介して電気的に接続されている。このため、外部入力ライン71は、外部入力端子41と加算回路60とを接続するのに用いられているものといえる。
本実施形態のフィードバックライン72は、フィードバック入力端子44と外部入力ライン71とを接続している。変換回路100は、フィードバックライン72上に設けられており、フィードバック入力端子44に入力される逆起電力Vbは、変換回路100によってフィードバック電圧Vfbに変換される。これにより、加算オペアンプ61の+端子には、外部指令電圧Vpとフィードバック電圧Vfbとを合わせた電圧が入力される。
加算オペアンプ61における-端子(反転入力端子)及び出力端子は、第1加算抵抗62を介して接続されており、第1加算抵抗62に対して並列に加算コンデンサ64が接続されている。第2加算抵抗63は、第1加算抵抗62及び加算コンデンサ64に対して直列となるように接続されているとともに基準電位V0に接続されている。
かかる構成によれば、加算オペアンプ61の出力端子から、外部指令電圧Vpとフィードバック電圧Vfbとが加算された加算電圧Vadが出力される。当該加算電圧Vadは、第1加算抵抗62及び加算コンデンサ64によって構成されるRC回路によってカットオフ周波数以上のノイズが低減(換言すれば除去)され且つ両加算抵抗62,63の抵抗値の比率に対応した増幅率で増幅されている。ただし、加算回路60の具体的な構成は任意である。
電流増幅回路80は、加算電圧Vadの波形を維持しつつ、スイッチング素子11を駆動させるのに必要な電流を供給するための回路である。
図3に示すように、本実施形態の電流増幅回路80は、例えば第1増幅スイッチング素子81及び第2増幅スイッチング素子82を備えている。第1増幅スイッチング素子81及び第2増幅スイッチング素子82は例えばn型のMOSFETである。
第1増幅スイッチング素子81のドレインは、第1供給電圧V1を印加する第1供給源E1に接続されている。第2増幅スイッチング素子82のソースは、第2供給電圧V2を印加する第2供給源E2に接続されている。第1供給電圧V1は例えば正の電圧であり、第2供給電圧V2は例えば負の電圧である。第1増幅スイッチング素子81のソースと第2増幅スイッチング素子82のドレインとは、接続線85を介して接続されている。また、接続線85上には、互いに逆接続された両ダイオード83,84が設けられている。
両増幅スイッチング素子81,82のゲートと加算回路60(詳細には加算オペアンプ61の出力端子)とが接続されている。第1増幅スイッチング素子81のゲートと加算回路60との間には第1ツェナーダイオード86が設けられている。第1ツェナーダイオード86のアノードは加算回路60に接続されており、第1ツェナーダイオード86のカソードが第1増幅スイッチング素子81のゲートに接続されている。
第2増幅スイッチング素子82のゲートと加算回路60との間には第2ツェナーダイオード87が設けられている。第2ツェナーダイオード87のカソードは加算回路60に接続されており、第2ツェナーダイオード87のアノードが第2増幅スイッチング素子82のゲートに接続されている。加算回路60から出力された加算電圧Vadは、第2ツェナーダイオード87を介して第2増幅スイッチング素子82のゲートに入力される。
かかる構成によれば、両ダイオード83,84を接続する接続線85から加算電圧Vadが出力され、両供給源E1,E2から、スイッチング素子11を駆動させるのに必要なゲート電流が供給される。
電流増幅回路80の出力(詳細には接続線85)は加算出力端子42に接続されている。これにより、加算電圧Vadは、加算出力端子42から出力され、ゲートパターン33を介してゲート端子21に入力される。すなわち、本実施形態では加算電圧Vadがゲート電圧Vgとなっている。なお、電流増幅回路80の具体的な構成は任意である。
図3に示すように、ドライバ回路12は、電流増幅回路80と加算出力端子42とをつなぐライン上に設けられたゲート抵抗90を備えている。ゲート抵抗90によってゲート電流が調整される。
本実施形態の変換回路100は、逆起電力Vbをフィードバック電圧Vfbに変換するものであって、逆起電力Vbに対するフィードバック電圧Vfbの比率である利得Gを変更可能に構成されている。本実施形態では、変換回路100は、逆起電力Vbを増幅してフィードバック電圧Vfbを生成する。すなわち、本実施形態の利得Gは1以上である。このため、変換回路100は、逆起電力Vbを増幅するフィードバック増幅回路ともいえる。
変換回路100は、例えば逆起電力Vbを分圧する分圧回路101を有し、分圧回路101によって分圧された電圧をフィードバック電圧Vfbに変換するものである。
分圧回路101は、分圧抵抗としてのフィードバック抵抗R1,R2と、第1フィードバック抵抗R1に対して並列に接続された第3フィードバック抵抗R3及びフィードバックコンデンサC1と、を備えている。第3フィードバック抵抗R3及びフィードバックコンデンサC1は、逆起電力Vbに含まれるノイズを低減するフィルタ回路を構成している。本実施形態では、第1フィードバック抵抗R1が「第1分圧抵抗」に対応し、第2フィードバック抵抗R2が「第2分圧抵抗」に対応する。
変換回路100は、利得抵抗としての第2フィードバック抵抗R2に対して並列に接続された利得可変用スイッチング素子Qx及び利得可変用抵抗Rxの直列接続体を備えている。
利得可変用スイッチング素子Qxと利得可変用抵抗Rxとは互いに直列に接続されている。利得可変用スイッチング素子Qx及び利得可変用抵抗Rxの直列接続体は、第1フィードバック抵抗R1と第2フィードバック抵抗R2との間に接続されているとともに基準電位V0に接続されている。本実施形態では、利得可変用スイッチング素子Qxは、第1フィードバック抵抗R1と第2フィードバック抵抗R2との間に接続されているとともに、利得可変用抵抗Rxを介して基準電位V0に接続されている。
利得可変用スイッチング素子Qxは、例えばデジタルトランジスタで構成されている。ただし、利得可変用スイッチング素子Qxの具体的な構成は任意であり、通常のバイポーラトランジスタやMOSFETなどでもよい。
利得可変用抵抗Rxは、利得可変用スイッチング素子Qxを介して両フィードバック抵抗R1,R2の間に接続されているとともに基準電位V0に接続されている。
変換回路100は、分圧回路101によって分圧された電圧を増幅することによりフィードバック電圧Vfbを生成する電圧増幅回路102を備えている。
本実施形態の電圧増幅回路102は非反転増幅回路である。電圧増幅回路102は、フィードバックオペアンプ102aと、第4フィードバック抵抗R4と、第5フィードバック抵抗R5と、を備えている。フィードバックオペアンプ102aの+端子は、両フィードバック抵抗R1,R2の間に接続されている。
フィードバックオペアンプ102aにおける出力端子は、フィードバックライン72を介して加算回路60(詳細には外部入力ライン71)に接続されている。すなわち、フィードバックライン72は、フィードバック入力端子44と電圧増幅回路102とを接続しているフィードバック入力ライン72aと、電圧増幅回路102と加算回路60とを接続しているフィードバック出力ライン72bと、から構成されている。本実施形態では、フィードバック入力ライン72aは、フィードバック入力端子44とフィードバックオペアンプ102aの入力端子とを接続している。また、本実施形態のフィードバック出力ライン72bは、外部入力ライン71に接続されている。すなわち、本実施形態のフィードバック出力ライン72bは、フィードバックオペアンプ102aの出力端子と外部入力ライン71とを接続することにより、電圧増幅回路102と加算回路60とを接続している。
また、フィードバックオペアンプ102aの出力端子は、第4フィードバック抵抗R4を介してフィードバックオペアンプ102aの-端子(反転入力端子)と接続されている。更に、変換回路100は、第4フィードバック抵抗R4とフィードバックオペアンプ102aの-端子との接続線に接続され且つ基準電位V0に接続された第5フィードバック抵抗R5を有している。フィードバックオペアンプ102a、第4フィードバック抵抗R4及び第5フィードバック抵抗R5によって非反転増幅回路が構成されている。
ここで、本実施形態では変換回路100によってインピーダンス変換が行われている。詳細には、フィードバックオペアンプ102aの入力側(換言すればフィードバック入力ライン72a)の方が、フィードバックオペアンプ102aの出力側(換言すればフィードバック出力ライン72b)よりもインピーダンスが高くなる。これにより、フィードバック入力ライン72a上にドレイン電流Idの一部が流れ込むことを抑制できる。
変換回路100は、外部入力ライン71上に設けられた第6フィードバック抵抗R6と、フィードバックライン72(詳細にはフィードバック出力ライン72b)上に設けられた第7フィードバック抵抗R7と、を備えている。第6フィードバック抵抗R6によって外部入力ライン71に流れる電流が制限されている。第7フィードバック抵抗R7によって、フィードバックライン72(特にフィードバック出力ライン72b)に流れる電流が制限されている。なお、第6フィードバック抵抗R6と第7フィードバック抵抗R7の抵抗値は任意であり、同一でもよいし、異なっていてもよい。
かかる構成によれば、ドレイン電流Idが変化すると、寄生インダクタンスLsを含むインダクタンス成分L1によって逆起電力Vbが生じる。逆起電力Vbは、フィードバック入力端子44に入力され、フィードバックライン72を通って分圧回路101に入力される。そして、逆起電力Vbは、分圧回路101によって分圧され、その分圧された電圧がフィードバックオペアンプ102aの+端子に入力される。これにより、フィードバックオペアンプ102aの出力端子から、逆起電力Vbに対応したフィードバック電圧Vfbが出力される。すなわち、逆起電力Vbは、分圧回路101によって分圧され、電圧増幅回路102によって増幅されることにより、フィードバック電圧Vfbに変換される。そして、フィードバック電圧Vfbが加算回路60に入力される。
本実施形態では、利得Gは、分圧回路101の分圧比、電圧増幅回路102の増幅率及び第7フィードバック抵抗R7に応じて変化する。
また、分圧回路101の分圧比は、利得可変用スイッチング素子QxのON/OFFに応じて変化する。詳細には、利得可変用スイッチング素子QxがOFF状態である場合には、利得可変用抵抗Rxは分圧比に影響を与えない。一方、利得可変用スイッチング素子QxがON状態である場合には、利得可変用抵抗Rxが分圧比に影響を及ぼす。詳細には、利得可変用スイッチング素子QxがON状態である場合の分圧回路101の分圧比は、第1フィードバック抵抗R1の抵抗値と、第2フィードバック抵抗R2及び利得可変用抵抗Rxの合成抵抗の抵抗値とに対応する。このため、利得可変用スイッチング素子QxがON/OFFに切り替わることにより、分圧比が変更され、利得Gが変更されることとなる。すなわち、利得可変用スイッチング素子Qxを制御することにより、変換回路100の利得Gを制御することができる。
なお、本実施形態では、利得可変用スイッチング素子QxがON状態である場合の分圧比は、利得可変用スイッチング素子QxがOFF状態である場合の分圧比よりも低くなる。
また、電圧増幅回路102の増幅率は、第4フィードバック抵抗R4と第5フィードバック抵抗R5との比率に基づいて決まる。このため、第4フィードバック抵抗R4と第5フィードバック抵抗R5とは、電圧増幅回路102の増幅率を規定する抵抗ともいえる。
すなわち、本実施形態では、分圧比を規定する第1フィードバック抵抗R1及び第2フィードバック抵抗R2と、増幅率を規定する第4フィードバック抵抗R4及び第5フィードバック抵抗R5と、第7フィードバック抵抗R7とが利得Gに関与する利得抵抗である。
