JP7279632B2 - All-solid battery - Google Patents

All-solid battery Download PDF

Info

Publication number
JP7279632B2
JP7279632B2 JP2019236563A JP2019236563A JP7279632B2 JP 7279632 B2 JP7279632 B2 JP 7279632B2 JP 2019236563 A JP2019236563 A JP 2019236563A JP 2019236563 A JP2019236563 A JP 2019236563A JP 7279632 B2 JP7279632 B2 JP 7279632B2
Authority
JP
Japan
Prior art keywords
active material
electrode active
material layer
layer
solid electrolyte
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2019236563A
Other languages
Japanese (ja)
Other versions
JP2021106101A (en
Inventor
康介 櫻井
恵太 水口
真也 塩谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2019236563A priority Critical patent/JP7279632B2/en
Publication of JP2021106101A publication Critical patent/JP2021106101A/en
Application granted granted Critical
Publication of JP7279632B2 publication Critical patent/JP7279632B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Description

本願は全固体電池を開示する。 The present application discloses an all-solid-state battery.

特許文献1には、導電性の端子が突設された一の活物質層と、セパレータと、前記一の活物質層と異なる電気的極性を有し、導電性の端子が面方向の一部に接続した状態で突設された他の活物質層と、セパレータと、を積層方向に交互に有する、二次電池が開示されている。 Patent Document 1 discloses an active material layer having a conductive terminal projecting therefrom, a separator, an electrical polarity different from that of the one active material layer, and a conductive terminal partially extending in the plane direction. A secondary battery is disclosed that alternately has, in the stacking direction, other active material layers and separators protruding in a state of being connected to the secondary battery.

特許文献2には、正極活物質としてリチウム化合物を用いた非水電解液型のリチウムイオン二次電池において、電池内にフッ化水素を除去するフッ化水素除去材を収容するとともに、前記フッ化水素除去材を正極及び負極と絶縁された状態で配置したことを特徴とするリチウムイオン二次電池が開示されている。 Patent Document 2 describes a non-aqueous electrolyte type lithium ion secondary battery using a lithium compound as a positive electrode active material. A lithium-ion secondary battery is disclosed in which a hydrogen-removing material is arranged in a state insulated from the positive electrode and the negative electrode.

特開2018-198142号公報JP 2018-198142 A 特開2012-009283号公報JP 2012-009283 A

全固体電池の製造工程においては、発電能力がない電極体端部を機械加工等で垂直に切断する場合がある(図1(A))。一方で、全固体電池は充放電時に活物質層が膨張することから、上記の通り電極体端部を垂直に切断した場合、膨張した正極活物質層と負極活物質層とが接触してショートしてしまう虞がある(図1(B))。 In the manufacturing process of an all-solid-state battery, there are cases in which the ends of the electrode bodies that do not have the ability to generate power are cut vertically by machining or the like (FIG. 1(A)). On the other hand, since the active material layer of an all-solid-state battery expands during charging and discharging, when the end of the electrode body is cut vertically as described above, the expanded positive electrode active material layer and negative electrode active material layer come into contact and short circuit. There is a possibility that it will be done (FIG. 1(B)).

本願は上記課題を解決するための手段の一つとして、固体電解質層の一方面側に正極活物質層、他方面側に負極活物質層が積層されており、前記固体電解質層が、前記正極活物質層及び前記負極活物質層よりも、積層方向と交差する方向に50μm以上1000μm以下突出している、全固体電池を開示する。 As one of means for solving the above problems, the present application has a positive electrode active material layer laminated on one surface side of a solid electrolyte layer and a negative electrode active material layer laminated on the other surface side thereof, and the solid electrolyte layer is laminated on the positive electrode layer. Disclosed is an all-solid-state battery that protrudes from the active material layer and the negative electrode active material layer by 50 μm or more and 1000 μm or less in a direction crossing the stacking direction.

本開示の全固体電池は、充放電時に正極活物質層や負極活物質層が膨張した場合でも、正極活物質層と負極活物質層とが接触し難い。 In the all-solid-state battery of the present disclosure, contact between the positive electrode active material layer and the negative electrode active material layer is difficult even when the positive electrode active material layer and the negative electrode active material layer swell during charging and discharging.

従来技術における課題について説明するための図である。It is a figure for demonstrating the subject in a prior art. 全固体電池の構成の一例を説明するための概略図である。1 is a schematic diagram for explaining an example of the configuration of an all-solid-state battery; FIG. 全固体電池の製造方法の一例を説明するための概略図である。It is a schematic diagram for explaining an example of a manufacturing method of an all-solid-state battery.

