JP7247434B2 - Alkali-resistant thin film antifouling coating - Google Patents

Alkali-resistant thin film antifouling coating Download PDF

Info

Publication number
JP7247434B2
JP7247434B2 JP2020000152A JP2020000152A JP7247434B2 JP 7247434 B2 JP7247434 B2 JP 7247434B2 JP 2020000152 A JP2020000152 A JP 2020000152A JP 2020000152 A JP2020000152 A JP 2020000152A JP 7247434 B2 JP7247434 B2 JP 7247434B2
Authority
JP
Japan
Prior art keywords
film
alkali
resistant thin
antifouling
antifouling film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2020000152A
Other languages
Japanese (ja)
Other versions
JP2020131702A (en
Inventor
行弘 前田
梓 徳島
均 杉山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
FUTAKU PRECISION MACHINERY INDUSTRY COMPANY
Original Assignee
FUTAKU PRECISION MACHINERY INDUSTRY COMPANY
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by FUTAKU PRECISION MACHINERY INDUSTRY COMPANY filed Critical FUTAKU PRECISION MACHINERY INDUSTRY COMPANY
Publication of JP2020131702A publication Critical patent/JP2020131702A/en
Application granted granted Critical
Publication of JP7247434B2 publication Critical patent/JP7247434B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Laminated Bodies (AREA)
  • Other Surface Treatments For Metallic Materials (AREA)

Description

本発明は、防汚膜に被覆された精密加工部品に関するものである。 TECHNICAL FIELD The present invention relates to a precision machined part coated with an antifouling film.

従来から、金属やセラミックスからなる製品への汚染物付着、錆や腐食の発生を防止するために、フッ素樹脂を被覆する技術が知られている。例えば、フッ素樹脂とバインダー樹脂の混合物を高温処理することで防汚膜を形成する技術が良く知られているが、フッ素樹脂と製品の基材となる構造体の親和性が良くないため、バインダー樹脂を大量に用いて高温熱処理を行うことで被膜を形成することから、安定した性能の均質な防汚膜を得るためには、防汚膜の膜厚を厚くする必要があり、精緻な構造体に用いるに適さないとともに、凹凸部などに製膜欠陥が生じやすく、防汚膜へのクラック発生や部分剥離などの不具合が発生するなどの課題があった。例えば、刃先や針先のなどように鋭角な形状を有する製品や、細径管などのように曲率が大きな形状を有するような製品では、基材となる構造体に求められる性能や機能、使用方法などが大幅に制限されてしまうことになった。そこで、基材となる構造体と化学結合を形成する単分子膜のフッ素樹脂膜を用いることで、刃先や針先のような形状への適用性を向上する技術(特許文献1参照)が示されている。 Conventionally, there has been known a technique of coating a product made of metal or ceramics with a fluororesin in order to prevent the adhesion of contaminants and the occurrence of rust and corrosion. For example, it is well known that a mixture of fluororesin and binder resin is treated at high temperature to form an antifouling film. Since the film is formed by using a large amount of resin and performing high-temperature heat treatment, it is necessary to increase the film thickness of the anti-fouling film in order to obtain a uniform anti-fouling film with stable performance. In addition to being unsuitable for use on the body, there were problems such as film formation defects being likely to occur on uneven parts, etc., and defects such as cracking and partial peeling of the antifouling film. For example, for products with sharp shapes such as cutting edges and needle tips, and products with large curvatures such as small diameter pipes, the performance, function, and usage required for the structure that is the base material are required. methods were severely restricted. Therefore, a technology (see Patent Document 1) has been proposed to improve applicability to shapes such as cutting edges and needle tips by using a monomolecular fluororesin film that forms a chemical bond with a structure that serves as a base material. It is

特開平4-239635号公報JP-A-4-239635

しかしながら、特許文献1に記載されるような単分子膜状のフッ素樹脂膜では、酸性溶液や有機溶剤に晒された場合には防汚性を保つことができるが、次亜塩素酸ナトリウム水溶液を使用する消毒プロセスのようにアルカリ性の環境に晒されると防汚性を保てないという問題があり、分析分野、医療分野、食品加工分野など様々な用途において、使用方法が制限されてしまうという課題があった。 However, a monomolecular fluororesin film such as that described in Patent Document 1 can maintain antifouling properties when exposed to an acidic solution or an organic solvent, but an aqueous solution of sodium hypochlorite cannot be used. There is a problem that antifouling properties cannot be maintained when exposed to an alkaline environment such as the disinfection process used, and the problem is that the method of use is limited in various fields such as analysis, medical, and food processing. was there.

