JP7273629B2 - power converter - Google Patents

power converter Download PDF

Info

Publication number
JP7273629B2
JP7273629B2 JP2019117085A JP2019117085A JP7273629B2 JP 7273629 B2 JP7273629 B2 JP 7273629B2 JP 2019117085 A JP2019117085 A JP 2019117085A JP 2019117085 A JP2019117085 A JP 2019117085A JP 7273629 B2 JP7273629 B2 JP 7273629B2
Authority
JP
Japan
Prior art keywords
circuit
short
gate
signal generation
gate circuits
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2019117085A
Other languages
Japanese (ja)
Other versions
JP2021005913A (en
Inventor
脩平 松本
照之 石月
淳二 森
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Toshiba Energy Systems and Solutions Corp
Original Assignee
Toshiba Corp
Toshiba Energy Systems and Solutions Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp, Toshiba Energy Systems and Solutions Corp filed Critical Toshiba Corp
Priority to JP2019117085A priority Critical patent/JP7273629B2/en
Priority to CN202010189788.0A priority patent/CN112134256B/en
Priority to CH000709/2020A priority patent/CH716358B1/en
Publication of JP2021005913A publication Critical patent/JP2021005913A/en
Application granted granted Critical
Publication of JP7273629B2 publication Critical patent/JP7273629B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02HEMERGENCY PROTECTIVE CIRCUIT ARRANGEMENTS
    • H02H7/00Emergency protective circuit arrangements specially adapted for specific types of electric machines or apparatus or for sectionalised protection of cable or line systems, and effecting automatic switching in the event of an undesired change from normal working conditions
    • H02H7/10Emergency protective circuit arrangements specially adapted for specific types of electric machines or apparatus or for sectionalised protection of cable or line systems, and effecting automatic switching in the event of an undesired change from normal working conditions for converters; for rectifiers
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02HEMERGENCY PROTECTIVE CIRCUIT ARRANGEMENTS
    • H02H7/00Emergency protective circuit arrangements specially adapted for specific types of electric machines or apparatus or for sectionalised protection of cable or line systems, and effecting automatic switching in the event of an undesired change from normal working conditions
    • H02H7/10Emergency protective circuit arrangements specially adapted for specific types of electric machines or apparatus or for sectionalised protection of cable or line systems, and effecting automatic switching in the event of an undesired change from normal working conditions for converters; for rectifiers
    • H02H7/12Emergency protective circuit arrangements specially adapted for specific types of electric machines or apparatus or for sectionalised protection of cable or line systems, and effecting automatic switching in the event of an undesired change from normal working conditions for converters; for rectifiers for static converters or rectifiers
    • H02H7/122Emergency protective circuit arrangements specially adapted for specific types of electric machines or apparatus or for sectionalised protection of cable or line systems, and effecting automatic switching in the event of an undesired change from normal working conditions for converters; for rectifiers for static converters or rectifiers for inverters, i.e. dc/ac converters
    • H02H7/1227Emergency protective circuit arrangements specially adapted for specific types of electric machines or apparatus or for sectionalised protection of cable or line systems, and effecting automatic switching in the event of an undesired change from normal working conditions for converters; for rectifiers for static converters or rectifiers for inverters, i.e. dc/ac converters responsive to abnormalities in the output circuit, e.g. short circuit
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02HEMERGENCY PROTECTIVE CIRCUIT ARRANGEMENTS
    • H02H7/00Emergency protective circuit arrangements specially adapted for specific types of electric machines or apparatus or for sectionalised protection of cable or line systems, and effecting automatic switching in the event of an undesired change from normal working conditions
    • H02H7/10Emergency protective circuit arrangements specially adapted for specific types of electric machines or apparatus or for sectionalised protection of cable or line systems, and effecting automatic switching in the event of an undesired change from normal working conditions for converters; for rectifiers
    • H02H7/12Emergency protective circuit arrangements specially adapted for specific types of electric machines or apparatus or for sectionalised protection of cable or line systems, and effecting automatic switching in the event of an undesired change from normal working conditions for converters; for rectifiers for static converters or rectifiers
    • H02H7/122Emergency protective circuit arrangements specially adapted for specific types of electric machines or apparatus or for sectionalised protection of cable or line systems, and effecting automatic switching in the event of an undesired change from normal working conditions for converters; for rectifiers for static converters or rectifiers for inverters, i.e. dc/ac converters
    • H02H7/1225Emergency protective circuit arrangements specially adapted for specific types of electric machines or apparatus or for sectionalised protection of cable or line systems, and effecting automatic switching in the event of an undesired change from normal working conditions for converters; for rectifiers for static converters or rectifiers for inverters, i.e. dc/ac converters responsive to internal faults, e.g. shoot-through
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R19/00Arrangements for measuring currents or voltages or for indicating presence or sign thereof
    • G01R19/165Indicating that current or voltage is either above or below a predetermined value or within or outside a predetermined range of values
    • G01R19/16566Circuits and arrangements for comparing voltage or current with one or several thresholds and for indicating the result not covered by subgroups G01R19/16504, G01R19/16528, G01R19/16533
    • G01R19/16571Circuits and arrangements for comparing voltage or current with one or several thresholds and for indicating the result not covered by subgroups G01R19/16504, G01R19/16528, G01R19/16533 comparing AC or DC current with one threshold, e.g. load current, over-current, surge current or fault current
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02HEMERGENCY PROTECTIVE CIRCUIT ARRANGEMENTS
    • H02H7/00Emergency protective circuit arrangements specially adapted for specific types of electric machines or apparatus or for sectionalised protection of cable or line systems, and effecting automatic switching in the event of an undesired change from normal working conditions
    • H02H7/10Emergency protective circuit arrangements specially adapted for specific types of electric machines or apparatus or for sectionalised protection of cable or line systems, and effecting automatic switching in the event of an undesired change from normal working conditions for converters; for rectifiers
    • H02H7/12Emergency protective circuit arrangements specially adapted for specific types of electric machines or apparatus or for sectionalised protection of cable or line systems, and effecting automatic switching in the event of an undesired change from normal working conditions for converters; for rectifiers for static converters or rectifiers
    • H02H7/122Emergency protective circuit arrangements specially adapted for specific types of electric machines or apparatus or for sectionalised protection of cable or line systems, and effecting automatic switching in the event of an undesired change from normal working conditions for converters; for rectifiers for static converters or rectifiers for inverters, i.e. dc/ac converters
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/08Circuits specially adapted for the generation of control voltages for semiconductor devices incorporated in static converters
    • H02M1/088Circuits specially adapted for the generation of control voltages for semiconductor devices incorporated in static converters for the simultaneous control of series or parallel connected semiconductor devices
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/32Means for protecting converters other than automatic disconnection
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K17/00Electronic switching or gating, i.e. not by contact-making and –breaking
    • H03K17/08Modifications for protecting switching circuit against overcurrent or overvoltage
    • H03K17/082Modifications for protecting switching circuit against overcurrent or overvoltage by feedback from the output to the control circuit
    • H03K17/0828Modifications for protecting switching circuit against overcurrent or overvoltage by feedback from the output to the control circuit in composite switches
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K2217/00Indexing scheme related to electronic switching or gating, i.e. not by contact-making or -breaking covered by H03K17/00
    • H03K2217/0027Measuring means of, e.g. currents through or voltages across the switch

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Power Conversion In General (AREA)
  • Inverter Devices (AREA)
  • Electronic Switches (AREA)

Description

本発明の実施形態は、電力変換装置に関する。 TECHNICAL FIELD Embodiments of the present invention relate to power converters.

近年、複数の半導体スイッチング素子が直列接続された直列回路により各アームを構成した高電圧の電力変換装置の使用が増えている。 2. Description of the Related Art In recent years, there has been an increase in the use of high-voltage power converters in which each arm is configured by a series circuit in which a plurality of semiconductor switching elements are connected in series.

