JP7251374B2 - 時計および時計の制御方法 - Google Patents

時計および時計の制御方法 Download PDF

Info

Publication number
JP7251374B2
JP7251374B2 JP2019132458A JP2019132458A JP7251374B2 JP 7251374 B2 JP7251374 B2 JP 7251374B2 JP 2019132458 A JP2019132458 A JP 2019132458A JP 2019132458 A JP2019132458 A JP 2019132458A JP 7251374 B2 JP7251374 B2 JP 7251374B2
Authority
JP
Japan
Prior art keywords
circuit
voltage
power supply
oscillation
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2019132458A
Other languages
English (en)
Other versions
JP2021018088A (ja
Inventor
豊 山▲崎▼
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Epson Corp
Original Assignee
Seiko Epson Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Epson Corp filed Critical Seiko Epson Corp
Priority to JP2019132458A priority Critical patent/JP7251374B2/ja
Priority to US16/931,497 priority patent/US11720061B2/en
Publication of JP2021018088A publication Critical patent/JP2021018088A/ja
Application granted granted Critical
Publication of JP7251374B2 publication Critical patent/JP7251374B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G04HOROLOGY
    • G04BMECHANICALLY-DRIVEN CLOCKS OR WATCHES; MECHANICAL PARTS OF CLOCKS OR WATCHES IN GENERAL; TIME PIECES USING THE POSITION OF THE SUN, MOON OR STARS
    • G04B1/00Driving mechanisms
    • G04B1/10Driving mechanisms with mainspring
    • GPHYSICS
    • G04HOROLOGY
    • G04CELECTROMECHANICAL CLOCKS OR WATCHES
    • G04C3/00Electromechanical clocks or watches independent of other time-pieces and in which the movement is maintained by electric means
    • G04C3/14Electromechanical clocks or watches independent of other time-pieces and in which the movement is maintained by electric means incorporating a stepping motor
    • G04C3/143Means to reduce power consumption by reducing pulse width or amplitude and related problems, e.g. detection of unwanted or missing step
    • GPHYSICS
    • G04HOROLOGY
    • G04BMECHANICALLY-DRIVEN CLOCKS OR WATCHES; MECHANICAL PARTS OF CLOCKS OR WATCHES IN GENERAL; TIME PIECES USING THE POSITION OF THE SUN, MOON OR STARS
    • G04B17/00Mechanisms for stabilising frequency
    • G04B17/20Compensation of mechanisms for stabilising frequency
    • G04B17/22Compensation of mechanisms for stabilising frequency for the effect of variations of temperature
    • GPHYSICS
    • G04HOROLOGY
    • G04CELECTROMECHANICAL CLOCKS OR WATCHES
    • G04C10/00Arrangements of electric power supplies in time pieces
    • G04C10/04Arrangements of electric power supplies in time pieces with means for indicating the condition of the power supply
    • GPHYSICS
    • G04HOROLOGY
    • G04CELECTROMECHANICAL CLOCKS OR WATCHES
    • G04C3/00Electromechanical clocks or watches independent of other time-pieces and in which the movement is maintained by electric means
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03BGENERATION OF OSCILLATIONS, DIRECTLY OR BY FREQUENCY-CHANGING, BY CIRCUITS EMPLOYING ACTIVE ELEMENTS WHICH OPERATE IN A NON-SWITCHING MANNER; GENERATION OF NOISE BY SUCH CIRCUITS
    • H03B5/00Generation of oscillations using amplifier with regenerative feedback from output to input
    • H03B5/30Generation of oscillations using amplifier with regenerative feedback from output to input with frequency-determining element being electromechanical resonator
    • H03B5/32Generation of oscillations using amplifier with regenerative feedback from output to input with frequency-determining element being electromechanical resonator being a piezoelectric resonator
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03LAUTOMATIC CONTROL, STARTING, SYNCHRONISATION OR STABILISATION OF GENERATORS OF ELECTRONIC OSCILLATIONS OR PULSES
    • H03L1/00Stabilisation of generator output against variations of physical values, e.g. power supply
    • H03L1/02Stabilisation of generator output against variations of physical values, e.g. power supply against variations of temperature only
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03LAUTOMATIC CONTROL, STARTING, SYNCHRONISATION OR STABILISATION OF GENERATORS OF ELECTRONIC OSCILLATIONS OR PULSES
    • H03L1/00Stabilisation of generator output against variations of physical values, e.g. power supply
    • H03L1/02Stabilisation of generator output against variations of physical values, e.g. power supply against variations of temperature only
    • H03L1/022Stabilisation of generator output against variations of physical values, e.g. power supply against variations of temperature only by indirect stabilisation, i.e. by generating an electrical correction signal which is a function of the temperature
    • H03L1/026Stabilisation of generator output against variations of physical values, e.g. power supply against variations of temperature only by indirect stabilisation, i.e. by generating an electrical correction signal which is a function of the temperature by using a memory for digitally storing correction values
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03LAUTOMATIC CONTROL, STARTING, SYNCHRONISATION OR STABILISATION OF GENERATORS OF ELECTRONIC OSCILLATIONS OR PULSES
    • H03L1/00Stabilisation of generator output against variations of physical values, e.g. power supply
    • H03L1/02Stabilisation of generator output against variations of physical values, e.g. power supply against variations of temperature only
    • H03L1/022Stabilisation of generator output against variations of physical values, e.g. power supply against variations of temperature only by indirect stabilisation, i.e. by generating an electrical correction signal which is a function of the temperature
    • H03L1/027Stabilisation of generator output against variations of physical values, e.g. power supply against variations of temperature only by indirect stabilisation, i.e. by generating an electrical correction signal which is a function of the temperature by using frequency conversion means which is variable with temperature, e.g. mixer, frequency divider, pulse add/substract logic circuit

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Metallurgy (AREA)
  • Power Engineering (AREA)
  • Oscillators With Electromechanical Resonators (AREA)
  • Electric Clocks (AREA)

