JP2015050153A - Laminate for all-solid state battery - Google Patents

Laminate for all-solid state battery Download PDF

Info

Publication number
JP2015050153A
JP2015050153A JP2013183128A JP2013183128A JP2015050153A JP 2015050153 A JP2015050153 A JP 2015050153A JP 2013183128 A JP2013183128 A JP 2013183128A JP 2013183128 A JP2013183128 A JP 2013183128A JP 2015050153 A JP2015050153 A JP 2015050153A
Authority
JP
Japan
Prior art keywords
active material
material layer
electrode active
laminate
solid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2013183128A
Other languages
Japanese (ja)
Inventor
有基 石垣
Yuki Ishigaki
有基 石垣
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2013183128A priority Critical patent/JP2015050153A/en
Publication of JP2015050153A publication Critical patent/JP2015050153A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Abstract

PROBLEM TO BE SOLVED: To provide a laminate for all-solid-state battery in which the possibility of short circuit of active material layers due to deformation of a laminate is reduced, when cutting the raw fabric of the laminate vertically.SOLUTION: A laminate for all-solid-state battery 10 includes a positive electrode active material layer 11, a solid electrolyte layer 12, and a negative active material layer 13 laminated in this order, and the end of laminate is chamfered at least partially. The chamfered shape may be an arbitrary shape, e.g., flat surface, curved surface or a combination thereof, capable of preventing deformation and separation of the positive electrode or negative active material layer, and reducing the probability of short circuit. From the viewpoint of manufacturing efficiency, the chamfered shape is preferably a flat surface.

Description

本発明は、正極活物質層、固体電解質層、及び負極活物質層を含む全固体電池用積層体に関する。   The present invention relates to an all-solid battery laminate including a positive electrode active material layer, a solid electrolyte layer, and a negative electrode active material layer.

近年、携帯電話、ノートパソコン、タブレット端末、及び電気自動車(EV)等の電源として、小型で高性能な電池の開発が求められている。現在、液体電解質を用いる従来の電池と並んで、固体電解質を用いる全固体電池、例えば全固体リチウムイオン電池が提案されている。   In recent years, there has been a demand for the development of small, high-performance batteries as power sources for mobile phones, notebook computers, tablet terminals, electric vehicles (EVs), and the like. Currently, along with conventional batteries that use liquid electrolytes, all-solid batteries that use solid electrolytes, such as all-solid lithium ion batteries, have been proposed.

このような全固体電池においては、製造工程における裁断等の加工による変形、充放電を繰り返すことによる変形、及び使用中の振動等によって、正極活物質層及び負極活物質層がくずれて互いに接触し、短絡する恐れがある。短絡は著しい電池性能の低下につながるため、正極活物質層と負極活物質層との間の絶縁の確保は、電池の高耐久性、及び高性能化において重要な課題となっている。   In such all-solid-state batteries, the positive electrode active material layer and the negative electrode active material layer are deformed and contact each other due to deformation due to processing such as cutting in the manufacturing process, deformation due to repeated charge and discharge, vibration during use, and the like. There is a risk of short circuit. Since a short circuit leads to significant battery performance degradation, securing insulation between the positive electrode active material layer and the negative electrode active material layer is an important issue in terms of high durability and high performance of the battery.

特許文献1には、正極活物質層及び負極活物質層の面方向の寸法が、固体電解質層の面方向の寸法より小さい全固体電池が図示されている。しかしながら、この図のように自立した固体電解質層を形成することは実質的に難しく、形成できたとしても固体電解質層が振動等により脱落する可能性がある。また、固体電解質層を自立させるためには、固体電解質層を厚膜化するか、又は骨材等で補強する必要があり、これは電池の性能を低める。   Patent Document 1 shows an all-solid battery in which the dimensions in the surface direction of the positive electrode active material layer and the negative electrode active material layer are smaller than the dimensions in the surface direction of the solid electrolyte layer. However, it is substantially difficult to form a self-supporting solid electrolyte layer as shown in this figure, and even if it can be formed, the solid electrolyte layer may fall off due to vibration or the like. In order to make the solid electrolyte layer self-supporting, it is necessary to thicken the solid electrolyte layer or to reinforce it with an aggregate or the like, which lowers the performance of the battery.

正極活物質層及び負極活物質層の面方向の寸法が、固体電解質層の面方向の寸法に等しい場合、放充電を繰り返すことによって正極活物質層及び負極活物質層が変形又は脱落し、互いに短絡する可能性がある。したがって、積層体の周囲に、樹脂又は固体電解質等の絶縁層を設けることが提案されているが、これは新たな工程を必要とし、製造コストがかかる。   When the dimension in the surface direction of the positive electrode active material layer and the negative electrode active material layer is equal to the dimension in the surface direction of the solid electrolyte layer, the positive electrode active material layer and the negative electrode active material layer are deformed or dropped by repeating discharging and discharging, and There is a possibility of short circuit. Accordingly, it has been proposed to provide an insulating layer such as a resin or a solid electrolyte around the laminate, but this requires a new process and requires a high manufacturing cost.