特許第4901083号公報Japanese Patent No. 4901083

直列接続されたスイッチング素子の一部の故障により短絡電流が発生した場合、直列接続されたそれぞれのスイッチング素子が独立して短絡電流を検出し電流遮断を行うと、先に遮断したスイッチング素子が全電圧を背負うことになり、雪崩式に素子破壊を招く可能性がある。 If a short-circuit current occurs due to a failure in some of the switching elements connected in series, each switching element connected in series independently detects the short-circuit current and cuts off the current. The voltage will be carried on the back, and there is a possibility that the device will be destroyed in an avalanche fashion.

発明が解決しようとする課題は、直列接続されたスイッチング素子に短絡電流が流れた場合に、一部のスイッチング素子が全電圧を背負わないように短絡電流を遮断することができる電力変換装置を提供することにある。 The problem to be solved by the invention is to provide a power converter that can cut off the short-circuit current so that some of the switching elements do not carry the full voltage when a short-circuit current flows through the switching elements connected in series. to do.

実施形態による電力変換装置は、各アーム内にて直列接続される複数のスイッチング素子と、前記複数のスイッチング素子にそれぞれ対応して設けられる複数のゲート回路と、前記複数のゲート回路との通信が可能な遮断信号生成回路と、を具備し、前記複数のゲート回路の各々は、対応するスイッチング素子に短絡電流が流れた場合に当該短絡電流を検出して短絡信号を前記遮断信号生成回路に送るように構成され、かつ、前記遮断信号生成回路から送られる遮断信号を受けたときに前記対応するスイッチング素子に流れる短絡電流を遮断するように構成され、前記遮断信号生成回路は、前記複数のゲート回路から出力され得るそれぞれの短絡信号を受信可能に構成され、前記複数のゲート回路のいずれかのゲート回路からの短絡信号を受信した場合に前記複数のゲート回路のそれぞれに対して同時に遮断信号を送り、前記遮断信号生成回路は、前記複数のゲート回路のうちの1つの代表ゲート回路の基板に配置されており、前記遮断信号生成回路から、前記代表ゲート回路以外の複数のゲート回路を順次経由して、前記遮断信号生成回路に至る通信線をさらに備え、前記遮断信号生成回路と、前記代表ゲート回路以外の複数のゲート回路のそれぞれとは、前記通信線を通じて短絡信号もしくは遮断信号を伝送するA power conversion device according to an embodiment includes a plurality of switching elements connected in series in each arm, a plurality of gate circuits provided corresponding to the plurality of switching elements, and communication with the plurality of gate circuits. and a cut-off signal generation circuit, wherein each of the plurality of gate circuits detects a short-circuit current when a short-circuit current flows through a corresponding switching element and sends a short-circuit signal to the cut-off signal generation circuit. and is configured to cut off a short-circuit current flowing through the corresponding switching element when receiving a cut-off signal sent from the cut-off signal generation circuit, wherein the cut-off signal generation circuit is configured to cut the plurality of gates It is configured to be able to receive each short-circuit signal that can be output from the circuit, and when receiving the short-circuit signal from any one of the plurality of gate circuits, it simultaneously outputs a cutoff signal to each of the plurality of gate circuits. The cut-off signal generation circuit is arranged on a substrate of one representative gate circuit among the plurality of gate circuits, and the cut-off signal generation circuit sequentially connects the plurality of gate circuits other than the representative gate circuit. A communication line is further provided to the cutoff signal generation circuit via the cutoff signal generation circuit, and each of the plurality of gate circuits other than the representative gate circuit transmits a short-circuit signal or cutoff signal through the communication line. do .

本発明によれば、直列接続されたスイッチング素子に短絡電流が流れた場合に、一部のスイッチング素子が全電圧を背負わないように短絡電流を遮断することができる。 ADVANTAGE OF THE INVENTION According to this invention, when a short circuit current flows into the switching element connected in series, a short circuit current can be interrupted so that some switching elements may not carry the full voltage.

第1の実施形態に係る電力変換装置の一部の構成を示す図。The figure which shows the structure of one part of the power converter device which concerns on 1st Embodiment. 図1の構成の変形例を示す図。The figure which shows the modification of the structure of FIG. 短絡保護の動作の一例を示すタイムチャート。4 is a time chart showing an example of short-circuit protection operation; 第2の実施形態に係る電力変換装置の一部の構成を示す図。The figure which shows the structure of one part of the power converter device which concerns on 2nd Embodiment. 第3の実施形態に係る電力変換装置の一部の構成を示す図。The figure which shows the structure of one part of the power converter device which concerns on 3rd Embodiment. 第4の実施形態に係る電力変換装置の一部の構成を示す図。The figure which shows the structure of one part of the power converter device which concerns on 4th Embodiment. 第5の実施形態に係る電力変換装置の一部の構成を示す図。The figure which shows the structure of one part of the power converter device which concerns on 5th Embodiment.

以下、図面を参照して、実施の形態について説明する。 Embodiments will be described below with reference to the drawings.

(第1の実施形態)
最初に、図1乃至図3を参照して、第1の実施形態について説明する。
(First embodiment)
First, a first embodiment will be described with reference to FIGS. 1 to 3. FIG.

図1は、第1の実施形態に係る電力変換装置の一部の構成を示す図である。 FIG. 1 is a diagram showing a configuration of part of a power converter according to a first embodiment.

本実施形態に係る電力変換装置は、電力を直流から交流に変換する機器であり、アーム内にて直列接続される複数の半導体スイッチング素子1~4(以下、「スイッチング素子1~4」と称す)を備えるほか、これらスイッチング素子1~4にそれぞれ対応して設けられる複数のゲート回路11~14と、これらゲート回路11~14との通信が可能な1つの短絡信号集約・遮断信号生成回路41(以下、「遮断信号生成回路41」と称す)を搭載した短絡保護回路20とを備える。 The power conversion device according to the present embodiment is a device that converts electric power from direct current to alternating current, and includes a plurality of semiconductor switching elements 1 to 4 connected in series within an arm (hereinafter referred to as "switching elements 1 to 4"). ), a plurality of gate circuits 11 to 14 provided corresponding to these switching elements 1 to 4, respectively, and one short-circuit signal aggregation/cutoff signal generation circuit 41 capable of communicating with these gate circuits 11 to 14. (hereinafter referred to as a "shutdown signal generation circuit 41").

なお、図1では、スイッチング素子の数およびゲート回路の数がそれぞれ4つである場合を例示しているが、この例に限定されるものではない。例えばこの例よりもっと多い数のスイッチング素子およびゲート回路が設けられてもよい。 Although FIG. 1 exemplifies the case where the number of switching elements and the number of gate circuits are four, the number of switching elements is not limited to this example. For example, a greater number of switching elements and gate circuits than in this example may be provided.

スイッチング素子1~4の各々は、例えば高耐圧のIEGT(Injection Enhanced Gate Transistor)から成るものとする。但し、この例に限定されるものではない。 Each of the switching elements 1 to 4 is composed of, for example, a high withstand voltage IEGT (Injection Enhanced Gate Transistor). However, it is not limited to this example.

ゲート回路11~14は、それぞれ、対応するスイッチング素子に短絡電流が流れた場合に当該短絡電流を検出して、短絡電流が検出されたことを示す短絡電流検出信号(以下、「短絡信号」)を遮断信号生成回路41に送るように構成され、かつ、遮断信号生成回路41から短絡電流の遮断を指示する短絡電流遮断指令信号(以下、「遮断信号」)を受けたときに上記対応するスイッチング素子に流れる短絡電流を遮断する処理を行うように構成されている。 Each of the gate circuits 11 to 14 detects a short-circuit current when the short-circuit current flows through the corresponding switching element, and outputs a short-circuit current detection signal (hereinafter referred to as "short-circuit signal") indicating that the short-circuit current has been detected. to the cutoff signal generation circuit 41, and when receiving a short-circuit current cutoff command signal (hereinafter, “cutoff signal”) instructing cutoff of the short-circuit current from the cutoff signal generation circuit 41, the corresponding switching It is configured to perform processing for interrupting the short-circuit current flowing through the element.