1.全固体電池
図2に全固体電池100の構成を概略的に示す。図2に示されるように、全固体電池100は、固体電解質層30の一方面側に正極活物質層10、他方面側に負極活物質層20が積層されている。固体電解質層30は、正極活物質層10及び負極活物質層20よりも、積層方向と交差する方向に50μm以上1000μm以下突出している。
1. All-Solid-State Battery FIG. 2 schematically shows the configuration of an all-solid-state battery 100 . As shown in FIG. 2 , the all-solid-state battery 100 has a positive electrode active material layer 10 laminated on one side of a solid electrolyte layer 30 and a negative electrode active material layer 20 laminated on the other side. The solid electrolyte layer 30 protrudes from the positive electrode active material layer 10 and the negative electrode active material layer 20 by 50 μm or more and 1000 μm or less in the direction intersecting the stacking direction.

1.1 正極活物質層
正極活物質層10は、少なくとも正極活物質を含む層である。正極活物質層10は、正極活物質に加えて、任意に固体電解質、バインダー及び導電助剤等を含んでいてもよい。
1.1 Positive Electrode Active Material Layer The positive electrode active material layer 10 is a layer containing at least a positive electrode active material. The positive electrode active material layer 10 may optionally contain a solid electrolyte, a binder, a conductive aid, etc. in addition to the positive electrode active material.

正極活物質としては公知の活物質を用いればよい。公知の活物質のうち、所定のイオンを吸蔵放出する電位(充放電電位)の異なる2つの物質を選択し、貴な電位を示す物質を正極活物質とし、卑な電位を示す物質を後述の負極活物質として、それぞれ用いることができる。例えば、リチウムイオン電池を構成する場合は、正極活物質としてコバルト酸リチウム、ニッケル酸リチウム、LiNi1/3Co1/3Mn1/3、マンガン酸リチウム、スピネル系リチウム化合物等の各種のリチウム含有複合酸化物を用いることができる。正極活物質は表面がニオブ酸リチウム層やチタン酸リチウム層やリン酸リチウム層等の酸化物層で被覆されていてもよい。 A known active material may be used as the positive electrode active material. Among known active materials, two substances having different potentials (charge/discharge potentials) at which predetermined ions are occluded and released are selected. Each can be used as a negative electrode active material. For example, when constructing a lithium ion battery, various kinds of lithium cobalt oxide, lithium nickel oxide, LiNi 1/3 Co 1/3 Mn 1/3 O 2 , lithium manganate, spinel-based lithium compounds, etc. are used as the positive electrode active material. A lithium-containing composite oxide can be used. The surface of the positive electrode active material may be coated with an oxide layer such as a lithium niobate layer, a lithium titanate layer, or a lithium phosphate layer.

正極活物質層10に含まれ得る固体電解質としては、例えば、無機固体電解質が挙げられる。無機固体電解質は、有機ポリマー電解質と比較してイオン伝導度が高い。また、有機ポリマー電解質と比較して、耐熱性に優れる。さらに、有機ポリマー電解質と比較して、硬質で剛性に優れる。好ましい無機固体電解質としては、例えば、ランタンジルコン酸リチウム、LiPON、Li1+XAlGe2-X(PO、Li-SiO系ガラス、Li-Al-S-O系ガラス等の酸化物固体電解質;LiS-P、LiS-SiS、LiI-LiS-SiS、LiI-SiS-P、LiS-P-LiI-LiBr、LiI-LiS-P、LiI-LiS-P、LiI-LiPO-P、LiS-P-GeS等の硫化物固体電解質を例示することができる。特に、硫化物固体電解質が好ましく、LiS-Pを含む硫化物固体電解質がより好ましい。 Examples of solid electrolytes that can be included in the positive electrode active material layer 10 include inorganic solid electrolytes. Inorganic solid electrolytes have higher ionic conductivity than organic polymer electrolytes. In addition, it has excellent heat resistance as compared with organic polymer electrolytes. Furthermore, compared with organic polymer electrolytes, it is hard and has excellent rigidity. Preferred inorganic solid electrolytes include oxide solids such as lithium lanthanum zirconate, LiPON, Li 1+X Al X Ge 2-X (PO 4 ) 3 , Li—SiO glass, Li—Al—S—O glass, and the like. Electrolyte; Li 2 SP 2 S 5 , Li 2 S—SiS 2 , LiI—Li 2 S—SiS 2 , LiI—Si 2 SP 2 S 5 , Li 2 SP 2 S 5 —LiI—LiBr , LiI-Li 2 SP 2 S 5 , LiI-Li 2 SP 2 O 5 , LiI-Li 3 PO 4 -P 2 S 5 , Li 2 SP 2 S 5 -GeS 2 and other sulfides A solid electrolyte can be exemplified. In particular, a sulfide solid electrolyte is preferred, and a sulfide solid electrolyte containing Li 2 SP 2 S 5 is more preferred.