そこで、本発明は、防汚膜によって被覆された構造体の寸法精度への影響や形状に対する制約を抑えると同時に、酸性溶液や有機溶剤に晒された場合に限らず、次亜塩素酸ナトリウム水溶液などのアルカリ性溶液に晒された場合であっても良好な耐性を示す薄膜防汚膜被膜体を提供することを目的とする。 Therefore, the present invention suppresses the influence on the dimensional accuracy and the restrictions on the shape of the structure coated with the antifouling film, and at the same time, it is not limited to the case where it is exposed to an acidic solution or an organic solvent. It is an object of the present invention to provide a thin antifouling film coated body that exhibits good resistance even when exposed to an alkaline solution such as

本発明は、以下の構成を有する耐アルカリ性薄膜防汚膜被覆体を提供する。
[1]膜厚が0.01μm以上2μm以下であり、EDSを用いた元素分析において検出されるフッ素が1原子数%以上であることを特徴とするフッ素を含む樹脂膜に、部分的にあるいは全体を被覆された構造体からなり、前記構造体のフッ素を含む樹脂膜に被覆され た部分が、10質量%以上のクロムを含む鉄合金、または、60質量%以上のチタンを含 む合金からなることを特徴とする耐アルカリ性薄膜防汚膜被覆体。
[2]フッ素を含む樹脂膜に被覆された管状、孔状、溝状、谷状の立体構造を有することを特徴とする[1]に記載の耐アルカリ性薄膜防汚膜被覆体。
[3]10%の次亜塩素酸ナトリウム水溶液に含浸して10分間超音波をかけたのちに撥水性を有することを特徴とする[1]または[2]に記載の耐アルカリ性薄膜防汚膜被覆体。
[4]フッ素を含む樹脂膜が、波長633nmにおける屈折率が1.3以上1.5以下であり、膜厚が50Å以上である表面光学膜構造を有することを特徴とする[1]~[3]に記載の耐アルカリ性薄膜防汚膜被覆体。
[5]10%の次亜塩素酸ナトリウム水溶液に含浸して30分間超音波をかけたのちに、EDSを用いた元素分析において検出されるフッ素が1原子数%以上であることを特徴とするフッ素を含む樹脂膜に、部分的にあるいは全体を被覆された構造体からなることを特徴とする[1]~[4]に記載の耐アルカリ性薄膜防汚膜被覆体。
The present invention provides an alkali-resistant thin film antifouling coating having the following constitution.
[1] A fluorine-containing resin film having a film thickness of 0.01 μm or more and 2 μm or less and having 1 atomic % or more of fluorine detected in elemental analysis using EDS, partially or An iron alloy containing 10% by mass or more of chromium, or an alloy containing 60% by mass or more of titanium. An alkali-resistant thin film antifouling film covering , characterized by comprising :
[2] The alkali-resistant thin film antifouling film coating according to [1], which is coated with a fluorine-containing resin film and has a tubular, pore-shaped, groove-shaped, or valley-shaped three-dimensional structure.
[3] The alkali-resistant thin antifouling film according to [1] or [2], which has water repellency after being impregnated with a 10% sodium hypochlorite aqueous solution and subjected to ultrasonic waves for 10 minutes. cover.
[4] The resin film containing fluorine has a surface optical film structure with a refractive index of 1.3 or more and 1.5 or less at a wavelength of 633 nm and a film thickness of 50 Å or more [1]-[ 3].
[5] After being immersed in a 10% sodium hypochlorite aqueous solution and applying ultrasonic waves for 30 minutes, fluorine detected in elemental analysis using EDS is 1 atomic % or more. The alkali-resistant thin film antifouling film-coated body according to [1] to [4], characterized by comprising a structure partially or wholly coated with a fluorine-containing resin film.

本発明によれば、防汚膜によって被覆された構造体の寸法精度への影響や形状に対する制約を抑えると同時に、次亜塩素酸ナトリウム水溶液などのアルカリ性溶液に対して良好な耐性を示す薄膜防汚膜被膜体を提供することが可能となる。 According to the present invention, a thin film antifouling film that exhibits good resistance to an alkaline solution such as an aqueous sodium hypochlorite solution while suppressing the influence on the dimensional accuracy and restrictions on the shape of a structure coated with an antifouling film. It becomes possible to provide a dirt film body.