これに関して、特許文献2には、正極活物質層及び負極活物質層の少なくとも一方の側面を固体電解質で覆った積層体が開示されている。しかしながら、特許文献2の積層体では、活物質層の端部に固体電解質を形成する新たな工程が必要である。   In this regard, Patent Document 2 discloses a laminate in which at least one side surface of a positive electrode active material layer and a negative electrode active material layer is covered with a solid electrolyte. However, the laminate of Patent Document 2 requires a new process for forming a solid electrolyte at the end of the active material layer.

全固体電池用積層体の製造において、製造効率の観点から、正極活物質層、固体電解質層、負極活物質層をこの順に積層して積層体原反を得た後、この積層体原反を裁断することによって、複数の全固体電池用積層体を製造する場合がある。しかしながら、この場合、積層体に対して垂直に裁断すると、一方の活物質層が変形して他方の活物質層に接触し、短絡する可能性がある。   In the production of a laminate for an all-solid-state battery, from the viewpoint of production efficiency, a positive electrode active material layer, a solid electrolyte layer, and a negative electrode active material layer are laminated in this order to obtain a laminate raw material. A plurality of all-solid battery stacks may be produced by cutting. However, in this case, when the cutting is performed perpendicularly to the stacked body, one active material layer may be deformed to contact the other active material layer and be short-circuited.

特開2013−37992号公報JP 2013-37992 A 特開2011−96550号公報JP 2011-96550 A

本発明は、上記の問題に鑑みて成し遂げられたものであり、正極活物質層と負極活物質層とが短絡する可能性を低減した全固体電池用積層体を提供することを目的とする。   The present invention has been accomplished in view of the above problems, and an object of the present invention is to provide an all-solid battery laminate in which the possibility of a short circuit between the positive electrode active material layer and the negative electrode active material layer is reduced.

上記の課題を解決するために、本発明は、正極活物質層、固体電解質層、及び負極活物質層がこの順に積層された全固体電池用積層体であって、この積層体の端部の少なくとも一部が面取りされた形状を有する、全固体電池用積層体を提供する。   In order to solve the above problems, the present invention provides a laminate for an all-solid battery in which a positive electrode active material layer, a solid electrolyte layer, and a negative electrode active material layer are laminated in this order. Provided is an all-solid battery laminate having a shape that is at least partially chamfered.

本発明によれば、正極活物質層と負極活物質層とが短絡する危険性を低減した全固体電池用積層体、及びこれを用いた全固体電池が提供される。また、本発明によれば、改善された製造効率、及び低い製造コストで、全固体電池用積層体、及びこれを用いた全固体電池を製造することができる。   ADVANTAGE OF THE INVENTION According to this invention, the laminated body for all-solid-state batteries which reduced the danger that a positive electrode active material layer and a negative electrode active material layer short-circuit, and an all-solid-state battery using the same are provided. Moreover, according to this invention, the laminated body for all-solid-state batteries and the all-solid-state battery using the same can be manufactured with the improved manufacturing efficiency and low manufacturing cost.

図1は、本発明による積層体の第1の態様の断面の概略図である。FIG. 1 is a schematic cross-sectional view of a first embodiment of a laminate according to the present invention. 図2は、本発明による積層体の第2の態様の断面の概略図である。FIG. 2 is a schematic cross-sectional view of a second embodiment of a laminate according to the present invention. 図3は、本発明による積層体の第3の態様の断面の概略図である。FIG. 3 is a schematic cross-sectional view of a third embodiment of a laminate according to the present invention. 図4は、本発明による積層体の第4の態様の断面の概略図である。FIG. 4 is a schematic cross-sectional view of a fourth embodiment of a laminate according to the present invention. 図5は、正極活物質層及び負極活物質層の面方向の寸法が固体電解質層の面方向の寸法に等しい、従来の積層体の断面の概略図である。FIG. 5 is a schematic cross-sectional view of a conventional laminate in which the dimensions in the surface direction of the positive electrode active material layer and the negative electrode active material layer are equal to the dimensions in the surface direction of the solid electrolyte layer. 図6は、正極活物質層及び負極活物質層の面方向の寸法が固体電解質層の面方向の寸法より小さい、従来の積層体の断面の概略図である。FIG. 6 is a schematic cross-sectional view of a conventional laminate in which the dimension in the surface direction of the positive electrode active material layer and the negative electrode active material layer is smaller than the dimension in the surface direction of the solid electrolyte layer.

[1.全固体電池用積層体]
本発明の全固体電池用積層体は、正極活物質層、固体電解質層、及び負極活物質層がこの順に積層された全固体電池用積層体であって、この積層体の端部の少なくとも一部が面取りされた形状を有する。本発明における「全固体電池」とは、正極活物質層、電解質層、負極活物質層等の構成要素がすべて固体である電池のことをいう。このような全固体電池の典型例として、例えば全固体リチウムイオン電池が挙げられるが、これに限定されるものではない。
[1. All-solid battery laminate]
An all-solid battery laminate of the present invention is an all-solid battery laminate in which a positive electrode active material layer, a solid electrolyte layer, and a negative electrode active material layer are laminated in this order, and at least one of the end portions of the laminate. The part has a chamfered shape. The “all solid battery” in the present invention refers to a battery in which the constituent elements such as the positive electrode active material layer, the electrolyte layer, and the negative electrode active material layer are all solid. A typical example of such an all-solid battery is, for example, an all-solid lithium ion battery, but is not limited thereto.