遮断信号生成回路41は、ゲート回路11~14から出力されるそれぞれの短絡信号の集約およびゲート回路11~14への遮断信号の一斉出力を行う回路である。より具体的には、遮断信号生成回路41は、ゲート回路11~14から出力され得るそれぞれの短絡信号を受信可能に構成され、ゲート回路11~14のいずれかのゲート回路からの短絡信号を受信した場合にゲート回路11~14のそれぞれに対して同時に遮断信号を送るように構成されている。 The cut-off signal generation circuit 41 is a circuit that aggregates the respective short-circuit signals output from the gate circuits 11-14 and simultaneously outputs the cut-off signals to the gate circuits 11-14. More specifically, the cutoff signal generation circuit 41 is configured to be able to receive each of the short circuit signals that can be output from the gate circuits 11 to 14, and receives the short circuit signal from any one of the gate circuits 11 to 14. In this case, the gate circuits 11 to 14 are configured to simultaneously send cut-off signals.

ゲート回路11は、電圧検出回路31、短絡検出回路32、およびゲート信号発生回路33を含む。なお、図1では、ゲート回路12~14の詳細な構成の図示は省略されているが、ゲート回路12~14の各々も、ゲート回路11が備えている電圧検出回路31、短絡検出回路32、およびゲート信号発生回路33と同じものを含む。 Gate circuit 11 includes a voltage detection circuit 31 , a short circuit detection circuit 32 and a gate signal generation circuit 33 . Although the detailed configuration of the gate circuits 12 to 14 is omitted in FIG. and the same as the gate signal generation circuit 33 are included.

電圧検出回路31は、対応するスイッチング素子のコレクタ-エミッタ間電圧(Vce)を検出し、Vceの検出結果を示す電圧情報を出力する。 Voltage detection circuit 31 detects a collector-emitter voltage (Vce) of a corresponding switching element and outputs voltage information indicating the detection result of Vce.

短絡検出回路32は、電圧検出回路31から出力される電圧情報(Vceの情報)に基づき、対応するスイッチング素子に短絡電流が流れた場合に当該短絡電流を検出して短絡信号を遮断信号生成回路41に向けて出力する。素子故障による短絡発生時には、大電流が流れることで素子の特性により当該素子がオン状態にもかかわらずその素子の両端電圧が上昇するため、その電圧を監視することで短絡電流を検出することができる。 Based on the voltage information (Vce information) output from the voltage detection circuit 31, the short-circuit detection circuit 32 detects the short-circuit current when the short-circuit current flows through the corresponding switching element, and outputs a short-circuit signal to the cut-off signal generation circuit. Output to 41. When a short circuit occurs due to an element failure, due to the characteristics of the element, the voltage across the element rises despite the fact that the element is in the ON state due to the large current flowing. By monitoring the voltage, the short circuit current can be detected. can.

ゲート信号発生回路33は、上記対応するスイッチング素子のゲートを制御するためのゲート信号を発生し、遮断信号生成回路41から送られる遮断信号を受けたときには上記対応するスイッチング素子に流れる短絡電流を遮断するための信号操作を行う。 The gate signal generation circuit 33 generates a gate signal for controlling the gate of the corresponding switching element, and cuts off the short-circuit current flowing through the corresponding switching element when receiving the cutoff signal sent from the cutoff signal generation circuit 41. signal operation to

ゲート回路11の短絡検出回路32から出力される短絡信号は、通信線T1を通って遮断信号生成回路41に入力される。ゲート回路12の図示しない短絡検出回路32から出力される短絡信号は、通信線T2を通って遮断信号生成回路41に入力される。ゲート回路13の図示しない短絡検出回路32から出力される短絡信号は、通信線T3を通って遮断信号生成回路41に入力される。ゲート回路14の図示しない短絡検出回路32から出力される短絡信号は、通信線T4を通って遮断信号生成回路41に入力される。 A short-circuit signal output from the short-circuit detection circuit 32 of the gate circuit 11 is input to the cutoff signal generation circuit 41 through the communication line T1. A short-circuit signal output from the short-circuit detection circuit 32 (not shown) of the gate circuit 12 is input to the cut-off signal generation circuit 41 through the communication line T2. A short-circuit signal output from the short-circuit detection circuit 32 (not shown) of the gate circuit 13 is input to the cut-off signal generation circuit 41 through the communication line T3. A short-circuit signal output from the short-circuit detection circuit 32 (not shown) of the gate circuit 14 is input to the cut-off signal generation circuit 41 through the communication line T4.

遮断信号生成回路41を搭載する短絡保護回路20は、アーム毎に1つだけ設けられる。 Only one short-circuit protection circuit 20 including the cut-off signal generation circuit 41 is provided for each arm.

遮断信号生成回路41からゲート回路11に対して出力される遮断信号は、通信線S1を通ってゲート回路11のゲート信号発生回路33に入力される。遮断信号生成回路41からゲート回路12に対して出力される遮断信号は、通信線S2を通ってゲート回路12の図示しないゲート信号発生回路33に入力される。遮断信号生成回路41からゲート回路13に対して出力される遮断信号は、通信線S3を通ってゲート回路13の図示しないゲート信号発生回路33に入力される。遮断信号生成回路41からゲート回路14に対して出力される遮断信号は、通信線S4を通ってゲート回路14の図示しないゲート信号発生回路33に入力される。 The cutoff signal output from the cutoff signal generation circuit 41 to the gate circuit 11 is input to the gate signal generation circuit 33 of the gate circuit 11 through the communication line S1. The cutoff signal output from the cutoff signal generation circuit 41 to the gate circuit 12 is input to the gate signal generation circuit 33 (not shown) of the gate circuit 12 through the communication line S2. The cutoff signal output from the cutoff signal generation circuit 41 to the gate circuit 13 is input to the gate signal generation circuit 33 (not shown) of the gate circuit 13 through the communication line S3. The cutoff signal output from the cutoff signal generation circuit 41 to the gate circuit 14 is input to the gate signal generation circuit 33 (not shown) of the gate circuit 14 through the communication line S4.

なお、本実施形態では、各スイッチング素子を流れる短絡電流を検出するために、当該スイッチング素子のコレクタ-エミッタ間電圧(Vce)の情報を用いる場合を例示するが、この例に限定されるものではない。短絡電流の検出は、上述したVce以外の情報(例えば、対応するスイッチング素子のゲート電流(Ig)を積分して得られるゲート電荷(Qq)の情報、ゲート-エミッタ間電圧(Vge)の情報、もしくは個々のスイッチング素子が構成する1本のアームを流れるアーム電流の情報など)を用いて実現することも可能である。 In this embodiment, in order to detect the short-circuit current flowing through each switching element, the case of using information on the collector-emitter voltage (Vce) of the switching element is exemplified, but it is not limited to this example. do not have. The detection of the short-circuit current is based on information other than the above-described Vce (for example, information on the gate charge (Qq) obtained by integrating the gate current (Ig) of the corresponding switching element, information on the gate-emitter voltage (Vge), Alternatively, it can be realized by using arm current information flowing through one arm constituted by individual switching elements, etc.).

図1の構成において、スイッチング素子1~4が構成しているアームに短絡電流が流れた場合を考える。この場合、スイッチング素子1~4にそれぞれ対応するゲート回路11~14では、個々の電圧検出回路31がそれぞれ対応するスイッチング素子を流れる短絡電流を検出するが、それぞれが同時に短絡電流を検出するとは限らない。例えば、スイッチング素子1を流れる短絡電流が一番先に検出され、その後にスイッチング素子2,3,4のそれぞれを流れる短絡電流が順次検出されるなど、個々の電圧検出回路31がそれぞれ異なるタイミングで短絡電流を検出することがある。そのような場合、例えば、ゲート回路11の電圧検出回路31から出力される短絡信号が最初に遮断信号生成回路41に入力され、その後、ゲート回路12,13,14のそれぞれの電圧検出回路31から出力される短絡信号が順次、遮断信号生成回路41に入力される場合が有り得る。 Consider a case where a short-circuit current flows through the arm formed by the switching elements 1 to 4 in the configuration of FIG. In this case, in the gate circuits 11 to 14 corresponding to the switching elements 1 to 4, the individual voltage detection circuits 31 detect the short-circuit current flowing through the corresponding switching elements, but they do not necessarily detect the short-circuit current at the same time. do not have. For example, the short-circuit current flowing through the switching element 1 is detected first, and then the short-circuit current flowing through the switching elements 2, 3, and 4 is sequentially detected. Short circuit current may be detected. In such a case, for example, the short-circuit signal output from the voltage detection circuit 31 of the gate circuit 11 is first input to the cutoff signal generation circuit 41, and then from the voltage detection circuits 31 of the gate circuits 12, 13, and 14. The output short-circuit signals may be sequentially input to the cutoff signal generation circuit 41 .