正極活物質層10に含まれ得るバインダーとしては、例えば、ブタジエンゴム(BR)系バインダー、ブチレンゴム(IIR)系バインダー、アクリレートブタジエンゴム(ABR)系バインダー、ポリフッ化ビニリデン(PVdF)系バインダー、ポリテトラフルオロエチレン(PTFE)系バインダー等が挙げられる。 Examples of binders that can be contained in the positive electrode active material layer 10 include butadiene rubber (BR) binders, butylene rubber (IIR) binders, acrylate butadiene rubber (ABR) binders, polyvinylidene fluoride (PVdF) binders, polytetra Examples include fluoroethylene (PTFE) binders.

正極活物質層10に含まれ得る導電助剤としては、例えば、グラファイトやアセチレンブラックやケッチェンブラック等の炭素材料やニッケル、アルミニウム、ステンレス鋼等の金属材料が挙げられる。 Examples of conductive aids that can be contained in the positive electrode active material layer 10 include carbon materials such as graphite, acetylene black, and ketjen black, and metal materials such as nickel, aluminum, and stainless steel.

正極活物質層10における各成分の含有量は従来と同様とすればよい。正極活物質層10の形状も従来と同様とすればよい。特に、シート状の正極活物質層が好ましい。正極活物質層10の厚みは、特に限定されるものではない。例えば、0.1μm以上2mm以下としてもよい。下限は1μm以上であってもよく、上限は1mm以下であってもよい。 The content of each component in the positive electrode active material layer 10 may be the same as the conventional one. The shape of the positive electrode active material layer 10 may also be the same as the conventional one. A sheet-like positive electrode active material layer is particularly preferable. The thickness of the positive electrode active material layer 10 is not particularly limited. For example, it may be 0.1 μm or more and 2 mm or less. The lower limit may be 1 μm or more, and the upper limit may be 1 mm or less.

1.2 負極活物質層
負極活物質層20は、少なくとも負極活物質を含む層である。負極活物質層20は、負極活物質に加えて、任意に固体電解質、バインダー及び導電助剤等を含んでいてもよい。
1.2 Negative Electrode Active Material Layer The negative electrode active material layer 20 is a layer containing at least a negative electrode active material. The negative electrode active material layer 20 may optionally contain a solid electrolyte, a binder, a conductive aid, etc. in addition to the negative electrode active material.

負極活物質としては公知の活物質を用いればよい。例えば、リチウムイオン電池を構成する場合は、負極活物質としてSiやSi合金や酸化ケイ素等のシリコン系活物質;グラファイトやハードカーボン等の炭素系活物質;チタン酸リチウム等の各種酸化物系活物質;金属リチウムやリチウム合金等を用いることができる。 A known active material may be used as the negative electrode active material. For example, when constructing a lithium ion battery, silicon-based active materials such as Si, Si alloys and silicon oxides as negative electrode active materials; carbon-based active materials such as graphite and hard carbon; various oxide-based active materials such as lithium titanate. Substance: metal lithium, lithium alloy, or the like can be used.

固体電解質、バインダー及び導電助剤は、正極活物質層10に用いられるものとして例示したものの中から適宜選択して用いることができる。負極活物質層20における各成分の含有量は従来と同様とすればよい。負極活物質層20の形状も従来と同様とすればよい。特に、シート状の負極活物質層20が好ましい。負極活物質層20の厚みは、特に限定されるものではない。例えば、0.1μm以上2mm以下としてもよい。下限は1μm以上であってもよく、上限は1mm以下であってもよい。 The solid electrolyte, the binder, and the conductive aid can be appropriately selected and used from those exemplified as those used for the positive electrode active material layer 10 . The content of each component in the negative electrode active material layer 20 may be the same as the conventional one. The shape of the negative electrode active material layer 20 may also be the same as the conventional one. A sheet-like negative electrode active material layer 20 is particularly preferable. The thickness of the negative electrode active material layer 20 is not particularly limited. For example, it may be 0.1 μm or more and 2 mm or less. The lower limit may be 1 μm or more, and the upper limit may be 1 mm or less.

1.3 固体電解質層
固体電解質層30は、少なくとも固体電解質を含む層である。固体電解質層30は、固体電解質に加えて、任意にバインダー等を含んでいてもよい。
1.3 Solid Electrolyte Layer The solid electrolyte layer 30 is a layer containing at least a solid electrolyte. The solid electrolyte layer 30 may optionally contain a binder or the like in addition to the solid electrolyte.