本発明の耐アルカリ性薄膜防汚膜被覆体の形態例の断面模式図であり、基材となる平板状の構造体の片面に耐アルカリ性薄膜防汚膜を有する構成の断面模式図である。BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a schematic cross-sectional view of an embodiment of an alkali-resistant thin antifouling film coated body of the present invention, and is a schematic cross-sectional view of a structure having an alkali-resistant thin antifouling film on one side of a flat structure serving as a substrate. 本発明の耐アルカリ性薄膜防汚膜被覆体の形態例の断面模式図であり、基材となる山状と谷状の立体構造を有する構造体の表面に耐アルカリ性薄膜防汚膜を有する構成の断面模式図である。FIG. 2 is a schematic cross-sectional view of an example of the form of the alkali-resistant thin-film anti-fouling film coated body of the present invention, which is configured to have an alkali-resistant thin-film anti-fouling film on the surface of a structure having a three-dimensional structure of peaks and valleys as a base material. It is a cross-sectional schematic diagram. 本発明の耐アルカリ性薄膜防汚膜被覆体の形態例の断面模式図であり、基材となる円管状の構造体の内面と外面に耐アルカリ性薄膜防汚膜を有する構成の断面模式図である。BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a schematic cross-sectional view of an example of the form of an alkali-resistant thin antifouling film coated body of the present invention, and is a schematic cross-sectional view of a structure having alkali-resistant thin antifouling films on the inner and outer surfaces of a cylindrical structure serving as a substrate. . 本発明の耐アルカリ性薄膜防汚膜被覆体の形態例の断面模式図であり、基材となる平板状の構造体の片面に、波長633nmにおける屈折率が1.3以上1.5以下である表面光学膜構造をもつ耐アルカリ性薄膜防汚膜を有する構成の断面模式図である。FIG. 2 is a schematic cross-sectional view of an example of the form of the alkali-resistant thin antifouling film coated body of the present invention, in which one surface of a flat structure serving as a substrate has a refractive index of 1.3 or more and 1.5 or less at a wavelength of 633 nm. FIG. 4 is a schematic cross-sectional view of a configuration having an alkali-resistant thin antifouling film having a surface optical film structure. 本発明の耐アルカリ性薄膜防汚膜被覆体の形態例の断面模式図であり、フッ素を含む樹脂膜と基材となる構造体の界面に、波長633nmにおける屈折率が1.5以上2.1以下かつ消衰係数が1.0以下である界面光学膜構造をもつ薄膜防汚膜を有する構成の断面模式図である。FIG. 2 is a schematic cross-sectional view of an example of the form of the alkali-resistant thin antifouling film coating of the present invention, in which a refractive index of 1.5 or more and 2.1 at a wavelength of 633 nm is applied to the interface between a resin film containing fluorine and a structure serving as a base material. and an extinction coefficient of 1.0 or less. 本発明の耐アルカリ性薄膜防汚膜被覆体の形態例の断面模式図であり、フッ素を含む樹脂膜の表面光学膜構造と界面光学膜構造の間に、波長633nmにおける屈折率が1.5以上2.1以下かつ消衰係数が1.0以下である中間光学膜構造を有する構成の断面模式図である。FIG. 2 is a schematic cross-sectional view of an embodiment of the alkali-resistant thin antifouling film coating of the present invention, wherein the refractive index at a wavelength of 633 nm is 1.5 or more between the surface optical film structure and the interfacial optical film structure of the resin film containing fluorine. FIG. 2 is a schematic cross-sectional view of a configuration having an intermediate optical film structure with an extinction coefficient of 2.1 or less and 1.0 or less;

以下に本発明を実施するための形態について説明する。
本発明の耐アルカリ性薄膜防汚膜被覆体は、膜厚が0.01μm以上2μm以下であり、EDSを用いた元素分析において検出されるフッ素が1原子数%以上であることを特徴とするフッ素を含む樹脂膜に被覆された構造体からなる。
A mode for carrying out the present invention will be described below.
The alkali-resistant thin antifouling film coating of the present invention has a film thickness of 0.01 μm or more and 2 μm or less, and fluorine is 1 atomic % or more detected in elemental analysis using EDS. It consists of a structure coated with a resin film containing