ここで、変換回路100が設定可能な利得Gには、第1利得G1と、第1利得G1よりも高い第2利得G2とが含まれている。本実施形態では、第1利得G1は、利得可変用スイッチング素子QxがON状態である場合の利得Gに対応し、第2利得G2は、利得可変用スイッチング素子QxがOFF状態である場合の利得Gに対応する。
ちなみに、両利得G1,G2の変化量については、利得可変用抵抗Rxの抵抗値を調整することにより調整可能である。例えば、本実施形態では、利得可変用抵抗Rxの抵抗値が小さくなると、利得可変用スイッチング素子QxのON/OFFの切り替えに伴う分圧比の差が大きくなり、両利得G1,G2の差が大きくなる。
また、加算回路60に入力されるフィードバック電圧Vfbの大きさは、利得Gに応じて変化する。
詳細には、利得Gが大きくなるほど、フィードバック電圧Vfbが大きくなり易い。そして、フィードバック電圧Vfbが大きくなるほど、スイッチング素子11のゲート端子21に入力されるゲート電圧Vgの立ち上がる傾きは小さくなり易く、ゲート電圧Vgの立ち上がり期間は長くなり易い。この場合、ドレイン電流Idの傾き(換言すれば時間変化量)は小さくなり易いため、スイッチング素子11が立ち上がる場合に生じるドレイン電流Idのサージは小さくなり易い一方、電力損失は大きくなり易い。
一方、利得Gが小さくなるほど、フィードバック電圧Vfbが小さくなり易い。そして、フィードバック電圧Vfbが小さくなるほど、スイッチング素子11のゲート端子21に入力されるゲート電圧Vgの立ち上がる傾きは大きくなり易く、ゲート電圧Vgの立ち上がり期間は短くなり易い。この場合、ドレイン電流Idの傾きは大きくなり易いため、スイッチング素子11が立ち上がる場合に生じる電力損失は小さくなり易い一方、ドレイン電流Idのサージが大きくなり易い。
すなわち、利得Gを制御することによってフィードバック電圧Vfbを制御でき、それを通じてフィードバックによる効果、例えばドレイン電流Idの傾き等を制御することができる。
外部指令電圧Vpの立ち下がりに基づくスイッチング素子11のターンオフについても同様である。すなわち、利得Gが大きくなるほど、ドレイン電流Idの立ち下がる傾きは小さくなり易いため、スイッチング素子11のターンオフ時に生じるソース-ドレイン間電圧Vdsのサージが小さくなり易い。一方で、スイッチング素子11のターンオフ時に生じる電力損失が大きくなり易い。換言すれば、利得Gが小さくなるほど、ドレイン電流Idが立ち下がる期間が短くなり易くなり、スイッチング素子11のターンオフ時における電力損失が小さくなり易い。
ソース-ドレイン間電圧Vdsとは、ドレイン電流Idが流れるためにスイッチング素子11に印加される電圧であり、詳細にはスイッチング素子11のソース-ドレイン間に印加される電圧である。本実施形態では、ソース-ドレイン間電圧Vdsが「スイッチング素子の印加電圧」に対応する。
本実施形態のソース-ドレイン間電圧Vdsは、スイッチング素子11がOFF状態である場合には電源電圧Vdcとなり、スイッチング素子11がON状態である場合には0となる。
図3に示すように、ドライバ回路12は、変換回路100の利得Gを制御する制御部としての制御回路103を備えている。制御回路103は、例えば利得可変用スイッチング素子Qxを制御するための制御処理を実行するプログラムや必要な情報が記憶されたメモリと、上記プログラムに基づいて制御処理を実行するCPUとを有する構成でもよい。
ただし、これに限られず、制御回路103は、例えば専用ハードウェア回路を有する構成でもよいし、1又は複数の専用ハードウェア回路とソフトウェア処理を実行するCPUとの組み合わせでもよい。換言すれば、制御回路103の具体的な構成は、任意であり、例えば1つ以上の専用のハードウェア回路、及び、コンピュータプログラム(ソフトウェア)に従って動作する1つ以上のプロセッサの少なくとも一方によって実現されていればよい。
制御回路103は、外部指令電圧Vpが入力されるように構成されている。また、制御回路103は、ドレイン電流Id及びソース-ドレイン間電圧Vdsを把握可能に構成されている。
詳細には、図2に示すように、本実施形態のドライバ回路12は、ドレイン電流Idを把握するための電流端子104と、ソース-ドレイン間電圧Vdsを把握するための電圧端子105と、を備えている。
図3に示すように、電流端子104及び電圧端子105は、制御回路103に接続されている。そして、本実施形態の電力変換装置10は、ドレイン電流Idを検出する電流センサ106と、ソース-ドレイン間電圧Vdsを検出する電圧センサ107と、を備えている。電流センサ106は、電流端子104に接続されており、検出結果を電流端子104に向けて出力する。電圧センサ107は、電圧端子105に接続されており、検出結果を電圧端子105に向けて出力する。これにより、制御回路103には、両センサ106,107の検出結果が入力される。したがって、制御回路103は、ドレイン電流Id及びソース-ドレイン間電圧Vdsを把握できる。
制御回路103は、外部指令電圧Vpに基づいて利得可変用スイッチング素子Qxを制御することにより、変換回路100の利得Gを制御する。制御回路103による利得Gの制御態様の一例について以下に詳細に説明する。
本実施形態では、立ち上がりの場合と立ち下がりの場合とで利得Gの制御態様が異なっている。このため、まず図4及び図5を用いて外部指令電圧Vpが立ち上がる場合(すなわちスイッチング素子11のターンオン時)の利得Gの制御態様及びそれに伴うソース-ドレイン間電圧Vds及びドレイン電流Idの変化について説明する。その後に、図6及び図7を用いて外部指令電圧Vpが立ち下がる場合について説明する。
図4(a)及び図5(a)はターンオン時における外部指令電圧Vpの変化を示すタイムチャートであり、図4(b)及び図5(b)はターンオン時における利得Gの変化を示すタイムチャートである。図4(c)及び図5(c)はターンオン時におけるゲート電圧Vgの変化を示すグラフであり、図4(d)及び図5(d)はターンオン時におけるドレイン電流Idの変化を示すグラフであり、図4(e)及び図5(e)はターンオン時におけるソース-ドレイン間電圧Vdsの変化を示すグラフである。なお、図示の都合上、各タイミング間の間隔は模式的に示している。
図4(a)及び図4(c)に示すように、t1のタイミングにて、外部指令電圧Vpが立ち上がるとすると、これに伴いゲート電圧Vgが徐々に上昇する。この場合、図4(d)及び図4(e)に示すように、ドレイン電流Idは直ちには流れず、ソース-ドレイン間電圧Vdsは蓄電装置203の電圧である電源電圧Vdcに維持される。なお、今回の外部指令電圧Vpの立ち上がりを第1立ち上がりともいう。
ここで、本実施形態の制御回路103は、外部指令電圧Vpが立ち上がる前に利得Gを第1利得G1に設定している。詳細には、制御回路103は、利得Gの初期値を第1利得G1に設定している。これにより、t1のタイミングにおける利得Gは第1利得G1となっている。
ただし、これに限られず、例えば制御回路103は、外部指令電圧Vpが立ち上がったことに基づいて利得Gが第1利得G1となるように利得可変用スイッチング素子Qxを制御する構成でもよい。すなわち、制御回路103は、外部指令電圧Vpが立ち上がる前に又は外部指令電圧Vpが立ち上がることに基づいて利得Gを第1利得G1に設定すればよい。
ちなみに、制御回路103は、外部指令電圧Vpが立ち上がったことに基づいて利得Gを第1利得G1にする構成においては、外部指令電圧Vpが立ち上がることに同期して直ちに利得Gを第1利得G1に設定してもよいし、外部指令電圧Vpが立ち上がってから所定期間が経過してから利得Gを第1利得G1に設定してもよい。この場合、所定期間は、例えば外部指令電圧Vpが立ち上がるt1のタイミングからドレイン電流Idが立ち上がり始めるt2のタイミングまでの期間と同一又はそれよりも短いとよい。
その後、図4(c)~図4(e)に示すように、t2のタイミングにて、ゲート電圧Vgがある程度高くなり、ドレイン電流Idが流れ始めると、ソース-ドレイン間電圧Vdsが若干下がる。
ここで、t2のタイミングでは、利得Gは、第2利得G2よりも低い第1利得G1に設定されている。このため、ゲート電圧Vg及びドレイン電流Idは急峻に立ち上がり始める。
その後、図4(b)に示すように、制御回路103は、利得Gを第1利得G1から第1利得G1よりも高い第2利得G2に変更する。これにより、図4(c)及び図4(d)に示すように、ゲート電圧Vgに対するフィードバック電圧Vfbのフィードバックによる効果が大きくなり、ゲート電圧Vg及びドレイン電流Idの立ち上がりの傾きが小さくなる。また、図4(e)に示すように、ソース-ドレイン間電圧Vdsが若干上がる。
ここで、スイッチング素子11のターンオン時における利得Gの変更タイミングである第1変更タイミングtixについて詳細に説明する。なお、説明の便宜上、ドレイン電流Idがピーク値となるタイミングを電流ピークタイミングtipとし、電流ピークタイミングtipよりもオン時許容期間Ti1だけ前のタイミングを電流ピーク前タイミングtiqとする。
本実施形態の制御回路103は、ドレイン電流Idが流れ始めるt2のタイミングよりも後のタイミングであって電流ピーク前タイミングtiqから電流ピークタイミングtipまでのオン時許容期間Ti1内に、利得Gが第1利得G1から第2利得G2に変更されるように変換回路100を制御する。このため、第1変更タイミングtixは、オン時許容期間Ti1内に収まっている。
オン時許容期間Ti1は、ドレイン電流Idが流れ始めるt2のタイミングから電流ピークタイミングtipまでの期間よりも短く設定されている。オン時許容期間Ti1は、例えばドレイン電流Idが飽和電流Idsを超えるタイミングから電流ピークタイミングtipまでの期間以上に設定されている。ただし、これに限られず、オン時許容期間Ti1は、ドレイン電流Idが飽和電流Idsを超えるタイミングから電流ピークタイミングtipまでの期間よりも短く設定されていてもよい。
かかる構成において、制御回路103は、電流ピーク前タイミングtiqから電流ピークタイミングtipまでのオン時許容期間Ti1内におけるオン時目標タイミングtitにて利得Gが変更されるように変換回路100(詳細には利得可変用スイッチング素子Qx)を制御する。
オン時目標タイミングtitは、オン時許容期間Ti1内であれば任意であり、例えば電流ピーク前タイミングtiq及び電流ピークタイミングtipを含む。
本実施形態では、オン時目標タイミングtitは、例えば電流ピークタイミングtipよりも前のタイミングであり、詳細には電流ピークタイミングtipよりもオン時目標期間Ti2だけ前に設定されている。
本実施形態のオン時目標期間Ti2は、オン時許容期間Ti1よりも短く設定されている。オン時目標期間Ti2は、ドレイン電流Idが飽和電流Idsを超えてから電流ピークタイミングtipまでの期間と同一に設定されていてもよい。ただし、これに限られず、オン時目標期間Ti2は、ドレイン電流Idが飽和電流Idsを超えてから電流ピークタイミングtipまでの期間よりも短くてもよい。つまり、オン時目標タイミングtitは、ドレイン電流Idが飽和電流Idsを超えるタイミングよりも後に設定されていてもよい。
本実施形態のオン時目標タイミングtitは、外部指令電圧Vpが立ち上がったt1のタイミングよりも、電流ピークタイミングtipの方に近いタイミングであり、詳細にはドレイン電流Idが流れ始めるt2のタイミングよりも電流ピークタイミングtipの方に近い。つまり、オン時目標期間Ti2は、外部指令電圧Vpが立ち上がるt1のタイミングからオン時目標タイミングtitまでの期間よりも短く、更にドレイン電流Idが流れ始めるt2のタイミングからオン時目標タイミングtitまでの期間よりも短くなっている。このため、ドレイン電流Idが流れ始めてからドレイン電流Idがピーク値となるタイミングまでの期間内において、第1利得G1に設定されている期間は第2利得G2に設定されている期間よりも長い。