遮断信号生成回路41は、ゲート回路11~14から出力される短絡電流のそれぞれを異なるタイミングで受けた場合であっても、ゲート回路11~14のそれぞれに対して遮断信号を異なるタイミングで送出することなく、同じタイミングで一斉に送出する。 Even if the cutoff signal generation circuit 41 receives the short-circuit currents output from the gate circuits 11 to 14 at different timings, the cutoff signal generation circuit 41 sends cutoff signals to the gate circuits 11 to 14 at different timings. sent all at once at the same timing.

これにより、ゲート回路11~14のそれぞれのゲート信号発生回路33は、同じタイミングで遮断信号を入力し、同じタイミングで対応するスイッチング素子の電流遮断を行うべくゲート信号を低下させる。その場合、各ゲート信号発生回路33は、対応するスイッチング素子を、急にゲートオンの状態からゲートオフの状態にするのではなく、徐々にゲートオンの状態からゲートオフの状態へと移行するようにゲート信号を所定の速度で低下させる。スイッチング素子1~4の各々が同時にゲートオフの状態となり、電流が遮断されると、Vceは正常電圧レベルになる。 As a result, the gate signal generation circuits 33 of the gate circuits 11 to 14 each input the cutoff signal at the same timing, and lower the gate signal so as to cut off the current of the corresponding switching element at the same timing. In this case, each gate signal generating circuit 33 generates a gate signal so that the corresponding switching element is gradually shifted from the gate-on state to the gate-off state instead of suddenly changing from the gate-on state to the gate-off state. Decrease at a predetermined speed. When switching elements 1 to 4 are simultaneously gated off and the current is interrupted, Vce becomes a normal voltage level.

図1のように電力変換装置を構成することにより、直列接続されたスイッチング素子1~4に短絡電流が流れた場合に、一部のスイッチング素子が全電圧を背負わないように短絡電流を遮断することができる。 By configuring the power converter as shown in FIG. 1, when a short-circuit current flows through the series-connected switching elements 1 to 4, the short-circuit current is interrupted so that some of the switching elements do not carry the full voltage. be able to.

ここで、図2に、図1の構成の変形例を示す。図2の構成は、図1の構成においてゲート回路11~14がそれぞれ過電圧防止回路34をさらに備えたものとなっている。但し、この過電圧防止回路34は必須の要素ではなく、必要に応じて備えられるものである。 Here, FIG. 2 shows a modification of the configuration of FIG. 2, each of the gate circuits 11 to 14 further includes an overvoltage protection circuit 34 in the configuration of FIG. However, the overvoltage protection circuit 34 is not an essential element, but is provided as required.

ゲート回路11~14にそれぞれ備えられる過電圧防止回路34は、対応するスイッチング素子を流れる短絡電流を遮断した場合に当該スイッチング素子のVceが上昇することを抑制する機能を有する。より具体的には、過電圧防止回路34は、対応するスイッチング素子を流れる短絡電流の遮断中、当該スイッチング素子のVceが予め定められた閾値(過電圧防止動作閾値)を超えた場合に、当該スイッチング素子のVceをより一層遅い速度で低下させることを指示する電圧調整指令(ソフト遮断指令)をゲート信号発生回路33に送る機能を有する。この電圧調整指令がゲート信号発生回路33に入力された場合、一定期間の間、ゲート信号発生回路33は、降下中のゲート信号のレベルの低下をより一層遅くさせる。これにより、サージ電圧による電圧上昇を抑制しつつ、対応するスイッチング素子をゲートオフの状態へと移行させることができる。 The overvoltage protection circuit 34 provided in each of the gate circuits 11 to 14 has a function of suppressing an increase in Vce of the corresponding switching element when the short-circuit current flowing through the corresponding switching element is interrupted. More specifically, when the Vce of the switching element exceeds a predetermined threshold (overvoltage protection operation threshold) while the short-circuit current flowing through the corresponding switching element is interrupted, the overvoltage protection circuit 34 has a function of sending to the gate signal generating circuit 33 a voltage adjustment command (soft cut-off command) instructing that the Vce of the gate signal is lowered at a slower speed. When this voltage adjustment command is input to the gate signal generation circuit 33, the gate signal generation circuit 33 further slows down the level of the falling gate signal for a certain period of time. As a result, it is possible to shift the corresponding switching element to the gate-off state while suppressing the voltage rise due to the surge voltage.

図2のように電力変換装置を構成することにより、あるスイッチング素子が過電圧になり得る状況においても、その電圧の上昇を抑制することができる。 By configuring the power conversion device as shown in FIG. 2, it is possible to suppress an increase in voltage even in a situation where an overvoltage can occur in a certain switching element.

ここで、図3のタイムチャートを参照して、本実施形態に係る電力変換装置による短絡保護の動作の一例を説明する。本例では、図2の構成を例にその動作を説明する。また、ここでは、ゲート回路11~14のうちの1つのゲート回路(例えばゲート回路11)と遮断信号生成回路41との関係に着目しながら説明する。 Here, an example of short-circuit protection operation by the power conversion device according to the present embodiment will be described with reference to the time chart of FIG. 3 . In this example, the operation will be described with the configuration of FIG. 2 as an example. Also, here, the description will focus on the relationship between one of the gate circuits 11 to 14 (for example, the gate circuit 11) and the cutoff signal generation circuit 41. FIG.

本例では、短絡電流の検出のためにアーム電流の情報(電流情報)は用いないが、動作を理解しやすいものとするため、電流情報についても併せて説明する。 In this example, arm current information (current information) is not used for short-circuit current detection, but the current information will also be described in order to facilitate understanding of the operation.

例えばゲート回路11において、ゲート信号発生回路33は、スイッチング素子1のゲートに対して「ゲート電圧(Vge)=0」とするゲート信号を与えており、スイッチング素子1はゲートオフの状態にあるものとする。このとき、アームに電流は流れておらず、電流情報は「アーム電流=0」の状態を示している。また、電圧検出回路31から出力される電圧情報は、「Vce=一定値(オフ時正常電圧レベル)」を示している。また、短絡信号および遮断信号はオフの状態にあり、電圧調整指令もオフの状態にある。 For example, in the gate circuit 11, the gate signal generating circuit 33 supplies the gate signal of "gate voltage (Vge)=0" to the gate of the switching element 1, and the switching element 1 is assumed to be in the gate off state. do. At this time, no current flows through the arm, and the current information indicates the state of "arm current=0". Also, the voltage information output from the voltage detection circuit 31 indicates "Vce=constant value (normal voltage level when off)". In addition, the short-circuit signal and cut-off signal are in the off state, and the voltage adjustment command is also in the off state.

ゲート回路11のゲート信号発生回路33のゲート信号が、対応するスイッチング素子1を例えば時刻t1でゲートオンの状態にすると、電圧情報に示されるVceが所定のレベルまで低下する。このとき、符号P1のように、電流情報に示されるアーム電流は上昇を開始する。電圧情報に示されるVceは暫くの間、所定レベルを維持した状態が続く。電流情報に示されるアーム電流はやがて飽和状態に達する。 When the gate signal of the gate signal generation circuit 33 of the gate circuit 11 turns on the corresponding switching element 1 at time t1, for example, Vce indicated by the voltage information drops to a predetermined level. At this time, the arm current indicated by the current information starts to rise as indicated by P1. Vce indicated in the voltage information continues to maintain a predetermined level for a while. The arm current indicated by the current information eventually reaches saturation.

