JP7261529B1 - ウイルス増殖阻害作用を有するトリアジン誘導体の製造方法 - Google Patents

ウイルス増殖阻害作用を有するトリアジン誘導体の製造方法 Download PDF

Info

Publication number
JP7261529B1
JP7261529B1 JP2022186107A JP2022186107A JP7261529B1 JP 7261529 B1 JP7261529 B1 JP 7261529B1 JP 2022186107 A JP2022186107 A JP 2022186107A JP 2022186107 A JP2022186107 A JP 2022186107A JP 7261529 B1 JP7261529 B1 JP 7261529B1
Authority
JP
Japan
Prior art keywords
formula
compound
salt
compound represented
vii
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2022186107A
Other languages
English (en)
Other versions
JP2023077412A (ja
Inventor
幸司 笠松
謙典 幸木
健吾 枡田
悠介 西部(鈴木)
久幸 若森
知広 福田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shionogi and Co Ltd
Original Assignee
Shionogi and Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shionogi and Co Ltd filed Critical Shionogi and Co Ltd
Application granted granted Critical
Publication of JP7261529B1 publication Critical patent/JP7261529B1/ja
Publication of JP2023077412A publication Critical patent/JP2023077412A/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

【課題】新規なウイルス増殖阻害作用を有するトリアジン誘導体の製造方法を提供する。【解決手段】式(I)TIFF0007261529000068.tif4150で示される化合物またはその塩と、式(II)TIFF0007261529000069.tif2034で示される化合物またはその塩を、酸存在下で反応させることを特徴とする、トリアジン誘導体の製造方法。【選択図】なし

Description

本発明は、コロナウイルス3CLプロテアーゼ阻害活性を示す新規化合物、その新規合成中間体、またはそれらの塩およびそれらの製造方法に関する。
ニドウイルス目コロナウイルス科オルトコロナウイルス亜科に属するコロナウイルスは、約30キロベースのゲノムサイズを有し、既知のRNAウイルスでは最大級の一本鎖+鎖RNAウイルスである。コロナウイルスはアルファコロナウイルス属、ベータコロナウイルス属、ガンマコロナウイルス属およびデルタコロナウイルス属の4つに分類され、ヒトに感染するコロナウイルスとして、アルファコロナウイルス属の2種類(HCoV-229E、HCoV-NL63)およびベータコロナウイルス属の5種類(HCoV-HKU1、HCoV-OC43、SARS-CoV、MERS-CoV、SARS-CoV-2)の計7種類が知られている。この内、4種類(HCoV-229E、HCoV-NL63、HCoV-HKU1、HCoV-OC43)は風邪の病原体であるが、残りの3種類は重症肺炎を引き起こす重症急性呼吸器症候群(SARS)コロナウイルス(SARS-CoV)、中東呼吸器症候群(MERS)コロナウイルス(MERS-CoV)および新型コロナウイルス(SARS-CoV-2)である。
2019年12月に中国武漢で発生した新型コロナウイルス感染症(COVID-19)は急速に国際社会に蔓延し、2020年3月11日にWHOよりパンデミックが表明された。2022年9月21日時点で確認された感染者数は6.1億人以上、死者数は650万人以上に達する(非特許文献1)。SARS-CoV-2の主な感染経路として飛沫感染、接触感染およびエアロゾル感染が報告されており、SARS-CoV-2は3時間程度エアロゾルと共に空気中を漂い続け、感染力を維持することが確認されている(非特許文献2)。潜伏期間は2~14日程度であり、発熱(87.9%)、空咳(67.7%)、倦怠感(38.1%)、痰(33.4%)等の風邪様症状が典型的である(非特許文献3)。重症例では、急性呼吸窮迫症候群や急性肺障害、間質性肺炎等による呼吸器不全が起こる。また、腎不全や肝不全などの多臓器不全も報告されている。
本邦においては、既存薬のドラッグリポジショニングから、抗ウイルス薬であるレムデシビル、抗炎症薬であるデキサメタゾン、抗リウマチ薬であるバリシチニブがCOVID-19に対する治療薬として承認され、2022年1月に抗IL-6受容体抗体であるトシリズマブが追加承認されている。また、2021年7月に、抗体カクテル療法(抗SARS-CoV-2モノクローナル抗体の併用)であるロナプリーブ(カシリビマブおよびイムデビマブ)が、2021年9月に、単剤の抗SARS-CoV-2モノクローナル抗体であるゼビュディ(ソトロビマブ)が、それぞれ特例承認され、2021年12月にモルヌピラビルが特例承認された。これらの薬剤についての有効性や安全性、耐性株の出現については、十分なエビデンスが得られていない。したがって、COVID-19に対する治療薬の創製は急務である。
コロナウイルスは、細胞に感染すると、自己複製に必要な様々なタンパク質を合成する。その中に2つのポリタンパク質があり、ウイルスゲノムを作る複製複合体、2つのプロテアーゼが含まれている。プロテアーゼは、ウイルスから合成されたポリタンパク質を切断し、それぞれのタンパク質を機能させるために不可欠な働きをする。2つのプロテアーゼのうち、ポリタンパク質の切断のほとんどを担うのが、3CLプロテアーゼ(メインプロテアーゼ)である(非特許文献4)。
3CLプロテアーゼを標的とした、COVID-19治療薬としては、2021年6月、Pfizer社によるPF-00835231のプロドラッグであるLufotrelvir(PF-07304814)のPhase1b試験の完了がClinicalTrials.govに掲載された(NCT04535167)。また、2021年3月、Pfizer社は新型コロナウイルス感染症に対する治療薬PF-07321332のPhase1試験を開始すると発表した。PF-00835231、LufotrelvirおよびPF-07321332の構造式は以下に示す通りで、本発明に係る製造方法により製造された化合物とは化学構造が異なる(非特許文献5、12および13、ならびに特許文献6および7)。
PF-00835231:
Figure 0007261529000001

Lufotrelvir(PF-07304814):
Figure 0007261529000002

PF-07321332:
Figure 0007261529000003

さらに2021年7月、ハイリスク因子を持つCOVID-19患者を対象とした、PF-07321332およびリトナビル併用のPhase2/3試験が開始されることがClinicalTrials.govに掲載された(NCT04960202)。リトナビルは、CYP3Aによる薬剤の代謝を阻害することにより、薬物動態学的増強因子として働く。また、2021年11月、Pfizer社のホームページにおいて、PAXLOVID(TM)(PF-07321332;リトナビル)は、成人のハイリスク患者において、プラセボと比較して入院または死亡のリスクを89%減少させたことが報告された(非特許文献14)。さらに、2021年12月、PAXLOVID(TM)は米国で緊急使用許可が承認され、2022年2月10日、パキロビッド(登録商標)パックが日本で特例承認された。
3CLプロテアーゼ阻害活性を有する化合物が非特許文献5~8に開示されているが、いずれの文献においても本発明に関連する化合物、製造方法および合成中間体は記載も示唆もされていない。
Ρ2Xおよび/またはΡ2X2/3受容体拮抗作用を有するトリアジン誘導体およびウラシル誘導体が特許文献1~4および8~12に開示されているが、いずれの文献においても、3CLプロテアーゼ阻害活性および抗ウイルス効果については記載も示唆もされていない。また、本発明に係る製造方法および合成中間体は記載も示唆もされていない。
抗腫瘍効果を有するトリアジン誘導体が非特許文献9~11に開示されているが、いずれの文献においても、コロナウイルス3CLプロテアーゼ阻害活性および抗ウイルス効果については記載されておらず、また、本発明に関連する化合物、製造方法および合成中間体は記載も示唆もされていない。
ガラニン受容体調節作用を有するトリアジン誘導体が特許文献5に開示されているが、いずれの文献においても、3CLプロテアーゼ阻害活性および抗ウイルス効果については記載も示唆もされていない。また、本発明に係る製造方法および合成中間体は記載も示唆もされていない。
国際公開第2012/020749号 国際公開第2013/089212号 国際公開第2010/092966号 国際公開第2014/200078号 国際公開第2012/009258号 国際公開第2021/205298号 国際公開第2021/250648号 中国特許出願公開第113620888号明細書 中国特許出願公開第113666914号明細書 中国特許出願公開第113735838号明細書 中国特許出願公開第113773300号明細書 中国特許出願公開第113801097号明細書
"COVID-19 Dashboard by the Center for Systems Science and Engineering at Johns Hopkins University"、[online]、Johns Hopkins University、[2022年9月21日検索]、インターネット<URL:https://coronavirus.jhu.edu/map.html> The NEW ENGLAND JOURNAL of MEDICINE(2020年)、382巻、1564~1567頁 "Report of the WHO-China Joint Mission on Coronavirus Disease 2019 (COVID-19)"、[online]、2020年2月28日、WHO、[2022年9月21日検索]、インターネット<URL:https://www.who.int/docs/default-source/coronaviruse/who-china-joint-mission-on-covid-19-final-report.pdf> Science(2003年)、300巻、1763~1767頁 "A comparative analysis of SARS-CoV-2 antivirals characterizes 3CLpro inhibitor PF-00835231 as a potential new treatment for COVID-19"、Journal of Virology、[online]、2021年2月23日、[2022年9月21日検索]、インターネット<URL:https://jvi.asm.org/content/early/2021/02/19/JVI.01819-20><doi: 10.1128/JVI.01819-20> Cell Research(2020年)、30巻、678~692頁 Science(2020年)、368巻、409~412頁 ACS Central Science(2021年)、7巻、3号、467~475頁 Cancer Treatment Reviews(1984年)、11巻、Supplement 1、99~110頁 Contributions to Oncology(1984年)、18巻、221~234頁 Arzneimittel-Forschung(1984年)、11巻、6号、663~668頁 261st Am Chem Soc (ACS) Natl Meet ・ 2021-04-05 / 2021-04-16 ・ Virtual, N/A ・ Abst 243 Science(2021年)、374巻、1586~1593頁 "Pfizer’s Novel COVID-19 Oral Antiviral Treatment Candidate Reduced Risk Of Hospitalization Or Death By 89% In Interim Analysis Of Phase 2/3 EPIC-HR Study"、[online]、2021年11月5日、 Pfizer Press Release、[2022年9月21日検索]、インターネット<URL:https://www.pfizer.com/news/press-release/press-release-detail/pfizers-novel-covid-19-oral-antiviral-treatment-candidate>
本発明の目的は、コロナウイルス3CLプロテアーゼ阻害活性を有する新規化合物の新規合成中間体またはそれらの塩、および製造方法を提供することにある。
本発明は、以下に関する。
(1)式(I):
Figure 0007261529000004

(式中、Rは置換もしくは非置換のC1-C4アルキル、Rはそれぞれ独立して、ハロゲン、シアノまたはメチル、nは1~5の整数である。)で示される化合物またはその塩と、式(II):
Figure 0007261529000005

(式中、Rはそれぞれ独立して、置換もしくは非置換のC1-C4アルキル、mは0~5の整数である)で示される化合物またはその塩を、酸存在下で反応させることを特徴とする、式(III):
Figure 0007261529000006

で示される化合物またはその塩の製造方法。
(2)酸が、トリフルオロ酢酸である、上記(1)記載の製造方法。
(3)式(III)で示される化合物が、式(III-1):
Figure 0007261529000007

である、上記(1)または(2)記載の製造方法。
(4)式(IV):
Figure 0007261529000008

(式中、Rは置換もしくは非置換の芳香族複素環式基、または置換もしくは非置換の芳香族炭素環式基であり、pは0または1であり、その他の記号は上記(1)と同意義である。)で示される化合物またはその塩と、式(V):
Figure 0007261529000009

(式中、Rはそれぞれ独立して、ハロゲン、または置換もしくは非置換のアルキルであり、qは0~5の整数である。)で示される化合物またはその塩を、酸存在下で反応させることを特徴とする、式(VI):
Figure 0007261529000010

(式中の記号は上記と同意義である。)で示される化合物、その塩またはそれらの溶媒和物の製造方法。
(5)酸が酢酸である、上記(4)記載の製造方法。
(6)式(VI)で示される化合物が、
式(VII):
Figure 0007261529000011

である、上記(4)または(5)記載の製造方法。
(7)上記(1)~(3)のいずれかの製造方法より、式(III-1):
Figure 0007261529000012

で示される化合物またはその塩を得る工程を含む、式(VII):
Figure 0007261529000013

で示される化合物、その塩またはそれらの溶媒和物の製造方法。
(8)式(VII):
Figure 0007261529000014

で示される化合物またはその塩を、フマル酸、アセトンおよび水存在下で結晶化することを特徴とする、式(VII)で示される化合物のフマル酸共結晶I形の製造方法。
(9)上記(1)~(7)のいずれかに記載の製造方法を使用することにより得られた式(VII):
Figure 0007261529000015

で示される化合物またはその塩を、結晶化させることを特徴とする、上記(8)記載の製造方法。
(10)結晶化温度が40~60℃であり、結晶化時間が120分以上である、上記(8)または(9)記載の製造方法。
(11)式(VIII):
Figure 0007261529000016