本発明の耐アルカリ性薄膜防汚膜被覆体は、防汚膜被膜体の寸法精度への影響や形状に対する制約が抑ええられる薄膜の防汚膜を有するものである。例えば、分析分野、医療分野、食品加工分野においては、直径や長さなどの寸法がミリオーダーからミクロンオーダーとなる、断面が円状、楕円状、半円状、多角形状などである、管状、孔状、溝状、谷状、半球状、多角錐状などの立体構造を有し、非常に高いレベルでの寸法精度や表面精度が必要とされる精緻な部品が必要とされることがある。そのような部品の基材となる構造体に防汚膜を設ける場合に、防汚膜の膜厚が厚すぎると基材の精緻な構造を損ねる上、膜硬化時の硬化応力が局所的に集中するなどして、防汚膜にクラックや部分的な剥離などの欠陥が生じることで、防汚膜に要求される腐食性や分解性の化学物質を遮蔽する機能が損なわれることがある。また、精緻な構造の部品を製造するためには、防汚膜に被覆された中間部品を用いて曲げ加工などを施す必要があることもあるが、防汚膜が厚すぎたり硬すぎたりすると、加工時の変形に追従することができず、防汚膜としての機能が損なわれてしまうことがある。また、Ti-22V-4AlやNi-Ti系合金などの変形に強い素材を用いた基材となる構造体に防汚膜を設けた際に、防汚膜が基材となる構造体の変形に耐えることができすに機能が損なわれてしまうことがある。一方、防汚膜の膜厚が薄すぎると、腐食性や分解性の化学物質が防汚膜を浸透しやすくなってしまう。したがって、本発明の耐アルカリ性薄膜防汚膜被覆体における防汚膜の膜厚は、0.01μm以上2μm以下である。防汚膜の膜厚が薄いと、ピンホール等の膜欠陥によって耐久性が低くなるなどの懸念が大きくなることから、防汚膜の膜厚は、0.03μm以上であることは好ましく、0.05μm以上であることはより好ましい。一方、防汚膜の膜厚が厚いと、防汚膜形成時の製膜応力が歪みとなり膜の一部が欠落しやすくなるなどの懸念が大きくなることから、防汚膜の膜厚は1.5μm以下であることは好ましく、1μm以下であることはより好ましく、0.5μm以下であることは更に好ましい。 The alkali-resistant thin film antifouling film coating of the present invention has a thin antifouling film that can suppress the influence on the dimensional accuracy of the antifouling film body and restrictions on the shape. For example, in the fields of analysis, medicine, and food processing, dimensions such as diameter and length are on the order of millimeters to microns, and cross sections are circular, elliptical, semicircular, polygonal, etc., tubular, Precise parts with three-dimensional structures such as holes, grooves, valleys, hemispheres, and polygonal pyramids that require extremely high levels of dimensional accuracy and surface accuracy are sometimes required. . When providing an antifouling film on a structure that serves as a base material for such parts, if the film thickness of the antifouling film is too thick, the fine structure of the base material will be damaged, and the curing stress during curing of the film will locally increase. Due to such concentration, defects such as cracks and partial peeling occur in the antifouling film, which may impair the function required of the antifouling film to shield against corrosive and decomposable chemical substances. Also, in order to manufacture a part with a precise structure, it may be necessary to bend the intermediate part covered with the antifouling film, but if the antifouling film is too thick or too hard, , the deformation during processing cannot be followed, and the function as an antifouling film may be impaired. In addition, when an antifouling film is provided on a structure that is a base material that is resistant to deformation such as Ti-22V-4Al and Ni-Ti alloys, deformation of the structure whose base material is the antifouling film It can withstand a lot of damage and may lose its functionality. On the other hand, if the film thickness of the antifouling film is too thin, corrosive or decomposable chemical substances easily permeate the antifouling film. Therefore, the film thickness of the antifouling film in the alkali-resistant thin antifouling film coating of the present invention is 0.01 μm or more and 2 μm or less. If the film thickness of the antifouling film is thin, there is a greater concern that durability will be reduced due to film defects such as pinholes. More preferably, it is 0.05 μm or more. On the other hand, if the film thickness of the antifouling film is thick, the film forming stress during formation of the antifouling film becomes distorted, and there is a greater concern that part of the film may be easily removed. It is preferably 0.5 μm or less, more preferably 1 μm or less, and even more preferably 0.5 μm or less.