[2.面取]
本発明による全固体電池用積層体は、端部の少なくとも一部が面取りされた形状を有する。面取の形状は、正極又は負極活物質層の変形及び脱落を防止し、短絡の確率を低減できる任意の形状とすることができ、例えば平面、曲面、及びこれらの組合せとすることができる。製造効率の観点から、面取の形状は平面であることが好ましい。
[2. Chamfer]
The laminate for an all solid state battery according to the present invention has a shape in which at least a part of the end is chamfered. The shape of the chamfering can be any shape that can prevent deformation and dropout of the positive electrode or the negative electrode active material layer and reduce the probability of short circuit, and can be, for example, a flat surface, a curved surface, or a combination thereof. From the viewpoint of manufacturing efficiency, the chamfered shape is preferably a flat surface.

平面の面取における面取りした面と積層体の平面方向の面とがなす角度θ(図1参照)は、任意の角度とすることができる。この角度は、例えば30°以上、35°以上、40°以上であってよい。また、この角度θは、80°以下、75°以下、70°以下、又は65°以下であってよい。また、この角度θは、約45°であり、したがって面取は、一般に「C面」として言及される面であってもよい。角度θは、正極活物質層と負極活物質層とで異なっていてもよく、又は部分によって異なっていてもよい。   An angle θ (see FIG. 1) formed by the chamfered surface and the planar surface of the laminate in the planar chamfering can be set to an arbitrary angle. This angle may be, for example, 30 ° or more, 35 ° or more, or 40 ° or more. Further, the angle θ may be 80 ° or less, 75 ° or less, 70 ° or less, or 65 ° or less. Also, this angle θ is about 45 °, so the chamfer may be a surface commonly referred to as a “C-plane”. The angle θ may be different between the positive electrode active material layer and the negative electrode active material layer, or may be different depending on the portion.

平面の面取における面取の厚み方向の長さL(図1参照)は、各活物質層層の厚みの1/3倍以上、1/2倍以上、又は1倍以上とすることができる。この長さLの上限値は、他方の電極側の長さLによって定まり、例えば各活物質層層の厚みの3/2倍以下、1倍以下、又は1/2倍以下とすることができる。この長さLが、1倍を超えることは、面取が活物質層を超えて、固体電解質層に達していることを意味している。この長さLは、正極活物質層と負極活物質層とで異なっていてもよく、又は部分によって異なっていてもよい。   The length L (refer to FIG. 1) of the chamfering thickness direction in the planar chamfering can be 1/3 times, 1/2 times, or 1 times or more the thickness of each active material layer. . The upper limit value of the length L is determined by the length L on the other electrode side, and can be, for example, 3/2 times or less, 1 time or less, or 1/2 times or less the thickness of each active material layer. . That this length L exceeds 1 time means that the chamfering exceeds the active material layer and reaches the solid electrolyte layer. The length L may be different between the positive electrode active material layer and the negative electrode active material layer, or may be different depending on the portion.

曲面の面取は、面取の厚み方向の長さLの範囲内において積層体の端部が取り除かれた形状であれば特に限定されるものではない。曲面の面取は、任意の曲面の面取であってよく、特に円弧状の面取、すなわち一般に「R面」として言及される面取であってもよい。   The chamfering of the curved surface is not particularly limited as long as the end of the laminated body is removed within the range of the length L in the thickness direction of the chamfering. The curved surface chamfer may be an arbitrary curved surface chamfer, in particular an arc-shaped chamfer, that is, a chamfer generally referred to as an “R surface”.

面取は、任意の手順で行うことができ、例えば正極活物質層及び負極活物質層を製造した後、これらの層を固体電解質層に積層する前に、面取りを行うことができる。また、正極活物質層、固体電解質層及び負極活物質層の積層体原反を得た後で、この積層体を複数の積層体に裁断して分割する工程中に面取りを行ってもよい。また、個々の固体電解質容積層体を得た後で、面取りを行ってもよい。   The chamfering can be performed by an arbitrary procedure. For example, after the positive electrode active material layer and the negative electrode active material layer are manufactured, the chamfering can be performed before the layers are laminated on the solid electrolyte layer. Further, after obtaining the laminate raw material of the positive electrode active material layer, the solid electrolyte layer, and the negative electrode active material layer, chamfering may be performed during the process of cutting and dividing the laminate into a plurality of laminates. Further, chamfering may be performed after obtaining each solid electrolyte volume layer body.

面取りの方法は、最終的に積層体が上記の形状を有するような方法であれば特に限定されないが、例えば刃による切断、研磨、レーザー、又は超音波による加工等が挙げられる。   The chamfering method is not particularly limited as long as the laminate finally has the above-described shape, and examples thereof include cutting with a blade, polishing, laser, or processing with ultrasonic waves.