で示される化合物、またはその塩。
(12)式(IX):
Figure 0007261529000017

で示される化合物、またはその塩。
(13)式(X):
Figure 0007261529000018

で示される化合物、またはその塩。
(14)式(XI):
Figure 0007261529000019

で示される化合物、またはその塩。
(15)式(VII):
Figure 0007261529000020

で示される化合物のトルエン和物。
(16)実質的に、式(VII):
Figure 0007261529000021

で示される化合物のフリー体が含まれない、式(VII)で示される化合物のフマル酸共結晶I形。
(17)以下の式:
Figure 0007261529000022

で示される化合物のメシル酸塩。
(18)以下の式:
Figure 0007261529000023

で示される化合物のメシル酸塩。
(19)以下の式:
Figure 0007261529000024

で示される化合物、またはその塩。
(20)以下の式:
Figure 0007261529000025

で示される化合物、またはその塩。
(21)以下の式:
Figure 0007261529000026

で示される化合物の1,8-ジアザビシクロ[5.4.0]-7-ウンデセン塩である、上記項目(20)記載の塩。
本発明に係る製造方法により製造された化合物は、コロナウイルス3CLプロテアーゼに対する阻害活性を有し、コロナウイルス感染症の治療剤および/または予防剤として有用である。
また、本発明に係る製造方法により製造された化合物は、医薬原体として有用である。
さらに、本発明に係る製造方法により製造された式(VII)で示される化合物のフマル酸共結晶を含有する医薬組成物は、新型コロナウイルス感染症(COVID-19)の治療剤として非常に有用である。本発明に係る製造方法は、本発明に係る化合物を収率よく製造することが出来る方法である。
式(VII)で示される化合物のフマル酸共結晶I形(Form I)の非対称単位中の構造図を示す。 式(VII)で示される化合物のフマル酸共結晶I形(Form I)の粉末X線回折パターンを示す。横軸は2θ(°)で、縦軸は強度(Count)を表す。 式(VII)で示される化合物のトルエン和物の粉末X線回折パターンを示す。横軸は2θ(°)で、縦軸は強度(Count)を表す。
以下に本明細書において用いられる各用語の意味を説明する。各用語は特に断りのない限り、単独で用いられる場合も、または他の用語と組み合わせて用いられる場合も、同一の意味で用いられる。
「からなる」という用語は、構成要件のみを有することを意味する。
「含む」という用語は、構成要件に限定されず、記載されていない要素を排除しないことを意味する。
以下、本発明について実施形態を示しながら説明する。本明細書の全体にわたり、単数形の表現は、特に言及しない限り、その複数形の概念をも含むことが理解されるべきである。従って、単数形の冠詞(例えば、英語の場合は「a」、「an」、「the」など)は、特に言及しない限り、その複数形の概念をも含むことが理解されるべきである。
また、本明細書において使用される用語は、特に言及しない限り、当上記分野で通常用いられる意味で用いられることが理解されるべきである。したがって、他に定義されない限り、本明細書中で使用される全ての専門用語および科学技術用語は、本発明の属する分野の当業者によって一般的に理解されるのと同じ意味を有する。矛盾する場合、本明細書(定義を含めて)が優先する。
「ハロゲン」とは、フッ素原子、塩素原子、臭素原子、およびヨウ素原子を包含する。特にフッ素原子および塩素原子が好ましい。
「アルキル」とは、炭素数1~15、好ましくは炭素数1~10、より好ましくは炭素数1~6、さらに好ましくは炭素数1~4の直鎖又は分枝状の炭化水素基を包含する。例えば、メチル、エチル、n-プロピル、イソプロピル、n-ブチル、イソブチル、sec-ブチル、tert-ブチル、n-ペンチル、イソペンチル、ネオペンチル、n-ヘキシル、イソヘキシル、n-へプチル、イソヘプチル、n-オクチル、イソオクチル、n-ノニル、n-デシル等が挙げられる。
「アルキル」の好ましい態様として、メチル、エチル、n-プロピル、イソプロピル、n-ブチル、イソブチル、sec-ブチル、tert-ブチル、n-ペンチルが挙げられる。さらに好ましい態様として、メチル、エチル、n-プロピル、イソプロピル、tert-ブチルが挙げられる。
「C1-C4アルキル」とは、炭素数1~4の直鎖又は分枝状の炭化水素基を包含する。例えば、メチル、エチル、n-プロピル、イソプロピル、n-ブチル、イソブチル、sec-ブチル、tert-ブチル等が挙げられる。
「芳香族炭素環式基」とは、単環または2環以上の、環状芳香族炭化水素基を意味する。例えば、フェニル、ナフチル、アントリル、フェナントリル等が挙げられる。6員芳香族炭素環式基としては、例えば、フェニルが挙げられる。10員芳香族炭素環式基としては、例えば、ナフチル等が挙げられる。14員芳香族炭素環式基としては、例えば、アントリル、フェナントリル等が挙げられる。
「芳香族炭素環式基」の好ましい態様として、フェニルが挙げられる。
「芳香族炭素環」とは、上記「芳香族炭素環式基」から導かれる環を意味する。
「芳香族複素環式基」とは、O、SおよびNから任意に選択される同一または異なるヘテロ原子を環内に1以上有する、単環または2環以上の、芳香族環式基を意味する。
2環以上の芳香族複素環式基は、単環または2環以上の芳香族複素環式基に、上記「芳香族炭素環式基」における環が縮合したものも包含し、該結合手はいずれの環に有していても良い。
単環の芳香族複素環式基としては、5~8員が好ましく、より好ましくは5員または6員である。5員芳香族複素環式基としては、例えば、ピロリル、イミダゾリル、ピラゾリル、トリアゾリル、テトラゾリル、フリル、チエニル、イソオキサゾリル、オキサゾリル、オキサジアゾリル、イソチアゾリル、チアゾリル、チアジアゾリル等が挙げられる。6員芳香族複素環式基としては、例えば、ピリジル、ピリダジニル、ピリミジニル、ピラジニル、トリアジニル等が挙げられる。
2環の芳香族複素環式基としては、8~10員が好ましく、より好ましくは9員または10員である。例えば、インドリル、イソインドリル、インダゾリル、インドリジニル、キノリニル、イソキノリニル、シンノリニル、フタラジニル、キナゾリニル、ナフチリジニル、キノキサリニル、プリニル、プテリジニル、ベンズイミダゾリル、ベンズイソオキサゾリル、ベンズオキサゾリル、ベンズオキサジアゾリル、ベンズイソチアゾリル、ベンゾチアゾリル、ベンゾチアジアゾリル、ベンゾフリル、イソベンゾフリル、ベンゾチエニル、ベンゾトリアゾリル、イミダゾピリジル、トリアゾロピリジル、イミダゾチアゾリル、ピラジノピリダジニル、オキサゾロピリジル、チアゾロピリジル等が挙げられる。9員芳香族複素環式基としては、インドリル、イソインドリル、インダゾリル、インドリジニル、プリニル、ベンズイミダゾリル、ベンズイソオキサゾリル、ベンズオキサゾリル、ベンズオキサジアゾリル、ベンズイソチアゾリル、ベンゾチアゾリル、ベンゾチアジアゾリル、ベンゾトリアゾリル、ベンゾフラニル、イミダゾピリジル、トリアゾロピリジル、オキサゾロピリジル、チアゾロピリジル等が挙げられる。10員芳香族複素環式基としては、キノリニル、イソキノリニル、シンノリニル、フタラジニル、キナゾリニル、ナフチリジニル、キノキサリニル、プテリジニル、ピラジノピリダジニル等が挙げられる。
3環以上の芳香族複素環式基としては、13~15員が好ましい。例えば、カルバゾリル、アクリジニル、キサンテニル、フェノチアジニル、フェノキサチイニル、フェノキサジニル、ジベンゾフリル等が挙げられる。
「芳香族複素環式基」の好ましい態様として、トリアゾリルが挙げられる。
「芳香族複素環」とは、上記「芳香族複素環式基」から導かれる環を意味する。
「置換アルキル」の置換基としては、次の置換基群Aが挙げられる。任意の位置の炭素原子が次の置換基群Aから選択される1以上の基と結合していてもよい。
置換基群A:ハロゲン、シアノおよびニトロ。
「置換C1-C4アルキル」の置換基としては、次の置換基群Bが挙げられる。任意の位置の炭素原子が次の置換基群Bから選択される1以上の基と結合していてもよい。
置換基群B:ハロゲン、シアノおよびニトロ。
「置換芳香族炭素環式基」および「置換芳香族複素環式基」等の「芳香族炭素環」および「芳香族複素環」の環上の置換基としては、次の置換基群Cが挙げられる。環上の任意の位置の原子が次の置換基群Bから選択される1以上の基と結合していてもよい。
置換基群C:ハロゲン、シアノ、ニトロおよびアルキル。
式(VI)および式(VII)で示される化合物は、特定の異性体に限定するものではなく、全ての可能な異性体(例えば、ケト-エノール異性体、イミン-エナミン異性体、ジアステレオ異性体、光学異性体、回転異性体等)、ラセミ体またはそれらの混合物を含む。
Figure 0007261529000027

例えば、式(VII)で示される化合物は、以下のような互変異性体を包含する。
Figure 0007261529000028
実質的に、式(VII):
Figure 0007261529000029