本発明の耐アルカリ性薄膜防汚膜被覆体は、防汚膜の膜厚が0.01μm以上2μm以下でありながら、アルカリ性溶液に対して良好な耐性を示すものであり、当該防汚膜による基材となる構造体の被覆状態としては、厚みや組成のムラや、ピンホールや粒界などの膜構造欠陥の発生が抑制されている必要がある。本発明では、EDS(エネルギー分散型X線分析)によって検出される防汚膜由来の元素の割合や基材となる構造体由来の元素の割合を、基材となる構造体の被覆状態を示す指標として用いる。すなわち、本発明の耐アルカリ性薄膜防汚膜被覆体は、EDSを用いた加速電圧15.0kVや10.0kVで行った元素分析において検出されるフッ素が1原子数%以上である。フッ素の原子数%が小さいと、ピンホール等の膜欠陥によって耐久性が低くなるなどの懸念が大きくなることから、フッ素の原子数%は、2原子数%以上であることは好ましく、3原子数%以上であることはより好ましく、5原子数%以上であることはさらに好ましい。一方、フッ素の原子数%が大きいと、防汚膜形成時の製膜応力が歪みとなり膜の一部が欠落しやすくなるなどの懸念が大きくなることから、フッ素の原子数%は70原子数%以下であることは好ましく、30原子数%以下であることはより好ましく、10原子数%以下であることは更に好ましい。そして、基材となる構造体由来の元素が3原子数%以上97原子数%以下であることは好ましく、50原子数%以上90原子数%以下であることはより好ましく、70原子数%以上85原子数%以下であることはさらにより好ましい態様である。 The alkali-resistant thin film antifouling film coating of the present invention exhibits good resistance to alkaline solutions while the thickness of the antifouling film is 0.01 μm or more and 2 μm or less. As for the covering state of the structure that serves as the material, it is necessary to suppress the occurrence of unevenness in thickness and composition, as well as defects in the film structure such as pinholes and grain boundaries. In the present invention, the ratio of elements derived from the antifouling film detected by EDS (energy dispersive X-ray spectroscopy) and the ratio of elements derived from the structure serving as the base material indicate the coating state of the structure serving as the base material. Used as an index. That is, the alkali-resistant thin antifouling film coating of the present invention contains 1 atomic % or more of fluorine detected in elemental analysis performed at an acceleration voltage of 15.0 kV or 10.0 kV using EDS. If the atomic number % of fluorine is small, there is a greater concern that the durability will be lowered due to film defects such as pinholes. It is more preferably several percent or more, and even more preferably 5 atomic percent or more. On the other hand, if the atomic % of fluorine is large, the film-forming stress at the time of forming the antifouling film becomes distorted, and there is a greater concern that part of the film may be easily missing. % or less, more preferably 30 atomic % or less, and even more preferably 10 atomic % or less. The element derived from the structure to be the base material is preferably 3 atomic % or more and 97 atomic % or less, more preferably 50 atomic % or more and 90 atomic % or less, and 70 atomic % or more. 85 atomic % or less is an even more preferable aspect.