以下、本発明による全固体電池用積層体の面取の形状の態様を詳述する。   Hereinafter, the aspect of the chamfered shape of the laminate for an all solid state battery according to the present invention will be described in detail.

図1は、正極活物質層11、固体電解質層12、及び負極活物質層13を有する本発明の第1の態様の全固体電池用積層体10を、積層方向に切断した断面図を模式的に表した図である。この積層体では、平面の面取を採用しており、面取の角度θが45°であり、面取の厚み方向の長さLが各活物質層の厚さに等しい。   FIG. 1 is a schematic cross-sectional view of a laminate 10 for an all-solid battery according to the first embodiment of the present invention having a positive electrode active material layer 11, a solid electrolyte layer 12, and a negative electrode active material layer 13, cut in the stacking direction. FIG. In this laminate, a flat chamfer is adopted, the chamfering angle θ is 45 °, and the length L in the thickness direction of the chamfering is equal to the thickness of each active material layer.

図2は、正極活物質層21、固体電解質層22、及び負極活物質層23を有する本発明の第2の態様の全固体電池用積層体20を、積層方向に切断した断面図を模式的に表した図である。この積層体では、平面の面取を採用しており、面取の角度θが45°であり、面取の厚み方向の長さLが各活物質層の厚さの約1/3倍である。   FIG. 2 is a schematic cross-sectional view of the all-solid battery laminate 20 of the second aspect of the present invention having the positive electrode active material layer 21, the solid electrolyte layer 22, and the negative electrode active material layer 23, cut in the stacking direction. FIG. In this laminate, a flat chamfer is adopted, the chamfering angle θ is 45 °, and the length L in the thickness direction of the chamfering is about 1/3 times the thickness of each active material layer. is there.

図3は、正極活物質層31、固体電解質層32、及び負極活物質層33を有する本発明の第3の態様の全固体電池用積層体30を、積層方向に切断した断面図を模式的に表した図である。この積層体では、平面の面取を採用しており、面取の角度θが60°であり、面取の厚み方向の長さLが各活物質層の厚さの約3/2倍である。この積層体では、各活物質層の面取の厚み方向の長さLの合計が、積層体の全厚に等しくなっている。   FIG. 3 is a schematic cross-sectional view of the all-solid-state battery laminate 30 of the third aspect of the present invention having the positive electrode active material layer 31, the solid electrolyte layer 32, and the negative electrode active material layer 33, cut in the stacking direction. FIG. In this laminate, a flat chamfer is adopted, the chamfer angle θ is 60 °, and the length L in the thickness direction of the chamfer is about 3/2 times the thickness of each active material layer. is there. In this laminated body, the sum total of the length L in the thickness direction of the chamfering of each active material layer is equal to the total thickness of the laminated body.

図4は、正極活物質層41、固体電解質層42、及び負極活物質層43を有する本発明の第4の態様の全固体電池用積層体40を、積層方向に切断した断面図を模式的に表した図である。この積層体では、円弧状である曲面の面取を採用しており、面取の厚み方向の長さLが各活物質層の厚さに等しい。   FIG. 4 is a schematic cross-sectional view of the all-solid-state battery laminate 40 of the fourth aspect of the present invention having the positive electrode active material layer 41, the solid electrolyte layer 42, and the negative electrode active material layer 43, cut in the stacking direction. FIG. This laminate employs a curved chamfer having an arc shape, and the length L of the chamfer in the thickness direction is equal to the thickness of each active material layer.

上記の本発明の第1〜第4の態様の全固体電池用積層体は、下記の従来の全固体電池用積層体と比較して、裁断工程において短絡する確率が低く、振動及び充放電を繰り返しても短絡する確率が低い。   The all-solid battery laminate according to the first to fourth aspects of the present invention has a low probability of short-circuiting in the cutting step, compared with the following conventional all-solid battery laminate, and vibration and charge / discharge. The probability of short-circuiting is low even if repeated.

図5(a)は、従来の全固体電池用積層体50を、積層方向に切断した断面を模式的に表した図である。この積層体では、正極活物質層51、固体電解質層52、及び負極活物質層53の面方向の寸法が等しく、積層体の端部に面取を有しない形状である。この従来の積層体は、上記の本発明の積層体と比較して、振動及び充放電を繰り返すことによって電極が変形及び脱落して、短絡する確率が高い(図5(b)参照)。   Fig.5 (a) is the figure which represented typically the cross section which cut | disconnected the conventional laminated body 50 for all-solid-state batteries in the lamination direction. In this laminated body, the positive electrode active material layer 51, the solid electrolyte layer 52, and the negative electrode active material layer 53 have the same size in the surface direction, and the end of the laminated body has no chamfer. Compared with the above-described laminate of the present invention, this conventional laminate has a high probability that the electrode is deformed and dropped due to repeated vibration and charge / discharge (see FIG. 5B).