固体電解質層30に含まれる固体電解質は、上述したものと同様でよく、例えば、無機固体電解質であってもよく、硫化物固体電解質であってもよい。バインダーは、正極活物質層10に用いられるものとして例示したものの中から適宜選択して用いることができる。固体電解質層30における各成分の含有量は従来と同様とすればよい。固体電解質層30の形状も従来と同様とすればよい。特に、シート状の固体電解質層が好ましい。この場合、固体電解質層30の厚みは、例えば、0.1μm以上2mm以下としてもよい。下限は1μm以上であってもよく、上限は1mm以下であってもよい。 The solid electrolyte contained in the solid electrolyte layer 30 may be the same as those described above, and may be, for example, an inorganic solid electrolyte or a sulfide solid electrolyte. The binder can be appropriately selected and used from those exemplified as those used for the positive electrode active material layer 10 . The content of each component in the solid electrolyte layer 30 may be the same as the conventional one. The shape of the solid electrolyte layer 30 may also be the same as the conventional one. A sheet-like solid electrolyte layer is particularly preferable. In this case, the thickness of the solid electrolyte layer 30 may be, for example, 0.1 μm or more and 2 mm or less. The lower limit may be 1 μm or more, and the upper limit may be 1 mm or less.

1.4 集電体層
図2に示されるように、全固体電池100は、さらに正極集電体層40や負極集電体層50を備えていてもよい。集電体層40、50は、各々、活物質層10、20と電気的に接続される。集電体層40、50は、金属箔や金属メッシュ等により構成すればよい。取扱い性等に優れる観点からは、集電体層40、50を金属箔としてもよい。集電体層40、50は複数枚の金属箔からなっていてもよい。集電体層40、50を構成する金属としては、Cu、Ni、Cr、Au、Pt、Ag、Al、Fe、Ti、Zn、Co、ステンレス鋼等が挙げられる。集電体層40、50は、その表面に、抵抗を調整すること等を目的として、何らかのコート層を有していてもよい。また、集電体層40、50が複数枚の金属箔からなる場合、当該複数枚の金属箔間に何らかの層を有していてもよい。集電体層40、50の厚みは特に限定されるものではない。例えば、0.1μm以上であってもよいし、1μm以上であってもよく、1mm以下であってもよいし、100μm以下であってもよい。
1.4 Current Collector Layer As shown in FIG. 2 , the all-solid-state battery 100 may further include a positive electrode current collector layer 40 and a negative electrode current collector layer 50 . Current collector layers 40 and 50 are electrically connected to active material layers 10 and 20, respectively. The collector layers 40 and 50 may be made of metal foil, metal mesh, or the like. From the standpoint of excellent handleability, the collector layers 40 and 50 may be made of metal foil. The current collector layers 40, 50 may consist of a plurality of metal foils. Examples of metals forming the collector layers 40 and 50 include Cu, Ni, Cr, Au, Pt, Ag, Al, Fe, Ti, Zn, Co, and stainless steel. The current collector layers 40 and 50 may have some kind of coating layer on their surfaces for the purpose of adjusting the resistance. Moreover, when the current collector layers 40 and 50 are made of a plurality of metal foils, there may be some layer between the plurality of metal foils. The thickness of the collector layers 40 and 50 is not particularly limited. For example, it may be 0.1 μm or more, 1 μm or more, 1 mm or less, or 100 μm or less.

1.5 積層方向側面の凹凸構造
本開示の全固体電池100においては、固体電解質層30が、正極活物質層10及び負極活物質層20よりも、積層方向と交差する方向に50μm以上1000μm以下突出している。すなわち、活物質層10、20及び固体電解質層30の積層方向側面において、活物質層10、20と固体電解質層30とによって凹凸構造が形成される。これにより、全固体電池100の充放電時、活物質層10、20が膨張したとしても、活物質層10、20よりも突出した固体電解質層30によって活物質層10、20の接触が抑制される。
1.5 Concavo-convex structure on the side surface in the stacking direction In the all-solid-state battery 100 of the present disclosure, the solid electrolyte layer 30 is 50 μm or more and 1000 μm or less in the direction intersecting the stacking direction than the positive electrode active material layer 10 and the negative electrode active material layer 20. Protruding. That is, the active material layers 10 and 20 and the solid electrolyte layer 30 form an uneven structure on the stacking direction side surfaces of the active material layers 10 and 20 and the solid electrolyte layer 30 . As a result, even if the active material layers 10 and 20 expand during charging and discharging of the all-solid-state battery 100, contact between the active material layers 10 and 20 is suppressed by the solid electrolyte layer 30 protruding from the active material layers 10 and 20. be.

活物質層10、20に対する固体電解質層30の突出量は50μm以上1000μm以下である。当該突出量は80μm以上であってよいし、100μm以上であってもよく、800μm以下であってもよいし、500μm以下であってもよい。 The amount of protrusion of the solid electrolyte layer 30 with respect to the active material layers 10 and 20 is 50 μm or more and 1000 μm or less. The protrusion amount may be 80 μm or more, 100 μm or more, 800 μm or less, or 500 μm or less.