Description

本発明は、時計および時計の制御方法に関する。
特許文献1には、周囲温度に基づいて、発振回路から出力されたクロック信号の発振周波数を調整する温度補償回路を備えた電子機器が開示されている。
特許文献1の電子時計は、基準電圧以下の供給電圧を検出した場合に、温度補償回路による発振周波数の調整動作を停止するよう構成されている。
特開2013-150344号公報
しかしながら、特許文献1には、温度補償回路による発振周波数の調整動作を停止させた後、当該調整動作を再開させる方法についてはなんら開示されていない。例えば、電源が充電され、供給電圧が基準電圧を超えたことを検出した際に、温度補償回路による調整動作を再開させることが考えられる。しかし、この場合以下の不具合を生じる。すなわち、電源が充電されることにより、供給電圧が徐々に上昇して基準電圧を超えた際に、温度補償回路による調整動作が再開する。この際、供給電圧は基準電圧に近いので、当該調整動作によって供給電圧が低下すると、再度供給電圧は基準電圧以下となることがある。そのため、調整動作を再開した直後に、供給電圧の電圧降下により調整動作が停止することになる。つまり、調整動作の再開と停止とが繰り返し実行されることになるので、調整動作が適切に実行される期間が短くなってしまい、所望の時間精度を維持できないといった問題があった。
本開示の時計は、充電可能に構成される電源と、水晶振動子および発振回路を有し、電源電圧が発振停止電圧を下回ると発振停止し、前記電源電圧が前記発振停止電圧より高い発振開始電圧を超えると発振開始する水晶発振回路と、前記発振回路から出力される発振信号を分周して基準信号を出力する分周回路と、前記基準信号の温度による変動を補償する温度補償機能動作を実行する温度補償回路と、前記電源電圧が、前記発振開始電圧よりも高く設定される第1電圧を超えたことを検出する第1電圧検出回路と、前記第1電圧検出回路により前記電源電圧が前記第1電圧を超えたことが検出されると、前記温度補償回路の前記温度補償機能動作を開始させ、その後、前記電源電圧が前記第1電圧を下回っても前記温度補償機能動作を継続させる制御回路と、を備える。
本開示の時計において、前記水晶発振回路の発振停止を検出する発振停止検出回路を備え、前記制御回路は、前記発振停止検出回路により前記水晶発振回路の発振停止が検出されると、前記温度補償機能動作を停止させてもよい。
本開示の時計において、前記第1電圧検出回路により前記電源電圧が前記第1電圧を超えたことが検出されたことを記憶する記憶回路を備え、前記制御回路は、前記発振停止検出回路により前記水晶発振回路の発振停止が検出されると、前記記憶回路を初期化し、前記記憶回路が初期化されている場合、前記温度補償機能動作を停止させてもよい。
本開示の時計において、前記電源電圧が、前記第1電圧よりも低く設定された第2電圧を下回ったことを検出する第2電圧検出回路を備え、前記制御回路は、前記第2電圧検出回路により前記電源電圧が前記第2電圧を下回ったことが検出されると、前記温度補償機能動作を停止させてもよい。
本開示の時計において、前記第1電圧検出回路により前記電源電圧が前記第1電圧を超えたことが検出されたことを記憶する記憶回路を備え、前記制御回路は、前記第2電圧検出回路により前記電源電圧が前記第2電圧を下回ったことが検出されると、前記記憶回路を初期化し、前記記憶回路が初期化されている場合、前記温度補償回路の前記温度補償機能動作を停止させてもよい。
本開示の時計において、前記温度補償回路は、前記水晶振動子の個体差を補正する個体差補正機能動作を実行可能に構成され、前記制御回路は、前記温度補償回路の前記温度補償機能動作を停止させた場合に、前記温度補償回路による前記個体差補正機能動作は継続させてもよい。
本開示の時計において、前記第1電圧は、前記制御回路によって前記温度補償回路の前記温度補償機能動作を開始させた際に、前記温度補償機能動作によって、前記電源電圧が前記発振停止電圧を下回らないように設定されていてもよい。
本開示の時計の制御方法は、充電可能に構成される電源と、水晶振動子および発振回路を有し、電源電圧が発振停止電圧を下回ると発振停止し、前記電源電圧が前記発振停止電圧より高い発振開始電圧を超えると発振開始する水晶発振回路と、前記発振回路から出力される発振信号を分周して基準信号を出力する分周回路と、前記基準信号の温度による変動を補償する温度補償機能動作を実行する温度補償回路と、を備える時計の制御方法であって、前記電源電圧が、前記発振開始電圧よりも高く設定された第1電圧を超えたことを検出するステップと、前記電源電圧が前記第1電圧を超えたことを検出すると、前記温度補償回路の前記温度補償機能動作を開始させるステップと、前記電源電圧が前記第1電圧を下回っても前記温度補償機能動作を継続させるステップと、を備える。
第1実施形態の時計を示す正面図。 第1実施形態の時計の概略構成を示すブロック図。 第1実施形態の時計の要部の概略構成を示す回路図。 第1実施形態の記憶回路の概略を示す回路図。 第1実施形態の温度補償処理の制御方法を説明するフローチャート。 発電電圧と発電時間との関係を示す図。 第1実施形態の温度補償処理の制御方法を説明するタイミングチャート。 第2実施形態の時計の概略構成を示す回路図。 第2実施形態の記憶回路の概略を示す回路図。 第2実施形態の温度補償処理の制御方法を説明するフローチャート。 第2実施形態の温度補償処理の制御方法を説明するタイミングチャート。
[第1実施形態]
以下、本開示の第1実施形態の時計1を図面に基づいて説明する。
図1は、時計1を示す正面図である。本実施形態では、時計1は電子制御式機械時計として構成される。
図1に示すように、時計1は、ユーザーの手首に装着される腕時計であり、円筒状の外装ケース2を備え、外装ケース2の内周側に、文字板3が配置されている。外装ケース2の二つの開口のうち、表面側の開口は、カバーガラスで塞がれており、裏面側の開口は裏蓋で塞がれている。
時計1は、外装ケース2内に収容された図示略のムーブメントと、時刻情報を表示する時針4A、分針4B、秒針4Cとを備えている。文字板3には、カレンダー小窓3Aが設けられており、カレンダー小窓3Aから、日車6が視認可能となっている。また、文字板3には、時刻を指示するためのアワーマーク3Bや、パワーリザーブ針5で持続時間を指示する扇形のサブダイヤル3Cが設けられている。
外装ケース2の側面には、りゅうず7が設けられている。りゅうず7は、時計1の中心に向かって押し込まれた0段位置から1段位置および2段位置に引き出されて移動することができる。
りゅうず7を1段位置に引いて回転すると、日車6を移動して日付を合わせることができる。りゅうず7を2段位置に引くと秒針4Cが停止し、2段位置でりゅうず7を回転すると、時針4A、分針4Bが移動して時刻を合わせることができる。りゅうず7による日車6や時針4A、分針4Bの修正方法は、従来の時計と同様であるため説明を省略する。
また、りゅうず7を0段位置で回転すると、後述するぜんまい40を巻き上げることができる。そして、ぜんまい40の巻き上げに連動して、パワーリザーブ針5が移動する。本実施形態の時計1Aは、ぜんまい40をフルに巻き上げた場合に、約40時間の持続時間を確保できる。
[時計の概略構成]
図2は、時計1の概略構成を示すブロック図である。
図2に示すように、時計1は、IC10と、ぜんまい40と、輪列50と、表示部60と、発電機70と、水晶振動子80と、整流回路90と、電源回路100と、を備えている。なお、本実施形態では、時計1は、所謂年差時計と呼ばれる時間精度を維持可能に構成されている。
水晶振動子80は、後述する発振回路11で駆動されて発振信号を発生する。
輪列50は、ぜんまい40と、後述する発電機70のローター71とを連結している。さらに、輪列50は、ローター71と、図1に示す指針4A~4C、5とを連結している。これにより、ぜんまい40は、輪列50を介して指針4A~4C、5を駆動させる。
表示部60は、図1に示す指針4A~4Cを備えて構成され、時刻を表示する。また、表示部60は、パワーリザーブ針5を備える。
[発電機]
図3は、時計1の要部の概略構成を示すブロック図である。
図3に示すように、発電機70は、ローター71と、ローター71の回転に伴い誘起電圧VCを発生するコイル72とを備え、電気的エネルギーを供給する。ローター71は、輪列50を介してぜんまい40によって駆動される。ローター71は、2極に着磁されたローターなどであり、ローター71の一部が磁石で構成されている。発電機70は、ローター71が回転することで磁束が変化し、コイル72に誘起電圧VCを発生させて発電する。