図6(a)は、従来の全固体電池用積層体を、積層方向に切断した断面を模式的に表した図である。この積層体では、正極活物質層61及び負極活物質層63の面方向の寸法が固体電解質層62の面方向の寸法より小さく、それによって固体電解質層の端部が各電極の端部より突き出た構造である。この積層体は、例1〜4と比較して、振動等によって端部の固体電解質が脱落する確率が高く(図6(b))、また、固体電解質層を自立性にする必要があるので生産効率が悪い。   Fig.6 (a) is the figure which represented typically the cross section which cut | disconnected the conventional laminated body for all-solid-state batteries in the lamination direction. In this laminate, the dimension in the surface direction of the positive electrode active material layer 61 and the negative electrode active material layer 63 is smaller than the dimension in the surface direction of the solid electrolyte layer 62, whereby the end portions of the solid electrolyte layer protrude from the end portions of the electrodes. Structure. Compared with Examples 1 to 4, this laminated body has a high probability that the solid electrolyte at the end will fall off due to vibration or the like (FIG. 6B), and the solid electrolyte layer needs to be self-supporting. Production efficiency is poor.

[3.全固体電池の構成要素]
[3−1.正極活物質層]
本発明の全固体電池用積層体の正極活物質層は、正極活物質を含み、好ましくはこれに加えて固体電解質、バインダー、及び導電助剤を含む。
[3. All-solid-state battery components]
[3-1. Positive electrode active material layer]
The positive electrode active material layer of the all-solid-state battery laminate of the present invention contains a positive electrode active material, and preferably contains a solid electrolyte, a binder, and a conductive additive in addition to this.

正極活物質としては、本発明の全固体電池用積層体を用いた電池において、リチウム、ナトリウム、カルシウム等のイオンを、放電の際に吸蔵し、また随意に充電の際には放出させることができる任意の物質とすることができる。   As a positive electrode active material, in a battery using the all-solid-state battery laminate of the present invention, ions such as lithium, sodium and calcium can be occluded during discharge and optionally released during charge. It can be any substance that can.

本発明の全固体電池用積層体が、全固体リチウムイオン電池用積層体である場合、正極活物質としては、例えばLiCoO、LiNi1/3Mn1/3Co1/3、LiNiPO、LiMnPO、LiNiO、LiMn、LiCoMnO、LiNiMn、LiFe(PO、及びLi(PO等を挙げることができる。 When the all-solid-state battery laminate of the present invention is an all-solid-state lithium ion battery laminate, examples of the positive electrode active material include LiCoO 2 , LiNi 1/3 Mn 1/3 Co 1/3 O 2 , and LiNiPO 4. , LiMnPO 4 , LiNiO 2 , LiMn 2 O 4 , LiCoMnO 4 , Li 2 NiMn 3 O 8 , Li 3 Fe 2 (PO 4 ) 3 , and Li 3 V 2 (PO 4 ) 3 .

全固体電池の固体電解質としては、リチウム、ナトリウム、カルシウム等のイオンに対する伝導性を有し、常温(15℃〜25℃)において固体形状であれば特に限定されない。このような固体電解質としては、例えば酸化物固体電解質、硫化物固体電解質等を用いることができる。   The solid electrolyte of the all solid state battery is not particularly limited as long as it has conductivity with respect to ions such as lithium, sodium and calcium and is in a solid form at room temperature (15 ° C. to 25 ° C.). As such a solid electrolyte, for example, an oxide solid electrolyte, a sulfide solid electrolyte, or the like can be used.

本発明の全固体電池用積層体が、全固体リチウムイオン電池用積層体である場合、酸化物固体電解質としては、例えばLiPON(リン酸リチウムオキシナイトライド)、Li1.3Al0.3Ti0.7(PO、La0.51Li0.34TiO0.74、LiPO、LiSiO、LiSiO、Li0.5La0.5TiO、Li1.5Al0.5Ge1.5(PO等を挙げることができる。 When the all-solid-state battery laminate of the present invention is an all-solid-state lithium ion battery laminate, examples of the oxide solid electrolyte include LiPON (lithium phosphate oxynitride) and Li 1.3 Al 0.3 Ti. 0.7 (PO 4 ) 3 , La 0.51 Li 0.34 TiO 0.74 , Li 3 PO 4 , Li 2 SiO 2 , Li 2 SiO 4 , Li 0.5 La 0.5 TiO 3 , Li 1 .5 Al 0.5 Ge 1.5 (PO 4 ) 3 or the like.

また、本発明の全固体電池用積層体が、全固体リチウムイオン電池用積層体である場合、硫化物固体電解質としては、例えばLiS−P、LiS−P、LiS−P−P、LiS−SiS、LiI−LiS−P、LiI−LiS−SiS−P、LiS−SiS−LiSiO、LiS−SiS−LiPO、LiPS−LiGeS、Li3.40.6Si0.4、Li3.250.25Ge0.76、Li4−xGe1−x、Li11等を挙げることができる。 Moreover, all-solid-state cell laminate of the present invention, when a laminate for all-solid-state lithium-ion batteries, the sulfide solid electrolyte, for example, Li 2 S-P 2 S 5 , Li 2 S-P 2 S 3 , Li 2 S-P 2 S 3 -P 2 S 5, Li 2 S-SiS 2, LiI-Li 2 S-P 2 S 5, LiI-Li 2 S-SiS 2 -P 2 S 5, Li 2 S -SiS 2 -Li 4 SiO 4, Li 2 S-SiS 2 -Li 3 PO 4, Li 3 PS 4 -Li 4 GeS 4, Li 3.4 P 0.6 Si 0.4 S 4, Li 3.25 P 0.25 Ge 0.76 S 4, Li 4-x Ge 1-x P x S 4, Li 7 P 3 S 11 and the like.