電圧情報に示されるVceが、例えば時刻t2で予め定められた閾値(短絡検出閾値)を超えると、スイッチング素子1において短絡電流が発生したと見なされ、短絡検出回路32から短絡信号が遮断信号生成回路41に送られる。このゲート回路11と同様な動作が、ゲート回路12~14においても遅れて生じるものとする。 When Vce indicated by the voltage information exceeds a predetermined threshold (short-circuit detection threshold) at time t2, for example, it is assumed that a short-circuit current has occurred in the switching element 1, and a short-circuit signal is generated from the short-circuit detection circuit 32. It is sent to circuit 41 . An operation similar to that of gate circuit 11 is assumed to occur in gate circuits 12 to 14 with a delay.

時刻t2で短絡電流が検出された後、符号P2のように、例えば時刻t3でゲート回路11からの短絡信号が最初に遮断信号生成回路41に入力されると同時に、遮断信号生成回路41からゲート回路11~14のそれぞれに対して一斉に遮断信号が送られる。これらの遮断信号は、ゲート回路11~14のそれぞれのゲート信号発生回路33に入力される。 After the short-circuit current is detected at time t2, the short-circuit signal from the gate circuit 11 is first input to the cutoff signal generation circuit 41 at time t3, for example, as indicated by P2, and at the same time, the cutoff signal generation circuit 41 outputs the gate signal. A cutoff signal is sent to each of the circuits 11 to 14 all at once. These cutoff signals are input to the gate signal generation circuits 33 of the gate circuits 11 to 14, respectively.

時刻t3で遮断信号がゲート回路11~14のそれぞれのゲート信号発生回路33に入力されると、符号P3のように、対応するスイッチング素子のゲート信号が各ゲート信号発生回路33によって所定の速度で低下させられ、対応するスイッチング素子が徐々にゲートオンの状態からゲートオフの状態へ向けて移行する。 At time t3, when the cut-off signal is input to the gate signal generation circuit 33 of each of the gate circuits 11 to 14, the gate signal of the corresponding switching element is generated by each gate signal generation circuit 33 at a predetermined speed as indicated by P3. is lowered and the corresponding switching element gradually transitions from the gate-on state towards the gate-off state.

ここで、例えば電圧情報に示されるVceが上昇し始めると同時に、電流情報に示されるアーム電流が下降する場合を考える。 Here, for example, consider a case where Vce indicated by the voltage information begins to rise and at the same time the arm current indicated by the current information drops.

例えば時刻t4で電圧情報に示されるVceが予め定めた閾値(過電圧防止動作閾値)を超えた場合、そのことが過電圧防止回路34により検出される。その場合、符号P4のように、例えば時刻t5で過電圧防止回路34から対応するスイッチング素子のVceをより一層遅い速度で低下させることを指示する電圧調整指令(ソフト遮断指令)がゲート信号発生回路33に送られる。 For example, when Vce indicated by the voltage information exceeds a predetermined threshold value (overvoltage protection operation threshold value) at time t4, the overvoltage protection circuit 34 detects this fact. In this case, as indicated by symbol P4, for example, at time t5, the gate signal generation circuit 33 receives a voltage adjustment command (soft cutoff command) from the overvoltage protection circuit 34 to instruct the Vce of the corresponding switching element to decrease at a slower speed. sent to

この電圧調整指令がゲート信号発生回路33に入力されると、同時に、符号P5のように、降下中のゲート信号のレベルの低下が一定期間の間、ゲート信号発生回路33の操作によってより一層遅くなる。これに伴い、電流情報に示されるアーム電流の下降も一層遅くなる。 When this voltage adjustment command is input to the gate signal generation circuit 33, at the same time, as indicated by P5, the drop in level of the falling gate signal is further delayed by the operation of the gate signal generation circuit 33 for a certain period of time. Become. Along with this, the fall of the arm current indicated by the current information also becomes slower.

これにより、サージ電圧による電圧上昇が抑制されながら、対応するスイッチング素子がゲートオフの状態へとゆっくりと移行する。 As a result, the corresponding switching element slowly shifts to the gate-off state while suppressing the voltage rise due to the surge voltage.

時刻t5から一定期間が経過すると、例えば時刻t6で電圧調整指令の送出が止められ、符号P6のように、対応するスイッチング素子のゲート信号がゲート信号発生回路33によって再び元の所定の速度で低下させられ、対応するスイッチング素子が徐々にゲートオンの状態からゲートオフの状態へ向けて移行する。 After a certain period of time has elapsed from time t5, the transmission of the voltage adjustment command is stopped at, for example, time t6, and the gate signal of the corresponding switching element is lowered again at the original predetermined speed by the gate signal generation circuit 33 as indicated by symbol P6. and the corresponding switching element gradually transitions from the gate-on state to the gate-off state.

やがて、スイッチング素子1~4の各々が同時にゲートオフの状態となり、電流が遮断されると、電圧情報に示されるVceは正常電圧レベルになる。 Before long, each of the switching elements 1 to 4 is turned off at the same time, and when the current is cut off, the Vce indicated by the voltage information becomes the normal voltage level.

第1の実施形態によれば、図1の構成を採用することにより、直列接続されたスイッチング素子1~4に短絡電流が流れた場合に、一部のスイッチング素子が全電圧を背負わないように短絡電流を遮断することができる。また、図2の構成を採用することにより、あるスイッチング素子が過電圧になり得る状況においても、その電圧の上昇を抑制することができる。 According to the first embodiment, by adopting the configuration of FIG. 1, when a short-circuit current flows through the series-connected switching elements 1 to 4, some of the switching elements do not carry the full voltage. Short circuit current can be interrupted. Further, by adopting the configuration of FIG. 2, it is possible to suppress an increase in voltage even in a situation where an overvoltage can occur in a certain switching element.

また、本実施形態では、各スイッチング素子を流れる短絡電流を検出するために、電圧検出回路31により検出されるVceの情報を用いる構成であるため、このVceの情報をそのまま図2のように過電圧防止回路34に入力して過電圧防止のために活用することができ、簡易な構成で過電圧防止を実現することができる。 Further, in the present embodiment, the Vce information detected by the voltage detection circuit 31 is used to detect the short-circuit current flowing through each switching element. It can be input to the prevention circuit 34 and utilized for overvoltage prevention, and overvoltage prevention can be realized with a simple configuration.

(第2の実施形態)
次に、図4を参照して、第2の実施形態について説明する。前述の説明で用いた図1乃至図3も適宜参照する。以下では、第1の実施形態における図2の構成と重複する部分の説明を省略し、異なる部分を中心に説明する。
(Second embodiment)
Next, a second embodiment will be described with reference to FIG. 1 to 3 used in the above description will also be referred to as appropriate. In the following, the description of the parts that overlap with the configuration of FIG. 2 in the first embodiment will be omitted, and the different parts will be mainly described.

図4は、第2の実施形態に係る電力変換装置の一部の構成を示す図である。 FIG. 4 is a diagram showing a configuration of part of a power converter according to the second embodiment.

前述した第1の実施形態における図2の構成では、遮断信号生成回路41が、ゲート回路11~14から独立した1つの短絡保護回路20に搭載される場合を例示したが、この第2の実施形態では、遮断信号生成回路41は、ゲート回路11~14のうちの1つのゲート回路に搭載される。ここでは例えば前述した図2のゲート回路11に遮断信号生成回路41搭載されるものとし、そのゲート回路を代表ゲート回路11’と称す。代表ゲート回路11’の基板をマスター基板と位置付け、このマスター基板に回路群31~33および、遮断信号生成回路41が搭載される。 In the configuration of FIG. 2 in the first embodiment described above, the cutoff signal generation circuit 41 illustrated the case where it is mounted in one short protection circuit 20 independent of the gate circuits 11 to 14, but this second embodiment In the form, the cutoff signal generation circuit 41 is mounted on one of the gate circuits 11-14. Here, for example, the cutoff signal generation circuit 41 is mounted on the gate circuit 11 shown in FIG. 2, and the gate circuit is called a representative gate circuit 11'. The substrate of the representative gate circuit 11' is positioned as a master substrate, and the circuit groups 31 to 33 and the cutoff signal generation circuit 41 are mounted on this master substrate.