発電機70のコイル72の出力端子MG1、MG2には、制動制御回路14で制御されるブレーキ回路73と、整流回路90とが接続されている。このため、発電機70から供給された電気エネルギーは、整流回路90を介して、電源回路100のコンデンサー101に充電される。すなわち、電源回路100はコンデンサー101を備えて充電可能に構成される。そして、コンデンサー101の両端に発生する発電電圧でIC10を駆動する。
[ブレーキ回路]
ブレーキ回路73は、発電機70を調速機として機能させるために、ローター71の回転にブレーキを掛けるものである。ブレーキ回路73は、発電機70で発電された交流信号が出力される出力端子MG1に接続された第1チョッピングトランジスター731と、交流信号が出力される出力端子MG2に接続された第2チョッピングトランジスター732とを有する。そして、各チョッピングトランジスター731、732をオンすることにより、出力端子MG1、MG2を短絡させて閉ループ状態にし、発電機70にショートブレーキを掛けるようになっている。
これらの各チョッピングトランジスター731、732は、電源回路100の入力端子側に接続されている。
各チョッピングトランジスター731、732は、Pチャネル型の電界効果型トランジスターで構成されている。これらの各チョッピングトランジスター731、732のゲートには、制動制御回路14から制動制御信号が入力される。このため、各チョッピングトランジスター731、732は、制動制御信号がLレベルとなっている間はオン状態に維持される。一方、制動制御信号がHレベルとなっている間は、各チョッピングトランジスター731、732はオフ状態に維持され、発電機70にはブレーキが加わらない。すなわち、制動制御信号のレベルによって、各チョッピングトランジスター731、732のオン、オフが制御され、発電機70をチョッピング制御することができる。
ここで、制動制御信号は、例えば128Hzの信号であり、デューティー比を変えることで、発電機70のブレーキ力を調整する。すなわち、制動制御信号の1周期においてLレベルの期間が長くなると、各チョッピングトランジスター731、732がオン状態に維持されてショートブレーキが加えられる期間も長くなり、ブレーキ力が増加する。一方、制動制御信号の1周期においてLレベルの期間が短くなると、ブレーキ力が低下する。したがって、制動制御信号のデューティー比によって、ブレーキ力を調整できる。
[整流回路]
整流回路90は、昇圧整流、全波整流、半波整流、トランジスター整流等からなり、発電機70からの交流出力を昇圧、整流して、電源回路100に充電供給するものである。
本実施形態の整流回路90は、第1整流用スイッチ91と、第2整流用スイッチ92と、ダイオード95と、ダイオード96と、昇圧用コンデンサー97とを備えている。
第1整流用スイッチ91は、ブレーキ回路73の第1チョッピングトランジスター731と並列に接続され、かつ、出力端子MG2にゲートが接続された第1整流用トランジスターで構成されている。
同様に、第2整流用スイッチ92は、第2チョッピングトランジスター732と並列に接続され、かつ、出力端子MG1にゲートが接続された第2整流用トランジスターで構成されている。これらの各整流用トランジスターも、Pchの電界効果型トランジスターで構成されている。
ダイオード95、96は、一方向に電流を流す一方向性素子であればよく、その種類は問わない。特に、電子制御式機械時計として構成される時計1では、発電機70の起電圧が小さいため、ダイオード95、96としては降下電圧や逆リーク電流が小さいショットキーバリアダイオードやシリコンダイオードを用いることが好ましい。
なお、本実施形態では、第1チョッピングトランジスター731、第2チョッピングトランジスター732、第1整流用スイッチ91、第2整流用スイッチ92、ダイオード95、ダイオード96は、IC10の内部に構成され、発電機70のローター71およびコイル72と、昇圧用コンデンサー97と、電源回路100はIC10の外部に設けられている。このように、整流回路90の一部をIC10の内部に構成することで、時計1の回路基板に実装する素子を少なくでき、コストを低減できる効果がある。
なお、各チョッピングトランジスター731、732の能力、つまりサイズは、発電機70におけるチョッピング時の電流に基づいて設定すればよい。
このような整流回路90は、昇圧用コンデンサー97を備えているため、充電の過程で昇圧用コンデンサー97に充電された電荷も利用して、電源回路100のコンデンサー101を充電する。このため、IC10に印加できる電圧も大きくなり、IC10の安定的な動作が実現できる。なお、本実施形態では、整流回路90は、2段昇圧整流回路であるが、ダイオード、コンデンサーを使用し、3段昇圧、4段昇圧など、昇圧段数を増やし、電源回路100の電圧を高くすることもできる。
[IC]
図2に戻って、IC10は、発振回路11と、分周回路12と、回転検出回路13と、制動制御回路14と、第1電圧検出回路15と、発振停止検出回路16と、温度補償機能部20とを備える。なお、ICは、Integrated Circuitの略語である。
発振回路11は、水晶振動子80とともに水晶発振回路110を構成する。そして、水晶発振回路110は、電源回路100の電源電圧Vが発振停止電圧V2を下回ると発振停止し、電源電圧Vが発振開始電圧V3を超えると、発振開始する。
また、発振回路11は、水晶振動子80の発振で発生する所定周波数の発振信号を分周回路12に出力する。本実施形態では、発振回路11は、32768Hzの発振信号を発生する。また、発振停止電圧V2は、発振開始電圧V3よりも低い。なお、発振回路11の詳細な動作については、後述する。
分周回路12は、発振回路11の出力を分周して、所定の周波数の基準信号fs1を作成する。本実施形態では、分周回路12は、1Hzの基準信号fs1を作成する。そして、分周回路12は、当該基準信号fs1を制動制御回路14に出力する。また、分周回路12は、発振回路11の出力を分周した信号を組み合わせて所定の周期の信号を生成し、当該信号を第1電圧検出回路15、および後述する温度補償機能制御回路21に出力する。
回転検出回路13は、発電機70に接続された図示略の波形整形回路とモノマルチバイブレーターとで構成され、発電機70のローター71の回転周波数を表す回転検出信号FG1を制動制御回路14に出力する。
制動制御回路14は、回転検出回路13から出力される回転検出信号FG1と、分周回路12から出力される基準信号fs1とを比較し、発電機70の調速を行うための制動制御信号を発電機70のブレーキ回路73に出力する。
なお、本実施形態では、基準信号fs1は、通常運針時のローター71の基準回転速度に合わせた信号である。したがって、制動制御回路14は、ローター71の回転速度に応じた回転検出信号FG1と基準信号fs1との差に応じて制動制御信号を出力することで、ブレーキ回路73によるブレーキ力を調整し、ローター71の回転を制御する。
第1電圧検出回路15は、分周回路12から出力される信号に基づいて、所定の周期で電源回路100の電源電圧Vを検出する。そして、電源回路100の電源電圧Vが、発振開始電圧V3よりも高く設定された解除電圧V1を超えた場合、後述する温度補償機能制御回路21に出力する解除信号D1をHighにする。なお、解除電圧V1は、本開示の第1電圧の一例である。
発振停止検出回路16は、発振回路11もしくは分周回路12から出力される信号をモニターすることで、水晶発振回路110の発振停止を検出可能に構成されている。そして、発振停止検出回路16は、水晶発振回路110の発振停止を検出すると、温度補償機能制御回路21に出力する発振停止信号D2をHighにする。
また、発振停止検出回路16は、IC10が停止している状態から電源回路100が充電され、水晶発振回路110が発振開始すると、発振停止信号D2をLowにする。
[温度補償機能部]
温度補償機能部20は、水晶振動子80等の温度特性を補償して発振周波数の変動を抑制するものであり、温度補償機能制御回路21と、温度補償回路30とを備える。
温度補償機能制御回路21は、温度補償回路30の動作を制御する。また、本実施形態では、温度補償機能制御回路21は、図4に示す記憶回路211を備える。