本発明の耐アルカリ性薄膜防汚膜被覆体において、フッ素を含む樹脂膜が、波長633nmにおける屈折率が1.3以上1.5以下であり、膜厚が50Å以上である表面光学膜構造を有することは、良好な耐アルカリ性を得るためには好ましい態様である。この理由は定かではないが、フッ素を含む樹脂膜に含まれる不純物が少なくなると波長633nmにおける屈折率が1.3以上1.5以下である表面光学膜構造が厚くなり、耐アルカリ性が向上するのではないかと考えている。波長633nmにおける屈折率が1.3以上1.5以下である表面光学膜構造の膜厚は、100Å以上であることはより好ましく、200Å以上であることはさらに好ましい態様である。波長633nmにおける屈折率が1.3以上1.5以下である表面光学膜構造の消衰係数は、1.0以下であることは好ましく、0.5以下であることはより好ましく、0.05以下であることは更に好ましい態様である。また、本発明の耐アルカリ性薄膜防汚膜被覆体において、フッ素を含む樹脂膜と基材となる構造体の界面に、波長633nmにおける屈折率が1.5以上2.1以下かつ消衰係数が0.1以下であり、膜厚が1Å以上100Å以下である界面光学膜構造を有することは、良好な耐アルカリ性を得るためには好ましい態様である。この理由は定かではないが、フッ素を含む樹脂膜と基材となる構造体の界面に金属酸化物のように化学的に安定な構造が多く形成されることで、波長633nmにおける屈折率が1.5以上2.1以下かつ消衰係数が0.1以下である界面光学膜構造として観察されて耐アルカリ性が向上するのではないかと考えている。波長633nmにおける屈折率が1.5以上2.1以下かつ消衰係数が0.1以下である界面光学膜構造の膜厚は、2Å以上30Å以下であることはより好ましく、5Å以上10Å以下あることはさらに好ましい態様である。そして、本発明の耐アルカリ性薄膜防汚膜被覆体において、フッ素を含む樹脂膜の表面光学膜構造と界面光学膜構造の間に、波長633nmにおける屈折率が1.5以上2.1以下かつ消衰係数が1.0以下であり、膜厚が40Å以上である中間光学膜構造を有することは、良好な耐アルカリ性を得るためには好ましい態様である。この理由は定かではないが、基材となる構造体にフッ素を含む樹脂膜に拡散しやすい鉄などの元素が含まれている場合に、フッ素を含む樹脂膜の表面光学膜構造と界面光学膜構造の間に波長633nmにおける屈折率が1.5以上2.1以下かつ消衰係数が1.0以下である中間光学膜構造が形成されることで、フッ素を含む樹脂膜中に拡散する元素量が抑制されて耐アルカリ性が向上するのではないかと考えている。波長633nmにおける屈折率が1.5以上2.1以下かつ消衰係数が1.0以下である中間光学膜構造の膜厚は、50Å以上300Å以下であることはより好ましく、60Å以上150Å以下あることはさらに好ましい態様である。 In the alkali-resistant thin antifouling film coating of the present invention, the resin film containing fluorine has a surface optical film structure in which the refractive index at a wavelength of 633 nm is 1.3 or more and 1.5 or less and the film thickness is 50 Å or more. This is a preferred mode for obtaining good alkali resistance. Although the reason for this is not clear, when the amount of impurities contained in the fluorine-containing resin film is reduced, the surface optical film structure having a refractive index of 1.3 or more and 1.5 or less at a wavelength of 633 nm becomes thicker, thereby improving alkali resistance. I don't think so. The film thickness of the surface optical film structure having a refractive index of 1.3 to 1.5 at a wavelength of 633 nm is more preferably 100 Å or more, more preferably 200 Å or more. The extinction coefficient of the surface optical film structure having a refractive index of 1.3 or more and 1.5 or less at a wavelength of 633 nm is preferably 1.0 or less, more preferably 0.5 or less, and 0.05. The following are further preferred embodiments. Further, in the alkali-resistant thin film antifouling film coating of the present invention, the interface between the fluorine-containing resin film and the structure serving as the base material has a refractive index of 1.5 or more and 2.1 or less and an extinction coefficient at a wavelength of 633 nm. It is 0.1 or less, and having an interfacial optical film structure with a film thickness of 1 Å or more and 100 Å or less is a preferred embodiment for obtaining good alkali resistance. Although the reason for this is not clear, the refractive index at a wavelength of 633 nm is 1 due to the formation of many chemically stable structures such as metal oxides at the interface between the fluorine-containing resin film and the base structure. It is observed that the interface optical film structure has an extinction coefficient of 0.1 or less and an extinction coefficient of 0.1 or less. The thickness of the interfacial optical film structure having a refractive index of 1.5 or more and 2.1 or less and an extinction coefficient of 0.1 or less at a wavelength of 633 nm is more preferably 2 Å or more and 30 Å or less, more preferably 5 Å or more and 10 Å or less. This is a further preferred embodiment. In the alkali-resistant thin film antifouling film coating of the present invention, a refractive index of 1.5 or more and 2.1 or less and extinction at a wavelength of 633 nm is provided between the surface optical film structure and the interfacial optical film structure of the fluorine-containing resin film. Having an intermediate optical film structure with an extinction coefficient of 1.0 or less and a film thickness of 40 Å or more is a preferred mode for obtaining good alkali resistance. The reason for this is not clear, but when the structure used as the base material contains an element such as iron that easily diffuses into the fluorine-containing resin film, the surface optical film structure and the interface optical film of the fluorine-containing resin film An element that diffuses into a fluorine-containing resin film by forming an intermediate optical film structure having a refractive index of 1.5 or more and 2.1 or less and an extinction coefficient of 1.0 or less at a wavelength of 633 nm between the structures. It is thought that the amount is suppressed and the alkali resistance is improved. The thickness of the intermediate optical film structure having a refractive index of 1.5 or more and 2.1 or less and an extinction coefficient of 1.0 or less at a wavelength of 633 nm is more preferably 50 Å or more and 300 Å or less, more preferably 60 Å or more and 150 Å or less. This is a further preferred embodiment.