バインダーとしては、活物質、及び固体電解質等の構成要素を固定できれば特に限定されないが、例えばポリビニリデンフルオライド(PVdF)、ポリテトラフルオロエチレン(PTFE)、ブタジエンゴム(BR)、スチレンブタジエンゴム(SBR)等のポリマーを挙げることができる。   The binder is not particularly limited as long as components such as an active material and a solid electrolyte can be fixed. For example, polyvinylidene fluoride (PVdF), polytetrafluoroethylene (PTFE), butadiene rubber (BR), and styrene butadiene rubber (SBR). ) And the like.

導電助剤としては、正極活物質層の導電性を向上させることができれば特に限定されないが、カーボンブラック(CB)、アセチレンブラック(AB)、ケッチェンブラック(KB)、カーボンナノチューブ(CNT)、又はカーボンナノファイバー(CNF)等の炭素材料を挙げることができる。   The conductive auxiliary agent is not particularly limited as long as the conductivity of the positive electrode active material layer can be improved, but carbon black (CB), acetylene black (AB), ketjen black (KB), carbon nanotube (CNT), or Examples thereof include carbon materials such as carbon nanofiber (CNF).

正極活物質層を製造する方法としては、まず上記の正極活物質、固体電解質、バインダー、導電助剤等の材料を分散媒中に混合及び分散させてスラリーを作り、次いで、得られたスラリーを集電体等の基材上に広げて乾燥させる方法が挙げられる。   As a method for producing a positive electrode active material layer, first, a slurry is prepared by mixing and dispersing materials such as the positive electrode active material, solid electrolyte, binder, and conductive additive in a dispersion medium. A method of spreading on a base material such as a current collector and drying is exemplified.

[3−2.固体電解質層]
全固体電池の固体電解質層は、固体電解質を含み、好ましくはこれに加えてバインダーを含む。固体電解質、及びバインダーとしては、正極活物質層の説明において挙げたものを使用することができる。
[3-2. Solid electrolyte layer]
The solid electrolyte layer of the all-solid-state battery includes a solid electrolyte, and preferably includes a binder in addition to the solid electrolyte. As the solid electrolyte and the binder, those mentioned in the description of the positive electrode active material layer can be used.

固体電解質層を製造する方法としては、正極活物質層の場合と同様に、まず上記の固体電解質、及びバインダー等の材料を分散媒中に混合及び分散させてスラリーを作り、次いで、得られたスラリーを集電体等の基材上に広げて乾燥させる方法が挙げられる。   As a method for producing a solid electrolyte layer, as in the case of the positive electrode active material layer, first, the above solid electrolyte and materials such as a binder were mixed and dispersed in a dispersion medium to form a slurry, and then obtained. There is a method in which the slurry is spread on a base material such as a current collector and dried.

[3−3.負極活物質層]
全固体電池の負極活物質層は、負極活物質を含み、好ましくはこれに加えて固体電解質、バインダー、及び導電助剤を含む。
[3-3. Negative electrode active material layer]
The negative electrode active material layer of the all-solid battery includes a negative electrode active material, and preferably includes a solid electrolyte, a binder, and a conductive additive in addition to the negative electrode active material.

負極活物質としては、本発明の全固体電池用積層体を用いた電池において、リチウム、ナトリウム、カルシウム等のイオンを、放電の際に放出させ、また随意に充電の際には吸蔵させることができる任意の物質とすることができる。   As a negative electrode active material, in a battery using the all-solid-state battery laminate of the present invention, ions such as lithium, sodium, and calcium may be released during discharge, and optionally occluded during charge. It can be any substance that can.

負極活性物質としては、例えば、金属酸化物、金属硫化物、金属窒化物、及びグラファイト等の炭素材料等を挙げることができる。また、負極活物質は、粉末状であってもよく、薄膜状であってもよい。負極活性物質としては、リチウム、ナトリウム、カルシウム等の合金、又はこれらの合金を用いることもできる。   Examples of the negative electrode active substance include metal oxides, metal sulfides, metal nitrides, and carbon materials such as graphite. The negative electrode active material may be in the form of a powder or a thin film. As the negative electrode active material, alloys of lithium, sodium, calcium, etc., or alloys thereof can also be used.

負極活物質層に用いる固体電解質、バインダー、及び導電助剤としては、正極活物質層の説明において挙げたものを使用することができる。   As the solid electrolyte, binder, and conductive additive used for the negative electrode active material layer, those mentioned in the description of the positive electrode active material layer can be used.