活物質層10、20に対する固体電解質層30の突出方向は、上述の通り、積層方向と交差する方向であり、図2に示すように、積層方向と直交する方向であってもよい。 The direction in which the solid electrolyte layer 30 protrudes from the active material layers 10 and 20 is the direction intersecting the lamination direction as described above, and may be the direction perpendicular to the lamination direction as shown in FIG.

正極活物質層10に対する固体電解質層30の突出量と、負極活物質層20に対する固体電解質層30の突出量とは、必ずしも同じでなくてよい。言い換えれば、正極活物質層10の積層面の面積と、負極活物質層20の積層面の面積とは、互いに同じであってもよいし、異なっていてもよい。 The amount of protrusion of the solid electrolyte layer 30 with respect to the positive electrode active material layer 10 and the amount of protrusion of the solid electrolyte layer 30 with respect to the negative electrode active material layer 20 may not necessarily be the same. In other words, the area of the stacking surface of the positive electrode active material layer 10 and the area of the stacking surface of the negative electrode active material layer 20 may be the same or different.

固体電解質層が突出する部分においては発電が期待できないため、活物質層に対する固体電解質層の突出量を大きくし過ぎると全固体電池の単位体積当たりの発電効率が低下する。本開示の全固体電池100においては、活物質層10、20に対する固体電解質層30の突出量が上記の通り50μm以上1000μm以下とわずかであることから、活物質層10、20及び固体電解質層30の端部ギリギリまで充放電が可能であり、全固体電池100の単位体積当たりの発電効率を高めることができる。 Since power generation cannot be expected in the portion where the solid electrolyte layer protrudes, if the amount of protrusion of the solid electrolyte layer with respect to the active material layer is too large, the power generation efficiency per unit volume of the all-solid-state battery decreases. In the all-solid-state battery 100 of the present disclosure, since the amount of protrusion of the solid electrolyte layer 30 with respect to the active material layers 10 and 20 is as small as 50 μm or more and 1000 μm or less as described above, the active material layers 10 and 20 and the solid electrolyte layer 30 It is possible to charge and discharge up to the edge of the all-solid-state battery 100, and the power generation efficiency per unit volume of the all-solid-state battery 100 can be increased.

尚、図2に示されるように、本開示の全固体電池100においては、集電層40、50が、活物質層10、20よりも、積層方向と交差する方向に突出していてもよい。 In addition, as shown in FIG. 2 , in the all-solid-state battery 100 of the present disclosure, the current collection layers 40 and 50 may protrude more than the active material layers 10 and 20 in a direction intersecting the stacking direction.

例えば、集電体層40、50が正極及び負極の双方の集電体として機能するバイポーラ集電体である場合、集電層40、50の一方面側に正極活物質層10、他方面側に負極活物質層20が積層されることとなる。この場合、活物質層10、20に対して集電体層40、50を突出させることで、全固体電池100の充放電時、活物質層10、20が膨張したとしても、活物質層10、20よりも突出した集電体層40、50によって活物質層10、20の接触が抑制される。活物質層10、20に対する集電体層40、50の突出量は特に限定されるものではない。上述の通り、当該突出量を50μm以上1000μm以下としてもよい。活物質層10、20に対する集電体40、50の突出方向は、上述の通り、積層方向と交差する方向であり、図2に示すように、積層方向と直交する方向であってもよい。 For example, when the current collector layers 40 and 50 are bipolar current collectors that function as current collectors for both positive and negative electrodes, one side of the current collection layers 40 and 50 is the positive electrode active material layer 10, and the other side is the positive electrode active material layer 10. , the negative electrode active material layer 20 is laminated. In this case, by protruding the current collector layers 40 and 50 with respect to the active material layers 10 and 20, even if the active material layers 10 and 20 expand during charging and discharging of the all-solid-state battery 100, the active material layer 10 , 20, the contact between the active material layers 10 and 20 is suppressed. The amount of protrusion of the current collector layers 40 and 50 with respect to the active material layers 10 and 20 is not particularly limited. As described above, the protrusion amount may be 50 μm or more and 1000 μm or less. The direction in which the current collectors 40 and 50 protrude from the active material layers 10 and 20 is the direction intersecting the stacking direction as described above, and may be the direction orthogonal to the stacking direction as shown in FIG.