記憶回路211は、例えば、Dフリップフロップから構成される。そして、記憶回路211に入力される発振停止信号D2がHighになると、温度補償機能制御回路21は記憶回路211を初期化する。これにより、記憶回路211は禁止フラグF1を強制的にHighにさせる、つまり、禁止フラグF1を発生させる。記憶回路211で禁止フラグF1が発生している間、温度補償機能制御回路21は、後述する温度補償回路30の温度補償機能動作を停止させる。
また、記憶回路211は、発振停止信号D2がLowの状態で、解除信号D1がHighになると、解除信号D1がHighになったことを記憶する。つまり、記憶回路211は、電源電圧Vが解除電圧V1を超えたことを記憶する。そして、記憶回路211は、解除信号D1がHighになったことを記憶すると、禁止フラグF1を解除する。記憶回路211で禁止フラグF1が解除されると、温度補償機能制御回路21は温度補償回路30の温度補償機能動作を開始させる。換言すれば、温度補償機能制御回路21は、電源電圧Vが解除電圧V1を超えたことが検出されるまで、温度補償回路30の温度補償機能動作を停止させる。
そして、温度補償機能制御回路21は、記憶回路211に入力される発振停止信号D2がHighになるまで、温度補償回路30の温度補償機能動作を継続させる。つまり、解除信号D1がHighになって禁止フラグF1が解除されると、解除信号D1がLowになっても、禁止フラグF1はLowに維持される。なお、温度補償機能制御回路21は、本開示の制御回路の一例である。
図2に戻って、温度補償回路30は、温度センサー31、温度補正テーブル記憶部32、個体差補正データ記憶部33、演算回路35、論理緩急回路36、周波数調整制御回路37を備え、基準信号fs1の温度等による変動を一定の周期で補償する温度補償機能動作を実行する。なお、本実施形態では、温度センサー31の測定温度に応じて歩度を調整する動作を、温度補償機能動作と称する。
温度センサー31は、測定温度に応じた出力、すなわち、時計1が使用されている環境の温度に応じた出力を演算回路35に入力する。温度センサー31としては、ダイオードを使用したものや、CR発振回路を使用したものが利用でき、ダイオードやCR発振回路の温度特性を利用して変化する出力信号で現在の温度を検出している。本実施形態では、出力信号を波形整形すれば、すぐにデジタル信号処理が可能なCR発振回路を、温度センサー31として使用している。すなわち、環境温度により、CR発振回路から出力される信号の周波数が変化し、その周波数により温度を検出している。また、CR発振回路を定電流で駆動するように構成すると、温度センサー31の駆動電流は定電流値で決まるため、設計により電流値をコントロール可能となり、低消費電流化し易くなる。定電流駆動型のCR発振回路は低電圧駆動、低消費電流化が可能なため、時計1に温度補償機能を付ける場合の温度センサー31として適している。なお、温度センサー31は、本開示の温度測定部の一例である。
温度補正テーブル記憶部32は、理想的な水晶振動子80、および、理想的な温度センサー31の場合に、ある温度でどれだけ歩度を補償すればよいかが設定された温度補正テーブルを記憶している。すなわち、温度補正テーブル記憶部32は、水晶振動子80および温度センサー31で共通の温度補正テーブルを記憶している。なお、温度補正テーブルは、本開示の温度補正データの一例である。
また、水晶振動子80や温度センサー31には製造による個体差が生じる。個体差としては、例えば、水晶振動子80の温度特性の2次係数、水晶振動子80の頂点温度、水晶振動子80の頂点歩度、温度センサー31の出力周波数、発振回路11の負荷容量等が挙げられる。そこで、予め製造や検査の工程で測定した、水晶振動子80の特性や、温度センサー31の特性を基に、どれだけ個体差を補正すれば良いかを設定した個体差補正データが個体差補正データ記憶部33に書き込まれている。なお、本実施形態では、温度補償機能動作の中で、上記した水晶振動子80や温度センサー31の個体差を補償する動作を個体差温度補償動作と称する。
温度補正テーブル記憶部32は、マスクROMを利用している。マスクROMを利用するのは、半導体メモリーの中で最も単純なため、集積度を高くし、面積を小さくできるためである。
個体差補正データ記憶部33は、不揮発性メモリーで構成され、特にFAMOSを使用している。FAMOSは、書込み後の電流値が低い事や、不揮発性メモリーの中で比較的低い電圧でデータ書き込みが可能なためである。
演算回路35は、温度センサー31の測定温度と、温度補正テーブル記憶部32に記憶された温度補正テーブルと、個体差補正データ記憶部33に記憶された個体差補正データとを利用して、歩度の補正量を演算する。そして、演算回路35は、その演算結果を論理緩急回路36および周波数調整制御回路37に出力する。すなわち、本実施形態の温度補償機能動作では、温度センサー31による温度測定動作および温度補正テーブル記憶部32からの温度補正テーブルの読み出し動作に加えて、個体差補正データ記憶部33からの個体差補正データの読み出し動作を行うことで、個体差温度補償動作を実行する。
論理緩急回路36は、分周回路12の各分周段に所定のタイミングでセットもしくはリセット信号を入力することで、デジタル的に基準信号fs1の周期を長くしたり、短くしたりする回路である。例えば、10秒に1回、約30.5μsec(1/32768Hz)だけ基準信号fs1の周期を短くすると、1日では8640回クロックの周期を短くすることになるので、8640回×30.5μsec=0.264secだけ信号の変化が速くなる。つまり、1日で0.264sec/dayだけ時刻は進むことになる。なお、sec/day(s/d)は歩度であり、1日の時刻のずれを表す。
周波数調整制御回路37は、前述のとおり、発振回路11の付加容量を調整することにより、発振回路11の発振周波数そのものを調整する回路である。発振回路11は付加容量を大きくすると、発振周波数が小さくなるため、時刻を遅らすことができる。逆に、付加容量を小さくすると、発振周波数が大きくなるため、時刻を進ませることができる。
このように、本実施形態では、論理緩急回路36と周波数調整制御回路37とを組み合わせて、歩度を調整する。
[温度補償処理の制御方法]
次に、本実施形態の温度補償処理の制御方法について、図5のフローチャートを用いて説明する。
図5に示すように、ぜんまい40が巻き解かれてIC10が停止した状態から、ぜんまい40が巻き上げられると、発電機70による発電が開始される。そして、電源電圧Vが発振開始電圧V3を超えると、ステップS1として、水晶発振回路110が発振開始し、発振停止信号D2がLowになる。
次に、第1電圧検出回路15は、ステップS2として、電圧検出タイミングであるか否かを判定する。
ステップS2でNoと判定すると、第1電圧検出回路15は、ステップS2に戻って処理を繰り返す。
一方、ステップS2でYesと判定すると、第1電圧検出回路15は、ステップS3として、電源回路100の電源電圧Vを検出する。本実施形態では、前述したように、第1電圧検出回路15は、所定の周期で電源回路100の電源電圧Vを検出する。
次に、第1電圧検出回路15は、ステップS4として、電源電圧Vが、解除電圧V1を超えたか否かを判定する。
図6は、発電電圧と発電時間との関係を示す図である。
図6に示すように、ぜんまい40が巻き解かれた状態から巻き上げられて、発電機70で発電が開始されると、発電電圧は徐々に上昇して、コイル72の誘起電圧VCに近づく。
ここで、解除電圧V1を、コイル72の誘起電圧VCに近い値に設定すると、電源電圧Vが解除電圧V1を超えるまでの時間が長くなる。そうすると、温度補償回路30の動作が停止されている時間が長くなるので、所望する時間精度を維持できなくなるおそれがある。
一方、解除電圧V1を、発振停止電圧V2に近い値に設定すると、温度補償機能動作を開始した直後に、当該温度補償機能動作により電源電圧Vが降下して、発振停止電圧V2を下回ってしまうおそれがある。つまり、水晶発振回路110の発振開始と発振停止とが繰り返し実行されるおそれがある。
そこで、本実施形態では、解除電圧V1を、コイル72の誘起電圧VCの90%以下で、かつ、温度補償機能動作によって電源電圧Vが発振停止電圧V2を下回らない値に設定している。具体的には、発振停止電圧V2よりも数百mV以上高い値に解除電圧V1を設定している。これにより、発電機70で発電を開始してから、電源電圧Vが解除電圧V1を超えるまでの経過時間t1を数十秒以内にでき、かつ、温度補償動作を開始させた直後に、温度補償機能動作によって電源電圧Vが発振停止電圧V2を下回ることを防ぐことができる。