負極活物質層を製造する方法としては、正極活物質層の場合と同様に、まず上記の負極活性物質、固体電解質、バインダー、及び導電助剤等の材料を、分散媒中に混合及び分散させてスラリーを作り、次いで、得られたスラリーを集電体等の基材上に広げて乾燥させる方法が挙げられる。   As a method for producing the negative electrode active material layer, as in the case of the positive electrode active material layer, first, the materials such as the negative electrode active material, the solid electrolyte, the binder, and the conductive auxiliary agent are mixed and dispersed in a dispersion medium. Then, a slurry is made, and then the obtained slurry is spread on a substrate such as a current collector and dried.

[3−4.その他の構成]
正極活物質層及び負極活物質層は、集電体を有していてもよい。集電体は、上記の正極活物質層及び負極活物質層の集電を行う機能を有する。集電体の材料としては、例えばアルミニウム、SUS、ニッケル、鉄、及びチタン等の金属又は合金を挙げることができる。また、正極集電体の形状は、例えば、箔状、板状、メッシュ状、及び多孔質体等を挙げることができる。
[3-4. Other configurations]
The positive electrode active material layer and the negative electrode active material layer may have a current collector. The current collector has a function of collecting the positive electrode active material layer and the negative electrode active material layer. Examples of the material for the current collector include metals or alloys such as aluminum, SUS, nickel, iron, and titanium. Examples of the shape of the positive electrode current collector include a foil shape, a plate shape, a mesh shape, and a porous body.

また、本発明による積層体は、上記の正極活物質層、固体電解質層、及び負極活物質層以外にも、全固体電解質層の構成として使用できる任意の構成要素を含むことができる。   Moreover, the laminated body by this invention can contain the arbitrary components which can be used as a structure of an all-solid-state electrolyte layer other than said positive electrode active material layer, a solid electrolyte layer, and a negative electrode active material layer.

11、21、31、41、51、61 正極活物質層
12、22、32、42、52、62 固体電解質層
13、23、33、43、53、63 負極活物質層
10、20、30、40 本発明による全固体電池用積層体の例
50、60 従来の全固体電池用性層体の例
θ 面取りした面と積層体の面方向の面とがなす角度
L 面取の厚み方向の長さ
11, 21, 31, 41, 51, 61 Positive electrode active material layer 12, 22, 32, 42, 52, 62 Solid electrolyte layer 13, 23, 33, 43, 53, 63 Negative electrode active material layer 10, 20, 30, 40 Example of all-solid battery laminate according to the present invention 50, 60 Example of conventional all-solid battery layer θ The angle formed between the chamfered surface and the surface of the laminate L The length of the chamfer in the thickness direction The

Claims (1)

正極活物質層、固体電解質層、及び負極活物質層がこの順に積層された全固体電池用積層体であって、前記積層体の端部の少なくとも一部が面取りされた形状を有する、全固体電池用積層体。   An all-solid battery laminate in which a positive electrode active material layer, a solid electrolyte layer, and a negative electrode active material layer are laminated in this order, and has a shape in which at least a part of an end of the laminate is chamfered. Battery laminate.
JP2013183128A 2013-09-04 2013-09-04 Laminate for all-solid state battery Pending JP2015050153A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013183128A JP2015050153A (en) 2013-09-04 2013-09-04 Laminate for all-solid state battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013183128A JP2015050153A (en) 2013-09-04 2013-09-04 Laminate for all-solid state battery

Publications (1)

Publication Number Publication Date
JP2015050153A true JP2015050153A (en) 2015-03-16

Family

ID=52699983

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013183128A Pending JP2015050153A (en) 2013-09-04 2013-09-04 Laminate for all-solid state battery

Country Status (1)

Country Link
JP (1) JP2015050153A (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016213070A (en) * 2015-05-08 2016-12-15 トヨタ自動車株式会社 Method for manufacturing battery laminate
CN108432027A (en) * 2015-12-25 2018-08-21 株式会社丰田自动织机 The manufacturing method of electrical storage device and electrode unit
WO2018235575A1 (en) * 2017-06-20 2018-12-27 日本電気硝子株式会社 Sodium ion secondary battery
JP2019139921A (en) * 2018-02-08 2019-08-22 株式会社Soken Method for manufacturing all-solid battery
JPWO2018173939A1 (en) * 2017-03-22 2020-01-30 三菱瓦斯化学株式会社 Method for producing LGPS-based solid electrolyte
JPWO2021010231A1 (en) * 2019-07-18 2021-01-21
JP2021106101A (en) * 2019-12-26 2021-07-26 トヨタ自動車株式会社 All-solid battery
EP3734741A4 (en) * 2017-12-28 2021-12-08 Hitachi Zosen Corporation All-solid-state battery, method for manufacturing same, and processing device
US11557794B2 (en) 2018-12-27 2023-01-17 Panasonic Intellectual Property Management Co., Ltd. Solid-state battery and method of manufacture thereof
US11600852B2 (en) 2017-11-13 2023-03-07 Murata Manufacturing Co., Ltd. Multilayer all-solid-state battery
JP7433004B2 (en) 2019-08-08 2024-02-19 日産自動車株式会社 all solid state battery