2.全固体電池の製造方法
上述したように、全固体電池の製造時、発電能力がない電極体端部を機械加工等で垂直に切断し、正極活物質層と負極活物質層と固体電解質層とを端部において同一面(突出量0)としてしまうと、膨張や位置ずれ等によって正極活物質層と負極活物質層とが接触してショートする虞がある。活物質層のショートを防止する観点からは、活物質層に対して固体電解質層をできるだけ突出させるとよい。しかしながら、活物質層に対する固体電解質層の突出量を大きくし過ぎると、全固体電池の単位体積当たりの発電効率が低下してしまう。
2. Method for manufacturing an all-solid-state battery As described above, when manufacturing an all-solid-state battery, the ends of the electrode bodies that do not have the ability to generate electricity are cut vertically by machining or the like, and the positive electrode active material layer, the negative electrode active material layer, and the solid electrolyte layer are formed. If the ends of the positive electrode active material layer and the negative electrode active material layer come into contact with each other due to expansion or misalignment, a short circuit may occur. From the viewpoint of preventing a short circuit of the active material layer, it is preferable to project the solid electrolyte layer as much as possible from the active material layer. However, if the amount of protrusion of the solid electrolyte layer with respect to the active material layer is too large, the power generation efficiency per unit volume of the all-solid-state battery will decrease.

また、活物質層に対して固体電解質層を突出させると、各層の積層プレス時等に端部が破損し易いという新たな課題が生じる虞がある。 In addition, if the solid electrolyte layer protrudes with respect to the active material layer, there is a possibility that a new problem may occur in that the end portions are likely to be damaged during lamination pressing of each layer.

さらに、従来技術に係る全固体電池の製造方法においては、製造工程上、活物質層と固体電解質層とを1mm以下の精度で重ね合わせることは難しい場合もある。 Furthermore, in the manufacturing method of the all-solid-state battery according to the conventional technology, it may be difficult to superimpose the active material layer and the solid electrolyte layer with an accuracy of 1 mm or less due to the manufacturing process.

本願は、活物質層や固体電解質層の端部の破損を抑制しつつ、活物質層に対して固体電解質層を微細に突出させることが可能な製造方法の一例として、以下の方法を開示する。以下の製造方法によれば、上述した本開示の全固体電池100を容易に製造することができる。 The present application discloses the following method as an example of a manufacturing method that enables the solid electrolyte layer to protrude finely from the active material layer while suppressing breakage of the ends of the active material layer and the solid electrolyte layer. . According to the manufacturing method described below, the above-described all-solid-state battery 100 of the present disclosure can be easily manufactured.

図3に示すように、本開示の全固体電池の製造方法は、固体電解質層30の一方面側に正極活物質層10を積層し、他方面側に負極活物質層20を積層して、積層体を得る工程(図3(A))と、当該積層体の端部を積層方向に沿って切断する工程(図3(B))と、切断面に対してレーザ加工を施し、当該切断面において正極活物質層10及び負極活物質層20を固体電解質層30よりも凹ませる工程(図3(C))と、を備える。 As shown in FIG. 3, in the method for manufacturing an all-solid-state battery of the present disclosure, a positive electrode active material layer 10 is laminated on one surface side of a solid electrolyte layer 30, and a negative electrode active material layer 20 is laminated on the other surface side, A step of obtaining a laminate (FIG. 3(A)), a step of cutting the end of the laminate along the stacking direction (FIG. 3(B)), performing laser processing on the cut surface, and cutting a step of recessing the positive electrode active material layer 10 and the negative electrode active material layer 20 from the solid electrolyte layer 30 on the surface (FIG. 3C).

積層体を得る方法は特に限定されるものではなく、従来における全固体電池の製造方法と同様とすればよい。例えば、集電体層の一面側に乾式又は湿式法で活物質層Aを積層し、当該活物質層Aの一面側に乾式又は湿式法で固体電解質層を積層し、当該固体電解質層の一面側に乾式又は湿式法で活物質層Bを積層し、さらに活物質層Bの一面側に集電体層を積層することで、積層体が得られる。後述の積層体の端部を切断する前に、積層体をプレスしてもよい。 The method for obtaining the laminate is not particularly limited, and may be the same as the conventional method for manufacturing all-solid-state batteries. For example, an active material layer A is laminated on one side of the current collector layer by a dry or wet method, a solid electrolyte layer is laminated on one side of the active material layer A by a dry or wet method, and one side of the solid electrolyte layer is A laminate is obtained by laminating an active material layer B on one side of the active material layer B by a dry or wet method, and further laminating a current collector layer on one side of the active material layer B. The laminate may be pressed before cutting the ends of the laminate, which will be described later.

積層体の端部を切断する方法は特に限定されるものではなく、従来における全固体電池の製造方法と同様とすればよい。例えば、機械加工やプレス抜きにより、積層体の端部を容易に切断可能である。積層体の端部を切断する際は、切断面を面一としてよい。 The method for cutting the end of the laminate is not particularly limited, and may be the same as the conventional method for manufacturing an all-solid-state battery. For example, it is possible to easily cut the ends of the laminate by machining or punching. When cutting the end of the laminate, the cut surface may be flush.