制御回路103は、第1変更タイミングtixがオン時目標タイミングtitとなるように変換回路100を制御する。詳細には、図3に示すように、制御回路103は、外部指令電圧Vpが立ち上がってから第1変更タイミングtixまでの第1ディレイ期間Td1が記憶された第1記憶部103aを有している。第1ディレイ期間Td1は、第1変更タイミングtixがオン時目標タイミングtitとなるように設定されている。制御回路103は、外部指令電圧Vpが立ち上がることに基づいて第1ディレイ期間Td1をカウントし、その第1ディレイ期間Td1が経過したことに基づいて利得Gを変更する。
ここで、予め第1変更タイミングtixがオン時目標タイミングtitとなるように第1ディレイ期間Td1が設定されている場合であっても、スイッチング素子11の特性ばらつきや経年劣化などの影響によって、第1変更タイミングtixがオン時目標タイミングtitからずれる場合があり得る。このため、第1変更タイミングtixとオン時目標タイミングtitとが常に一致するとは限らず、図4に示すように、第1変更タイミングtixとオン時目標タイミングtitとがずれる場合が発生し得る。
図4(d)に示すように、t3のタイミングでは、スイッチング素子11のターンオンに伴うサージが発生することによりドレイン電流Idが飽和電流Idsを超える。なお、飽和電流Idsは、スイッチング素子11がON状態である場合に定常的に流れる電流ともいえる。
その後、電流ピークタイミングtipにて、ドレイン電流Idがピーク値(最大値)となる。この場合、利得Gは第2利得G2に設定されているため、ドレイン電流Idの単位時間当たりの変化量である傾きは小さくなっている、このため、ドレイン電流Idのサージが低減されている。そして、図4(d)及び図4(e)に示すように、ドレイン電流Idがピーク値となった後は、ドレイン電流Idは飽和電流Idsとなるまで低下するとともに、ソース-ドレイン間電圧Vdsが低下し始める。
図4(d)及び図4(e)に示すように、t4のタイミングにて、ドレイン電流Idが飽和電流Idsとなり、t5のタイミングにて、ソース-ドレイン間電圧Vdsが0となる。
ちなみに、図4(c)に示すように、ゲート電圧Vg(換言すれば加算電圧Vad)は、電流ピークタイミングtipにて一定値となり、ソース-ドレイン間電圧Vdsが0となるt5のタイミングまで上記一定値を維持する。その後、ゲート電圧Vgは、t5のタイミングから若干上昇して定常値となる。
ここで、制御回路103は、第1変更タイミングtixとオン時目標タイミングtitとが近づく又は一致するようにフィードバック制御処理を行う。
詳細には、制御回路103は、電流センサ106の検出結果に基づいて、今回の外部指令電圧Vpの立ち上がり(詳細には第1立ち上がり)に基づくドレイン電流Idの変化を定期的に把握することにより、第1立ち上がりにおけるオン時目標タイミングtitを把握する。そして、制御回路103は、第1立ち上がりにおけるオン時目標タイミングtitと第1変更タイミングtixとの第1ずれ期間δT1を把握する。
次に、制御回路103は、第1立ち上がりの後の外部指令電圧Vpの立ち上がりである第2立ち上がりにおいて、第1変更タイミングtixがオン時目標タイミングtitに近づくように第1ずれ期間δT1に基づいて第1変更タイミングtixを調整する。
本実施形態では、制御回路103は、第1ずれ期間δT1だけ第1ディレイ期間Td1を補正する。例えば、図4に示すように、第1変更タイミングtixがオン時目標タイミングtitに対して第1ずれ期間δT1だけ早かった場合には、制御回路103は、第1記憶部103aに記憶されている第1ディレイ期間Td1を第1ずれ期間δT1だけ加算する更新を行う。例えば、第1変更タイミングtixがオン時目標タイミングtitに対して第1ずれ期間δT1だけ遅かった場合には、制御回路103は、第1記憶部103aに記憶されている第1ディレイ期間Td1を第1ずれ期間δT1だけ減算する更新を行う。
制御回路103は、スイッチング素子11のターンオンが行われる度に上記フィードバック制御を行う。これにより、第1変更タイミングtixがオン時目標タイミングtitに徐々に近づく。そして、図5に示すように、第1変更タイミングtixとオン時目標タイミングtitとが一致する。
次に、図6及び図7を用いて、外部指令電圧Vpが立ち下がる場合、すなわちスイッチング素子11のターンオフ時について説明する。図6(a)及び図7(a)はターンオフ時における外部指令電圧Vpの変化を示すタイムチャートであり、図6(b)及び図7(b)はターンオフ時における利得Gの変化を示すタイムチャートである。図6(c)及び図7(c)はターンオフ時におけるゲート電圧Vgの変化を示すグラフであり、図6(d)及び図7(d)はターンオフ時におけるソース-ドレイン間電圧Vdsの変化を示すグラフであり、図6(e)及び図7(e)はターンオフ時におけるドレイン電流Idの変化を示すグラフである。なお、図示の都合上、各タイミング間の間隔は模式的に示している。
図6(a)及び図6(c)に示すように、t11のタイミングにて外部指令電圧Vpが立ち下がると、ゲート電圧Vgが低下し始める。この場合、図6(e)に示すように、ドレイン電流Idは飽和電流Idsを維持する。なお、今回の外部指令電圧Vpの立ち下がりを第1立ち下がりともいう。
ここで、本実施形態の制御回路103は、外部指令電圧Vpが立ち下がる前に利得Gを第2利得G2に設定している。詳細には、既に説明したとおり、制御回路103は、スイッチング素子11が立ち上がるときに利得Gを第1利得G1から第2利得G2に変更しており、スイッチング素子11がON期間において利得Gを第2利得G2に維持している。これにより、t11のタイミングにおける利得Gは第2利得G2となっている。
ただし、これに限られず、例えば制御回路103は、外部指令電圧Vpが立ち下がったことに基づいて利得Gが第2利得G2となるように利得可変用スイッチング素子Qxを制御する構成でもよい。すなわち、制御回路103は、外部指令電圧Vpが立ち下がる前に又は外部指令電圧Vpが立ち下がることに基づいて利得Gを第2利得G2に設定すればよい。
ちなみに、制御回路103は、外部指令電圧Vpが立ち下がることに基づいて利得Gを第2利得G2に設定する構成においては、外部指令電圧Vpが立ち下がることに同期して直ちに利得Gを第2利得G2に設定してもよいし、外部指令電圧Vpが立ち下がってから所定期間が経過してから利得Gを第2利得G2に設定してもよい。この場合、所定期間は、例えば外部指令電圧Vpが立ち下がるt11のタイミングから、ソース-ドレイン間電圧Vdsが立ち上がるt12のタイミングまでの期間と同一又はそれよりも短いとよい。ただし、これに限られず、所定期間は、例えば上記期間よりも長くてもよい。この場合、所定期間は、例えばt11のタイミングからソース-ドレイン間電圧Vdsが電源電圧Vdcに達するt13のタイミングまでの期間よりも短いとよい。
その後、図6(c)~図6(e)に示すように、ゲート電圧Vgがある程度低くなったt12のタイミングにて、ソース-ドレイン間電圧Vdsが立ち上がり始める。なお、ゲート電圧Vgは、ソース-ドレイン間電圧Vdsが電源電圧Vdcとなるまで一定値を維持する。
ここで、図6(b)に示すように、利得Gは第2利得G2に設定されている。このため、ソース-ドレイン間電圧Vdsは緩やかに立ち上がる。換言すれば、ソース-ドレイン間電圧Vdsの傾き(換言すれば単位時間当たりの上昇量)は比較的小さくなっている。
図6(c)~図6(e)に示すように、t13のタイミングにて、ソース-ドレイン間電圧Vdsが電源電圧Vdcに到達すると、ゲート電圧Vg及びドレイン電流Idが低下し始める。
ここで、t13のタイミングでは、利得Gは、第1利得G1よりも高い第2利得G2に設定されている。このため、ゲート電圧Vg及びドレイン電流Idは緩やかに低下し始める。すなわち、ゲート電圧Vg及びドレイン電流Idの傾きは小さくなっている。
その後、図6(c)に示すように、電圧ピークタイミングtvpにてソース-ドレイン間電圧Vdsがピーク値となり、その後低下する。
その後、本実施形態の制御回路103は、利得Gを第2利得G2から第1利得G1に変更する。これにより、ゲート電圧Vgに対するフィードバック電圧Vfbによるフィードバックによる効果が低下し、ゲート電圧Vg及びドレイン電流Idの立ち上がりの傾きが大きくなる。したがって、ゲート電圧Vg及びドレイン電流Idが急峻に立ち下がる。
ここで、スイッチング素子11のターンオフ時における利得Gの変更タイミングである第2変更タイミングtvxについて詳細に説明する。なお、説明の便宜上、電圧ピークタイミングtvpよりもオフ時許容期間Tv1だけ後のタイミングを電圧ピーク後タイミングtvqとする。
本実施形態の制御回路103は、電圧ピークタイミングtvpから電圧ピーク後タイミングtvqまでのオフ時許容期間Tv1内に、利得Gが第2利得G2から第1利得G1に変更されるように変換回路100を制御する。このため、第2変更タイミングtvxはオフ時許容期間Tv1内に収まっている。
オフ時許容期間Tv1は、電圧ピークタイミングtvpからドレイン電流Idが0となるタイミングまでの期間よりも短く設定されている。オフ時許容期間Tv1は、例えば電圧ピークタイミングtvpからソース-ドレイン間電圧Vdsが電源電圧Vdcとなるタイミングまでの期間よりも短く設定されている。
かかる構成において、制御回路103は、電圧ピークタイミングtvpから電圧ピーク後タイミングtvqまでのオフ時許容期間Tv1内におけるオフ時目標タイミングtvtにて利得Gが変更されるように変換回路100(詳細には利得可変用スイッチング素子Qx)を制御する。
オフ時目標タイミングtvtは、オフ時許容期間Tv1内であれば任意であり、例えば電圧ピークタイミングtvpを含む。
本実施形態では、オフ時目標タイミングtvtは、例えば電圧ピークタイミングtvpよりも後のタイミングであり、詳細には電圧ピークタイミングtvpよりもオフ時目標期間Tv2だけ後に設定されている。本実施形態のオフ時目標期間Tv2は、オフ時許容期間Tv1よりも短く設定されており、例えば電圧ピークタイミングtvpからドレイン電流Idが0となるまでの期間の1/2よりも短く設定されている。このため、オフ時目標期間Tv2は、オフ時目標タイミングtvtからドレイン電流Idが0となるタイミングまでの期間よりも短い。
すなわち、オフ時目標タイミングtvtは、電圧ピークタイミングtvpとドレイン電流Idが0となるタイミングとの間であって、ドレイン電流Idが0となるタイミングよりも電圧ピークタイミングtvpの方に近いタイミングである。換言すれば、電圧ピークタイミングtvpからドレイン電流Idが0となるタイミングまでの期間内において、第1利得G1に設定されている期間は第2利得G2に設定されている期間よりも長い。
制御回路103は、第2変更タイミングtvxがオフ時目標タイミングtvtとなるように変換回路100を制御する。詳細には、図3に示すように、制御回路103は、外部指令電圧Vpが立ち下がってから第2変更タイミングtvxまでの第2ディレイ期間Td2が記憶された第2記憶部103bを有している。第2ディレイ期間Td2は、第2変更タイミングtvxがオフ時目標タイミングtvtとなるように設定されている。制御回路103は、外部指令電圧Vpが立ち下がることに基づいて第2ディレイ期間Td2をカウントし、その第2ディレイ期間Td2が経過したことに基づいて利得Gを変更する。
ここで、予め第2変更タイミングtvxがオフ時目標タイミングtvtとなるように第2ディレイ期間Td2が設定されている場合であっても、スイッチング素子11の特性ばらつきや経年劣化などの影響によって、第2変更タイミングtvxがオフ時目標タイミングtvtからずれる場合があり得る。このため、第2変更タイミングtvxとオフ時目標タイミングtvtとが常に一致するとは限らず、図6に示すように、第2変更タイミングtvxとオフ時目標タイミングtvtとがずれる場合が発生し得る。