なお、本実施形態では、上記した解除電圧V1の設定値は、ぜんまい40により安定してトルクを得ることができる領域での発電電圧も考慮されている。すなわち、ぜんまい40の巻き数が多くなると、得られるトルクが大きくなるとともに、ぜんまい40の巻き数に対するトルクの傾きが小さくなってトルクの変動が小さくなる。そのため、解除電圧V1の設定値は、ぜんまい40によって発電機70や輪列50等を動作させるのに必要なトルクが安定して得られる場合の発電電圧を超え、かつ、トルクの変動が小さくなる領域の値に設定されている。これにより、温度補償動作を開始させた際には、ぜんまい40のトルクによって十分な発電電圧が安定的に得られるので、温度補償機能動作によって降下する電源電圧Vを回復させることができる。
図5に戻って、ステップS4でNoと判定すると、第1電圧検出回路15は、ステップS2に戻って処理を繰り返す。
一方、ステップS4でYesと判定されると、温度補償機能制御回路21の記憶回路211は、ステップS5として、禁止フラグF1をLowにする、つまり、解除する。具体的には、ステップS4でYesと判定すると、第1電圧検出回路15は、解除信号D1をHighにする。そして、記憶回路211は、当該解除信号D1がHighになると、禁止フラグF1を解除する。
次に、温度補償機能制御回路21は、ステップS6として、温度補償回路30による温度補償機能動作を実行させる。本実施形態では、温度補償機能制御回路21は、ステップS3で電源電圧Vを検出した直後に、温度補償機能動作を実行させるように構成されている。これにより、電源電圧Vを検出してから温度補償機能動作が実行されるまでの時間を短くできる。そのため、電源電圧Vを検出してから温度補償機能動作が実行されるまでの間に電圧変動が生じて、IC10の動作が不安定になってしまうことを抑制できる。
そして、発振停止検出回路16は、ステップS7として、水晶発振回路110が発振停止しているか否かを判定する。
ステップS7でNoと判定すると、発振停止検出回路16は、ステップS6に戻って処理を繰り返す。すなわち、温度補償機能制御回路21は、禁止フラグF1が解除されている場合、分周回路12からの信号に基づいて、所定の周期で温度補償機能動作を実行させる。
一方、ステップS7でYesと判定すると、ステップS8として、記憶回路211を初期化させる。具体的には、ステップS7でYesと判定すると、発振停止検出回路16は、発振停止信号D2の出力をHighにする。そして、発振停止信号D2がHighになると、温度補償機能制御回路21は記憶回路211を初期化させる。
次に、温度補償機能制御回路21の記憶回路211は、ステップS9として、禁止フラグF1を発生させる。具体的には、記憶回路211は、初期化すると禁止フラグF1を発生させる。これにより、温度補償機能制御回路21は、温度補償回路30による温度補償機能動作を停止させる。そして、ステップS1に戻って処理を繰り返す。すなわち、ぜんまい40が巻き上げられ、発電機70による発電が開始されて、電源電圧Vが発振開始電圧V3を超えるまで、水晶発振回路110は発振停止する。
ここで、本実施形態では、温度補償回路30は、個体差補正データ記憶部33に記憶された個体差補正データを利用して水晶振動子80の頂点歩度を調整する、すなわち、温度センサー31による温度測定は実行せずに、水晶振動子80の個体差を補正する個体差補正機能動作を実行可能に構成されている。そして、温度補償機能制御回路21は、温度補償機能動作を停止させた場合、温度補償回路30による個体差補正機能動作を継続させる。つまり、温度補償機能制御回路21は、個体差補正データに基づく頂点歩度の調整を継続させる。
これは、温度センサー31により温度を測定し、当該測定温度に応じた補正量を温度補正テーブル記憶部32および個体差補正データ記憶部33から読み出すのに必要な電力に比べて、温度センサー31による温度測定を実行せずに、個体差補正データ記憶部33から水晶振動子80の頂点歩度に関する個体差補正データを読み出すのに必要な電力が顕著に低いためである。つまり、水晶振動子80の発振が開始された直後に個体差補正データに基づく頂点歩度の調整を実行しても、電源電圧Vが発振停止電圧V2を下回る可能性は低いので、個体差補正データに基づく頂点歩度の調整、つまり、個体差補正機能動作は継続させている。
図7は、本実施形態の温度補償処理の制御方法を説明するタイミングチャートである。
図7に示すように、ぜんまい40が巻き上げられて、発電機70による発電が開始されると、電源回路100の電源電圧Vが徐々に上昇する。そして、電源電圧Vが発振開始電圧V3を超えると、水晶発振回路110が発振開始し、発振停止信号D2がLowになる。
そして、電源電圧Vがさらに上昇し、電圧検出タイミングで、電源電圧Vが解除電圧V1を超えたことが検出されると、禁止フラグF1が解除される。これにより、温度補償機能動作が開始される。温度補償機能動作が実行された際、電源電圧Vは一時的に降下するが、前述したように、解除電圧V1は発振停止電圧V2よりも十分に高い値に設定されているので、電源電圧Vは発振停止電圧V2を下回ることはない。
なお、前述したように、電源電圧Vが解除電圧V1を超えるまでの間においても、個体差補正データに基づく頂点歩度の調整は実行される。すなわち、禁止フラグF1が発生していても、個体差補正機能動作は実行される。
また、本実施形態では、電源電圧Vが解除電圧V1を超えた後、温度補償機能動作によって電圧が降下して、解除電圧V1を下回っても、発振停止電圧V2を下回るまでは記憶回路211が初期化されない。つまり、禁止フラグF1が発生しないので、温度補償機能動作は継続される。
その後、電源電圧Vが低下し、電源電圧Vが発振停止電圧V2を下回って水晶発振回路110の発振停止が検出されると、発振停止信号D2がHighになり、禁止フラグF1が発生する。これにより、温度補償機能制御回路21による温度補償回路30の温度補償機能動作が停止される。
[第1実施形態の作用効果]
このような本実施形態によれば、以下の効果を得ることができる。
本実施形態では、温度補償機能制御回路21は、第1電圧検出回路15により電源電圧Vが解除電圧V1を超えたことが検出されると、温度補償回路30の温度補償機能動作を開始させる。そして、温度補償機能制御回路21は、電源電圧Vが解除電圧V1を下回っても、温度補償機能動作を継続させる。
これにより、温度補償機能動作の開始と停止とが繰り返し実行されることを防ぐことができる。そのため、温度補償機能動作を実行する時間が短くなってしまうことで、所望の時間精度を維持できなくなることを抑制できる。
本実施形態では、温度補償機能制御回路21は、第1電圧検出回路15により電源電圧Vが解除電圧V1を超えたことが検出されたことを記憶する記憶回路211を備える。温度補償機能制御回路21は、発振停止検出回路16により水晶発振回路110の発振停止が検出されると、記憶回路211を初期化する。そして、温度補償機能制御回路21は、記憶回路211が初期化されている場合、温度補償回路30の温度補償機能動作を停止させる。
これにより、温度補償機能制御回路21は、水晶発振回路110の発振停止が検出されるまでは、温度補償機能動作を継続させる。そのため、温度補償機能動作の開始と停止とが繰り返し実行されることを、より確実に防ぐことができる。
本実施形態では、温度補償機能制御回路21は、温度補償回路30の温度補償機能動作を停止させた場合に、個体差補正機能動作は継続させる。
これにより、発電機70で発電を開始してから、電源電圧Vが解除電圧V1を超えるまでの間で、禁止フラグF1が発生している場合でも、個体差補正データに基づく頂点歩度の調整は実行される。そのため、所望する時間精度をより確実に維持することができる。
本実施形態では、解除電圧V1は、温度補償機能制御回路21によって温度補償回路30の温度補償機能動作を開始させた際に、当該温度補償機能動作によって、電源電圧Vが発振停止電圧V2を下回らないように設定されている。
これにより、温度補償機能動作を開始させた直後に、電源電圧Vが発振停止電圧V2を下回ることで、水晶発振回路110が発振停止してしまうことを防止できる。
さらに、本実施形態では、解除電圧V1は、ぜんまい40によって発電機70や輪列50等を動作させるのに必要なトルクが安定して得られる場合の発電電圧を超えるように設定されている。これにより、温度補償機能動作によって降下する電源電圧Vを回復させることができる。