で示される化合物のフリー体が含まれない、式(VII)で示される化合物のフマル酸共結晶I形とは、粉末X線回折測定等の測定機器で、式(VII)で示される化合物のフリー体由来のピークが検出されない(検出限界以下である)、式(VII)で示される化合物のフマル酸共結晶I形を意味する。
式(I)、式(II)、式(III)、式(III-1)、式(IV)、式(V)、式(VI)、式(VII)、式(VIII)、式(IX)、式(X)および式(XI)で示される化合物の一つ以上の水素、炭素および/または他の原子は、それぞれ水素、炭素および/または他の原子の同位体で置換され得る。そのような同位体の例としては、それぞれH、H、11C、13C、14C、15N、18O、17O、31P、32P、35S、18F、123Iおよび36Clのように、水素、炭素、窒素、酸素、リン、硫黄、フッ素、ヨウ素および塩素が包含される。式(I)、式(II)、式(III)、式(III-1)、式(IV)、式(V)、式(VI)、式(VII)、式(VIII)、式(IX)、式(X)および、式(XI)で示される化合物は、そのような同位体で置換された化合物も包含する。該同位体で置換された化合物は、医薬品としても有用であり、式(I)、式(II)、式(III)、式(III-1)、式(IV)、式(V)、式(VI)、式(VII)、式(VIII)、式(IX)、式(X)および式(XI)で示される化合物のすべての放射性標識体を包含する。また該「放射性標識体」を製造するための「放射性標識化方法」も本発明に包含され、該「放射性標識体」は、代謝薬物動態研究、結合アッセイにおける研究および/または診断のツールとして有用である。
また、本発明に係る結晶は重水素変換体であってもよい。本発明に係る結晶は同位元素(例、H,14C,35S,125I等)で標識されていてもよい。
式(I)、式(II)、式(III)、式(III-1)、式(IV)、式(V)、式(VI)、式(VII)、式(VIII)、式(IX)、式(X)および式(XI)で示される化合物の放射性標識体は、当該技術分野で周知の方法で調製できる。例えば、式(I)、式(II)、式(III)、式(III-1)、式(IV)、式(V)、式(VI)、式(VII)、式(VIII)、式(IX)、式(X)および式(XI)で示されるトリチウム標識化合物は、トリチウムを用いた触媒的脱ハロゲン化反応によって、式(I)で示される特定の化合物にトリチウムを導入することで調製できる。この方法は、適切な触媒、例えばPd/Cの存在下、塩基の存在下または非存在下で、式(I)、式(II)、式(III)、式(III-1)、式(IV)、式(V)、式(VI)、式(VII)、式(VIII)、式(IX)、式(X)および式(XI)で示される化合物が適切にハロゲン置換された前駆体とトリチウムガスとを反応させることを包含する。トリチウム標識化合物を調製するための他の適切な方法は、“Isotopes in the Physical and Biomedical Sciences,Vol.1,Labeled Compounds (Part A),Chapter 6 (1987年)”を参照することができる。14C-標識化合物は、14C炭素を有する原料を用いることによって調製できる。
式(I)、式(II)、式(III)、式(III-1)、式(IV)、式(V)、式(VI)、式(VII)、式(VIII)、式(IX)、式(X)および式(XI)で示される化合物の塩としては、例えば、式(I)、式(II)、式(III)、式(III-1)、式(IV)、式(V)、式(VI)、式(VII)、式(VIII)、式(IX)、式(X)および式(XI)で示される化合物と、アルカリ金属(例えば、リチウム、ナトリウム、カリウム等)、アルカリ土類金属(例えば、カルシウム、バリウム等)、マグネシウム、遷移金属(例えば、亜鉛、鉄等)、アンモニア、有機塩基(例えば、トリメチルアミン、トリエチルアミン、ジシクロヘキシルアミン、エタノールアミン、ジエタノールアミン、トリエタノールアミン、メグルミン、エチレンジアミン、ピリジン、ピコリン、キノリン等)およびアミノ酸との塩、または無機酸(例えば、塩酸、硫酸、硝酸、炭酸、臭化水素酸、リン酸、ヨウ化水素酸等)、および有機酸(例えば、ギ酸、酢酸、プロピオン酸、トリフルオロ酢酸、クエン酸、乳酸、酒石酸、シュウ酸、マレイン酸、フマル酸、コハク酸、マンデル酸、グルタル酸、リンゴ酸、安息香酸、フタル酸、アスコルビン酸、ベンゼンスルホン酸、p-トルエンスルホン酸、メタンスルホン酸、エタンスルホン酸、トリフルオロ酢酸等)との塩が挙げられる。これらの塩は、通常行われる方法によって形成させることができる。
式(VII)で示される化合物の塩は、例えば、式(VII)で示される化合物とカウンター分子又はカウンターイオンからなり、任意の数のカウンター分子又はカウンターイオンを含んでいても良い。式(VII)で示される化合物の塩は、化合物とカウンター分子又はカウンター原子との間でプロトン移動することにより、イオン結合を介するものをいう。
本発明の式(I)、式(II)、式(III)、式(III-1)、式(IV)、式(V)、式(VI)、式(VII)、式(VIII)、式(IX)、式(X)および式(XI)で示される化合物またはその塩は、溶媒和物(例えば、水和物等)、共結晶および/または結晶多形を形成する場合があり、本発明はそのような各種の溶媒和物、共結晶および結晶多形も包含する。「溶媒和物」は、式(I)、式(II)、式(III)、式(III-1)、式(IV)、式(V)、式(VI)、式(VII)、式(VIII)、式(IX)、式(X)および式(XI)で示される化合物に対し、任意の数の溶媒分子(例えば、水分子等)と配位していてもよい。また、式(I)、式(II)、式(III)、式(III-1)、式(IV)、式(V)、式(VI)、式(VII)、式(VIII)、式(IX)、式(X)および式(XI)で示される化合物またはその塩を、再結晶することで結晶多形を形成する場合がある。
本明細書中で用いる「結晶」とは、構成する原子、イオン、分子などが三次元的に規則正しく配列した固体を意味し、そのような規則正しい内部構造を持たない非晶質固体とは区別される。本発明に係る結晶は、単結晶、双晶、多結晶などであってもよい。
さらに、「結晶」には、組成が同一でありながら結晶中の配列が異なる「結晶多形」が存在することがあり、それらを含めて「結晶形態」という。
加えて、式(I)、式(II)、式(III)、式(III-1)、式(IV)、式(V)、式(VI)、式(VII)、式(VIII)、式(IX)、式(X)および式(XI)で示される化合物は、これらの塩又はこれらの製薬上許容される溶媒和物に変換してもよい。本発明に係る結晶は、これらの塩、水和物、溶媒和物、結晶多形のいずれであってもよく、二つ以上の混合物であっても、発明の範囲内に包含されることが意図される。
結晶形態および結晶化度は、例えば、粉末X線回折測定、ラマン分光法、赤外吸収スペクトル測定法、水分吸脱着測定、示差走査熱量測定、溶解特性を含めた多くの技術によって測定することができる。
本明細書中で用いる「共結晶」とは、例えば、式(VII)で示される化合物とカウンター分子が同一結晶格子内に規則的に配列することを意味し、任意の数のカウンター分子を含んでいても良い。また、共結晶とは、化合物とカウンター分子との分子間相互作用が、水素結合、ファンデルワールス力などの、非共有結合性かつ非イオン性の化学的相互作用を介するものをいう。共結晶は、化合物が本質的に無電荷または中性のままであるという点で、塩と区別される。共結晶は、カウンター分子が水もしくは溶媒ではないという点で水和物または溶媒和物と区別される。
本発明の式(VII)で示される化合物を含む複合体は、広義には、塩、共結晶および包接化合物、またはその溶媒和物を含む。
本明細書中で用いる「溶媒和物」とは、例えば式(I)、式(II)、式(III)、式(III-1)、式(IV)、式(V)、式(VI)、式(VII)、式(VIII)、式(IX)、式(X)および式(XI)で示される化合物に対し、任意の数の溶媒分子と規則正しく配列しているものをいう。
溶媒分子としては、例えば、アセトニトリル、クロロベンゼン、クロロホルム、シクロヘキサン、1,2‐ジクロロエテン、ジクロロメタン、1,2‐ジメトキシエタン、N,N‐ジメチルアセトアミド、N,N‐ジメチルホルムアミド、1,4‐ジオキサン、2‐エトキシエタノール、エチレングリコール、ホルムアミド、ヘキサン、メタノール、2‐メトキシエタノール、メチルブチルケトン、メチルシクロヘキサン、N‐メチルピロリドン、ニトロメタン、ピリジン、スルホラン、テトラリン、トルエン、1,1,2‐トリクロロエテン、キシレン、酢酸、アニソール、1‐ブタノール、2‐ブタノール、酢酸n‐ブチル、t‐ブチルメチルエーテル、クメン、ジメチルスルホキシド、酢酸エチル、ジエチルエーテル、ギ酸エチル、ギ酸、ヘプタン、酢酸イソブチル、酢酸イソプロピル、酢酸メチル、3‐メチル‐1‐ブタノール、メチルエチルケトン、メチルイソブチルケトン、2‐メチル‐1‐プロパノール、ペンタン、1‐ペンタノール、1‐プロパノール、2‐プロパノール、酢酸プロピル、テトラヒドロフラン、水(すなわち水和物)、エタノール、アセトン、1,1‐ジエトキシプロパン、1,1‐ジメトキシメタン、2,2‐ジメトキシプロパン、イソオクタン、イソプロピルエーテル、メチルイソプロピルケトン、メチルテトラヒドロフラン、石油エーテル、トリクロロ酢酸およびトリフルオロ酢酸、好ましくは、酢酸、アニソール、1‐ブタノール、2‐ブタノール、酢酸n‐ブチル、t‐ブチルメチルエーテル、クメン、ジメチルスルホキシド、酢酸エチル、ジエチルエーテル、ギ酸エチル、ギ酸、ヘプタン、酢酸イソブチル、酢酸イソプロピル、酢酸メチル、3‐メチル‐1‐ブタノール、メチルエチルケトン、メチルイソブチルケトン、2‐メチル‐1‐プロパノール、ペンタン、1‐ペンタノール、1‐プロパノール、2‐プロパノール、酢酸プロピル、テトラヒドロフラン、水(すなわち水和物)、エタノール、アセトン、1,1‐ジエトキシプロパン、1,1‐ジメトキシメタン、2,2‐ジメトキシプロパン、イソオクタン、イソプロピルエーテル、メチルイソプロピルケトン、メチルテトラヒドロフラン、石油エーテル、トリクロロ酢酸およびトリフルオロ酢酸、より好ましくは、水(すなわち水和物)、エタノール、アセトン、1,1‐ジエトキシプロパン、1,1‐ジメトキシメタン、2,2‐ジメトキシプロパン、イソオクタン、イソプロピルエーテル、メチルイソプロピルケトン、メチルテトラヒドロフラン、石油エーテル、トリクロロ酢酸およびトリフルオロ酢酸などが挙げられる。
また、式(I)、式(II)、式(III)、式(III-1)、式(IV)、式(V)、式(VI)、式(VII)、式(VIII)、式(IX)、式(X)および式(XI)で示される化合物、またはその塩、共結晶および複合体は、大気中に放置することにより、水分を吸収し、吸着水が付着する場合や、水和物を形成する場合がある。
(粉末X線回折(XRPD))
粉末X線回折(XRPD)は、固体の結晶形態及び結晶性を測定するための最も感度の良い分析法の1つである。X線が結晶に照射されると、結晶格子面で反射し、互いに干渉しあい、構造の周期に対応した秩序だった回折線を示す。一方、非晶質固体については、通常、その構造の中に秩序だった繰返し周期をもたないため、回折現象は起こらず、特徴のないブロードなXRPDパターン(ハローパターンとも呼ばれる)を示す。
式(VII)で示される化合物の結晶形態は、粉末X線回折パターンおよび特徴的な回折ピークにより識別可能である。式(VII)で示される化合物の結晶形態は、特徴的な回折ピークの存在によって他の結晶形態と区別することができる。
本明細書中で用いる特徴的な回折ピークは、観測された回折パターンから選択されるピークである。特徴的な回折ピークは、好ましくは回折パターンにおける約10本、より好ましくは約5本、さらに好ましくは約3本から選択される。
複数の結晶を区別する上では、ピークの強度よりも、当該結晶で確認され、他の結晶では確認されないピークが、その結晶を特定する上で好ましい特徴的なピークとなる。そういった特徴的なピークであれば、一つまたは二つのピークでも、当該結晶を特徴付けることができる。測定して得られたチャートを比較し、これらの特徴的なピークが一致すれば、粉末X線回折スペクトルが実質的に一致するといえる。
一般に、粉末X線回折における回折角度(2θ)は±0.2°の範囲内で誤差が生じ得るため、粉末X線回折の回折角度の値は±0.2°程度の範囲内の数値も含むものとして理解される必要がある。したがって、粉末X線回折におけるピークの回折角度が完全に一致する結晶だけでなく、ピークの回折角度が±0.2°程度の誤差で一致する結晶も本発明に含まれる。
以下の表および図において表示されるピークの強度は、一般に、多くの因子、例えばX線ビームに対する結晶の選択配向の効果、粗大粒子の影響、分析される物質の純度またはサンプルの結晶化度によって変動し得ることが知られている。また、ピーク位置についても、サンプル高の変動に基づいてシフトし得る。さらに、異なる波長を使用して測定するとブラッグ式(nλ=2dsinθ)に従って異なるシフトが得られるが、このような別の波長の使用により得られる別のXRPDパターンで示される化合物も、本発明の範囲に含まれる。
(単結晶構造解析)
結晶を特定する方法の一つで、当該結晶における結晶学的パラメーター、さらに、原子座標(各原子の空間的な位置関係を示す値)および3次元構造モデルを得ることができる。桜井敏雄著「X線構造解析の手引き」裳華房発行(1983年)、Stout & Jensen著 X-Ray Structure Determination: A Practical Guide, Macmillan Co., New York (1968)などを参照。本発明に係る複合体、塩、光学異性体、互変異性体、幾何異性体の結晶の構造を同定する際には、単結晶構造解析が有用である。
本発明に係る製造方法により製造された化合物は、コロナウイルス3CLプロテアーゼ阻害活性を有するため、コロナウイルス3CLプロテアーゼが関与する疾患の治療および/または予防剤として有用である。本明細書において「治療剤および/または予防剤」という場合、症状改善剤も包含する。コロナウイルス3CLプロテアーゼが関与する疾患としては、ウイルス感染症が挙げられ、好ましくはコロナウイルス感染症が挙げられる。
一つの態様として、コロナウイルスとしては、ヒトに感染するコロナウイルスが挙げられる。ヒトに感染するコロナウイルスとしては、HCoV-229E、HCoV-NL63、HCoV-HKU1、HCoV-OC43、SARS-CoV、MERS-CoV、および/またはSARS-CoV-2が挙げられる。
一つの態様として、コロナウイルスとしては、アルファコロナウイルスおよび/またはベータコロナウイルス、より好ましくはベータコロナウイルスが挙げられる。
一つの態様として、アルファコロナウイルスとしては、HCoV-229EおよびHCoV-NL63が挙げられる。特に好ましくは、HCoV-229Eが挙げられる。
一つの態様として、ベータコロナウイルスとしては、HCoV-HKU1、HCoV-OC43、SARS-CoV、MERS-CoV、および/またはSARS-CoV-2が挙げられる。好ましくはHCoV-OC43またはSARS-CoV-2、特に好ましくはSARS-CoV-2が挙げられる。
一つの態様として、ベータコロナウイルスとしては、ベータコロナウイルスA系統(β-coronavirus lineage A)、ベータコロナウイルスB系統(β-coronavirus lineage B)、およびベータコロナウイルスC系統(β-coronavirus lineage C)が挙げられる。より好ましくは、ベータコロナウイルスA系統(β-coronavirus lineage A)、およびベータコロナウイルスB系統(β-coronavirus lineage B)、特に好ましくはベータコロナウイルスB系統(β-coronavirus lineage B)が挙げられる。
一つの態様として、ベータコロナウイルスとしては、サルベコウイルス亜属が挙げられる。
ベータコロナウイルスA系統(β-coronavirus lineage A)としては、例えばHCoV-HKU1およびHCoV-OC43、好ましくは、HCoV-OC43が挙げられる。ベータコロナウイルスB系統(β-coronavirus lineage B)としては、例えばSARS-CoVおよびSARS-CoV-2、好ましくはSARS-CoV-2が挙げられる。ベータコロナウイルスC系統(β-coronavirus lineage C)としては、好ましくはMERS-CoVが挙げられる。
一つの態様として、コロナウイルスとしては、HCoV-229E、HCoV-OC43、および/またはSARS-CoV-2、特に好ましくはSARS-CoV-2が挙げられる。
コロナウイルス感染症としては、HCoV-229E、HCoV-NL63、HCoV-OC43、HCoV-HKU1、SARS-CoV、MERS-CoV、および/またはSARS-CoV-2による感染症が挙げられる。好ましくは、HCoV-229E、HCoV-OC43、および/またはSARS-CoV-2による感染症、特に好ましくは、SARS-CoV-2による感染症が挙げられる。
コロナウイルス感染症としては、特に好ましくは、新型コロナウイルス感染症(COVID-19)が挙げられる。
以下に、本発明に係る製造方法について説明する。
工程1 式(III)で示される化合物の製造方法
Figure 0007261529000030

式中の記号は上記と同意義である。
本工程は、式(I)で示される化合物と式(II)で示される化合物を酸存在下で反応させることを特徴とする、式(III)で示される化合物の製造方法である。
式(I)で示される化合物に対して、式(II)で示される化合物は、通常、1.0~5.0当量、例えば、1.0~3.0当量用いることができる。
溶媒としては、上記工程を効率よく進行させるものであれば特に制限されず、酸を溶媒として利用してもよい。酸、トルエン、塩化メチレン、ジクロロエタン等が挙げられ、単独または混合して用いることができる。好ましくは、酸が挙げられる。
酸としては、プロトン酸、ルイス酸が挙げられ、好ましくは、トリフルオロ酢酸が挙げられる。
式(I)で示される化合物に対して、酸の使用量は通常、1.0当量~大過剰、例えば、5.0当量~大過剰用いることができる。
反応温度は、特に制限されないが通常、約0℃~約50℃、好ましくは、室温~40℃で行うことができる。
反応時間は、特に制限されないが通常、0.1時間~12時間、好ましくは、0.1~5時間である。
工程2 式(VI)で示される化合物の製造方法
Figure 0007261529000031