そのほかの構成や動作は、第1の実施形態の場合と同様である。 Other configurations and operations are the same as in the first embodiment.

第2の実施形態によれば、短絡保護回路20が不要となるため、短絡保護回路20を載せるための基板の設置も不要となり、回路の設置面積の増大や製造コストの増大を抑えることができる。 According to the second embodiment, since the short-circuit protection circuit 20 is not required, installation of a board for mounting the short-circuit protection circuit 20 is also unnecessary, and an increase in circuit installation area and manufacturing cost can be suppressed. .

(第3の実施形態)
次に、図5を参照して、第3の実施形態について説明する。前述の説明で用いた図1乃至図4も適宜参照する。以下では、第2の実施形態における図4の構成と重複する部分の説明を省略し、異なる部分を中心に説明する。
(Third embodiment)
Next, a third embodiment will be described with reference to FIG. 1 to 4 used in the above description will also be referred to as appropriate. In the following, the description of the parts that overlap with the configuration of FIG. 4 in the second embodiment will be omitted, and the different parts will be mainly described.

図5は、第3の実施形態に係る電力変換装置の一部の構成を示す図である。 FIG. 5 is a diagram showing a configuration of part of a power converter according to the third embodiment.

この第3の実施形態が前述した第2の実施形態における図4の構成と異なる点は、遮断信号生成回路41と、ゲート回路12~14とを接続する通信線の構成にある。 The third embodiment differs from the configuration of FIG. 4 in the second embodiment described above in the configuration of the communication lines that connect the cutoff signal generation circuit 41 and the gate circuits 12 to 14 .

第3の実施形態では、遮断信号生成回路41から、代表ゲート回路11’以外のゲート回路12~14を順次経由して、遮断信号生成回路41に至る、ループ状のデイジーチェーン(daisy chain)を形成する通信線C1,C2,C3,C4が敷設される。 In the third embodiment, a loop-shaped daisy chain is formed from the cutoff signal generation circuit 41 to the cutoff signal generation circuit 41 through the gate circuits 12 to 14 other than the representative gate circuit 11'. Forming communication lines C1, C2, C3, C4 are laid.

ゲート回路12の図示しない短絡検出回路32から出力される短絡信号は、通信線C2,C3,C4を通って遮断信号生成回路41に入力される。ゲート回路13の図示しない短絡検出回路32から出力される短絡信号は、通信線C3,C4を通って遮断信号生成回路41に入力される。ゲート回路14の図示しない短絡検出回路32から出力される短絡信号は、通信線C4を通って遮断信号生成回路41に入力される。 A short-circuit signal output from the short-circuit detection circuit 32 (not shown) of the gate circuit 12 is input to the cut-off signal generation circuit 41 through the communication lines C2, C3, and C4. A short-circuit signal output from the short-circuit detection circuit 32 (not shown) of the gate circuit 13 is input to the cut-off signal generation circuit 41 through the communication lines C3 and C4. A short-circuit signal output from the short-circuit detection circuit 32 (not shown) of the gate circuit 14 is input to the cut-off signal generation circuit 41 through the communication line C4.

遮断信号生成回路41からゲート回路12~14に対して出力される遮断信号は、通信線C1を通ってゲート回路12の図示しないゲート信号発生回路33に入力され、次いで、通信線C2を通ってゲート回路13の図示しないゲート信号発生回路33に入力され、次いで、通信線C3を通ってゲート回路14の図示しないゲート信号発生回路33に入力される。 The cutoff signal output from the cutoff signal generation circuit 41 to the gate circuits 12 to 14 is input to the gate signal generation circuit 33 (not shown) of the gate circuit 12 through the communication line C1, and then through the communication line C2. It is input to the gate signal generation circuit 33 (not shown) of the gate circuit 13, and then input to the gate signal generation circuit 33 (not shown) of the gate circuit 14 through the communication line C3.

もし、上記構成においてゲート回路12~14への遮断信号の到達時刻に一定以上の時間差が生じる場合は、ゲート回路12~14内の図示しないゲート信号発生回路33の応答速度を調整するなどして、各スイッチング素子において同時に短絡信号の遮断が行われるようにすることが望ましい。 In the above configuration, if there is a certain time difference or more between the arrival times of the cutoff signals to the gate circuits 12 to 14, the response speed of the gate signal generation circuit 33 (not shown) in the gate circuits 12 to 14 may be adjusted. , it is desirable that the short-circuit signal is interrupted simultaneously in each switching element.

そのほかの構成や動作は、第2の実施形態の場合と同様である。 Other configurations and operations are the same as in the case of the second embodiment.

第3の実施形態によれば、通信線を減らすことができ、通信線の敷設するための面積やコストを低減することもできる。 According to the third embodiment, the number of communication lines can be reduced, and the area and cost for installing the communication lines can also be reduced.

(第4の実施形態)
次に、図6を参照して、第4の実施形態について説明する。前述の説明で用いた図1乃至図5も適宜参照する。以下では、第1の実施形態における図2の構成と重複する部分の説明を省略し、異なる部分を中心に説明する。
(Fourth embodiment)
Next, a fourth embodiment will be described with reference to FIG. 1 to 5 used in the above description will also be referred to as appropriate. In the following, the description of the parts that overlap with the configuration of FIG. 2 in the first embodiment will be omitted, and the different parts will be mainly described.

図6は、第4の実施形態に係る電力変換装置の一部の構成を示す図である。 FIG. 6 is a diagram showing a configuration of part of a power converter according to a fourth embodiment.

この第4の実施形態が前述した第1の実施形態における図2の構成と異なる点は、遮断信号生成回路41とゲート回路11~14とを接続する通信線T1~T4,S1~S4のそれぞれに、無線通信路50が設けられている点にある。 The fourth embodiment differs from the configuration of FIG. 2 in the first embodiment described above in that the communication lines T1 to T4 and S1 to S4 connecting the cutoff signal generation circuit 41 and the gate circuits 11 to 14 are connected to each other. Another point is that a wireless communication path 50 is provided.

遮断信号生成回路41とゲート回路11~14とのそれぞれとは、無線通信路50を通じて短絡信号もしくは遮断信号を伝送する。 Cut-off signal generation circuit 41 and gate circuits 11 to 14 each transmit a short-circuit signal or cut-off signal through wireless communication path 50 .

そのほかの構成や動作は、第1の実施形態の場合と同様である。 Other configurations and operations are the same as in the first embodiment.

第4の実施形態によれば、無線通信路50により通信の接続状態/非接続状態の切り替えが可能となるため、製造・組立時やメンテナンス時の作業性が向上する。例えば、電力変換装置を現場に設置する前に、遮断信号生成回路41を工場等で製造して試験を行い、現場へ運搬して電力変換装置に組み込んだりすることが可能となる。また、メンテナンスなどの際にも遮断信号生成回路41を含む短絡保護回路20を電力変換装置から取り外して単体試験等を行ったりすることが可能になる。 According to the fourth embodiment, it is possible to switch between the communication connection state and the communication non-connection state by the wireless communication path 50, thereby improving workability during manufacturing/assembly and maintenance. For example, before installing the power converter at the site, the cutoff signal generation circuit 41 can be manufactured in a factory or the like, tested, transported to the site, and incorporated into the power converter. Also, during maintenance, the short-circuit protection circuit 20 including the cutoff signal generation circuit 41 can be removed from the power converter to perform a unit test or the like.

(第5の実施形態)
次に、図7を参照して、第5の実施形態について説明する。前述の説明で用いた図1乃至図6も適宜参照する。以下では、第1の実施形態における図2の構成と重複する部分の説明を省略し、異なる部分を中心に説明する。
(Fifth embodiment)
Next, a fifth embodiment will be described with reference to FIG. 1 to 6 used in the above description will also be referred to as appropriate. In the following, the description of the parts that overlap with the configuration of FIG. 2 in the first embodiment will be omitted, and the different parts will be mainly described.