[第2実施形態]
次に、本開示の第2実施形態について、図8~10に基づいて説明する。第2実施形態では、温度補償機能制御回路21Aは、電源電圧Vが設定電圧V4を下回ると、温度補償回路30による温度補償機能動作を停止させる点で、前述した第1実施形態と異なる。
なお、第2実施形態において、第1実施形態と同一または同様の構成には同一符号を付し、説明を省略または簡略する。
図8は、第2実施形態の時計1Aの概略構成を示すブロック図である。
図8に示すように、IC10Aは、第2電圧検出回路17Aを備える。
第2電圧検出回路17Aは、分周回路12から出力される信号に基づいて、所定の周期で電源回路100の電源電圧Vを検出する。そして、電源回路100の電源電圧Vが、予め設定された設定電圧V4を下回った場合、温度補償機能制御回路21Aに出力する禁止フラグ発生信号D3をHighにする。
本実施形態では、設定電圧V4は、発振開始電圧V3よりも高く、かつ、解除電圧V1よりも低い値に設定されている。なお、設定電圧V4は、本開示の第2電圧の一例である。
温度補償機能制御回路21Aは、図9に示す記憶回路211Aを備える。
記憶回路211Aは、前述した第1実施形態と同様に、Dフリップフロップから構成される。そして、記憶回路211Aに入力される禁止フラグ発生信号D3がHighになると、温度補償機能制御回路21Aは記憶回路211Aを初期化する。これにより、記憶回路211Aは禁止フラグF1を強制的にHighにさせる、つまり、禁止フラグF1を発生させる。
また、記憶回路211Aは、禁止フラグ発生信号D3がLowの状態で、解除信号D1がHighになると、解除信号D1がHighになったことを記憶する。つまり、記憶回路211Aは、電源電圧Vが解除電圧V1を超えたことを記憶する。そして、記憶回路211Aは、解除信号D1がHighになったことを記憶すると、禁止フラグF1を解除する。
[温度補償処理の制御方法]
次に、本実施形態の温度補償処理の制御方法について、図10のフローチャートを用いて説明する。
なお、本実施形態において、ステップS1A~S6Aは、前述した第1実施形態のステップS1~S6と同様であるため、説明を省略する。
図9に示すように、第2電圧検出回路17Aは、ステップS10Aとして、電圧検出タイミングであるか否かを判定する。
ステップS12AでNoと判定すると、第2電圧検出回路17Aは、ステップS10Aに戻って処理を繰り返す。
一方、ステップS10AでYesと判定すると、第2電圧検出回路17Aは、ステップS11Aとして、電源回路100の電源電圧Vを検出する。本実施形態では、前述したように、第2電圧検出回路17Aは、所定の周期で電源回路100の電源電圧Vを検出する。
次に、第2電圧検出回路17Aは、ステップS12Aとして、電源回路100の電源電圧Vが、設定電圧V4を下回ったか否かを判定する。
ステップS12AでNoと判定された場合、ステップS6Aに戻って処理を繰り返す。
一方、ステップS12AでYesと判定されると、温度補償機能制御回路21Aは、ステップS13Aとして、記憶回路211Aを初期化する。具体的には、ステップS12AでYesと判定すると、第2電圧検出回路17Aは、禁止フラグ発生信号D3をHighにする。そして、温度補償機能制御回路21Aは、禁止フラグ発生信号D3がHighになると、記憶回路211Aを初期化させる。そして、記憶回路211Aは、ステップS14Aとして、禁止フラグF1を発生させる。
その後、ステップS2Aに戻って処理を繰り返す。
図11は、本実施形態の温度補償処理の制御方法を説明するタイミングチャートである。
図11に示すように、禁止フラグF1が解除された後、電圧検出タイミングで、電源電圧Vが設定電圧V4を下回ったことが検出されると、禁止フラグF1が発生する。これにより、温度補償機能制御回路21Aは、温度補償回路30の温度補償機能動作を停止する。
[第2実施形態の作用効果]
このような本実施形態によれば、以下の効果を得ることができる。
本実施形態では、電源電圧Vが設定電圧V4を下回ったことを検出する第2電圧検出回路17Aを備える。そして、温度補償機能制御回路21Aは、第2電圧検出回路17Aにより電源電圧Vが設定電圧V4を下回ったことが検出されると、温度補償回路30の温度補償機能動作を停止する。
これにより、温度補償機能動作によって電源電圧Vが電圧降下しにくくなるので、電源電圧Vが発振停止電圧V2を下回るまでの時間を長くすることができる。すなわち、時計1Aの持続時間を長くすることができる。
本実施形態では、温度補償機能制御回路21Aは、第2電圧検出回路17Aにより電源電圧Vが設定電圧V4を下回ったことが検出されると、記憶回路211Aを初期化する。そして、温度補償機能制御回路21Aは、記憶回路211Aが初期化されている場合、温度補償回路30の温度補償機能動作を停止させる。
これにより、温度補償機能制御回路21Aは、電源電圧Vが設定電圧V4を下回るまでは、温度補償機能動作を継続させる。そのため、前述した第1実施形態と同様に、温度補償機能動作の開始と停止とが繰り返し実行されることを、より確実に防ぐことができる。
[変形例]
なお、本開示は前述の各実施形態に限定されるものではなく、本開示の目的を達成できる範囲での変形、改良等は本開示に含まれるものである。
前記各実施形態では、時計1、1Aは、ぜんまい40、発電機70、水晶振動子80等を備える電子制御式機械時計として構成されていたが、これに限定されない。例えば、本開示の時計は、電池、モーター、水晶振動子等を備えるアナログクオーツ時計や、デジタル表示部を備えるデジタルクオーツ時計として構成されていてもよい。
前記各実施形態では、温度補償機能制御回路21、21Aは、禁止フラグF1が発生している間、個体差補正機能動作を継続させるように構成されていたが、これに限定されない。例えば、温度補償機能制御回路21、21Aは、禁止フラグF1が発生している間、個体差補正機能動作を停止させる、つまり、個体差補正データに基づく頂点歩度の調整も停止させるように構成されていてもよい。
前記各実施形態では、温度補償回路30は、温度補正テーブル記憶部32および個体差補正データ記憶部33を備えて構成されていたが、これに限定されない。例えば、温度補償回路30は、温度補正テーブル記憶部32および個体差補正データ記憶部33のいずれか一方を備えて構成されていてもよい。
前記各実施形態では、温度補償回路30は、論理緩急回路36と周波数調整制御回路37とを組み合わせて、歩度を調整するように構成されていたが、これに限定されない。例えば、温度補償回路30は、論理緩急回路36および周波数調整制御回路37のいずれか一方により、歩度を調整するように構成されていてもよい。
前記第1実施形態では、温度補償機能制御回路21の記憶回路211は、解除信号D1がHighになったことを記憶し、発振停止信号D2がHighになると初期化されるように構成されていたが、これに限定されない。例えば、温度補償機能制御回路21は、電源電圧Vが解除電圧V1を超えたことを記憶する記憶装置を備え、当該記憶装置の状態に応じて温度補償機能動作を制御するように構成されていてもよい。
また、前記第2実施形態では、温度補償機能制御回路21Aの記憶回路211Aは、解除信号D1がHighになったことを記憶し、禁止フラグ発生信号D3がHighになると初期化されるように構成されていたが、これに限定されない。例えば、温度補償機能制御回路21Aは、電源電圧Vが解除電圧V1を超えたことを記憶する記憶装置を備え、当該記憶装置の状態に応じて温度補償機能動作を制御するように構成されていてもよい。
前記第2実施形態では、設定電圧V4は、発振開始電圧V3よりも高く設定されていたが、これに限定されない。例えば、設定電圧V4は、発振開始電圧V3以下に設定されていてもよく、発振停止電圧V2よりも高く設定されていればよい。
1,1A…時計、10,10A…IC、11…発振回路、12…分周回路、13…回転検出回路、14…制動制御回路、15…第1電圧検出回路、16…発振停止検出回路、17A…第2電圧検出回路、20…温度補償機能部、21,21A…温度補償機能制御回路(制御回路)、30…温度補償回路、31…温度センサー(温度測定部)、32…温度補正テーブル記憶部、33…個体差補正データ記憶部、35…演算回路、36…論理緩急回路、37…周波数調整制御回路、50…輪列、60…表示部、70…発電機、80…水晶振動子、90…整流回路、100…電源回路(電源)、101…コンデンサー、110…水晶発振回路、211,211A…記憶回路。