式中の記号は上記と同意義である。
本工程は、式(IV)で示される化合物と式(V)で示される化合物を酸存在下で反応させることを特徴とする、式(VI)で示される化合物の製造方法である。
式(IV)で示される化合物に対して、式(V)で示される化合物は、通常、1.0~5.0当量、例えば、1.0~1.5当量用いることができる。
溶媒としては、上記工程を効率よく進行させるものであれば特に制限されず、酸を溶媒として利用してもよい。トルエン、tブタノール、tアミルアルコール等が挙げられ、単独または混合して用いることができる。好ましくは、トルエン挙げられる。
酸としては、酢酸、2,2―ジメチルブタン酸等が挙げられる。好ましくは、酢酸が挙げられる。
式(IV)で示される化合物に対して、酸の使用量は通常、1.0当量~10当量、例えば、3.0当量~10当量用いることができる。
反応温度は、特に制限されないが通常、室温~約150℃またはマイクロウェーブ照射下、好ましくは、50~150℃またはマイクロウェーブ照射下で行うことができる。
反応時間は、特に制限されないが通常、0.1時間~12時間、好ましくは、3~10時間である。
工程3 式(VII)で示される化合物のフマル酸共結晶I形の製造方法
本工程は、式(VII)で示される化合物をフマル酸、アセトンおよび水存在下で結晶化することを特徴とする、式(VII)で示される化合物のフマル酸共結晶I形の製造方法である。
式(VII)で示される化合物に対して、フマル酸の使用量は通常、1.0当量~3.0、例えば、1.0当量~1.5当量用いることができる。
結晶化温度は、特に制限されないが通常、40~80℃、好ましくは、40~60℃で行うことができる。
結晶化時間は、特に制限されないが通常、1時間以上、好ましくは、2時間以上、さらに好ましくは2~12時間である。
アセトンおよび水存在下であればよく、好ましくはアセトンおよび水の割合としては、85:15~50:50で行うことができる。
本発明に係る製造方法により製造された化合物(式(VII)で示される化合物)は、コロナウイルス3CLプロテアーゼ阻害活性を有するため、ウイルス感染症の治療および/または予防剤として有用である。
さらに本発明に係る製造方法により製造された化合物は、医薬としての有用性を備えており、好ましくは、下記のいずれか、または複数の優れた特徴を有している。
a)CYP酵素(例えば、CYP1A2、CYP2C9、CYP2C19、CYP2D6、CYP3A4等)に対する阻害作用が弱い。
b)高いバイオアベイラビリティー、適度なクリアランス等良好な薬物動態を示す。
c)代謝安定性が高い。
d)CYP酵素(例えば、CYP3A4)に対し、本明細書に記載する測定条件の濃度範囲内で不可逆的阻害作用を示さない。
e)変異原性を有さない。
f)心血管系のリスクが低い。
g)高い溶解性を示す。
h)タンパク質非結合率(fu値)が高い。
i)高いコロナウイルス3CLプロテアーゼ選択性を有している。
j)高いコロナウイルス増殖阻害活性を有している。例えば、ヒト血清(HS)またはヒト血清アルブミン(HSA)添加下において、高いコロナウイルス増殖阻害活性を有している。
コロナウイルス増殖阻害剤としては、例えば後述のCPE抑制効果確認試験(SARS-CoV-2)において、例えばEC50が10μM以下、好ましくは1μM以下、より好ましくは100nM以下である態様が挙げられる。
また、本発明に係る製造方法により製造された化合物の塩・結晶・複合体・共結晶は、医薬としての有用性を備えており、好ましくは、下記のいずれか、または複数の優れた特徴を有している。
bb)高いバイオアベイラビリティー、適度なクリアランス、高いAUC、高い最高血中濃度等、良好な薬物動態を示す。
gg)高い溶解性、高い化学安定性、低い吸湿性を示す。
本発明に係る製造方法により製造された化合物を含有する医薬組成物は、経口的、非経口的のいずれの方法でも投与することができる。非経口投与の方法としては、経皮、皮下、静脈内、動脈内、筋肉内、腹腔内、経粘膜、吸入、経鼻、点眼、点耳、膣内投与等が挙げられる。
経口投与の場合は常法に従って、内用固形製剤(例えば、錠剤、散剤、顆粒剤、カプセル剤、丸剤、フィルム剤等)、内用液剤(例えば、懸濁剤、乳剤、エリキシル剤、シロップ剤、リモナーデ剤、酒精剤、芳香水剤、エキス剤、煎剤、チンキ剤等)等の通常用いられるいずれの剤型に調製して投与すればよい。錠剤は、糖衣錠、フィルムコーティング錠、腸溶性コーティング錠、徐放錠、トローチ錠、舌下錠、バッカル錠、チュアブル錠または口腔内崩壊錠であってもよく、散剤および顆粒剤はドライシロップであってもよく、カプセル剤は、ソフトカプセル剤、マイクロカプセル剤または徐放性カプセル剤であってもよい。
非経口投与の場合は、注射剤、点滴剤、外用剤(例えば、点眼剤、点鼻剤、点耳剤、エアゾール剤、吸入剤、ローション剤、注入剤、塗布剤、含嗽剤、浣腸剤、軟膏剤、硬膏剤、ゼリー剤、クリーム剤、貼付剤、パップ剤、外用散剤、坐剤等)等の通常用いられるいずれの剤型でも好適に投与することができる。注射剤は、O/W、W/O、O/W/O、W/O/W型等のエマルジョンであってもよい。
本発明に係る製造方法により製造された化合物の有効量にその剤型に適した賦形剤、結合剤、崩壊剤、滑沢剤等の各種医薬用添加剤を必要に応じて混合し、医薬組成物とすることができる。さらに、該医薬組成物は、本発明に係る製造方法により製造された化合物の有効量、剤型および/または各種医薬用添加剤を適宜変更することにより、小児用、高齢者用、重症患者用または手術用の医薬組成物とすることもできる。例えば、小児用医薬組成物は、新生児(出生後4週未満)、乳児(出生後4週~1歳未満)幼児(1歳以上7歳未満)、小児(7歳以上15歳未満)若しくは15歳~18歳の患者に投与されうる。例えば、高齢者用医薬組成物は、65歳以上の患者に投与されうる。
本発明に係る製造方法により製造された化合物を含有する医薬組成物(例えば、式(VII)で示される化合物のフマル酸共結晶I形を含む医薬組成物)の投与量は、患者の年齢、体重、疾病の種類や程度、投与経路等を考慮した上で設定することが望ましいが、経口投与する場合、通常0.05~200mg/kg/日であり、好ましくは0.1~100mg/kg/日の範囲内である。非経口投与の場合には投与経路により大きく異なるが、通常0.005~200mg/kg/日であり、好ましくは0.01~100mg/kg/日の範囲内である。これを1日1回~数回に分けて投与すれば良い。
本発明に係る製造方法により製造された化合物(式(VII)で示される化合物)は、該化合物の作用の増強または該化合物の投与量の低減等を目的として、例えば、他の新型コロナウイルス感染症(COVID-19)の治療薬(該治療薬としては、承認を受けた薬剤、および開発中または今後開発される薬剤を含む)(以下、併用薬剤と称する)と組み合わせて用いてもよい。この際、本発明に係る製造方法により製造された化合物と併用薬剤の投与時期は限定されず、これらを投与対象に対し、同時に投与してもよいし、時間差をおいて投与してもよい。さらに、本発明に係る製造方法により製造された化合物と併用薬剤とは、それぞれの活性成分を含む2種類以上の製剤として投与されてもよいし、それらの活性成分を含む単一の製剤として投与されてもよい。
併用薬剤の投与量は、臨床上用いられている用量を基準として適宜選択することができる。また、本発明に係る製造方法により製造された化合物と併用薬剤の配合比は、投与対象、投与ルート、対象疾患、症状、組み合わせ等により適宜選択することができる。例えば、投与対象がヒトである場合、本発明に係る製造方法により製造された化合物1重量部に対し、併用薬剤を0.01~100重量部用いればよい。
以下に実施例および参考例、ならびに試験例を挙げて本発明をさらに詳しく説明するが、本発明はこれらにより限定されるものではない。
また、本明細書中で用いる略語は以下の意味を表す。
BINAP:2,2'-ビス(ジフェニルホスフィノ)-1,1'-ビナフチル
Boc:tert-ブトキシカルボニル
CPME:シクロペンチルメチルエーテル
CbzCl:クロロぎ酸ベンジル
DME:ジメチルエーテル
DMF:N,N-ジメチルホルムアミド
DMSO:ジメチルスルホキシド
DTT:ジチオトレイトール
EDC:1-エチル-3-(3-ジメチルアミノプロピル)カルボジイミド
EDT:1,2-エタンジチオール
EDTA:エチレンジアミン四酢酸
FBS:ウシ胎児血清
HOBT:1-ヒドロキシベンゾトリアゾール
LHMDS:リチウムビス(トリメチルシリル)アミド
MEK:メチルエチルケトン
MEM:イーグル最小必須培地
NMP:N-メチル-2-ピロリドン
TFA:トリフルオロ酢酸
TMSCl:クロロトリメチルシラン
mM:mmol/L
μM:μmol/L
nM:nmol/L
(化合物の同定方法)
各実施例および参考例で得られたNMR分析は400MHzで行い、DMSO-d、CDClを用いて測定した。また、NMRデータを示す場合は、測定した全てのピークを記載していない場合が存在する。
明細書中に「RT」または「保持時間」とあるのは、LC/MS:液体クロマトグラフィー/質量分析または液体クロマトグラフィーでのリテンションタイムを表し、以下の条件で測定した。
なお、明細書中、MS(m/z)との記載は、質量分析で観測された値を示す。
(測定条件1)
カラム:ACQUITY UPLC(登録商標)BEH C18 (1.7μm i.d.2.1x50mm) (Waters)
流速:0.8mL/分
UV検出波長:254nm
移動相:[A]は0.1%ギ酸含有水溶液、[B]は0.1%ギ酸含有アセトニトリル溶液
グラジエント:3.5分間で5%-100%溶媒[B]のリニアグラジエントを行った後、0.5分間、100%溶媒[B]を維持した。
(測定条件2)
カラム:ACQUITY UPLC(登録商標)BEH C18 (1.7μm i.d.2.1x50mm) (Waters)
流速:0.8mL/分
UV検出波長:254nm
移動相:[A]は10mM炭酸アンモニウム含有水溶液、[B]は0.1%ギ酸含有アセトニトリル溶液
グラジエント:3.5分間で5%-100%溶媒[B]のリニアグラジエントを行った後、0.5分間、100%溶媒[B]を維持した。
(測定条件4)
カラム:Xselect CSH C18 (3.5μm i.d.4.6x150mm) (Waters)
カラム温度:40℃付近の一定温度
UV検出波長:254nm
移動相:[A]は0.1%ギ酸含有水溶液、[B]は液体クロマトグラフィー用アセトニトリル
グラジエント:17分間で5%-95%溶媒[B]のリニアグラジエントを行った後、3分間、95%溶媒[B]を維持した。
流量:1.0mL/分
注入量:5μL
(測定条件5)
カラム:Xselect CSH C18 (3.5μm i.d.4.6x150mm) (Waters)
カラム温度:40℃付近の一定温度
UV検出波長:254nm
移動相:[A]は0.1%ギ酸含有水溶液、[B]は液体クロマトグラフィー用アセトニトリル
グラジエント:17分間で5%-95%溶媒[B]のリニアグラジエントを行った後、3分間、95%溶媒[B]を維持した。
流量:1.0mL/分
注入量:10μL
(測定条件7)
カラム:Xselect CSH Fluoro-Phenyl (3.5μm i.d.4.6x150mm) (Waters)
カラム温度:40℃付近の一定温度
UV検出波長:255nm
移動相:[A]は0.1%ギ酸含有水溶液、[B]は液体クロマトグラフィー用アセトニトリル
グラジエント:6分間、20%溶媒[B]を維持し,21分間で20%-42%溶媒[B]のリニアグラジエントを行い、4分間で42%-50%溶媒[B]のリニアグラジエントを行い,最後に3分間で50%-95%溶媒[B]のリニアグラジエントを行った。
流量:1.0mL/分
注入量:10μL
(測定条件8)
カラム:Xselect CSH Fluoro-Phenyl (3.5μm i.d.4.6x150mm) (Waters)
カラム温度:40℃付近の一定温度
UV検出波長:255nm
移動相:[A]は0.1%ギ酸含有水溶液、[B]は液体クロマトグラフィー用アセトニトリル
グラジエント:2分間、20%溶媒[B]を維持し,6分間で20%-37%溶媒[B]のリニアグラジエントを行い、10分間で37%-50%溶媒[B]のリニアグラジエントを行い、2分間で50%-95%溶媒[B]のリニアグラジエントを行った。
流量:1.0mL/分
注入量:10μL
(測定条件9)
カラム:YMC Jsphere ODS-H80(4μm i.d.4.6x250mm)
カラム温度:40℃付近の一定温度
UV検出波長:250nm
移動相:[A]は0.2%トリフルオロ酢酸含有水溶液、[B]は液体クロマトグラフィー用メタノール
グラジエント:6分間で10%-70%溶媒[B]のリニアグラジエントを行った後、3分間、70%溶媒[B]を維持,その後,3分間で70%-90%のリニアグラジエント,その後,5分間,90%溶媒[B]を維持,その後,1分間で90%-95%のリニアグラジエント,その後5分間,95%溶媒[B]を維持
流量:1.0mL/分
注入量:5μL
(測定条件10)
カラム:Xselect CSH C18(3.5μm i.d.4.6x150mm)
カラム温度:40℃付近の一定温度
UV検出波長:254nm
移動相:[A]は0.1%ギ酸含有水溶液、[B]は液体クロマトグラフィー用アセトニトリル
グラジエント:17分間で5%-95%溶媒[B]のリニアグラジエントを行った後、3分間、95%溶媒[B]を維持
流量:1.0mL/分
注入量:10μL
(測定条件11)
カラム:XBridge C18(3.5μm i.d.4.6x150mm)
カラム温度:40℃付近の一定温度
UV検出波長:210nm
移動相:[A]は10mMアンモニア含有水溶液、[B]は液体クロマトグラフィー用メタノール
グラジエント:5分間で5%溶媒[B]を維持し、10分間で5%-38%溶媒[B]のリニアグラジエントを行い、5分間で38%-95%溶媒[B]のリニアグラジエントを行った。
流量:0.8mL/分
注入量:10μL
(粉末X線回折パターンの測定)
日本薬局方の一般試験法に記載された粉末X線回折測定法に従い、各実施例で得られた結晶の粉末X線回折測定を行った。測定条件を以下に示す。
(装置)
リガク社製MiniFlex600
(操作方法)
検出器:高速一次元検出器(D/TecUltra2)
光源の種類:Cu管球
使用波長:CuKα線
管電流:15mA
管電圧:40Kv
試料プレート:無反射試料板
(単結晶構造解析の測定と解析方法)
単結晶構造解析の測定条件および解析方法を以下に示す。
(装置)
リガク社製 XtaLAB P200 MM007
(測定条件)
測定温度:25℃
使用波長:CuKα線(λ=1.5418Å)
ソフト:CrysAlisPro 1.171.39.46e (Rigaku Oxford Diffraction, 2018)
(データ処理)
ソフト:CrysAlisPro 1.171.39.46e (Rigaku Oxford Diffraction, 2018)
データはローレンツ及び偏光補正、吸収補正を行った。
(結晶構造解析)
直接法プログラムShelXT(Sheldrick, G.M.,2015)を用いて位相決定を行い、精密化はShelXL(Sheldrick, G.M.,2015)を用いて、full-matrix最小二乗法を実施した。非水素原子の温度因子はすべて異方性で精密化を行った。水素原子はShelXLのデフォルトパラメータを用いて計算により導入し、riding atomとして取り扱った。全ての水素原子は、等方性パラメーターで精密化を行った。
図1の作図にはPLATON(Spek,1991)/ORTEP(Johnson,1976)を使用した。
式(VII)で示される化合物のフマル酸共結晶I形の合成
Figure 0007261529000032
工程1:化合物3の合成
化合物1(35.0kg、238.8mol、塩酸塩)、N,N-ジメチルアセトアミド(273L)、1,8-ジアザビシクロ[5,4,0]-7-ウンデセン(87.2kg、573.1mol)および化合物2(26.0kg、262.7mol)を混合し、25℃で10分間攪拌した。反応溶液にN,N'-カルボニルジイミダゾール(50.3kg、310.4mol)、N,N-ジメチルアセトアミド(7L)を混合し、50℃で90分間攪拌した。反応溶液にメタノール(18.4kg、573.1mol)を加え、25℃に冷却し、10%硫酸でpHを2.5に調整した。スラリーを5℃に冷却し、固体をろ取し、20%メタノール水で洗浄後、乾燥することで化合物3(38.12kg、162.0mol、収率:67.9%)を得た。
HPLC(UV=254nm):RT=8.9min、HPLC測定条件4
工程2:化合物5の合成
化合物3(34.5kg、146.7mol)、アセトニトリル(345L)、ジイソプロピルエチルアミン(26.5kg、205.4mol)および化合物4(39.6kg、176.0mol)を混合し、60℃で300分間攪拌した。反応溶液を25℃に冷却し、水(172.5L)を加えた。スラリーを0℃に冷却し、固体をろ取し、66%アセトニトリル水で洗浄後、乾燥することで化合物5(46.10kg、121.5mol、収率:82.9%)を得た。
HPLC(UV=254nm):RT=14.7min、HPLC測定条件4
工程3:化合物7の合成
化合物5(29.0kg、76.4mol)、トリフルオロ酢酸(72.5L)、化合物6(16.5kg、152.9mol)を混合し、35℃で180分間攪拌した。反応溶液を冷却し、酢酸エチル(348L)を加え、38%リン酸三カリウム水溶液、2.3%食塩水、水で洗浄した。酢酸エチル溶液を203Lまで濃縮し、ヘプタン(261L)を加えた。スラリーを0℃に冷却し、固体をろ取し、酢酸エチルとヘプタンの混合溶媒で洗浄後、乾燥することで化合物7(23.60kg、65.0mol、収率:85.0%)を得た。
HPLC(UV=254nm):RT=12.5min、HPLC測定条件5
工程4:化合物9の合成
化合物7(23.3kg、64.1mol)、化合物8(14.0kg、83.4mol、塩酸塩)、ヨウ化カリウム(6.4kg、38.5mol)、炭酸セシウム(31.3kg、96.2mol)およびN,N-ジメチルアセトアミド(139.8L)を混合し、40℃で360分間攪拌した。反応溶液を25℃に冷却し、酢酸(34.6kg、577.2mol)を加えた。不溶物をろ別し、ろ液にアセトニトリル(93.2L)、水(326.2L)を加えた。スラリーを0℃に冷却し、固体をろ取し、20%アセトニトリル水溶液で洗浄後、乾燥することで化合物9(20.35kg、44.4mol、収率:69.2%)を得た。
HPLC(UV=255nm):RT=25.1min、HPLC測定条件7
工程5:式(VII)で示される化合物のフマル酸共結晶I形の合成
化合物9(39.0kg、80.7mol)、化合物10(16.2kg、84.8mol)、酢酸(30.7kg、484.3mol)およびトルエン(234L)を混合し、100℃で360分間攪拌した。トルエン(390L)を加え、得られたスラリーを25℃に冷却した。固体をろ取し、アセトンで洗浄し、式(VII)で示される化合物の未乾結晶を得た。
得られた式(VII)で示される化合物の半量を未乾結晶にアセトン(613.5L)と水(109.2L)を加え、50℃で溶解した。得られた溶解液を活性炭処理し、処理液にアセトン(150.2L)と水(5.9L)を加え、702Lまで濃縮した。濃縮液を50℃に温度調節し、フマル酸(4.6kg、72.6mol)、アセトン(150.2L)、水(5.9L)を加え、464Lまで濃縮した。濃縮液にアセトン(78L)を加え、265Lまで濃縮し、アセトン(19.5L)を加えた。スラリーを55℃に温度調節し、120分間以上攪拌した。スラリーを0℃に冷却し、固体をろ取し、アセトンで洗浄後、乾燥した。同様の操作を残りの半量についても繰り返すことで、式(VII)で示される化合物のフマル酸共結晶I形(41.68kg、64.3mol、収率:75.6%)を得た。
HPLC(UV=255nm):RT=12.8min、HPLC測定条件8
式(VII)で示される化合物のトルエン和物の合成
工程1
化合物9(150mg,0.327mmol)と化合物10(65.4mg,0.360mmol)をトルエン(1.5mL)および酢酸(0.187ml,3.27mmol)と混合し、100℃で9時間撹拌した。室温に冷却後、ヘプタン(1.5mL,10V)を加えろ過し、得られた結晶をヘプタン(0.7mL)で3回洗浄した。減圧乾燥を行い、式(VII)で示される化合物の結晶(168mg、収率87%)を得た。得られた結晶にはトルエンが溶媒和物として0.5から0.6分子相当が含まれており、通常操作範囲の減圧乾燥下では、トルエンは除去されなかった。品質的に良好な式(VII)で示される化合物のトルエン和物の取得を確認した。
1H-NMR(400MHz,CDCl)δ ppm:7.93(s,1H),7.70(d,J=2.57Hz,2H),7.62(brs,1H),7.35-7,45(m,1H),7.07(m,1H),6.92-6.97(td,J=9.63,6.42,1H),5.34(s,2H),5.14(s,2H),4.20(s,3H),3.87(s,2H).
7.14-7.27ppm,2.35ppmに、トルエン0.5分子から0.6分子に相当するピークを確認した。
参考例1 化合物S-4の合成
Figure 0007261529000033
工程1:化合物S-2の合成
化合物S-1(5.50kg、29.5mol)、アセトニトリル(21.7kg)および氷酢酸(115.00kg)を混合し、5℃に冷却した。17%亜硝酸ナトリウム水溶液(13.03kg)を加え1時間撹拌し、25℃に昇温後1.5時間撹拌した。不溶物をろ別し、アセトニトリル(21.7kg)、テトラヒドロフラン(49.0kg)で不溶物を洗浄した。集めたろ液に水(460L)を加えた。スラリーを0℃に冷却し、固体をろ取し、水で洗浄後、乾燥することで化合物S-2(3.75kg、19.0mol、収率:64.4%)を得た。
LC/MS(ESI):m/z=196(M-H)、RT=11.8min、LC/MS測定条件4
工程2:化合物S-3の合成