その後、図6(c)~図6(e)に示すように、t14のタイミングにて、ドレイン電流Idが0になるとともにソース-ドレイン間電圧Vdsが電源電圧Vdcとなる。そして、t14のタイミングよりも後にゲート電圧Vgが0となる。
ここで、制御回路103は、第2変更タイミングtvxとオフ時目標タイミングtvtとが近づく又は一致するようにフィードバック制御処理を行う。
詳細には、制御回路103は、電圧センサ107の検出結果に基づいて、今回の外部指令電圧Vpの立ち下がり(詳細には第1立ち下がり)に基づくソース-ドレイン間電圧Vdsの変化を定期的に把握することにより、第1立ち下がり時におけるオフ時目標タイミングtvtを把握する。詳細には、制御回路103は、電圧センサ107の検出結果に基づいて、電圧ピークタイミングtvpを特定し、その特定された電圧ピークタイミングtvpとオフ時目標期間Tv2とに基づいてオフ時目標タイミングtvtを導出する。そして、制御回路103は、第1立ち下がりにおけるオフ時目標タイミングtvtと第2変更タイミングtvxとの第2ずれ期間δT2を把握する。
次に、制御回路103は、第1立ち下がりの後の第2立ち下がりにおいて、第2変更タイミングtvxがオフ時目標タイミングtvtに近づくように第2ずれ期間δT2に基づいて第2変更タイミングtvxを調整する。
本実施形態では、制御回路103は、第2ずれ期間δT2だけ第2ディレイ期間Td2を補正する。例えば、第2変更タイミングtvxがオフ時目標タイミングtvtに対して第2ずれ期間δT2だけ早かった場合には、制御回路103は、第2記憶部103bに記憶されている第2ディレイ期間Td2を第2ずれ期間δT2だけ加算する更新を行う。例えば、第2変更タイミングtvxがオフ時目標タイミングtvtに対して第2ずれ期間δT2だけ遅かった場合には、制御回路103は、第2記憶部103bに記憶されている第2ディレイ期間Td2を第2ずれ期間δT2だけ減算する更新を行う。
制御回路103は、スイッチング素子11のターンオフが行われる度に上記フィードバック制御を行う。これにより、図7に示すように、第2変更タイミングtvxがオフ時目標タイミングtvtに近づき、好ましくは第2変更タイミングtvxとオフ時目標タイミングtvtとが一致する。
ちなみに、第2利得G2は、例えばターンオン時におけるドレイン電流Idのサージ電流が予め定められた許容電流値を超えないように、且つ、ターンオフ時におけるソース-ドレイン間電圧Vdsのサージ電圧が予め定められた許容電圧値を超えないように逆起電力Vbの大きさに対応させて設定されているとよい。
また、利得可変用抵抗Rxの抵抗値は、第1利得G1が所望の値となるように設定されているとよい。例えば、利得可変用抵抗Rxの抵抗値は、第2フィードバック抵抗R2の抵抗値よりも小さくてもよい。この場合、利得可変用抵抗Rxの抵抗値が第2フィードバック抵抗R2の抵抗値以上である構成と比較して、第2利得G2に対して第1利得G1をより小さくでき、スイッチング素子11の応答性の向上を図ることができる。同様に、利得可変用抵抗Rxの抵抗値は、第1フィードバック抵抗R1の抵抗値よりも小さくてもよい。
ただし、これに限られず、利得可変用抵抗Rxの抵抗値は任意であり、例えば第2フィードバック抵抗R2の抵抗値と同一でもよいし、第2フィードバック抵抗R2の抵抗値よりも大きくてもよい。
次に本実施形態の作用について説明する。
外部指令電圧Vpが立ち上がる前に又は立ち上がることに基づいて利得Gが相対的に低い第1利得G1に設定される。これにより、ドレイン電流Idが早期に立ち上がる。
その後、オン時許容期間Ti1内に、利得Gが第1利得G1から第2利得G2に変更される。これにより、ドレイン電流Idの立ち上がりが緩やかになり、ドレイン電流Idのサージが低減される。
また、外部指令電圧Vpが立ち下がる前に又は立ち下がることに基づいて利得Gが相対的に高い第2利得G2に設定される。これにより、ソース-ドレイン間電圧Vdsの立ち上がりが緩やかになるため、ソース-ドレイン間電圧Vdsのサージが低減される。
その後、ソース-ドレイン間電圧Vdsがピーク値となってからオフ時許容期間Tv1内に、利得Gが第2利得G2から第1利得G1に変更される。これにより、ドレイン電流Idが早期に立ち下がる。
以上詳述した本実施形態によれば以下の効果を奏する。
(1-1)ドライバ回路12は、制御端子としてのゲート端子21及び印加端子としてのメインソース端子23aを有するスイッチング素子11を駆動させるものである。ドライバ回路12は、外部指令電圧Vpが入力される外部入力端子41と、ドレイン電流Idが変化することにより寄生インダクタンスLsを含むインダクタンス成分L1によって生じる逆起電力Vbが入力されるフィードバック入力端子44と、逆起電力Vbをフィードバック電圧Vfbに変換する変換回路100と、加算回路60と、を備えている。加算回路60は、外部指令電圧Vpとフィードバック電圧Vfbとが入力されるものであって、外部指令電圧Vpとフィードバック電圧Vfbとを加算し、その加算された加算電圧Vadをゲート端子21に向けて出力するものである。
かかる構成において、変換回路100は、逆起電力Vbに対するフィードバック電圧Vfbの比率である利得Gを変更可能に構成されており、変換回路100が設定可能な利得Gには、第1利得G1と第1利得G1よりも高い第2利得G2とが含まれている。
ここで、外部指令電圧Vpが立ち上がることに基づいてドレイン電流Idがピーク値となるタイミングを電流ピークタイミングtipとし、ドレイン電流Idが流れ始めるタイミングよりも後であって電流ピークタイミングtipよりもオン時許容期間Ti1だけ前のタイミングを電流ピーク前タイミングtiqとする。
かかる構成において、ドライバ回路12は、変換回路100の利得Gを制御する制御部としての制御回路103を備えている。制御回路103は、外部指令電圧Vpが立ち上がる前に又は外部指令電圧Vpが立ち上がることに基づいて利得Gを第1利得G1に設定する。そして、制御回路103は、電流ピーク前タイミングtiqから電流ピークタイミングtipまでのオン時許容期間Ti1内に利得Gが第1利得G1から第2利得G2に変更されるように変換回路100を制御する。
かかる構成によれば、外部指令電圧Vpが立ち上がる前に又は外部指令電圧Vpが立ち上がることに基づいて利得Gが第1利得G1に設定されるため、利得Gが第2利得G2に設定されている状態と比較して、ドレイン電流Idを早期に立ち上がらせることができる。これにより、ターンオンに係るスイッチングスピードを高くすることができ、ターンオン時における電力損失を低減できる。
その後、オン時許容期間Ti1内に利得Gが第1利得G1よりも大きい第2利得G2に変更される。これにより、ドレイン電流Idの立ち上がりを緩やかにすることができるため、ドレイン電流Idのサージを抑制できる。したがって、サージの抑制と電力損失の低減との両立を図ることができる。
特に、本構成によれば、電流ピーク前タイミングtiqから電流ピークタイミングtipまでのオン時許容期間Ti1内に利得Gが第1利得G1から第2利得G2に変更される。これにより、オン時許容期間Ti1外に利得Gが変更される構成と比較して、より電力損失の低減を図ることができる。
詳述すると、仮にオン時許容期間Ti1外にて利得Gが変更される場合、ターンオン時における利得Gの変更タイミングである第1変更タイミングtixが早過ぎることに起因して第1利得G1によるスイッチングスピードの向上効果が充分に得られない場合があり得る。また、第1変更タイミングtixがオン時許容期間Ti1よりも遅い場合、電流ピークタイミングtipよりも後に利得Gが変更されることとなり、サージを充分に抑制することができなかったりする場合があり得る。
この点、本構成によれば、オン時許容期間Ti1内に利得Gが変更されるため、スイッチングスピードを高めつつサージの抑制を図ることができる。
(1-2)制御回路103は、電流ピークタイミングtipに対してオン時許容期間Ti1よりも短いオン時目標期間Ti2だけ前のオン時目標タイミングtitにて利得Gが第1利得G1から第2利得G2に変更されるように変換回路100を制御する。
かかる構成によれば、オン時目標タイミングtitとなるまでは利得Gは第1利得G1となっており、オン時目標タイミングtitにて利得Gが第1利得G1から第2利得G2に変更される。そして、オン時目標タイミングtitから電流ピークタイミングtipまでのオン時目標期間Ti2に亘って利得Gが第2利得G2となる。この場合、オン時目標タイミングtitと電流ピークタイミングtipとの間にはオン時目標期間Ti2が設けられている。これにより、実際に利得Gが変更される第1変更タイミングtixとオン時目標タイミングtitとが多少ずれた場合であっても、第1変更タイミングtixが電流ピークタイミングtipよりも後になりにくく、オン時許容期間Ti1内に収まり易い。これにより、オン時目標タイミングtitが変動することに起因して第1変更タイミングtixとオン時目標タイミングtitとの間にずれが生じた場合であっても、オン時許容期間Ti1内に利得Gを変更できる。
(1-3)オン時目標期間Ti2は、外部指令電圧Vpの立ち上がりタイミング(本実施形態ではt1のタイミング)からオン時目標タイミングtitまでの期間よりも短い。好ましくは、オン時目標期間Ti2は、ドレイン電流Idが流れ始めるタイミング(本実施形態ではt2のタイミング)からオン時目標タイミングtitまでの期間よりも短いとよい。
かかる構成によれば、外部指令電圧Vpが立ち上がってから電流ピークタイミングtipとなるまでの期間内において、第1利得G1となっている期間が第2利得G2となっている期間よりも長くなる。これにより、ドレイン電流Idの立ち上がり期間をより短くすることができ、スイッチングスピードの向上を図ることができる。
(1-4)制御回路103は、外部指令電圧Vpの第1立ち上がりにおいて、第1変更タイミングtixとオン時目標タイミングtitとの第1ずれ期間δT1を把握する。そして、制御回路103は、第1立ち上がりの後の第2立ち上がりにおいて、第1変更タイミングtixがオン時目標タイミングtitに近づく又は一致するように、第1ずれ期間δT1に基づいて第1変更タイミングtixを調整する。
スイッチング素子11の特性ばらつきや経年劣化等によって電流ピークタイミングtipが変動すると、オン時目標タイミングtitが変動する。この場合、第1変更タイミングtixとオン時目標タイミングtitとがずれる場合が生じ得る。
この点、本構成によれば、第1立ち上がりにおいて第1変更タイミングtixとオン時目標タイミングtitとがずれた場合には、第1ずれ期間δT1に基づいて第1変更タイミングtixが調整される。これにより、第2立ち上がりにおいて、第1変更タイミングtixをオン時目標タイミングtitに近づけることができる。
(1-5)外部指令電圧Vpが立ち下がることに基づいてスイッチング素子11の印加電圧としてのソース-ドレイン間電圧Vdsがピーク値となるタイミングを電圧ピークタイミングtvpとし、電圧ピークタイミングtvpよりもオフ時許容期間Tv1だけ後のタイミングを電圧ピーク後タイミングtvqとする。オフ時許容期間Tv1は、電圧ピークタイミングtvpからドレイン電流Idが0となるタイミングまでの期間よりも短く設定された期間である。
かかる構成において、制御回路103は、外部指令電圧Vpが立ち下がる前に又は外部指令電圧Vpが立ち下がることに基づいて利得Gを第2利得G2に設定する。そして、制御回路103は、電圧ピークタイミングtvpから電圧ピーク後タイミングtvqまでのオン時許容期間Ti1内に利得Gが第2利得G2から第1利得G1に変更されるように変換回路100を制御する。