Claims (8)

  1. 充電可能に構成される電源と、
    水晶振動子および発振回路を有し、電源電圧が発振停止電圧を下回ると発振停止し、前記電源電圧が前記発振停止電圧より高い発振開始電圧を超えると発振開始する水晶発振回路と、
    前記発振回路から出力される発振信号を分周して基準信号を出力する分周回路と、
    前記基準信号の温度による変動を補償する温度補償機能動作を実行する温度補償回路と、
    前記電源電圧が、前記発振開始電圧よりも高く設定される第1電圧を超えたことを検出する第1電圧検出回路と、
    前記第1電圧検出回路により前記電源電圧が前記第1電圧を超えたことが検出されると、前記温度補償回路の前記温度補償機能動作を開始させ、その後、前記電源電圧が前記第1電圧を下回っても前記温度補償機能動作を継続させる制御回路と、を備える
    ことを特徴とする時計。
  2. 請求項1に記載の時計において、
    前記水晶発振回路の発振停止を検出する発振停止検出回路を備え、
    前記制御回路は、前記発振停止検出回路により前記水晶発振回路の発振停止が検出されると、前記温度補償機能動作を停止させる
    ことを特徴とする時計。
  3. 請求項2に記載の時計において、
    前記第1電圧検出回路により前記電源電圧が前記第1電圧を超えたことが検出されたことを記憶する記憶回路を備え、
    前記制御回路は、
    前記発振停止検出回路により前記水晶発振回路の発振停止が検出されると、前記記憶回路を初期化し、
    前記記憶回路が初期化されている場合、前記温度補償機能動作を停止させる
    ことを特徴とする時計。
  4. 請求項1に記載の時計において、
    前記電源電圧が、前記第1電圧よりも低く設定された第2電圧を下回ったことを検出する第2電圧検出回路を備え、
    前記制御回路は、前記第2電圧検出回路により前記電源電圧が前記第2電圧を下回ったことが検出されると、前記温度補償機能動作を停止させる
    ことを特徴とする時計。
  5. 請求項4に記載の時計において、
    前記第1電圧検出回路により前記電源電圧が前記第1電圧を超えたことが検出されたことを記憶する記憶回路を備え、
    前記制御回路は、
    前記第2電圧検出回路により前記電源電圧が前記第2電圧を下回ったことが検出されると、前記記憶回路を初期化し、
    前記記憶回路が初期化されている場合、前記温度補償回路の前記温度補償機能動作を停止させる
    ことを特徴とする時計。
  6. 請求項1から請求項5のいずれか一項に記載の時計において、
    前記温度補償回路は、前記水晶振動子の個体差を補正する個体差補正機能動作を実行可能に構成され、
    前記制御回路は、前記温度補償回路の前記温度補償機能動作を停止させた場合に、前記温度補償回路による前記個体差補正機能動作は継続させる
    ことを特徴とする時計。
  7. 請求項1から請求項6のいずれか一項に記載の時計において、
    前記第1電圧は、前記制御回路によって前記温度補償回路の前記温度補償機能動作を開始させた際に、前記温度補償機能動作によって、前記電源電圧が前記発振停止電圧を下回らないように設定されている
    ことを特徴とする時計。
  8. 充電可能に構成される電源と、水晶振動子および発振回路を有し、電源電圧が発振停止電圧を下回ると発振停止し、前記電源電圧が前記発振停止電圧より高い発振開始電圧を超えると発振開始する水晶発振回路と、前記発振回路から出力される発振信号を分周して基準信号を出力する分周回路と、前記基準信号の温度による変動を補償する温度補償機能動作を実行する温度補償回路と、を備える時計の制御方法であって、
    前記電源電圧が、前記発振開始電圧よりも高く設定された第1電圧を超えたことを検出するステップと、
    前記電源電圧が前記第1電圧を超えたことを検出すると、前記温度補償回路の前記温度補償機能動作を開始させるステップと、
    前記電源電圧が前記第1電圧を下回っても前記温度補償機能動作を継続させるステップと、を備える
    ことを特徴とする時計の制御方法。
JP2019132458A 2019-07-18 2019-07-18 時計および時計の制御方法 Active JP7251374B2 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2019132458A JP7251374B2 (ja) 2019-07-18 2019-07-18 時計および時計の制御方法
US16/931,497 US11720061B2 (en) 2019-07-18 2020-07-17 Watch and method for controlling watch