図7は、第5の実施形態に係る電力変換装置の一部の構成を示す図である。 FIG. 7 is a diagram showing a configuration of part of a power converter according to the fifth embodiment.

この第5の実施形態が前述した第1の実施形態における図2の構成と異なる点は、電力変換装置が、アーム毎に、スイッチング素子1~4を直列接続する複数の線のいずれかに設けられる(例えばスイッチング素子1とスイッチング素子2とを接続する線に設けられる)1つもしくは複数の電流検出器35をさらに備え、短絡検出回路32が、短絡電流の検出のために電圧検出回路31による電圧の検出結果を示す「電圧情報」を使用するのではなく、電流検出器35による電流の検出結果である「電流情報」を使用する点にある。 The fifth embodiment differs from the configuration of FIG. 2 in the first embodiment described above in that the power converter is provided in one of a plurality of lines connecting switching elements 1 to 4 in series for each arm. one or more current detectors 35 (e.g. provided in the line connecting switching element 1 and switching element 2), and short circuit detection circuit 32 detects short circuit current detected by voltage detection circuit 31. The point is that "current information", which is the result of current detection by the current detector 35, is used instead of "voltage information" indicating the result of voltage detection.

すなわち、ゲート回路11~14のそれぞれに備えられる短絡検出回路32は、電流検出器35による電流の検出結果である「電流情報」に基づき、対応するスイッチング素子に短絡電流が流れた場合に当該短絡電流を検出して短絡信号を遮断信号生成回路41に向けて出力する。例えば、電流情報に示される電流値が予め定められた閾値(短絡検出閾値)を超えると、対応するスイッチング素子において短絡電流が発生したと見なされ、短絡検出回路32から短絡信号が遮断信号生成回路41に送られる。 That is, the short-circuit detection circuit 32 provided in each of the gate circuits 11 to 14 detects the short-circuit when a short-circuit current flows through the corresponding switching element based on the "current information" that is the current detection result by the current detector 35. It detects the current and outputs a short-circuit signal to the cut-off signal generation circuit 41 . For example, when the current value indicated by the current information exceeds a predetermined threshold (short-circuit detection threshold), it is assumed that a short-circuit current has occurred in the corresponding switching element, and a short-circuit signal is output from the short-circuit detection circuit 32 to the cut-off signal generation circuit. sent to 41.

そのほかの構成や動作は、第1の実施形態の場合と同様である。 Other configurations and operations are the same as in the first embodiment.

第5の実施形態によれば、電流検出器35によって各スイッチング素子を流れる電流を直接的に検出できることから、短絡電流を高精度により素早く検出することができる。 According to the fifth embodiment, since the current detector 35 can directly detect the current flowing through each switching element, the short-circuit current can be detected quickly with high accuracy.

(その他)
前述した第5の実施形態では、第1の実施形態における図2の構成に対し、電流検出器35を設けるとともに短絡電流の検出のために短絡検出回路32が「電圧情報」に代えて「電流情報」を使用するように構成する場合を例示した。そのほか、第2の実施形態における図4の構成や、第3の実施形態における図5の構成、第4の実施形態における図6の構成に対しても、電流検出器35を設けるとともに短絡電流の検出のために短絡検出回路32が「電圧情報」に代えて「電流情報」を使用するように構成しても良い。
(others)
In the fifth embodiment described above, the current detector 35 is provided in contrast to the configuration of FIG. The case of configuring to use "information" is exemplified. 4 in the second embodiment, the configuration in FIG. 5 in the third embodiment, and the configuration in FIG. 6 in the fourth embodiment. The short circuit detection circuit 32 may be configured to use "current information" instead of "voltage information" for detection.

以上詳述したように、各実施形態によれば、直列接続されたスイッチング素子に短絡電流が流れた場合に、一部のスイッチング素子が全電圧を背負わないように短絡電流を遮断することができる。 As described in detail above, according to each embodiment, when a short-circuit current flows through the switching elements connected in series, the short-circuit current can be cut off so that some of the switching elements do not carry the full voltage. .

本発明のいくつかの実施形態を説明したが、これらの実施形態は、例として提示したものであり、発明の範囲を限定することは意図していない。これら新規な実施形態は、その他の様々な形態で実施されることが可能であり、発明の要旨を逸脱しない範囲で、種々の省略、置き換え、変更を行うことができる。これら実施形態やその変形は、発明の範囲や要旨に含まれるとともに、特許請求の範囲に記載された発明とその均等の範囲に含まれる。 While several embodiments of the invention have been described, these embodiments have been presented by way of example and are not intended to limit the scope of the invention. These novel embodiments can be implemented in various other forms, and various omissions, replacements, and modifications can be made without departing from the scope of the invention. These embodiments and modifications thereof are included in the scope and gist of the invention, and are included in the scope of the invention described in the claims and equivalents thereof.

1~4…スイッチング素子、11~14…ゲート回路、11’…ゲート回路(マスター基板)、20…短絡保護回路、31…電圧検出回路、32…短絡検出回路、33…ゲート信号発生回路、34…過電圧防止回路、35…電流検出器、41…短絡信号集約・遮断信号生成回路、50…無線通信路。 DESCRIPTION OF SYMBOLS 1-4... Switching element 11-14... Gate circuit 11'... Gate circuit (master substrate) 20... Short-circuit protection circuit 31... Voltage detection circuit 32... Short-circuit detection circuit 33... Gate signal generation circuit 34 . . Overvoltage protection circuit 35 . Current detector 41 .

Claims (4)