かかる構成によれば、外部指令電圧Vpが立ち下がる前に又は外部指令電圧Vpが立ち下がることに基づいて利得Gが第2利得G2に設定されることにより、利得Gが第1利得G1に設定されている状態と比較して、ソース-ドレイン間電圧Vdsが緩やかに立ち上がる。これにより、ソース-ドレイン間電圧Vdsのサージを抑制できる。
その後、オフ時許容期間Tv1内に利得Gが第2利得G2から第1利得G1に変更されることにより、ドレイン電流Idが急峻に立ち下がる。これにより、ドレイン電流Idの立ち下がり期間を短縮化することができるため、ターンオフに係るスイッチングスピードを高くすることができ、電力損失の低減を図ることができる。したがって、スイッチング素子11のターンオフ時におけるサージの抑制と電力損失の低減との両立を図ることができる。
特に、本構成によれば、電圧ピークタイミングtvpから電圧ピーク後タイミングtvqまでのオフ時許容期間Tv1内に利得Gが第2利得G2から第1利得G1に変更される。これにより、オフ時許容期間Tv1外に利得Gが変更される構成と比較して、より電力損失の低減を図ることができる。
詳述すると、仮にオフ時許容期間Tv1外にて利得Gが変更される場合、第2変更タイミングtvxが早過ぎることに起因して電圧ピークタイミングtvpよりも前に利得Gが変更されることとなり、サージを充分に抑制することができない場合があり得る。また、第2変更タイミングtvxが遅過ぎることに起因して第1利得G1によるスイッチングスピードの向上効果が充分に得られない場合があり得る。
この点、本構成によれば、オフ時許容期間Tv1内に利得Gが変更されるため、スイッチングスピードを高めつつサージの抑制を図ることができる。
(1-6)制御回路103は、電圧ピークタイミングtvpに対してオフ時許容期間Tv1よりも短いオフ時目標期間Tv2だけ後のオフ時目標タイミングtvtにて利得Gが第2利得G2から第1利得G1に変更されるように変換回路100を制御する。
かかる構成によれば、電圧ピークタイミングtvpからのオフ時目標期間Tv2に亘って利得Gが第2利得G2となり、オフ時目標タイミングtvtにて利得Gが第2利得G2から第1利得G1に変更される。この場合、電圧ピークタイミングtvpとオフ時目標タイミングtvtとの間にはオフ時目標期間Tv2が設けられている。これにより、実際に利得Gが変更される第2変更タイミングtvxとオフ時目標タイミングtvtとが多少ずれた場合であっても、第2変更タイミングtvxが電圧ピークタイミングtvpよりも前になりにくく、オフ時許容期間Tv1内に収まり易い。これにより、オフ時目標タイミングtvtが変動することに起因して第2変更タイミングtvxとオフ時目標タイミングtvtとの間にずれが生じた場合であっても、オフ時許容期間Tv1内に利得Gを変更できる。
(1-7)オフ時目標期間Tv2は、オフ時目標タイミングtvtからドレイン電流Idが0となるタイミングまでの期間よりも短い。
かかる構成によれば、電圧ピークタイミングtvpからドレイン電流Idが0となるまでの期間内において、第1利得G1となっている期間が第2利得G2となっている期間よりも長くなる。これにより、ドレイン電流Idの立ち下がり期間をより短くすることができ、スイッチングスピードの向上を図ることができる。
(1-8)制御回路103は、外部指令電圧Vpの第1立ち下がりにおいて、第2変更タイミングtvxとオフ時目標タイミングtvtとの第2ずれ期間δT2を把握する。そして、制御回路103は、第1立ち下がりの後の第2立ち下がりにおいて、第2変更タイミングtvxがオフ時目標タイミングtvtに近づく又は一致するように第2ずれ期間δT2に基づいて第2変更タイミングtvxを調整する。
スイッチング素子11の特性ばらつきや経年劣化等によって電圧ピークタイミングtvpが変動すると、オフ時目標タイミングtvtが変動する。この場合、第2変更タイミングtvxとオフ時目標タイミングtvtとがずれる場合が生じ得る。
この点、本構成によれば、第1立ち下がりにおいて第2変更タイミングtvxとオフ時目標タイミングtvtとがずれた場合には、第2ずれ期間δT2に基づいて第2変更タイミングtvxが調整される。これにより、第2立ち下がりにおいて、第2変更タイミングtvxをオフ時目標タイミングtvtに近づけることができる。
(1-9)変換回路100は、利得Gに関与する利得抵抗としての第2フィードバック抵抗R2と、第2フィードバック抵抗R2に対して並列に接続された利得可変用スイッチング素子Qx及び利得可変用抵抗Rxの直列接続体と、を備えている。
かかる構成によれば、利得可変用スイッチング素子QxがOFF状態である場合には、利得可変用抵抗Rxには電流が流れないため、利得可変用抵抗Rxは利得Gに影響を及ぼさない。一方、利得可変用スイッチング素子QxがON状態である場合には、利得可変用抵抗Rxに電流が流れるため、利得可変用抵抗Rxが利得Gに影響を及ぼす。具体的には、利得Gは、利得可変用抵抗Rxと第2フィードバック抵抗R2との合成抵抗値に対応した値となる。これにより、利得可変用スイッチング素子Qxの状態に応じて利得Gが変化する。したがって、制御回路103が利得可変用スイッチング素子Qxを制御することによって利得Gを制御することができる。
(1-10)変換回路100は、逆起電力Vbを分圧する分圧回路101を有し、分圧回路101によって分圧された電圧をフィードバック電圧Vfbに変換するものである。分圧回路101は、互いに直列に接続された第1分圧抵抗及び第2分圧抵抗としての第1フィードバック抵抗R1及び第2フィードバック抵抗R2を備えている。利得可変用スイッチング素子Qx及び利得可変用抵抗Rxの直列接続体は、両フィードバック抵抗R1,R2のいずれか(本実施形態では第2フィードバック抵抗R2)に対して並列に接続されている。
かかる構成によれば、利得可変用スイッチング素子Qxの状態に応じて、分圧回路101の分圧比が変化する。これにより、利得可変用スイッチング素子Qxを制御することにより分圧比を制御することができ、それを通じて利得Gを制御することができる。また、利得可変用抵抗Rxの抵抗値を調整することにより、第1利得G1と第2利得G2との差を調整することができる。
(第2実施形態)
図8に示すように、本実施形態の分圧回路111は、利得可変用スイッチング素子Qx及び利得可変用抵抗Rxを有していない。このため、本実施形態の分圧回路111は、分圧比を変更できない回路である。
本実施形態の電圧増幅回路112は、増幅率を変更可能に構成されている。詳細には、電圧増幅回路112は、互いに直列に接続された利得可変用スイッチング素子Qx及び利得可変用抵抗Rxを備えている。利得可変用スイッチング素子Qx及び利得可変用抵抗Rxの直列接続体は、第4フィードバック抵抗R4に対して並列に接続されている。本実施形態では、第4フィードバック抵抗R4が「利得抵抗」に対応する。
かかる構成によれば、利得可変用スイッチング素子Qxの状態に応じてフィードバックオペアンプ102aによる増幅率が変化する。
詳細には、利得可変用スイッチング素子QxがOFF状態である場合には、電圧増幅回路112の増幅率は、第4フィードバック抵抗R4と第5フィードバック抵抗R5との抵抗比に対応した値となり、利得可変用抵抗Rxは増幅率に寄与しない。
一方、利得可変用スイッチング素子QxがON状態である場合には、電圧増幅回路112の増幅率は、第4フィードバック抵抗R4及び利得可変用抵抗Rxの合成抵抗値と、第5フィードバック抵抗R5との抵抗比に対応した値となる。すなわち、利得可変用スイッチング素子QxがON状態である場合には、利得可変用抵抗Rxの抵抗値が増幅率に寄与する。そして、電圧増幅回路112の増幅率は、変換回路100の利得Gに寄与するパラメータである。このため、利得可変用スイッチング素子QxのON/OFFに応じて、利得Gが第1利得G1及び第2利得G2に切り替わる。本実施形態では、利得可変用スイッチング素子QxがON状態である場合の利得Gが第1利得G1となる。
なお、利得可変用抵抗Rxの抵抗値は、第1利得G1が所望の値となるように設定されているとよい。例えば、利得可変用抵抗Rxの抵抗値は、第4フィードバック抵抗R4の抵抗値よりも小さくてもよい。この場合、利得可変用抵抗Rxの抵抗値が第4フィードバック抵抗R4の抵抗値以上である構成と比較して、第2利得G2に対して第1利得G1をより小さくでき、スイッチング素子11の応答性の向上を図ることができる。
ただし、これに限られず、利得可変用抵抗Rxの抵抗値は任意であり、例えば第4フィードバック抵抗R4の抵抗値と同一でもよいし、第4フィードバック抵抗R4の抵抗値よりも高くてもよい。
かかる構成において、制御回路103は、利得可変用スイッチング素子Qxを制御することにより、利得Gに寄与する電圧増幅回路112の増幅率を制御する。すなわち、制御回路103は、電圧増幅回路112の増幅率を制御することにより利得Gを制御する。なお、制御回路103による利得Gの具体的な制御態様については第1実施形態と同様であるため、詳細な説明は省略する。
以上詳述した本実施形態によれば以下の作用効果を奏する。
(2-1)変換回路100は、逆起電力Vbを分圧する分圧回路111と、分圧回路111によって分圧された電圧を増幅することによりフィードバック電圧Vfbを生成する電圧増幅回路112と、を備えている。電圧増幅回路112は増幅率を変更可能に構成されており、制御回路103は、電圧増幅回路112の増幅率を制御することにより変換回路100の利得Gを制御する。
かかる構成によれば、逆起電力Vbは、分圧回路111によって分圧され、電圧増幅回路112によって増幅されることにより、フィードバック電圧Vfbに変換される。この場合、電圧増幅回路112の増幅率を制御することにより、利得Gを制御することができる。
(第3実施形態)
図9に示すように、本実施形態の変換回路100は、利得Gを変更可能にするための構成として、電圧増幅回路102と外部入力ライン71とを接続するフィードバック出力ライン72b上に設けられた抵抗可変回路120を備えている。抵抗可変回路120は、フィードバック出力ライン72bに流れる電流を制限している。
なお、既に説明したとおり、外部入力ライン71上に設けられた第6フィードバック抵抗R6は、外部入力ライン71に流れる電流を制限するものである。
抵抗可変回路120は、抵抗値を変更可能に構成されている。抵抗可変回路120は、例えばフィードバック出力ライン72b上に設けられた第7フィードバック抵抗R7と、利得可変用スイッチング素子Qx及び利得可変用抵抗Rxと、を備えている。利得可変用スイッチング素子Qx及び利得可変用抵抗Rxは互いに直列に接続されており、その直列接続体は第7フィードバック抵抗R7に対して並列に接続されている。本実施形態では、第7フィードバック抵抗R7が「利得抵抗」に対応する。
かかる構成によれば、利得可変用スイッチング素子Qxの状態に応じて利得Gが変更される。詳細には、利得Gは、抵抗可変回路120の抵抗値に依存する。そして、抵抗可変回路120の抵抗値は、利得可変用スイッチング素子QxのON/OFFに応じて変更される。このため、利得可変用スイッチング素子Qxを制御することにより、抵抗可変回路120の抵抗値を制御でき、それを通じて利得Gを制御することができる。
なお、利得可変用抵抗Rxの抵抗値は、第1利得G1が所望の値となるように設定されているとよい。例えば、利得可変用抵抗Rxの抵抗値は、第7フィードバック抵抗R7の抵抗値よりも小さくてもよいし、第7フィードバック抵抗R7の抵抗値と同一でもよいし、第7フィードバック抵抗R7の抵抗値よりも高くてもよい。
制御回路103は、抵抗可変回路120を制御することにより利得Gを制御する。詳細には、制御回路103は、利得可変用スイッチング素子Qxを制御することにより抵抗可変回路120の抵抗値を制御し、それを通じて利得Gを制御する。なお、制御回路103による利得Gの具体的な制御態様については第1実施形態と同様であるため、詳細な説明は省略する。