化合物S-2(3.25kg、16.4mol)と酢酸エチル(58.7kg)を混合し、トリメチルオキソニウムテトラフルオロボレート(2.09kg、14.1mol)を加え、25℃で7時間撹拌した。この反応液に酢酸エチル(29.5kg)、メタノール(10.3kg)の混合液を加えた。この混合液を5%炭酸ナトリウム水溶液(66.3kg)に加え、有機層と水層に分離した。有機層を5%塩化ナトリウム水溶液(65.8kg)で2回洗浄し、活性炭処理し、42kgまで濃縮した。テトラヒドロフラン(87.0kg)を加え、23kgまで濃縮する操作を2回繰り返し、さらにテトラヒドロフラン(87.0kg)を加え、18.9kgまで濃縮し、33℃に昇温した。この混合液にヘプタン(47.0kg)を加えた。スラリーを0℃に冷却し、固体をろ取し、テトラヒドロフラン、ヘプタンの混合液で洗浄後、乾燥することで化合物S-3(1.68kg、7.9mol,収率:48.2%)を得た。
LC/MS(ESI):m/z=212(M+H)、253(M+CHCN+H)RT=12.4min、LC/MS測定条件4
工程3:化合物S-4の合成
化合物S-3(1040g、4.9mol)、10%パラジウム炭素(PEタイプ、含水)(523g、0.25mol)および酢酸エチル(8.99kg)を混合し、ヒドラジン一水和物(504g、10.1mol)を加え、35℃で3時間撹拌した。10%パラジウム炭素をろ別し、水(1560g)、酢酸エチル(9.00kg)で10%パラジウム炭素を洗浄した。集めたろ液に2mol/L塩酸(750g)を加え、有機層と水層に分離した。得られた水層を酢酸エチル(4.69kg)で抽出した。有機層を併せて活性炭処理し、11.09kgまで濃縮した。この濃縮液に4mol/L塩化水素・酢酸エチル溶液(1124g)を加えた。固体をろ取し、酢酸エチルで洗浄後、乾燥することで化合物S-4(0.84kg、3.9mol、収率:78.5%)を得た。
LC/MS(ESI):m/z=182(M+H)、223(M+CHCN+H)RT=6.6min、LC/MS測定条件4
塩素濃度(イオンクロマトグラフィー):16.74%
参考例2 化合物8の合成
Figure 0007261529000034
工程1:化合物A-2のジクロロメタン溶液の合成
化合物A-1(9.2kg,65.1mol)およびテトラヒドロフラン(64L)を混合し、0℃に冷却し、スラリーとした。ここに、水素化ビス(2-メトキシ)アルミニウムナトリウム(Red-AL)/トルエン溶液(65wt%)(26.4kg,84.9mol)とテトラヒドロフラン(28L)を混合したRed-AL/テトラヒドロフラン溶液を内温8℃以下に保ちながら60分間かけて滴下した。その後、0℃~5℃で30分間撹拌した。本反応液に対してアセトン(4.9kg,84.3mol)を30分間かけて滴下し、25℃に昇温した。別の反応器に酒石酸カリウムナトリウム・4水和物(46kg,163mol)とテトラヒドロフラン(138L)を混合したスラリーを準備し、先のRed-AL還元をアセトンでクエンチした反応液を30分間かけて滴下した(この間に内温は40℃付近になった)。2時間、40℃で撹拌を継続したのち、25℃に冷却した。水(2.5kg)を加えて撹拌したのち、ブフナーろ過を行い、得られたろ液を35kg(28L)まで減圧濃縮した。ろ液(28L)を3等分し、1つ目についてトルエン(2.6kg)を加え、減圧濃縮を行う操作を8回繰り返したのち、最終的に濃縮乾固した。濃縮乾固した生成物にジクロロメタン(13.5kg)を加えて生成物A-2のジクロロメタン溶液とした。同じ操作を2つ目、3つ目にも実施し、A-2(5.53kg)とジクロロメタン(42.7kg)で構成されるA-2/ジクロロメタン溶液を調整した(収率:74.8%)。
1H-NMR(400MHz,CDCl3,30℃)δ ppm:8.00(s,1H),4.74(s,2H),3.90(s,3H).
工程2:化合物8の合成
工程1で製造したA-2/ジクロロメタン溶液(5.53kgのA-2(48.8mol)を含むジクロロメタン溶液49.8kg)にジクロロメタン(44L)を加え、25℃に温度調整した。塩化チオニル(7.8kg,65.5mol)とジクロロメタン(27L)の混合溶液を30分間かけて滴下し、ジクロロメタン(8.2L)を用いてライン洗浄し洗液として流入後、室温で7時間撹拌した。別途、酢酸ナトリウム(36.2kg,436mol)と水道水(143L)から20%酢酸ナトリウム水溶液(179kg)を調整した。20%酢酸ナトリウム(119kg)を先の反応液に滴下した。滴下終了時点のpHは4.6付近であった。本操作で得られた有機層を塩化ナトリウム(5.5kg)と水道水(49L)から調整した10%塩化ナトリウム水溶液で洗浄、水層についてもジクロロメタン(55L)で抽出した。合併有機層(ジクロロメタン溶液)を33Lまで濃縮したのち、酢酸エチル(27.5L)を加え、濃縮した。33Lまで濃縮後、あらためて酢酸エチル(47.5L)を加え、ジャケット温度60℃のもとで常圧濃縮し、生じた無機塩をろ過後した。ろ液に塩酸・酢酸エチル溶液(4mol/L,12.6kg)を加えて塩酸塩化し、25℃で30分間撹拌した後、5℃付近に冷却した。30分間撹拌し、晶析熟成の後、得られた晶析スラリーをろ過、冷却した酢酸エチル(55L)で洗浄、減圧乾燥し、化合物8(5.25kg)を得た(淡黄色粉末,収率:64.8%)。
1H-NMR(400MHz,DMSO-D6,30℃)δ ppm:8.54(s,1H),4.70(s,2H),3.86(s,3H).
参考例3 化合物10の合成
Figure 0007261529000035
工程1:化合物B-2の合成
窒素雰囲気下で、0℃~5℃下に冷却した98%硫酸(395.7L)に対して化合物B-1(79.1kg,499mol)を分割して加えた(内温を0℃~5℃に保つ)。硝酸カリウム(55.5kg)を内温0℃~12℃に保ち、15回に分けて(20分以上の間隔を空けて)分割投入した。内温0℃~5℃で5時間撹拌した。0℃~5℃に冷却した水(791L)に内温0℃~5℃に保ちながら、先の反応液をゆっくり流入し、98%硫酸(39.6L)で洗いこみを行なったのち、内温0℃で5時間撹拌した。スラリーを遠心分離機によりろ過し、水(791L)で洗浄した。得られた粗固体を水(791L)に懸濁させ、20℃~30℃で30分間撹拌したのち、固体をろ過、水(791L)で3回洗浄した後、減圧乾燥し、化合物B-2(99.61kg)を得た。
1H-NMR(400MHz,CDCl3)δ ppm:10.31(s,1H),8.46(d,J=6.60Hz,1H),7.47(d,J=9.17Hz,1H).
HPLC(UV=250nm):RT=10.9min、HPLC測定条件9
工程2:化合物S-2の合成
エタノール(697L)、水(697L)およびヒドラジン1水和物(73.5kg,1468mol)を混合し、45℃に加熱した。ここに、化合物B-2(99.6kg,489mol)とエタノール(299L)の混合溶液を60分かけて滴下し、さらに8時間、45℃から50℃で9時間撹拌した。内温を40℃~50℃に保ちながら、炭酸水素カリウム(53.9kg,538mol)と水(1295L)から調整した水溶液を30分間以上かけて滴下した。0℃~5℃に冷却し、1時間撹拌したのち、ろ過を行なった。水(1335L)とエタノール(657L)を混合し、0℃~5℃に冷却させたエタノール水溶液を用いて先の固体を洗浄した。減圧乾燥を行って、化合物S-2(83.25kg)を得た(収率:86.9%)。
1H-NMR(400MHz,DMSO-d6)δ ppm:13.56-13.98(m,1H),8.67(s,1H),8.37(d,J=0.98Hz,1H),7.92(d,J=0.61,1H).
HPLC(UV=250nm):RT=10.4min、HPLC測定条件9
工程3:化合物S-3の合成
化合物S-2(84kg,430mol)と酢酸エチル(1596L)を混合し、20℃~30℃で撹拌した。トリメチルオキソニウムテトラフルオロボレート(77.6kg,525mol)を数回に分けて投入し、酢酸エチル(84L)を加え、25℃で6時間撹拌した。メタノール(252L)と酢酸エチル(420L)の混合溶液を2時間かけて先の反応液に滴下し、過剰のトリメチルオキソニウムテトラフルオロボレートのクエンチを行った。炭酸ナトリウム(84kg)と水(1596L)を混合した炭酸ナトリウム水溶液に、先のクエンチ後の反応液を1時間かけて滴下し、酢酸エチル(420L)とメタノール(84L)を加えた。分液操作により得られた有機層を飽和食塩水(1680kg)で2回洗浄し、得られた有機層に対して活性炭ろ過処理を行った。その後、有機層を減圧濃縮したのち、テトラヒドロフラン(2520L)を流入し、さらに減圧濃縮を行った。テトラヒドロフランの追加流入と減圧濃縮の操作を再度実施したのち、ヘプタン(2139L)を滴下し、-5℃~5℃に冷却した後、0℃付近で1時間撹拌、晶析熟成した。晶析スラリーをろ過し、冷却したテトラヒドロフラン(224L)とへプタン(912L)の混合溶液で洗浄した。減圧乾燥を行って、化合物S-3(65.73kg)を得た(収率:74.1%)。
1H-NMR(400MHz,CDCl3)δ ppm:8.31(s,1H),8.13(s,1H),7.81(s,1H),4.27(s,3H).
HPLC(UV=254nm):RT=10.3min、HPLC測定条件10
工程4:化合物10の合成
化合物S-3(65.7kg,310mol)と酢酸エチル(657L)を混合し、室温で撹拌した後、10℃付近に冷却し、窒素置換を行った。5%の白金-炭素(57.7kg,53%水分含有)を加えた。水素置換後、内温を25℃付近に調節しながら4時間撹拌した。原料消失を確認後に窒素置換、ろ過操作を実施し白金-炭素触媒を除去した。分液操作を実施後、有機層を濃縮、酢酸エチル溶液にヘプタンを滴下し、晶析スラリーを形成させた。ろ過、ヘプタン/酢酸エチルで洗浄後、減圧乾燥を実施し、化合物10(37.24kg)を得た(収率:66.2%)。
1H-NMR(400MHz,CDCl3)δ ppm:7.70(s,1H),7.64(s,1H),6.89(s,1H),4.15(s,3H).
HPLC(UV=254nm):RT=4.8min、HPLC測定条件10
参考例4 化合物9の合成
Figure 0007261529000036
工程1:化合物C-2の合成
化合物C-1(10.00g、48.0mmol、メシル酸塩)、N,N'-カルボニルジイミダゾール(8.18g、50.4mmol)、アセトニトリル(60.00mL)、およびジイソプロピルエチルアミン(6.83g、52.8mmol)を混合し、10℃で60分間攪拌した。反応液に化合物1(8.09g、55.2mmol、塩酸塩)、ジイソプロピルエチルアミン(7.14g、55.2mmol)を混合し、50℃で210分間攪拌した。反応液を冷却し、45gまで濃縮した。2-プロパノール(100mL)を加え、60gまで濃縮した後、2-プロパノール(100mL)を加えた。スラリーを0℃に冷却し、固体をろ取し、2-プロパノールで洗浄後、乾燥することで化合物C-2(10.48g、42.2mmol、収率:88%)を得た。
HPLC(UV=210nm):RT=14.5min、HPLC測定条件11
工程2:化合物C-3の合成
化合物C-2(8.00g、32.2mmol)、N,N'-カルボニルジイミダゾール(6.79g、41.9mmol)、テトラヒドロフラン(80.0mL)、および1,8-ジアザビシクロ[5,4,0]-7-ウンデセン(5.40g,35.4mmol)を混合し、25℃で120分間攪拌した。テトラヒドロフラン(80.0mL)を滴下し、反応液を0℃に冷却し、晶析スラリーを形成させた。固体をろ取し、テトラヒドロフランで洗浄後、加熱乾燥することで化合物C-3の結晶(12.6g、29.6mmol、1,8-ジアザビシクロ[5.4.0]-7-ウンデセン塩、収率:92%)を得た。
HPLC(UV=210nm):RT=1.9min、HPLC測定条件11
工程3:化合物9の合成
化合物C-3(1.00g、2.3mmol、1,8-ジアザビシクロ[5.4.0]-7-ウンデセン塩)、N,N-ジメチルアセトアミド(5.0mL)、および化合物4(579.2mg、2.6mmol)を混合し、70℃で300分間攪拌した。反応液を冷却し、アセトニトリル(10mL)を加え、9.4gまで濃縮する操作を2回繰り返した。濃縮液に化合物6(461mg、4.7mmol)およびジイソプロピルエチルアミン(456mg、3.5mmol)を加え、60℃で160分間攪拌した。反応液を25℃に冷却し、酢酸(703mg、11.7mmol)、水(8.0mL)および種晶を加え、得られた晶析スラリーを0℃に冷却した。スラリーに水(12.0mL)を加え、固体をろ取し、20%アセトニトリル水溶液で洗浄後、乾燥することで化合物9(0.86g、1.9mmol,収率:79.5%)を得た。
HPLC(UV=255nm):RT=14.5min、HPLC測定条件8
参考例5 化合物S-3の合成
Figure 0007261529000037
工程1:化合物S-3の合成
参考例3の工程1と同様にして、化合物B-2を得た。続いて、化合物B-2(30g、147mmol)とNMP(120mL)を混合し、氷冷下で1-Boc-1-メチルヒドラジン(56g、383mmol)を加え、室温で30分間撹拌した。反応液にジイソプロピルエチルアミン(38.6mL、221mmol)を加え、90℃にて20時間攪拌した。反応液を80℃にして水(240mL)を加えた後、室温に冷却し、析出した不溶物をろ別した。得られた固体をNMP/水=1/2(15mL)の混合液で3回洗浄し、さらに水(30mL)で3回洗浄した。得られた固体を酢酸イソプロピル(60mL)、ヘプタン(240mL)に懸濁させ室温で攪拌後、酢酸イソプロピル/ヘプタン=1/4(30mL)で3回洗浄することで化合物D-3を得た。得られた固体を酢酸イソプロピル(100mL)に懸濁させた。得られた懸濁液をメシル酸(96mL、1474mmol)と酢酸イソプロピル(100mL)の混液に55℃にて加え、酢酸イソプロピル(60mL)で洗いこみ、同温にて25分間攪拌した。氷冷下、水(240mL)、水酸化ナトリウム水溶液(239mL、1916mmol)および酢酸イソプロピル(150mL)を反応液に加え、40℃にて攪拌した。得られた反応液に酢酸イソプロピル(150mL)を加えた。得られた有機層を水(90mL)で3回洗浄し、45gまで濃縮した。酢酸イソプロピル(12g)、ヘプタン(210mL)を加え、得られた不溶物をろ別し、固体を酢酸イソプロピル/ヘプタン=1/7(30ml)で3回洗浄、乾燥することで、化合物S-3(25.3g、120mmol、収率:81.1%)を得た。
1H-NMR(400MHz,CDCl3)δ ppm:8.34(s,1H),8.13(s,1H),7.84(s,1H),4.28(s,3H).
参考例6 化合物10の合成
Figure 0007261529000038
工程1:化合物T-2、T-3の合成
氷冷下、化合物T-1(40g、182mmol)、濃硫酸(200mL、3677mmol)および69%硝酸(23.3g、255mmol)を混合し、氷冷から室温にて3時間攪拌し、その後終夜静置した。氷水520mLにその混合液を注入し、ジクロロメタン(200mL)を加え、分液操作を行った。得られたジクロロメタン溶液を5%炭酸水素ナトリウム水溶液(400mL)で2回洗浄し、濃縮乾固した。得られた固体にメタノール(120mL)を加えたのち、内容量が116gになるまで濃縮した。得られたスラリーに内容量が333gになるまでメタノールを加えたのち、水(240mL)を加え、得られた不溶物をろ別し、固体をメタノール/水=1/1(200mL)で洗浄、乾燥することで、化合物T-2/T-3=1/2.78の混合物(30.67g、収率:58.5%)を得た。
LC/MS(ESI):m/zとしてMS検出されず、RT=2.04min、LC/MS測定条件1
工程2:化合物T-4の合成
窒素気流下、T-2/T-3=1/2.78の混合物(200mg)に2-プロパノール(1.4mL)を加え、60℃まで昇温し、トリエチルアミン(0.289mL、2.07mmol)を加え、1.5時間攪拌した。その後、メチルアミン塩酸塩(94mg、1.39mmol)を水(0.4mL)に溶かした溶液を60℃で反応液に加え、3時間攪拌した。得られた反応液に60℃で水(8mL)を加えた後、室温に冷却し30分間攪拌した。析出した不溶物をろ別し、得られた固体を水(5mL)で洗浄、乾燥することで、化合物T-4(194mg、0.699mmol、収率:100%)を得た。
LC/MS(ESI):m/z=277(M+H)、RT=2.46min、LC/MS測定条件2
工程3:化合物T-5の合成
窒素気流下、化合物T-4(500mg,1.80mmol)と2-プロパノール(2.5mL)およびトリブチルホスフィン(802mg、3.96mmol)を混合し、80℃にて1.5時間撹拌した。室温へ冷却した後、トルエン(3mL)にて3回溶媒置換を行い、濃縮後の残渣が5gになるまで濃縮を行った。その後、反応液を4℃まで氷冷し、4mol/L塩酸-酢酸エチル溶液(1.5mL)を加え20分間攪拌した。得られた晶析スラリーをろ別し、トルエン(2.5mL)で洗浄、乾燥することで固体を得た。水(4.3mL)と炭酸水素ナトリウム(0.192g、2.29mmol)の混液に、得られた固体を少しずつ加え、pHを7~8に調整し30分間攪拌して、晶析スラリーを得た。ろ別し、水(8.6mL)で洗浄、乾燥することで、化合物T-5(351mg、1.43mmol、収率:79.4%)を得た。
LC/MS(ESI):m/z=245(M+H)、RT=1.90min、LC/MS測定条件1
工程4:化合物10の合成
窒素気流下、化合物T-5(2.015g、8.21mmol)、DME(20mL)、ナトリウムtert-ブトキシド(1.104g、11.49mmol)、ベンゾフェノンイミン(1.645mL、9.80mmol)、BINAP(0.153g、0.246mmol)、およびジアセトキシパラジウム(0.036g、0.160mmol)を混合し、80℃にて9時間攪拌して、終夜静置した。得られた懸濁液にエタノール(10mL)を加え、5℃に冷却した。懸濁液に30%硫酸(20mL)を少しずつ加え、室温にて終夜攪拌した。得られた反応液に酢酸エチル(40mL)、水(20mL)を加え、分液操作を実施した。得られた水層を酢酸エチル(10mL)で洗浄し、有機層を10%硫酸(10mL)で洗浄した。得られた水層を合わせ、氷冷後、48%水酸化ナトリウム水溶液を用いてpHが8になるまで中和した。酢酸エチル(20mL)を加え、析出した硫酸ナトリウムをろ別し、分液操作を実施した。得られた水層に酢酸エチル(20mL)を加え、分液操作を実施した。得られた有機層を合わせ、濃縮し、さらに酢酸エチル(10mL)にて溶媒置換を4回繰り返した。ヘプタン(12mL)を加え、得られた晶析スラリーを氷冷下1時間攪拌した。ろ別し、酢酸エチル/ヘプタン=1/3(6mL)にて洗浄、乾燥することで、化合物10(1.18g、6.5mmol、収率:79.2%)を得た。
LC/MS(ESI):m/z=182(M+H)、RT=0.88min、LC/MS測定条件1
参考例7 化合物U-4の合成
Figure 0007261529000039
工程1:化合物U-2の合成
化合物U-1(2.09g、22.6mmol、塩酸塩)とCPME(12.04g)および水(7g)を混合し、炭酸カリウム(4.25g、30.8mmol)を水(7g)に溶解させた溶液を、反応液の温度が20~30℃になるようにゆっくり加えた。得られた混合溶液を激しく攪拌し、CbzCl(3.50g、20.5mmol)を反応液の温度が20~30℃になるようにゆっくり加え、室温にて1時間攪拌した。得られた溶液に分液操作を施し、有機層を水(14g)で洗浄後、濃縮した。残渣にCPME(15.05g)を加え、さらに残渣が10.5gになるまで濃縮した。得られた溶液を45℃まで昇温し、ヘプタン(9.58g)を温度を維持したまま30分間かけて加え、その後さらに30分間攪拌した。ヘプタン(19.15g)を加えた後、得られた晶析スラリーを氷冷下で30分間攪拌した。ろ別し、得られた固体をCPME-ヘプタン(3g-9.58g)の混液で洗浄、乾燥することで、化合物U-2(3.41g、17.93mmol、収率:86%)を得た。
HPLC(UV=254nm):RT=9.51min、HPLC測定条件5
工程2:化合物U-3の合成
化合物U-2(8.00g、42.1mmol)にメタノール(31.66g)を加え、0℃まで冷却後、ナトリウムメトキシドの28%メタノール溶液(2.43g、12.6mmol)を加え、同温度にて4時間攪拌した。得られた溶液に、N-メチルホルモヒドラジド(3.74g、50.5mmol)をメタノール(19g)に溶かした溶液を0~5℃で加え、さらに酢酸(2.53g、42.1mmol)を同温度にて加え、0℃にて2時間攪拌した。得られた溶液を60℃まで昇温し、同温度にて4時間攪拌した。反応液を32gまで濃縮した後、酢酸エチル(57.73g)、5%炭酸水素ナトリウム水溶液(67.53g)を加えた。得られた混合溶液を10分間攪拌し、分液操作を行った。得られた水層についても酢酸エチル(57.73g)で抽出した。合わせた有機層を40gまで濃縮した。MEK(64.4g)を加え、さらに40gまで濃縮する操作を2回繰り返した。得られた濃縮液にメシル酸(4.04g、42.0mmol)をMEK(32.2g)に溶かした溶液を20~30℃で加え、室温にて30分間攪拌した。析出した晶析スラリーをろ別し、得られた固体をMEK(25.76g)で洗浄、乾燥することで、化合物U-3(10.1g、29.5mmol、メシル酸塩、収率:70%)を得た。
HPLC(UV=254nm):RT=7.90min、HPLC測定条件5
工程3:化合物C-1の合成
化合物U-3(10g、29.2mol、メシル酸塩)とメタノール(79.15g)を混合し、室温で撹拌した後、窒素置換を行った。パラジウム-炭素(パラジウム10%)(0.5g、5重量%)を加え、水素置換後、室温にて7時間撹拌した。窒素置換後、セライト(登録商標)ろ過操作にてパラジウム-炭素触媒を除去した。得られたろ液を50gまで濃縮した。MEK(40.25g)を加え、40gまで濃縮する操作を2回繰り返した。得られた晶析スラリーをろ別し、MEK(25.76g)で洗浄、乾燥することで、化合物C-1(5.3g、25.5mmol、メシル酸塩、収率:87%)を得た。
HPLC(UV=254nm):RT=2.75min、HPLC測定条件11
参考例8 化合物9の合成
Figure 0007261529000040