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019132458A JP7251374B2 (ja) 2019-07-18 2019-07-18 時計および時計の制御方法

Publications (2)

Publication Number Publication Date
JP2021018088A JP2021018088A (ja) 2021-02-15
JP7251374B2 true JP7251374B2 (ja) 2023-04-04

Family

ID=74343680

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019132458A Active JP7251374B2 (ja) 2019-07-18 2019-07-18 時計および時計の制御方法

Country Status (2)

Country Link
US (1) US11720061B2 (ja)
JP (1) JP7251374B2 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2024036870A (ja) * 2022-09-06 2024-03-18 セイコーエプソン株式会社 電子制御式機械時計

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008236629A (ja) 2007-03-23 2008-10-02 Seiko Epson Corp 発振装置、半導体装置、電子機器および時計
JP2013150344A (ja) 2013-03-19 2013-08-01 Seiko Epson Corp 温度補償型発振回路、リアルタイムクロック装置および電子機器
JP2017158138A (ja) 2016-03-04 2017-09-07 セイコーエプソン株式会社 発振装置および温度補償機能付き時計

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3753839B2 (ja) * 1997-06-05 2006-03-08 シチズン時計株式会社 電子時計
JP3646565B2 (ja) 1999-06-07 2005-05-11 セイコーエプソン株式会社 電子機器、電子制御式機械時計およびそれらの制御方法
JP3702729B2 (ja) * 1999-11-24 2005-10-05 セイコーエプソン株式会社 電子時計および電子時計の駆動制御方法
JP4682668B2 (ja) * 2005-03-30 2011-05-11 株式会社デンソー A/d変換装置、およびa/d変換装置を備えたセンサ装置
JP5228392B2 (ja) 2007-07-31 2013-07-03 セイコーエプソン株式会社 温度補償型発振回路、リアルタイムクロック装置および電子機器
JP2016032196A (ja) 2014-07-29 2016-03-07 株式会社大真空 温度補償型発振回路、リアルタイムクロック装置及び電子機器
CN110554595B (zh) 2018-06-04 2022-02-25 精工爱普生株式会社 电子控制式机械钟表、电子控制式机械钟表的控制方法以及电子钟表
JP7251375B2 (ja) * 2019-07-18 2023-04-04 セイコーエプソン株式会社 電子制御式機械時計および電子制御式機械時計の制御方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008236629A (ja) 2007-03-23 2008-10-02 Seiko Epson Corp 発振装置、半導体装置、電子機器および時計
JP2013150344A (ja) 2013-03-19 2013-08-01 Seiko Epson Corp 温度補償型発振回路、リアルタイムクロック装置および電子機器
JP2017158138A (ja) 2016-03-04 2017-09-07 セイコーエプソン株式会社 発振装置および温度補償機能付き時計

Also Published As

Publication number Publication date
US20210018873A1 (en) 2021-01-21
JP2021018088A (ja) 2021-02-15
US11720061B2 (en) 2023-08-08

Similar Documents

Publication Publication Date Title
JP3596464B2 (ja) 計時装置および計時装置の制御方法
JP3721888B2 (ja) 携帯用電子機器および携帯用電子機器の制御方法
EP1677166A2 (en) Electronic equipment and control method for controlling its power consumption
JP3551861B2 (ja) 計時装置及びその制御方法
JP7192938B2 (ja) 電子制御式機械時計および電子制御式機械時計の制御方法
JP3627724B2 (ja) 計時装置および計時装置の制御方法
JP7251375B2 (ja) 電子制御式機械時計および電子制御式機械時計の制御方法
JP2000232728A (ja) 電源装置およびその制御方法、携帯型電子機器、計時装置およびその制御方法
EP1070998B1 (en) Electronic apparatus and method of controlling electronic apparatus
JP2001249192A (ja) 計時装置及び計時装置の制御方法
WO2000017716A1 (fr) Piece d'horlogerie electronique et procede d'alimentation en puissance et de mise a l'heure de ladite piece
JP7251374B2 (ja) 時計および時計の制御方法
JP3601375B2 (ja) 携帯用電子機器及び携帯用電子機器の制御方法
JP2004096993A (ja) 電子機器及び電子機器の制御方法
WO2000035062A1 (fr) Dispositif electronique, appareil d'horlogerie electronique et procede de reglage de puissance
JPH11223682A (ja) 電子機器、電子機器の制御方法、計時装置、および計時装置の制御方法
JP7115332B2 (ja) 電子制御式機械時計、電子制御式機械時計の制御方法および電子時計
JP3791263B2 (ja) 携帯用電子機器、携帯用電子機器の制御方法ならびに計時装置および計時装置の制御方法
US11669052B2 (en) Timepiece and control method of a timepiece
JP2002214367A (ja) 計時装置
JPS58179379A (ja) 電子時計
JP3551191B2 (ja) 電子制御式時計、電子制御式時計の電力供給制御方法
JP3906720B2 (ja) 携帯用電子機器及び携帯用電子機器の制御方法
JP2004004140A (ja) 計時装置及び計時装置の制御方法
JP2022078766A (ja) 半導体装置および時計

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220620

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20230213

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230221

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230306

R150 Certificate of patent or registration of utility model

Ref document number: 7251374

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150