以上詳述した本実施形態によれば以下の作用効果を奏する。
(3-1)変換回路100は、逆起電力Vbを分圧する分圧回路101と、分圧回路101によって分圧された電圧を増幅することによりフィードバック電圧Vfbを生成する電圧増幅回路102と、を備えている。変換回路100は、電圧増幅回路102と外部入力ライン71とを接続するフィードバック出力ライン72b上に設けられ、抵抗値を変更可能な抵抗可変回路120を備えている。制御部としての制御回路103は、抵抗可変回路120を制御することにより利得Gを制御する。
かかる構成によれば、逆起電力Vbは、分圧回路101によって分圧され、電圧増幅回路102によって増幅されることにより、フィードバック電圧Vfbに変換される。また、フィードバック出力ライン72b上に設けられている抵抗可変回路120によってフィードバック出力ライン72bを流れる電流を制限することができる。
ここで、利得Gが抵抗可変回路120の抵抗値に依存することに対応させて、制御回路103は、抵抗可変回路120を制御することにより利得Gを制御する。これにより、電流を制限するための構成を用いて利得Gの制御を行うことができる。
なお、上記各実施形態は以下のように変更してもよい。
○ オン時目標タイミングtitは電流ピークタイミングtipでもよい。すなわち、制御回路103は、オン時目標タイミングtitとしての電流ピークタイミングtipにて利得Gが第1利得G1から第2利得G2に変更されるように変換回路100を制御してもよい。この場合、スイッチング素子11のスイッチングスピードの更なる向上を図ることができる。また、この場合であっても、ドレイン電流Idのサージをある程度抑制することができる。
○ 同様に、オフ時目標タイミングtvtは電圧ピークタイミングtvpでもよい。すなわち、制御回路103は、オフ時目標タイミングtvtとしての電圧ピークタイミングtvpにて利得Gが第2利得G2から第1利得G1に変更されるように変換回路100を制御してもよい。この場合、スイッチング素子11のスイッチングスピードの更なる向上を図ることができる。また、この場合であっても、ソース-ドレイン間電圧Vdsのサージをある程度抑制することができる。
○ オン時目標期間Ti2は、外部指令電圧Vpが立ち上がってからオン時目標タイミングtitまでの期間よりも長くてもよい。つまり、外部指令電圧Vpが立ち上がってから電流ピークタイミングtipまでの期間内において、第2利得G2となっている期間が第1利得G1となっている期間よりも長くてもよい。
○ オフ時目標期間Tv2は、オフ時目標タイミングtvtからドレイン電流Idが0となるまでの期間よりも長くてもよい。つまり、オフ時目標タイミングtvtからドレイン電流Idが0となるまでの期間内において、第2利得G2となっている期間が第1利得G1となっている期間よりも長くてもよい。
○ オン時目標タイミングtitは電流ピーク前タイミングtiqでもよいし、オフ時目標タイミングtvtは電圧ピーク後タイミングtvqでもよい。
○ オン時目標タイミングtitはオン時許容期間Ti1内のうち電流ピークタイミングtip以外のタイミングでもよい。同様に、オフ時目標タイミングtvtはオフ時許容期間Tv1内のうち電圧ピークタイミングTvp以外のタイミングでもよい。
○ ドレイン電流Id及びソース-ドレイン間電圧Vdsを把握するための構成は任意である。例えば、ドライバ回路12が電圧センサ107及び電流センサ106を有する構成でもよい。この場合、電圧端子105及び電流端子104を省略してもよい。
○ 制御回路103による利得Gの変更制御の具体的な構成は、ディレイ期間Td1,Td2をカウントする構成に限られず任意である。
例えば、制御回路103は、第1ディレイ期間Td1をカウントする構成に代えて、ドレイン電流Idが予め定められた目標電流を超えたことに基づいて利得Gを変更してもよい。この場合、目標電流は、ドレイン電流Idが目標電流となるタイミングがオン時許容期間Ti1に含まれるように設定されているとよい。
例えば、制御回路103は、第2ディレイ期間Td2をカウントする構成に代えて、ソース-ドレイン間電圧Vdsが予め定められた目標電圧よりも高い状態から目標電圧よりも低い状態に切り替わったことに基づいて利得Gを変更してもよい。この場合、目標電圧は、上記切り替わるタイミングがオフ時許容期間Tv1に含まれるように設定されているとよい。
○ 第1変更タイミングtixのフィードバック制御は必須ではない。すなわち、第1ディレイ期間Td1は更新されない固定値であってもよい。同様に、第2変更タイミングtvxのフィードバック制御は必須ではない。
○ 変換回路100は、3つ以上の利得Gに変更可能な構成でもよい。例えば、変換回路100は、利得を第1利得、第2利得、第3利得、第4利得のいずれかに変更可能な構成でもよい。この場合、第1利得<第2利得<第3利得<第4利得でもよい。
かかる構成においては、制御回路103は、例えばスイッチング素子11のターンオン時において利得Gを第1利得から第3利得に変更し、スイッチング素子11のターンオフ時において利得Gを第4利得から第2利得に変更してもよい。また、制御回路103は、例えばスイッチング素子11のターンオン時において利得Gを第1利得から第4利得に変更し、スイッチング素子11のターンオフ時において利得Gを第3利得から第2利得に変更してもよい。
すなわち、スイッチング素子11のターンオン時における変更前の利得と、スイッチング素子11のターンオフ時における変更前の利得とは、異なっていてもよい。同様に、スイッチング素子11のターンオン時における変更後の利得と、スイッチング素子11のターンオフ時における変更後の利得とは、異なっていてもよい。
換言すれば、外部指令電圧Vpの立ち上がり時に設定される「第1利得」と、外部指令電圧Vpの立ち下がり時に設定される「第1利得」とは同一でもよいし、異なっていてもよい。同様に、外部指令電圧Vpの立ち上がり時に設定される「第2利得」と、外部指令電圧Vpの立ち下がり時に設定される「第2利得」とは同一でもよいし、異なっていてもよい。
○ 第1実施形態において、利得可変用スイッチング素子Qx及び利得可変用抵抗Rxの直列接続体は、利得抵抗としての第1フィードバック抵抗R1に対して並列に接続されていてもよい。この場合であっても、利得可変用スイッチング素子QxのON/OFFに応じて分圧比が変更される。
○ 第2実施形態において、利得可変用スイッチング素子Qx及び利得可変用抵抗Rxの直列接続体は、利得抵抗としての第5フィードバック抵抗R5に対して並列接続されてもよい。この場合であっても、利得可変用スイッチング素子QxのON/OFFに応じて電圧増幅回路102の増幅率が変更される。
すなわち、利得可変用スイッチング素子Qx及び利得可変用抵抗Rxの直列接続体は、利得Gに関与する利得抵抗としてのフィードバック抵抗R1,R2,R4,R5,R7の少なくとも1つに対して並列に接続されていればよい。
○ 電圧増幅回路102は反転増幅回路でもよい。この場合、反転増幅回路から出力される電圧を反転させるインバータを有しているとよい。
○ 第1利得G1及び第2利得G2の具体的な数値は任意である。
○ スイッチング素子11は、MOSFETに限られず任意であり、例えばIGBTでもよい。この場合、スイッチング素子11のゲート端子が「制御端子」に対応し、スイッチング素子11のコレクタ-エミッタ間を流れるコレクタ電流が「印加電流」に対応し、エミッタ端子が「印加端子」に対応する。
○ 信号ソース端子23bは、複数のソース端子23の1つであったが、これに限られない。例えば、スイッチング素子11は、ドレイン電流Idが流れるメインソース端子23aと、メインソース端子23aとは別に設けられたゲートドライブ用端子とを有する構成においては、ゲートドライブ用端子を信号ソース端子23bとして用いるとよい。ゲートドライブ用端子は、ケルビン端子、ケルビンソース端子ともいわれるものであり、ドレイン電流Idが流れないソース端子である。ゲートドライブ用端子は、例えばメインソース端子23aと比較して寄生インダクタンスLsが小さいものであってもよい。
○ インダクタンス成分L1は、例えば、寄生インダクタンスLsと他のインダクタンス成分を含んでいてもよい。例えば、スイッチング素子11と蓄電装置203とを接続する配線上に、他のインダクタンス成分としてのフィードバック用のコイルを別途設けてもよい。
○ インダクタンス成分L1は寄生インダクタンスLsを含んでいなくてもよい。
○ 電流増幅回路80を省略してもよい。
○ フィルタ回路50を省略してもよい。
○ 分圧回路101を省略してもよいし、第6フィードバック抵抗R6又は第7フィードバック抵抗R7を省略してもよい。
○ スイッチング素子11とドライバ回路12とを接続する配線は、回路基板13に形成された配線パターン30に限られず、任意であり、例えばケーブルやバスバーなどでもよい。
○ 各スイッチング素子11u1~11w2はインバータを構成していたが、これに限られず、任意であり、例えば蓄電装置203の直流電力を異なる電圧の直流電力に変換するDC/DCコンバータを構成してもよい。すなわち、電力変換装置10は、インバータに限られず、DC/DCコンバータ、AC/ACコンバータ、AC/DCインバータ等任意である。換言すれば、電力変換装置10は、直流電力又は交流電力を直流電力又は交流電力に変換するものでもよい。
○ 負荷は電動モータ201に限られず任意である。
○ 電力変換装置10は、車両200以外に搭載されてもよい。すなわち、電力変換装置10は、車両200に設けられた負荷以外の負荷を駆動させるものでもよい。
○ 各実施形態及び各別例を適宜組み合わせてもよい。例えば、変換回路100は、分圧比を変更可能な分圧回路101と、増幅率を変更可能な電圧増幅回路102と、抵抗可変回路120とのうち少なくとも1つを有していてもよい。
次に、上記実施形態及び別例から把握できる好適な一例について以下に記載する。
(イ)ドライバ回路は、印加電流を検出する電流センサの検出結果が入力される電流端子を有し、制御部は、電流端子から入力される検出結果に基づいて、利得の変更タイミングとオン時目標タイミングとのずれ期間を把握するとよい。
(ロ)ドライバ回路は、前記スイッチング素子の印加電圧を検出する電圧センサの検出結果が入力される電圧端子を有し、制御部は、電圧端子から入力される検出結果に基づいて、利得の変更タイミングとオフ時目標タイミングとのずれ期間を把握するとよい。
10…電力変換装置、11(11u1~11w2)…スイッチング素子、12(12u1~12w2)…ドライバ回路、13…回路基板、21…ゲート端子(制御端子)、23…ソース端子、41…外部入力端子、42…加算出力端子、43…基準電位端子、44…フィードバック入力端子、60…加算回路、71…外部入力ライン、72…フィードバックライン、72b…フィードバック出力ライン、100…変換回路、101,111…分圧回路、102,112…電圧増幅回路、103…制御回路(制御部)、120…抵抗可変回路、200…車両、201…電動モータ(負荷)、203…蓄電装置、Vp…外部指令電圧、Vb…逆起電力、Vfb…フィードバック電圧、Vad…加算電圧、V0…基準電位、L1…インダクタンス成分、Ls…寄生インダクタンス、R1,R2…フィードバック抵抗(分圧抵抗)、Id…ドレイン電流、G…利得、G1…第1利得、G2…第2利得、Qx…利得可変用スイッチング素子、Rx…利得可変用抵抗、tip…電流ピークタイミング、tiq…電流ピーク前タイミング、tit…オン時目標タイミング、tix…第1変更タイミング、tvp…電圧ピークタイミング、tvq…電圧ピーク後タイミング、tvt…オフ時目標タイミング、tvx…第2変更タイミング、Ti1…オン時許容期間、Ti2…オン時目標期間、Tv1…オフ時許容期間、Tv2…オフ時目標期間、δT1,δT2…ずれ期間。