(参考例8-1)
化合物7(4.00g、11.0mmol)、化合物8(2.40g、14.3mmol、塩酸塩)、塩化リチウム(0.61g、14.3mmol)、トリエチルアミン(3.34g、33.0mmol)およびN,N-ジメチルアセトアミド(20.0mL)を混合し、40℃で15時間攪拌した。反応溶液を25℃に冷却し、酢酸(3.97g、66.1mmol)を加えた後、アセトニトリル(20.0mL)、水(8.0mL)を加えて不溶物を溶解させた。その後、水(48.0mL)を加えた後、0℃に冷却し、固体をろ取した。20%アセトニトリル水溶液で洗浄後、乾燥することで化合物9(4.28g、9.3mmol、収率:84.8%)を得た。
HPLC(UV=255nm):RT=25.1min、HPLC測定条件7
(参考例8-2)
化合物7(6.00g、16.5mmol)、化合物8(3.60g、21.4mmol、塩酸塩)、塩化リチウム(0.94g、22.2mmol)、1,8-ジアザビシクロ[5,4,0]-7-ウンデセン(6.13g、40.3mmol)およびN,N-ジメチルアセトアミド(36.0mL)を混合し、40℃で7時間攪拌した。反応溶液を25℃に冷却し、酢酸(2.00g、33.3mmol)とN,N-ジメチルアセトアミド(1.8mL)を加えた後、水(3.1mL)を加えた。その後、水(33.0mL)を加えて固体をろ取し、20%アセトニトリル水溶液で洗浄後、乾燥することで化合物9(6.72g、14.7mmol、収率:88.8%)を得た。
HPLC(UV=255nm):RT=25.1min、HPLC測定条件7
式(VII)で示される化合物のフマル酸共結晶I形の単結晶構造解析の結果を以下に示す。
R1 (I>2.00s(I))は0.0470であり、最終の差フーリエから電子密度の欠如も誤置もないことを確認した。
結晶学的データを表1に示す。
Figure 0007261529000041