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007080812A (en) * 2005-08-18 2007-03-29 Matsushita Electric Ind Co Ltd Full solid lithium secondary battery and method of manufacturing same
JP2008293793A (en) * 2007-05-24 2008-12-04 Sumitomo Electric Ind Ltd Solid thin film battery, and manufacturing method of solid thin film battery
JP2009544141A (en) * 2006-07-18 2009-12-10 シンベット・コーポレイション Method and apparatus for manufacturing, singulation and passivation of solid state microbatteries by photolithography
JP2013182842A (en) * 2012-03-05 2013-09-12 Hitachi Zosen Corp All-solid secondary battery and method for manufacturing the same

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007080812A (en) * 2005-08-18 2007-03-29 Matsushita Electric Ind Co Ltd Full solid lithium secondary battery and method of manufacturing same
JP2009544141A (en) * 2006-07-18 2009-12-10 シンベット・コーポレイション Method and apparatus for manufacturing, singulation and passivation of solid state microbatteries by photolithography
JP2008293793A (en) * 2007-05-24 2008-12-04 Sumitomo Electric Ind Ltd Solid thin film battery, and manufacturing method of solid thin film battery
JP2013182842A (en) * 2012-03-05 2013-09-12 Hitachi Zosen Corp All-solid secondary battery and method for manufacturing the same

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016213070A (en) * 2015-05-08 2016-12-15 トヨタ自動車株式会社 Method for manufacturing battery laminate
CN108432027B (en) * 2015-12-25 2021-02-02 株式会社丰田自动织机 Power storage device and method for manufacturing electrode unit
CN108432027A (en) * 2015-12-25 2018-08-21 株式会社丰田自动织机 The manufacturing method of electrical storage device and electrode unit
US10930973B2 (en) 2017-03-22 2021-02-23 Mitsubishi Gas Chemical Company, Inc. Production method for LGPS-based solid electrolyte
JPWO2018173939A1 (en) * 2017-03-22 2020-01-30 三菱瓦斯化学株式会社 Method for producing LGPS-based solid electrolyte
EP3605703A4 (en) * 2017-03-22 2020-03-25 Mitsubishi Gas Chemical Company, Inc. Production method for lgps-based solid electrolyte
JP6996553B2 (en) 2017-03-22 2022-02-04 三菱瓦斯化学株式会社 Method for manufacturing LGPS-based solid electrolyte
WO2018235575A1 (en) * 2017-06-20 2018-12-27 日本電気硝子株式会社 Sodium ion secondary battery
US11600852B2 (en) 2017-11-13 2023-03-07 Murata Manufacturing Co., Ltd. Multilayer all-solid-state battery
EP3734741A4 (en) * 2017-12-28 2021-12-08 Hitachi Zosen Corporation All-solid-state battery, method for manufacturing same, and processing device
JP2019139921A (en) * 2018-02-08 2019-08-22 株式会社Soken Method for manufacturing all-solid battery
US11557794B2 (en) 2018-12-27 2023-01-17 Panasonic Intellectual Property Management Co., Ltd. Solid-state battery and method of manufacture thereof
JPWO2021010231A1 (en) * 2019-07-18 2021-01-21
JP7433004B2 (en) 2019-08-08 2024-02-19 日産自動車株式会社 all solid state battery
JP2021106101A (en) * 2019-12-26 2021-07-26 トヨタ自動車株式会社 All-solid battery
JP7279632B2 (en) 2019-12-26 2023-05-23 トヨタ自動車株式会社 All-solid battery

Similar Documents

Publication Publication Date Title
JP2015050153A (en) Laminate for all-solid state battery
JP5930035B2 (en) All solid state battery and manufacturing method thereof
JP5765349B2 (en) All-solid battery and method for manufacturing the same
JP5413355B2 (en) All solid battery
JP5072110B2 (en) Positive electrode material used for lithium battery
JP5850154B2 (en) Manufacturing method of all solid state battery
KR20190017661A (en) Lithium solid battery
JP5413129B2 (en) Solid battery manufacturing method
JP2013120717A (en) All-solid-state battery
JP2015069795A (en) Positive electrode active material layer
JP2015005398A (en) Positive electrode for all-solid lithium ion battery
US20180294531A1 (en) Method of producing all-solid battery
JP2014137892A (en) Electrode, all-solid-state battery, and method for manufacturing them
JP6841249B2 (en) Manufacturing method of all-solid-state battery
JP2012226862A (en) Monopolar solid state battery, laminate solid state battery, and mobile entity
CN110416630B (en) All-solid-state battery
JP5999433B2 (en) Nonaqueous electrolyte secondary battery and manufacturing method thereof
JP2015032535A (en) Laminated electrode body having dense electrolyte layer on negative electrode layer side before lamination press
KR20160027364A (en) Electrode assembly for secondary battery
US20200343560A1 (en) Secondary battery electrode, method for manufacturing same, and secondary battery
JP6008188B2 (en) Non-aqueous electrolyte secondary battery
JP2015056311A (en) Method for manufacturing nonaqueous electrolyte secondary battery
JP2007242348A (en) Lithium-ion secondary battery
JP2011175905A (en) All-solid lithium ion secondary battery
JP2014102982A (en) All-solid-state battery and manufacturing method for the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20151214

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160830

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160831

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20170228