Claims (16)

  1. 制御端子及び印加電流が流れる印加端子を有するスイッチング素子を駆動させるドライバ回路であって、
    外部指令電圧が入力される外部入力端子と、
    前記印加電流の変化により前記スイッチング素子内の寄生インダクタンスを含むインダクタンス成分によって生じる逆起電力が入力されるフィードバック入力端子と、
    前記逆起電力をフィードバック電圧に変換するものであって、前記逆起電力に対する前記フィードバック電圧の比率である利得を変更可能な変換回路と、
    前記外部指令電圧と前記フィードバック電圧とが入力されるものであって、前記外部指令電圧及び前記フィードバック電圧を加算し、その加算された加算電圧を前記制御端子に向けて出力する加算回路と、
    前記変換回路の利得を制御する制御部と、
    を備え、
    前記変換回路が設定可能な前記利得には、第1利得と、前記第1利得よりも高い第2利得とが含まれており、
    前記外部指令電圧が立ち上がることに基づいて前記印加電流がピーク値となるタイミングを電流ピークタイミングとし、前記印加電流が流れ始めるタイミングよりも後であって前記電流ピークタイミングよりもオン時許容期間だけ前のタイミングを電流ピーク前タイミングとすると、
    前記制御部は、前記外部指令電圧が立ち上がる前に又は前記外部指令電圧が立ち上がることに基づいて前記利得を前記第1利得に設定し、前記電流ピーク前タイミングから前記電流ピークタイミングまでの前記オン時許容期間内に前記利得が前記第1利得から前記第2利得に変更されるように前記変換回路を制御することを特徴とするドライバ回路。
  2. 前記制御部は、前記電流ピークタイミングに対して前記オン時許容期間よりも短いオン時目標期間だけ前のオン時目標タイミングにて前記利得が前記第1利得から前記第2利得に変更されるように前記変換回路を制御するものである請求項1に記載のドライバ回路。
  3. 前記オン時目標期間は、前記外部指令電圧が立ち上がってから前記オン時目標タイミングまでの期間よりも短い請求項2に記載のドライバ回路。
  4. 前記制御部は、前記電流ピークタイミングをオン時目標タイミングとして当該オン時目標タイミングにて前記利得が前記第1利得から前記第2利得に変更されるように前記変換回路を制御する請求項1に記載のドライバ回路。
  5. 前記制御部は、前記外部指令電圧の第1立ち上がりにおいて、前記利得の変更タイミングと前記オン時目標タイミングとのずれ期間を把握し、前記第1立ち上がりの後の第2立ち上がりにおいて、前記変更タイミングが前記オン時目標タイミングに近づく又は一致するように前記ずれ期間に基づいて前記変更タイミングを調整する請求項2~4のうちいずれか一項に記載のドライバ回路。
  6. 制御端子及び印加電流が流れる印加端子を有するスイッチング素子を駆動させるドライバ回路であって、
    外部指令電圧が入力される外部入力端子と、
    前記印加電流の変化により前記スイッチング素子内の寄生インダクタンスを含むインダクタンス成分によって生じる逆起電力が入力されるフィードバック入力端子と、
    前記逆起電力をフィードバック電圧に変換するものであって、前記逆起電力に対する前記フィードバック電圧の比率である利得を変更可能な変換回路と、
    前記外部指令電圧と前記フィードバック電圧とが入力されるものであって、前記外部指令電圧及び前記フィードバック電圧を加算し、その加算された加算電圧を前記制御端子に向けて出力する加算回路と、
    前記変換回路の利得を制御する制御部と、
    を備え、
    前記変換回路が設定可能な前記利得には、第1利得と、前記第1利得よりも高い第2利得とが含まれており、
    前記外部指令電圧が立ち下がることに基づいて前記スイッチング素子の印加電圧がピーク値となるタイミングを電圧ピークタイミングとし、前記電圧ピークタイミングよりもオフ時許容期間だけ後のタイミングを電圧ピーク後タイミングとすると、
    前記オフ時許容期間は、前記電圧ピークタイミングから前記印加電流が0となるタイミングまでの期間よりも短く設定されており、
    前記制御部は、前記外部指令電圧が立ち下がる前に又は前記外部指令電圧が立ち下がることに基づいて前記利得を前記第2利得に設定し、前記電圧ピークタイミングから前記電圧ピーク後タイミングまでの前記オフ時許容期間内に前記利得が前記第2利得から前記第1利得となるように前記変換回路を制御することを特徴とするドライバ回路。
  7. 前記制御部は、前記電圧ピークタイミングに対して前記オフ時許容期間よりも短いオフ時目標期間だけ後のオフ時目標タイミングにて前記利得が前記第2利得から前記第1利得に変更されるように前記変換回路を制御する請求項6に記載のドライバ回路。
  8. 前記オフ時目標期間は、前記オフ時目標タイミングから前記印加電流が0となるタイミングまでの期間よりも短い請求項7に記載のドライバ回路。
  9. 前記制御部は、前記電圧ピークタイミングをオフ時目標タイミングとして当該オフ時目標タイミングにて前記利得が前記第1利得から前記第2利得に変更されるように前記変換回路を制御する請求項6に記載のドライバ回路。
  10. 前記制御部は、前記外部指令電圧の第1立ち下がりにおいて、前記利得の変更タイミングと前記オフ時目標タイミングとのずれ期間を把握し、前記第1立ち下がりの後の第2立ち下がりにおいて、前記利得の変更タイミングが前記オフ時目標タイミングに近づく又は一致するように前記ずれ期間に基づいて前記変更タイミングを調整する請求項7~9のうちいずれか一項に記載のドライバ回路。
  11. 前記変換回路は、
    前記利得に関与する利得抵抗と、
    前記利得抵抗に対して並列に接続された利得可変用スイッチング素子及び利得可変用抵抗の直列接続体と、
    を備え、
    前記制御部は、前記利得可変用スイッチング素子を制御することにより前記利得を制御する請求項1~10のうちいずれか一項に記載のドライバ回路。
  12. 前記変換回路は、前記逆起電力を分圧する分圧回路を有し、前記分圧回路によって分圧された電圧を前記フィードバック電圧に変換するものであり、
    前記分圧回路は、前記利得抵抗として、互いに直列に接続された第1分圧抵抗及び第2分圧抵抗を備え、
    前記利得可変用スイッチング素子及び前記利得可変用抵抗の直列接続体は、前記第1分圧抵抗又は前記第2分圧抵抗に対して並列に接続されており、
    前記制御部は、前記利得可変用スイッチング素子を制御することにより前記分圧回路の分圧比を制御する請求項11に記載のドライバ回路。
  13. 前記変換回路は、
    前記逆起電力を分圧する分圧回路と、
    前記分圧回路によって分圧された電圧を増幅することにより前記フィードバック電圧を生成するものであって、増幅率が変更可能な電圧増幅回路と、
    を備え、
    前記制御部は、前記増幅率を制御することにより前記利得を制御する請求項1~12のうちいずれか一項に記載のドライバ回路。
  14. 前記スイッチング素子はMOSFETであり、
    前記制御端子はゲート端子であり、
    前記印加電流は、前記スイッチング素子のソース-ドレイン間に流れるドレイン電流であり、
    前記印加端子はソース端子である請求項1~13のうちいずれか一項に記載のドライバ回路。
  15. 前記スイッチング素子はIGBTであり、
    前記制御端子はゲート端子であり、
    前記印加電流は、前記スイッチング素子のコレクタ-エミッタ間に流れるコレクタ電流であり、
    前記印加端子はエミッタ端子である請求項1~13のうちいずれか一項に記載のドライバ回路。
  16. 前記スイッチング素子と、
    請求項1~15のうちいずれか一項に記載のドライバ回路と、
    を備えていることを特徴とする電力変換装置。
JP2020066760A 2020-04-02 2020-04-02 ドライバ回路及び電力変換装置 Active JP7279678B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020066760A JP7279678B2 (ja) 2020-04-02 2020-04-02 ドライバ回路及び電力変換装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2020066760A JP7279678B2 (ja) 2020-04-02 2020-04-02 ドライバ回路及び電力変換装置