本発明の耐アルカリ性薄膜防汚膜被覆体は、直径や長さなどの寸法がミリオーダーからミクロンオーダーとなる管状、孔状、溝状、谷状、半球状、多角錐状などの立体構造を有し、非常に高いレベルで寸法精度や表面精度が必要とされる精緻な部品に好適に用いることができる。防汚膜を得るための例としては、溶剤に防汚膜成分を溶かした塗液を基材に塗布して分厚い塗膜を形成した後、乾燥による溶剤の除去、防汚膜成分と基材となる構造体および/または防汚膜成分同士の近接化や化学結合の形成などを行い、厚みの減じた防汚膜を得ることができる。このような防汚膜形成プロセスでは、基材となる構造体の上において、塗液が形成する膜状の構造から最終的に形成される防汚膜となる過程で、大きく体積を減らすことになる。そこで、従来技術のようにフッ素樹脂とバインダー樹脂の混合物を高温処理することで厚いフッ素樹脂膜を形成する技術を用いて、管の内面形状、孔状、溝状、谷状、窪み状などの凹形状の立体構造を有する防汚膜被膜体を得ようとすると、凹形状部位での体積変化に伴い発生する応力がより大きくなるため、クラックや部分的な剥離などの膜欠陥が生じやすくなってしまう。しかし、本発明の耐アルカリ性薄膜防汚膜被覆体では、アルカリ性溶液に対する良好な耐性を有しながら、製膜プロセスにおける応力の発生を抑制できる薄い防汚膜とすることができることから、凹形状の立体構造を有する構造体に好適に用いることができる。凹形状部位では、その凹形状を形成する曲率半径が小さいほどその上に設けた膜に欠陥が生じやすくなるが、本発明の耐アルカリ性薄膜防汚膜被覆体では、例えば、曲率半径が5mm以下の凹形状、さらには曲率半径が1mm以下の凹形状においても好適に用いることができる。一方、防汚膜の膜厚に対して小さすぎる立体構造に対しては、防汚膜がその構造を埋没して平面的な構造になってしまう。したがって、本発明の耐アルカリ性薄膜防汚膜被覆体においては、耐アルカリ性薄膜防汚膜に被膜された直径や長さなどの寸法が10μm以上の立体構造を少なくとも1つ以上有していることが好ましく、100μm以上の立体構造を少なくとも1つ以上有していることがさらに好ましい。例えば、凹凸を有する管状の構造体などの複数の立体構造からなる構造体である場合であれば、耐アルカリ性薄膜防汚膜に被膜された直径や長さなどの寸法が10μm以上である管状の立体構造と、耐アルカリ性薄膜防汚膜に被膜された直径や長さなどの寸法が10μm未満である凹凸状の立体構造を組み合わせて構成するなど用途に合わせて設計することが可能である。 The alkali-resistant thin film antifouling film coating of the present invention has a three-dimensional structure such as tubular, pore-shaped, groove-shaped, valley-shaped, hemispherical, and polygonal pyramid-shaped, whose dimensions such as diameter and length are on the order of millimeters to microns. It can be suitably used for minute parts that require very high levels of dimensional accuracy and surface accuracy. As an example of obtaining an antifouling film, a coating solution in which the antifouling film component is dissolved in a solvent is applied to the substrate to form a thick coating film, and then the solvent is removed by drying. An antifouling film having a reduced thickness can be obtained by bringing the structure and/or the components of the antifouling film closer to each other or forming chemical bonds. In such an antifouling film formation process, the film-like structure formed by the coating liquid on the base structure becomes the finally formed antifouling film, and the volume is greatly reduced. Become. Therefore, by using the conventional technique of forming a thick fluororesin film by subjecting a mixture of fluororesin and binder resin to a high temperature treatment, the shape of the inner surface of the pipe, the shape of holes, grooves, valleys, depressions, etc. If an attempt is made to obtain an antifouling film body having a concave three-dimensional structure, the stress generated due to the volume change at the concave portion becomes greater, so film defects such as cracks and partial peeling are likely to occur. end up However, the alkali-resistant thin antifouling film coating of the present invention can be a thin antifouling film that can suppress the generation of stress in the film forming process while having good resistance to alkaline solutions. It can be suitably used for a structure having a three-dimensional structure. In the recessed portion, the smaller the radius of curvature forming the recessed shape, the more likely defects will occur in the film provided thereon. , and a concave shape with a radius of curvature of 1 mm or less. On the other hand, if the three-dimensional structure is too small for the film thickness of the antifouling film, the antifouling film will bury the structure, resulting in a planar structure. Therefore, in the alkali-resistant thin-film anti-fouling film coating of the present invention, it is necessary to have at least one steric structure with a diameter and length of 10 μm or more coated on the alkali-resistant thin-film anti-fouling film. More preferably, it has at least one steric structure of 100 μm or more. For example, in the case of a structure consisting of a plurality of three-dimensional structures, such as a tubular structure having irregularities, a tubular structure having dimensions such as a diameter and length of 10 μm or more coated with an alkali-resistant thin antifouling film. It is possible to design according to the application by combining a three-dimensional structure and an uneven three-dimensional structure with dimensions such as diameter and length of less than 10 μm coated on the alkali-resistant thin antifouling film.