各アーム内にて直列接続される複数のスイッチング素子と、
前記複数のスイッチング素子にそれぞれ対応して設けられる複数のゲート回路と、
前記複数のゲート回路との通信が可能な遮断信号生成回路と、
を具備し、
前記複数のゲート回路の各々は、対応するスイッチング素子に短絡電流が流れた場合に当該短絡電流を検出して短絡信号を前記遮断信号生成回路に送るように構成され、かつ、前記遮断信号生成回路から送られる遮断信号を受けたときに前記対応するスイッチング素子に流れる短絡電流を遮断するように構成され、
前記遮断信号生成回路は、前記複数のゲート回路から出力され得るそれぞれの短絡信号を受信可能に構成され、前記複数のゲート回路のいずれかのゲート回路からの短絡信号を受信した場合に前記複数のゲート回路のそれぞれに対して同時に遮断信号を送り、
前記遮断信号生成回路は、前記複数のゲート回路のうちの1つの代表ゲート回路の基板に配置されており、
前記遮断信号生成回路から、前記代表ゲート回路以外の複数のゲート回路を順次経由して、前記遮断信号生成回路に至る通信線をさらに備え、
前記遮断信号生成回路と、前記代表ゲート回路以外の複数のゲート回路のそれぞれとは、前記通信線を通じて短絡信号もしくは遮断信号を伝送する、
電力変換装置。
a plurality of switching elements connected in series within each arm;
a plurality of gate circuits respectively provided corresponding to the plurality of switching elements;
a cutoff signal generation circuit capable of communicating with the plurality of gate circuits;
and
Each of the plurality of gate circuits is configured to detect a short-circuit current when a short-circuit current flows through the corresponding switching element and send a short-circuit signal to the cut-off signal generation circuit, and Configured to cut off the short-circuit current flowing through the corresponding switching element when receiving a cut-off signal sent from
The cut-off signal generation circuit is configured to be capable of receiving respective short-circuit signals that can be output from the plurality of gate circuits, and when receiving a short-circuit signal from any one of the plurality of gate circuits, Simultaneously sending a cutoff signal to each of the gate circuits,
The cutoff signal generation circuit is arranged on a substrate of one representative gate circuit among the plurality of gate circuits,
further comprising a communication line from the cutoff signal generation circuit to the cutoff signal generation circuit via a plurality of gate circuits other than the representative gate circuit,
The cut-off signal generation circuit and each of the plurality of gate circuits other than the representative gate circuit transmit a short-circuit signal or cut-off signal through the communication line,
Power converter.
請求項1に記載の電力変換装置において、
前記複数のゲート回路の各々は、対応するスイッチング素子を流れる短絡電流を遮断した場合において当該スイッチング素子のコレクタ-エミッタ間電圧が上昇することを抑制する過電圧防止回路をさらに備える、電力変換装置。
In the power converter according to claim 1,
A power converter, wherein each of the plurality of gate circuits further includes an overvoltage protection circuit that suppresses an increase in collector-emitter voltage of the corresponding switching element when a short-circuit current flowing through the corresponding switching element is interrupted.
請求項1又は2に記載の電力変換装置において、
前記複数のゲート回路の各々は、
対応するスイッチング素子のコレクタ-エミッタ間電圧を検出する電圧検出回路と、
前記電圧検出回路の検出結果に基づき、対応するスイッチング素子に短絡電流が流れた場合に当該短絡電流を検出して短絡信号を前記遮断信号生成回路に送る短絡検出回路と、を備えている、電力変換装置。
In the power converter according to claim 1 or 2 ,
each of the plurality of gate circuits,
a voltage detection circuit that detects the collector-emitter voltage of the corresponding switching element;
a short-circuit detection circuit that detects a short-circuit current when a short-circuit current flows through a corresponding switching element based on the detection result of the voltage detection circuit and sends a short-circuit signal to the cutoff signal generation circuit. conversion device.
請求項1又は2に記載の電力変換装置において、
前記複数のスイッチング素子を直列接続する複数の線のいずれかに設けられる少なくとも1つの電流検出器をさらに備え、
前記複数のゲート回路の各々は、
前記電流検出器の検出結果に基づき、対応するスイッチング素子に短絡電流が流れた場合に当該短絡電流を検出して短絡信号を前記遮断信号生成回路に送る短絡検出回路を備えている、電力変換装置。
In the power converter according to claim 1 or 2 ,
further comprising at least one current detector provided on one of a plurality of lines connecting the plurality of switching elements in series;
each of the plurality of gate circuits,
A power converter, comprising a short-circuit detection circuit that detects a short-circuit current when a short-circuit current flows through a corresponding switching element based on a detection result of the current detector and sends a short-circuit signal to the cutoff signal generation circuit. .
JP2019117085A 2019-06-25 2019-06-25 power converter Active JP7273629B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2019117085A JP7273629B2 (en) 2019-06-25 2019-06-25 power converter
CN202010189788.0A CN112134256B (en) 2019-06-25 2020-03-18 Power conversion device
CH000709/2020A CH716358B1 (en) 2019-06-25 2020-06-15 Power converter with short-circuit current detection.

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019117085A JP7273629B2 (en) 2019-06-25 2019-06-25 power converter

Publications (2)

Publication Number Publication Date
JP2021005913A JP2021005913A (en) 2021-01-14
JP7273629B2 true JP7273629B2 (en) 2023-05-15

Family

ID=73850312

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019117085A Active JP7273629B2 (en) 2019-06-25 2019-06-25 power converter

Country Status (3)

Country Link
JP (1) JP7273629B2 (en)
CN (1) CN112134256B (en)
CH (1) CH716358B1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022154124A1 (en) 2021-01-18 2022-07-21 日本精工株式会社 Crown-type retainer for ball bearings, and ball bearing
JP2022125705A (en) * 2021-02-17 2022-08-29 株式会社 日立パワーデバイス Rectifier circuit, control method for rectifier circuit

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008236907A (en) 2007-03-20 2008-10-02 Toshiba Mitsubishi-Electric Industrial System Corp Gate control circuit and method of power conversion apparatus
JP2009089557A (en) 2007-10-02 2009-04-23 Fuji Electric Systems Co Ltd Gate drive circuit
US20150381029A1 (en) 2014-06-25 2015-12-31 Delta Electronics (Shanghai) Co., Ltd. Power conversion device and method for transmitting protection signal using the same
JP2017060358A (en) 2015-09-18 2017-03-23 株式会社東芝 Control device of power converter

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004088858A (en) * 2002-08-26 2004-03-18 Mitsubishi Electric Corp Power conversion device
JP4901083B2 (en) * 2004-09-03 2012-03-21 株式会社東芝 Gate drive device
JP4700460B2 (en) * 2005-09-27 2011-06-15 東芝三菱電機産業システム株式会社 Series semiconductor switch device
WO2009054143A1 (en) * 2007-10-24 2009-04-30 Kabushiki Kaisha Toshiba Power converter
JP2009225506A (en) * 2008-03-13 2009-10-01 Toshiba Corp Power converter
JP5405248B2 (en) * 2009-09-16 2014-02-05 東芝三菱電機産業システム株式会社 Self-excited power conversion device and gate timing adjustment method thereof
JP5346974B2 (en) * 2010-04-15 2013-11-20 東芝三菱電機産業システム株式会社 Gate control circuit for power converter
WO2012077187A1 (en) * 2010-12-07 2012-06-14 日立オートモティブシステムズ株式会社 Power converter
JP2014127728A (en) * 2012-12-25 2014-07-07 Nissan Motor Co Ltd Short circuit fault protection device and short circuit fault protection method
JP2015032984A (en) * 2013-08-02 2015-02-16 株式会社 日立パワーデバイス Device for driving semiconductor element, and power conversion device using the same
JP6362996B2 (en) * 2014-10-24 2018-07-25 株式会社日立製作所 Semiconductor drive device and power conversion device using the same

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008236907A (en) 2007-03-20 2008-10-02 Toshiba Mitsubishi-Electric Industrial System Corp Gate control circuit and method of power conversion apparatus
JP2009089557A (en) 2007-10-02 2009-04-23 Fuji Electric Systems Co Ltd Gate drive circuit
US20150381029A1 (en) 2014-06-25 2015-12-31 Delta Electronics (Shanghai) Co., Ltd. Power conversion device and method for transmitting protection signal using the same
JP2017060358A (en) 2015-09-18 2017-03-23 株式会社東芝 Control device of power converter

Also Published As

Publication number Publication date
CH716358B1 (en) 2023-05-15
CH716358A2 (en) 2020-12-30
CN112134256B (en) 2024-04-16
CN112134256A (en) 2020-12-25
JP2021005913A (en) 2021-01-14

Similar Documents

Publication Publication Date Title
JP4619812B2 (en) Gate drive circuit
KR101407245B1 (en) System for fault protection in IGBT
US10084390B2 (en) Power converter, short circuit protection circuit, and control method
JP5397571B2 (en) Control device
JP7273629B2 (en) power converter
JP5796450B2 (en) Switching device control device
JP2005269446A (en) Drive circuit for voltage-driven semiconductor device
JP2006333459A (en) Circuit apparatus with error detection for actuation of power semiconductor switch and associated method
KR101959709B1 (en) Bidirectional transceiver and method
JP2007202237A (en) Power converter and control method of the same
CN101938118B (en) Electrostatic discharge protection circuit with multi-power area integrated circuit
JP2017224999A (en) Protection circuit of semiconductor switching element
JP2015088803A5 (en)
CN209283196U (en) The current foldback circuit of insulated gate bipolar transistor
CN109547001A (en) The current foldback circuit of insulated gate bipolar transistor
JP3754037B2 (en) Semiconductor power module and composite power module
CN108683329B (en) Real-time detection system for load current
JP6590437B2 (en) Semiconductor power converter
KR102050907B1 (en) Fault current limiter and fault current limiting method
US9692407B2 (en) Circuit and method for detection of failure of the driver signal for parallel electronic switches
JP2000049581A (en) Semiconductor electric power converting device
JP2006014402A (en) Overcurrent protector of power converter
JP7415463B2 (en) switching circuit
US20240163995A1 (en) Fault Diagnosis Apparatus and Method
US10069401B2 (en) Protection circuit

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220207

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20221130

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20230105

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230110

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230310

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230404

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230428

R150 Certificate of patent or registration of utility model

Ref document number: 7273629

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150