Publications (2)

Publication Number Publication Date
JP2021164361A JP2021164361A (ja) 2021-10-11
JP7279678B2 true JP7279678B2 (ja) 2023-05-23

Family

ID=78005242

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020066760A Active JP7279678B2 (ja) 2020-04-02 2020-04-02 ドライバ回路及び電力変換装置

Country Status (1)

Country Link
JP (1) JP7279678B2 (ja)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012039457A (ja) 2010-08-09 2012-02-23 Honda Motor Co Ltd 半導体素子の駆動装置及び方法

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012039457A (ja) 2010-08-09 2012-02-23 Honda Motor Co Ltd 半導体素子の駆動装置及び方法

Also Published As

Publication number Publication date
JP2021164361A (ja) 2021-10-11

Similar Documents

Publication Publication Date Title
EP2816728B1 (en) Active gate drive circuit
EP2615737B1 (en) Active gate drive circuit
US6891342B2 (en) Drive apparatus for PWM control of two inductive loads with reduced generation of electrical noise
JP2007523587A (ja) スイッチング周波数が負荷に応答自在なdc−dc電圧レギュレータ
JP7268507B2 (ja) ゲート駆動装置及び電力変換装置
EP3050198A1 (en) Inverter controller and control method of inverter device
US10541626B1 (en) Power conversion system with PWM carrier emulation
US11368109B2 (en) Power conversion system with PWM carrier transition smoothing and autotuning
WO2019211929A1 (ja) 電力変換装置
CN115733478A (zh) 栅极驱动器***和驱动半桥电路的方法
US9673735B2 (en) Power converter
JP6906703B2 (ja) 電力変換装置
JP7276211B2 (ja) ドライバ回路及び電力変換装置
JP7279678B2 (ja) ドライバ回路及び電力変換装置
WO2023135885A1 (ja) 半導体スイッチング素子の駆動装置および電力変換装置
JP7264094B2 (ja) ドライバ回路及び電力変換装置
TWI784727B (zh) 馬達驅動電路及馬達模組
CN114070283A (zh) 用于驱动晶体管的方法和栅极驱动器***
JP2022037483A (ja) ドライバ回路及び電力変換装置
JP2021164362A (ja) 電力変換装置
US20220368244A1 (en) Intelligent rectifier current regulation of dc bus voltage droop
US20230188077A1 (en) Motor control processing with a flat pulse width modulation scheme
WO2017145242A1 (ja) コンバータ回路、インバータ回路および空気調和機の電力変換装置
JP2021170885A (ja) 電力変換装置
US11218085B2 (en) Power conversion device having an inverter circuit including current limitation circuits and a control circuit controlling same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220714

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230411

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230424

R151 Written notification of patent or utility model registration

Ref document number: 7279678

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151