切断面に対してレーザ加工を施す際のレーザ光の照射条件は特に限定されるものではない。電池材料に応じて条件を適宜調整すればよい。レーザ光の照射条件を適宜調整することで、切断面において、固体電解質層30が、正極活物質層10及び負極活物質層20よりも、積層方向と交差する方向に50μm以上1000μm以下だけ突出した微細な凹凸構造を形成することができる。 There are no particular restrictions on the irradiation conditions of the laser beam when performing laser processing on the cut surface. The conditions may be appropriately adjusted depending on the battery material. By appropriately adjusting the irradiation conditions of the laser beam, the solid electrolyte layer 30 protruded from the positive electrode active material layer 10 and the negative electrode active material layer 20 by 50 μm or more and 1000 μm or less in the direction intersecting the stacking direction on the cut surface. A fine uneven structure can be formed.

固体電解質層30よりも正極活物質層10及び負極活物質層20をレーザ加工によって凹ませる場合、レーザ光による除去性を向上させる観点から、正極活物質層10及び負極活物質層20に入熱量が大きい材料を含ませてもよい。例えば、正極活物質層10や負極活物質層20に入熱量が大きい材料として炭素材料を含ませることがあり得る。炭素材料の具体例としてはグラファイトが挙げられる。 When the positive electrode active material layer 10 and the negative electrode active material layer 20 are recessed from the solid electrolyte layer 30 by laser processing, the amount of heat input to the positive electrode active material layer 10 and the negative electrode active material layer 20 is may contain materials with high . For example, the positive electrode active material layer 10 and the negative electrode active material layer 20 may contain a carbon material as a material having a large amount of heat input. A specific example of the carbon material is graphite.

一方、固体電解質層30はレーザ光による除去量が少ないほうがよい。この点、固体電解質層30は、正極活物質層10及び負極活物質層20と比較して、入熱量が小さい材料によって構成してもよい。 On the other hand, the amount of solid electrolyte layer 30 removed by laser light should be small. In this regard, the solid electrolyte layer 30 may be made of a material having a smaller amount of heat input than the positive electrode active material layer 10 and the negative electrode active material layer 20 .

尚、図3に示すように、活物質層10、20に対して集電体層40、50を突出させる場合も、上記のレーザ加工を採用可能である。すなわち、集電体層の少なくとも一方面に活物質層が積層された積層体を得て、当該積層体の端部を積層方向に沿って切断したうえで、切断面に対してレーザ加工を施すことで、当該切断面において活物質層を集電体層よりも凹ませることができる。 It should be noted that, as shown in FIG. 3, the above-described laser processing can also be employed when the current collector layers 40 and 50 protrude with respect to the active material layers 10 and 20 . That is, a laminate in which an active material layer is laminated on at least one surface of a current collector layer is obtained, the end of the laminate is cut along the lamination direction, and the cut surface is subjected to laser processing. Thus, the active material layer can be recessed more than the current collector layer at the cut surface.

本開示の全固体電池は、携帯機器用等の小型電源から車搭載用等の大型電源まで、広く利用できる。特に、車搭載用等の大型電源として好適である。 The all-solid-state battery of the present disclosure can be widely used from small power sources for mobile devices to large power sources for vehicles. In particular, it is suitable as a large-sized power source for mounting on a vehicle.

10 正極活物質層
20 負極活物質層
30 固体電解質層
40 正極集電体層
50 負極集電体層
100 全固体電池
REFERENCE SIGNS LIST 10 positive electrode active material layer 20 negative electrode active material layer 30 solid electrolyte layer 40 positive electrode current collector layer 50 negative electrode current collector layer 100 all-solid battery

Claims (1)