ここで、Volumeは単位格子体積、Zは単位格子中の分子数を意味する。
また、非水素原子の原子座標を表2~表3示す。ここで、U(eq)とは、等価等方性温度因子を意味する。
Figure 0007261529000042

Figure 0007261529000043
次に、水素原子の原子座標を表4に示す。ここで、U(iso)とは、等方性温度因子を意味する。また、表4の水素原子の番号は、結合している非水素原子の番号に関連して付けた。
Figure 0007261529000044
さらに、原子間結合距離(単位:オングストローム)を表5に示す。
Figure 0007261529000045
式(VII)で示される化合物のフマル酸共結晶I形は、非対称単位中に、式(VII)で示される化合物が1分子存在していた。式(VII)で示される化合物のフマル酸共結晶I形の非対称単位中の構造を、図1に示す。
なお、表2~表3および表5における非水素原子の番号は、それぞれ図1記載された番号に対応している。
表5に記載の通り、N10-C9の結合距離は約1.26Åを示し、N16-C9の結合距離は約1.37Åを示した。
N10-C9の結合距離(約1.26Å)は、N16-C9の結合距離(約1.37Å)よりも短いため、フマル酸共結晶I形の式(VII)で示される化合物は、イミノ構造:
Figure 0007261529000046

であると同定した。
すなわち、同一の化合物でも、結晶化条件等により、イミノ構造を取る場合とアミノ構造を取る場合が存在し、塩や複合体を形成している場合においても、その塩や複合体のカウンター分子の種類により、イミノ構造を取る場合とアミノ構造を取る場合が存在し、同一カウンター分子であっても、結晶化条件等により、イミノ構造を取る場合とアミノ構造を取る場合が存在する。また、イミノ構造を取る化合物、その塩またはそれらの複合体と、アミノ構造を取る化合物、その塩またはそれらの複合体の混合物であることもある。
実施例1記載の製造方法により得られた式(VII)で示される化合物のフマル酸共結晶I形の粉末X線回折の結果を示す。
粉末X線回折パターンにおいて、回折角度(2θ):7.7±0.2°、9.5±0.2°、10.0±0.2°、10.9±0.2°、13.8±0.2°、14.6±0.2°、18.6±0.2°、22.6±0.2°、23.4±0.2°および24.6±0.2°にピークが認められた。
式(VII)で示される化合物のフマル酸共結晶I形(Form I)の粉末X線回折パターンを図2に示す。横軸は2θ(°)で、縦軸は強度(Count)を表す。
また、式(VII)で示される化合物のトルエン和物の粉末X線回折の結果を示す。
粉末X線回折パターンにおいて、回折角度(2θ):7.4±0.2°、8.1±0.2°、13.7±0.2°、15.1±0.2°、16.3±0.2°、19.3±0.2°、21.4±0.2°、22.6±0.2°、24.6±0.2°、26.6±0.2°、27.8±0.2°および29.5±0.2°にピークが認められた。
式(VII)で示される化合物のトルエン和物の粉末X線回折パターンを図3に示す。横軸は2θ(°)で、縦軸は強度(Count)を表す。
式(VII)で示される化合物のトルエン和物については、分子構造(アミノ体/イミノ体)は同定していない。
以下に、本発明に係る製造方法により製造された化合物の生物試験例を記載する。
本発明に係る式(VII)で示される化合物は、コロナウイルス3CLプロテアーゼ阻害作用を有し、コロナウイルス3CLプロテアーゼを阻害するものであればよい。
具体的には、以下に記載する評価方法において、IC50は50μM以下が好ましく、より好ましくは、1μM以下、さらにより好ましくは100nM以下である。
試験例1-2:human TMPRSS2発現Vero E6細胞(Vero E6/TMPRSS2細胞)を用いたCytopathic effect(CPE)抑制効果確認試験
<操作手順>
・被験試料の希釈、分注
予め被験試料をDMSOで適度な濃度に希釈し、3倍段階希釈系列を作製後、96ウェルプレートに分注する。
・細胞およびSARS-CoV-2の希釈、分注
VeroE6/TMPRSS2細胞(JCRB1819、1.5×10cells/well)とSARS-CoV-2 hCoV-19/Japan/TY/WK-521/2020、hCoV-19/Japan/QK002/2020、hCoV-19/Japan/QHN001/2020、hCoV-19/Japan/QHN002/2020、hCoV-19/Japan/TY7-501/2021、hCoV-19/Japan/TY7-503/2021、hCoV-19/Japan/TY8-612/2021、hCoV-19/Japan/TY11-927-P1/2021(30-1000TCID50/well)を培地(MEM、2%FBS、ペニシリン-ストレプトマイシン)で混合し、被験試料が入ったウェルに分注した後、COインキュベーターで3日間培養する。
・CellTiter-Glo(登録商標)2.0の分注および発光シグナルの測定
3日間培養したプレートを室温に戻した後、CellTiter-Glo(登録商標)2.0を各ウェルに分注し、プレートミキサーで混和する。一定時間置いた後、プレートリーダーで発光シグナル(Lum)を測定する。
<各測定項目値の算出>
・50% SARS-CoV-2感染細胞死阻害濃度(EC50)算出
xを化合物濃度の対数値、yを%Efficacyとしたとき、以下のLogistic回帰式で阻害曲線を近似し、y=50(%)を代入したときのxの値をEC50として算出する。

y = min + (max - min)/{1 + (X50/x) ^Hill}

%Efficacy = {(Sample - virus control) / (cell control - virus control)} * 100%
cell control: the average of Lum of cell control wells
virus control: the average of Lum of virus control wells