固体電解質層の一方面側に正極活物質層、他方面側に負極活物質層が積層されており、
前記固体電解質層が、前記正極活物質層及び前記負極活物質層よりも、積層方向と交差する方向に50μm以上1000μm以下突出している、
全固体電池の製造方法であって、
前記固体電解質層の一方面側に前記正極活物質層を積層し、他方面側に前記負極活物質層を積層して、積層体を得る工程と、
前記積層体の端部を積層方向に沿って切断する工程と、
切断面に対してレーザ加工を施し、前記切断面において前記正極活物質層及び前記負極活物質層を前記固体電解質層よりも凹ませる工程と、を備える製造方法。
A positive electrode active material layer is laminated on one side of the solid electrolyte layer, and a negative electrode active material layer is laminated on the other side,
The solid electrolyte layer protrudes from the positive electrode active material layer and the negative electrode active material layer by 50 μm or more and 1000 μm or less in a direction intersecting the stacking direction.
A method for manufacturing an all-solid-state battery,
a step of stacking the positive electrode active material layer on one side of the solid electrolyte layer and stacking the negative electrode active material layer on the other side to obtain a laminate;
a step of cutting the end of the laminate along the lamination direction;
a step of subjecting a cut surface to laser processing to recess the positive electrode active material layer and the negative electrode active material layer from the solid electrolyte layer on the cut surface.
JP2019236563A 2019-12-26 2019-12-26 All-solid battery Active JP7279632B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019236563A JP7279632B2 (en) 2019-12-26 2019-12-26 All-solid battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019236563A JP7279632B2 (en) 2019-12-26 2019-12-26 All-solid battery

Publications (2)

Publication Number Publication Date
JP2021106101A JP2021106101A (en) 2021-07-26
JP7279632B2 true JP7279632B2 (en) 2023-05-23

Family

ID=76919498

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019236563A Active JP7279632B2 (en) 2019-12-26 2019-12-26 All-solid battery

Country Status (1)

Country Link
JP (1) JP7279632B2 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000505585A (en) 1996-02-22 2000-05-09 ヴァランス テクノロジー インコーポレーテッド Method and apparatus for producing an electrochemical cell
JP2009193728A (en) 2008-02-12 2009-08-27 Toyota Motor Corp All-solid battery and its manufacturing method
JP2015050153A (en) 2013-09-04 2015-03-16 トヨタ自動車株式会社 Laminate for all-solid state battery
JP2016213070A (en) 2015-05-08 2016-12-15 トヨタ自動車株式会社 Method for manufacturing battery laminate
JP2018129222A (en) 2017-02-09 2018-08-16 パナソニックIpマネジメント株式会社 All-solid battery and method for manufacturing the same
WO2019078001A1 (en) 2017-10-17 2019-04-25 日本電気硝子株式会社 Bipolar all-solid-state sodium ion secondary battery

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000505585A (en) 1996-02-22 2000-05-09 ヴァランス テクノロジー インコーポレーテッド Method and apparatus for producing an electrochemical cell
JP2009193728A (en) 2008-02-12 2009-08-27 Toyota Motor Corp All-solid battery and its manufacturing method
JP2015050153A (en) 2013-09-04 2015-03-16 トヨタ自動車株式会社 Laminate for all-solid state battery
JP2016213070A (en) 2015-05-08 2016-12-15 トヨタ自動車株式会社 Method for manufacturing battery laminate
JP2018129222A (en) 2017-02-09 2018-08-16 パナソニックIpマネジメント株式会社 All-solid battery and method for manufacturing the same
WO2019078001A1 (en) 2017-10-17 2019-04-25 日本電気硝子株式会社 Bipolar all-solid-state sodium ion secondary battery

Also Published As

Publication number Publication date
JP2021106101A (en) 2021-07-26

Similar Documents

Publication Publication Date Title
JP6319335B2 (en) Manufacturing method of all solid state battery
JP7070052B2 (en) All solid state battery
JP5212470B2 (en) Electrode body, all solid state battery element and all solid state battery
JP6930497B2 (en) Laminated battery
JP5413129B2 (en) Solid battery manufacturing method
KR101850180B1 (en) Secondary Battery Comprising Current Collector with Through Hole
JP2015050153A (en) Laminate for all-solid state battery
JP2012226862A (en) Monopolar solid state battery, laminate solid state battery, and mobile entity
CN107819103B (en) Electrode with increased active material content
JP2015018670A (en) Bipolar battery
JP2019192564A (en) All-solid battery
EP3297085A1 (en) Electrode assembly for a battery cell and battery cell
JP7077000B2 (en) How to make an electrode stack for a battery cell, and a battery cell
JP7279632B2 (en) All-solid battery
JP2020161293A (en) Lithium ion secondary battery
JP2017195076A (en) Bipolar type battery
JP2018060699A (en) Manufacturing method for laminated secondary battery
JP7163801B2 (en) All-solid-state laminated battery
KR102398572B1 (en) Secondary cylinderical battery having piezoelectric element and thermoelectric element
CN113224376A (en) Solid-state battery
JP2021099949A (en) All-solid battery
JP7215433B2 (en) battery
JP2019114400A (en) Power storage device
JP2019029183A (en) Separator-equipped secondary battery electrode, secondary battery, and their manufacturing methods
US20240154104A1 (en) Patterned silicon anode electrodes for all-solid-state battery cells

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220125

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20221026

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20221108

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20221227

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230411

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230424

R151 Written notification of patent or utility model registration

Ref document number: 7279632

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151