min:y軸下限値、max:y軸上限値、X50:変曲点のx座標、Hill:minとmaxの中間点でのカーブの傾き
本発明に係る製造方法により製造された化合物を本質的に上記のとおり試験した。結果を以下に示す。
(SARS-CoV-2 hCoV-19/Japan/TY/WK-521/2020)
式(VII)で示される化合物のフマル酸共結晶I形:0.37μM
試験例2-2:SARS-CoV-2 3CLプロテアーゼに対する阻害活性試験
<材料>
・市販のRecombinant SARS-CoV-2 3CL Protease
・市販の基質ペプチド
Dabcyl-Lys-Thr-Ser-Ala-Val-Leu-Gln-Ser-Gly-Phe-Arg-Lys-Met-Glu(Edans)-NH2(配列番号:1)
・Internal Standardペプチド
Dabcyl-Lys-Thr-Ser-Ala-Val-Leu(13C6,15N)-Gln(配列番号:2)
Dabcyl-Lys-Thr-Ser-Ala-Val-Leu(13C6,15N)-Glnは、文献(Atherton, E.; Sheppard, R. C.、“In Solid Phase Peptide Synthesis, A Practical Approach”、IRL Press at Oxford University Pres、1989.およびBioorg. Med. Chem.、5巻、9号、1997年、1883-1891頁、等)を参考に合成できる。以下に一例を示す。
Rinkアミド樹脂を用いて、Fmoc固相合成によって、H-Lys-Thr-Ser-Ala-Val-Leu(13C6,15N)-Glu(resin)-OαOtBu(Lys側鎖はBoc保護、Thr側鎖はtert-ブチル基で保護、Ser側鎖はtert-ブチル基で保護、GluのC末端OHはtert-ブチル基で保護されており、Glu側鎖のカルボン酸を樹脂に縮合)を合成する。N末端Dabcyl基の修飾は4-ジメチルアミノアゾベンゼン-4’-カルボン酸(Dabcyl-OH)をEDC/HOBTを用いて樹脂上で縮合する。最終脱保護、および樹脂からの切り出しはTFA/EDT=95:5で処理することで行う。その後、逆相HPLCによって精製する。
・RapidFire Cartridge C4 typeA
<操作手順>
・アッセイバッファーの調製
本試験では、20mM Tris-HCl、1mM EDTA、10mM DTT、0.01% BSAからなるアッセイバッファーを使用する。
・被験試料の希釈、分注
予め被験試料をDMSOで適度な濃度に希釈し、3倍段階希釈系列を作製後、384ウェルプレートに分注する。
・酵素と基質の添加、酵素反応
準備した化合物プレートに、8μMの基質、及び6nMの酵素溶液を添加し、室温で3時間インキュベーションを行う。その後、反応停止液(0.072μM Internal Standard、0.1% ギ酸、10% アセトニトリル)を加え酵素反応を停止させる。
・反応産物の測定
反応完了したプレートはRapidFire System 360及び質量分析器(Agilent、6550 iFunnel Q-TOF)を用いて測定する。測定時の移動相としてA溶液(75% イソプロパノール、15% アセトニトリル、5mM ギ酸アンモニウム)とB溶液(0.01% トリフルオロ酢酸、0.09% ギ酸)を用いる。
質量分析器によって検出された反応産物は、RapidFire Integratorを用いて算出しProduct area値とする。また、同時に検出されたInternal Standardも算出しInternal Standard area値とする。
<各測定項目値の算出>
・P/ISの算出
前項目で得られたarea値を下記の式によって計算し、P/ISを算出する。
P/IS= Product area値/ Internal Standard area値
・50% SARS-CoV-2 3CLプロテアーゼ阻害濃度(IC50)算出
xを化合物濃度の対数値、yを%Inhibitionとしたとき、以下のLogistic回帰式で阻害曲線を近似し、y=50(%)を代入したときのxの値をIC50として算出する。

y = min + (max - min)/{1 + (X50/x) ^Hill}

%Inhibition = {1-(Sample - Control(-)) / Control(+)-Control(-))} * 100

Control(-):the average of P/IS ratio in the wells without SARS-CoV-2 3CL protease and test substance
Control(+):the average of P/IS ratio in the wells with SARS-CoV-2 3CL protease and without test substance

min:y軸下限値、max:y軸上限値、X50:変曲点のx座標、Hill:minとmaxの中間点でのカーブの傾き
本発明に係る製造方法により製造された化合物を本質的に上記のとおり試験した。結果を以下に示す。
式(VII)で示される化合物のフマル酸共結晶I形:0.0132μM
以下に示す製剤例は例示にすぎないものであり、発明の範囲を何ら限定することを意図するものではない。
本発明に係る製造方法により製造された化合物は、任意の従来の経路により、特に、経腸、例えば、経口で、例えば、錠剤またはカプセル剤の形態で、または非経口で、例えば注射液剤または懸濁剤の形態で、局所で、例えば、ローション剤、ゲル剤、軟膏剤またはクリーム剤の形態で、または経鼻形態または座剤形態で医薬組成物として投与することができる。少なくとも1種の薬学的に許容される担体または希釈剤と一緒にして、遊離形態または薬学的に許容される塩の形態の本発明に係る製造方法により製造された化合物を含む医薬組成物は、従来の方法で、混合、造粒またはコーティング法によって製造することができる。例えば、経口用組成物としては、賦形剤、崩壊剤、結合剤、滑沢剤等および有効成分等を含有する錠剤、顆粒剤、カプセル剤とすることができる。また、注射用組成物としては、溶液剤または懸濁剤とすることができ、滅菌されていてもよく、また、保存剤、安定化剤、緩衝化剤等を含有してもよい。
本発明に係る製造方法により製造された化合物は、コロナウイルス3CLプロテアーゼに対する阻害作用を有し、コロナウイルス3CLプロテアーゼが関与する疾患または状態の治療剤および/または予防剤として有用であると考えられる。本発明に係る新規合成中間体またはそれらの塩、および本発明に係る製造方法は医薬品製造に有用である。

Claims (18)

  1. 式(I):
    Figure 0007261529000047

    (式中、Rは置換もしくは非置換のC1-C4アルキル、Rはそれぞれ独立して、ハロゲン、シアノまたはメチル、nは1~5の整数である。)で示される化合物またはその塩と、式(II):
    Figure 0007261529000048

    (式中、Rはそれぞれ独立して、置換もしくは非置換のC1-C4アルキル、mは0~5の整数である)で示される化合物またはその塩を、酸存在下で反応させることを特徴とする、式(III):
    Figure 0007261529000049

    で示される化合物またはその塩の製造方法。
  2. 酸が、トリフルオロ酢酸である、請求項1記載の製造方法。
  3. 式(III)で示される化合物が、式(III-1):
    Figure 0007261529000050

    である、請求項1または2記載の製造方法。
  4. 式(IV):
    Figure 0007261529000051

    (式中、Rは置換もしくは非置換の芳香族複素環式基、または置換もしくは非置換の芳香族炭素環式基であり、pは0または1であり、その他の記号は請求項1と同意義である。)で示される化合物またはその塩と、式(V):
    Figure 0007261529000052

    (式中、Rはそれぞれ独立して、ハロゲン、または置換もしくは非置換のアルキルであり、qは0~5の整数である。)で示される化合物またはその塩を、酸存在下で反応させることを特徴とする、式(VI):
    Figure 0007261529000053

    (式中の記号は上記と同意義である。)で示される化合物、その塩またはそれらの溶媒和物の製造方法。
  5. 酸が酢酸である、請求項4記載の製造方法。
  6. 式(VI)で示される化合物が、
    式(VII):
    Figure 0007261529000054

    である、請求項4記載の製造方法。
  7. 請求項1記載の製造方法より、式(III-1):
    Figure 0007261529000055

    で示される化合物またはその塩を得る工程を含む、式(VII):
    Figure 0007261529000056

    で示される化合物、その塩またはそれらの溶媒和物の製造方法。
  8. 式(VII):
    Figure 0007261529000057

    で示される化合物またはその塩を、フマル酸、アセトンおよび水存在下で結晶化することを特徴とする、式(VII)で示される化合物のフマル酸共結晶I形の製造方法。
  9. 請求項7記載の製造方法を使用することにより得られた式(VII):
    Figure 0007261529000058

    で示される化合物またはその塩を、結晶化させることを特徴とする、請求項8記載の製造方法。
  10. 結晶化温度が40~60℃であり、結晶化時間が120分以上である、請求項9記載の製造方法。
  11. 式(VIII):
    Figure 0007261529000059

    で示される化合物、またはその塩。
  12. 式(IX):
    Figure 0007261529000060

    で示される化合物、またはその塩。
  13. 式(X):
    Figure 0007261529000061

    で示される化合物、またはその塩。
  14. 式(XI):
    Figure 0007261529000062

    で示される化合物、またはその塩。
  15. 式(VII):
    Figure 0007261529000063

    で示される化合物のトルエン和物。
  16. 請求項3記載の製造方法より、式(III-1):
    Figure 0007261529000064

    で示される化合物またはその塩を得る工程を含む、式(VII):
    Figure 0007261529000065

    で示される化合物、その塩またはそれらの溶媒和物の製造方法。
  17. 請求項4に記載の製造方法を使用することにより得られた式(VII):
    Figure 0007261529000066

    で示される化合物またはその塩を、結晶化させることを特徴とする、請求項8記載の製造方法。
  18. 請求項6に記載の製造方法を使用することにより得られた式(VII):
    Figure 0007261529000067

    で示される化合物またはその塩を、結晶化させることを特徴とする、請求項8記載の製造方法。
JP2022186107A 2021-11-24 2022-11-22 ウイルス増殖阻害作用を有するトリアジン誘導体の製造方法 Active JP7261529B1 (ja)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2021189932 2021-11-24
JP2021189932 2021-11-24
JP2022046304 2022-03-23
JP2022046304 2022-03-23

Publications (2)

Publication Number Publication Date
JP7261529B1 true JP7261529B1 (ja) 2023-04-20
JP2023077412A JP2023077412A (ja) 2023-06-05

Family

ID=86051779

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2022186107A Active JP7261529B1 (ja) 2021-11-24 2022-11-22 ウイルス増殖阻害作用を有するトリアジン誘導体の製造方法

Country Status (1)

Country Link
JP (1) JP7261529B1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116514786A (zh) * 2023-06-26 2023-08-01 北京科翔中升医药科技有限公司 一种氘代吲唑三嗪类化合物的制备方法
CN116621817A (zh) * 2023-07-20 2023-08-22 爱斯特(成都)生物制药股份有限公司 一种富马酸恩赛特韦的晶型及其制备方法、药物组合物和用途

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010092966A1 (ja) 2009-02-13 2010-08-19 塩野義製薬株式会社 新規トリアジン誘導体およびそれを含有する医薬組成物
WO2012020749A1 (ja) 2010-08-10 2012-02-16 塩野義製薬株式会社 トリアジン誘導体およびそれを含有する鎮痛作用を有する医薬組成物
JP7105430B1 (ja) 2021-04-14 2022-07-25 塩野義製薬株式会社 ウイルス増殖阻害作用を有するトリアジン誘導体およびそれらを含有する医薬組成物

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4141721A1 (de) * 1991-12-18 1993-06-24 Bayer Ag Substituierte heterocyclyltriazindione

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010092966A1 (ja) 2009-02-13 2010-08-19 塩野義製薬株式会社 新規トリアジン誘導体およびそれを含有する医薬組成物
WO2012020749A1 (ja) 2010-08-10 2012-02-16 塩野義製薬株式会社 トリアジン誘導体およびそれを含有する鎮痛作用を有する医薬組成物
JP7105430B1 (ja) 2021-04-14 2022-07-25 塩野義製薬株式会社 ウイルス増殖阻害作用を有するトリアジン誘導体およびそれらを含有する医薬組成物

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116514786A (zh) * 2023-06-26 2023-08-01 北京科翔中升医药科技有限公司 一种氘代吲唑三嗪类化合物的制备方法
CN116621817A (zh) * 2023-07-20 2023-08-22 爱斯特(成都)生物制药股份有限公司 一种富马酸恩赛特韦的晶型及其制备方法、药物组合物和用途
CN116621817B (zh) * 2023-07-20 2023-09-29 爱斯特(成都)生物制药股份有限公司 一种富马酸恩赛特韦的晶型及其制备方法、药物组合物和用途

Also Published As

Publication number Publication date
JP2023077412A (ja) 2023-06-05

Similar Documents

Publication Publication Date Title
JP7105430B1 (ja) ウイルス増殖阻害作用を有するトリアジン誘導体およびそれらを含有する医薬組成物
JP7261529B1 (ja) ウイルス増殖阻害作用を有するトリアジン誘導体の製造方法
JP7466731B2 (ja) トリアジン誘導体を含有する経口投与する製剤
WO2023054292A1 (ja) トリアジン誘導体を含有する医薬組成物
WO2023033098A1 (ja) ウイルス増殖阻害活性を有する二環性含窒素複素環誘導体およびそれらを含有する医薬組成物
WO2023042879A1 (ja) ウイルス増殖阻害活性を有する二環性複素環誘導体およびそれらを含有する医薬組成物
CN116782904A (zh) 含有三嗪衍生物的医药组合物
WO2023095860A1 (ja) 3clプロテアーゼ阻害剤及びcovid-19治療用薬剤を組み合わせることを特徴とするcovid-19治療用医薬
JP7236065B1 (ja) トリアジン誘導体を含有する医薬組成物
JP2023512471A (ja) Pde3/pde4二重阻害剤の結晶及びその使用
RU2806042C1 (ru) Триазиновые производные, имеющие ингибиторную активность в отношении репликации вируса, и содержащая их фармацевтическая композиция
AU2020348089A1 (en) Crystal of 1,3,5-triazine derivative or solvate thereof and method for producing same
BR122023002208A2 (pt) Composições farmacêuticas compreendendo derivados de triazina tendo efeito inibidor de propagação de vírus, inibidores e usos
WO2023195530A1 (ja) ウイルス増殖阻害活性を有するウラシル誘導体およびそれらを含有する医薬組成物
CN116514734A (zh) 三嗪衍生物的制造方法和含有三嗪衍生物的口服给与的制剂
WO2024008083A1 (zh) 用作cdk7激酶抑制剂的化合物及其应用

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20221205

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20221205

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230201

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230214

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230405

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230406

R150 Certificate of patent or registration of utility model

Ref document number: 7261529

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150