本発明の耐アルカリ性薄膜防汚膜被覆体は、液体、気体、粉体やそれらの混合物の吸排出や量の調節、切り替え、輸送などを行う装置における、管状の部品やバルブ状の部品、それらの接合部品やなどに好適に用いることができる。そして、本発明の耐アルカリ性薄膜防汚膜被覆体は、部分的な防汚性の要否など使用用途に合わせ、フッ素を含む樹脂膜で部分的にあるいは全体を被覆した構成で用いることができる。例えば、本発明の耐アルカリ性薄膜防汚膜被覆体を分析装置の検体に接触する部品に用いることは、分析する物質が分析装置の検体に接触する部品に吸着して濃度が低下したり、多数の検体を順次分析する際に後から分析する検体に前に分析した検体の成分が混入したりすることを抑制できることから、好ましい態様の一つである。また、本発明の耐アルカリ性薄膜防汚膜被覆体を人間や動植物の治療や育成に使用する処置具に用いることは、組織や体液、樹液などの成分が処置具に付着したり、洗浄後に残留したりすることで、処置具の機能を損なうことを抑制することができることから、好ましい態様の一つである。 The alkali-resistant thin film antifouling film coating of the present invention is used for tubular parts, valve-like parts, and other parts in devices for absorbing and discharging liquids, gases, powders, and mixtures thereof, adjusting the amount, switching, and transporting. It can be suitably used for joining parts of The alkali-resistant thin film antifouling film coating of the present invention can be partially or wholly covered with a fluorine-containing resin film depending on the intended use, such as the need for partial antifouling properties. . For example, when the alkali-resistant thin antifouling film coating of the present invention is used for the parts of an analyzer that come into contact with the specimen, the substance to be analyzed is adsorbed on the parts of the analyzer that come into contact with the specimen, resulting in a decrease in the concentration of the substance to be analyzed. This is one of the preferred embodiments because it is possible to suppress contamination of a sample to be analyzed later with the components of the previously analyzed sample when the samples are sequentially analyzed. In addition, the use of the alkali-resistant thin anti-fouling film coating of the present invention in treatment instruments used for treating and raising humans, animals, and plants prevents components such as tissues, bodily fluids, and tree sap from adhering to the treatment instrument or remaining after washing. This is one of the preferable aspects because it is possible to suppress the function of the treatment instrument from being impaired by doing so.

本発明の耐アルカリ性薄膜防汚膜被覆体は、次亜塩素酸ナトリウム水溶液を使用する消毒プロセスに適用することができる。例えば、消毒プロセスの例として、0.02%の次亜塩素酸ナトリウム水溶液に30分浸漬したり、0.5%の次亜塩素酸ナトリウム水溶液に5分浸漬したりするなどの方法が知られている。例えば、本発明の実施例において、基材にSUS304を用いた本発明の耐アルカリ性薄膜防汚膜被覆体は、10%の次亜塩素酸ナトリウム水溶液に含浸して10分間超音波をかけた後であっても撥水性を示すことを確認している。 The alkali-resistant thin film antifouling film coating of the present invention can be applied to a disinfection process using an aqueous sodium hypochlorite solution. For example, as an example of the disinfection process, methods such as immersion in a 0.02% sodium hypochlorite aqueous solution for 30 minutes and immersion in a 0.5% sodium hypochlorite aqueous solution for 5 minutes are known. ing. For example, in the examples of the present invention, the alkali-resistant thin antifouling film coating of the present invention using SUS304 as the base material was impregnated with a 10% sodium hypochlorite aqueous solution and subjected to ultrasonic waves for 10 minutes. It has been confirmed that water repellency is exhibited even if

本発明の耐アルカリ性薄膜防汚膜被覆体の基材となる構造体としては、特に限定されるものではないが、鉄、チタン、銅、クロム、アルミ、マグネシウム、コバルト、銀やそれらの合金からなる金属製であることや、酸化ケイ素や酸化アルミニウム、酸化ジルコニウム、窒化アルミニウム、窒化ガリウムやそれらの混合物からなるガラスやセラミック製であること、金属やガラス、セラミックスなどの無機系素材を構成要素に含む複数の材料からなる複合部品であることは好ましい態様である。例えば、鉄の合金としては、SUS303、SUS304、SUS310、SUS316、SUS316L、SUS420、SUS420J、SUS430、SUS440C、SUS630、SUH31などの10質量%以上のクロムを含む鉄合金であることは好ましい態様であり、チタンの合金としては、Ti-22V-4Al、Ti-3Al-2.5V、Ti-6Al-4V、Ti-15Mo、Ti-15V-3Cr-3Sn-3Al、TB340などの60質量%以上のチタンを含む合金であることは好ましい態様であり、銅の合金としては、C1700、C1720、C2600、C2680、C2700、C2801、C2810、C3601、C3602、C3604、C5191、C5210、C6782、C6191、C63000、C69300、CAC502A、BC-6などであることは好ましい態様であり、ニッケルの合金としては、Ni-Ti系合金、Ni-Cr系合金、Ni-Cr―Fe系合金、Ni-Cr-Mo系合金、Ni-Cr-Mo-Co系合金などであることは好ましい態様であり、アルミの合金としては、A1050、A1070、A1080、A2011、A2017、A2027、A2052、A5025、A5050、A5052、A5056、A6061、A6063、A7075、AC4A、AC4B,AC4C、AC7A、ADC12、などであることは好ましい態様であり、マグネシウムの合金としては、AZ31B、AZ61A、AZ80A、AM60、ZK60Aなどであることは好ましい態様であり、コバルトの合金としては、Co-Cr-Ni-Fe-Mo系合金などであることは好ましい態様である。 The structure that serves as the base material for the alkali-resistant thin film antifouling film coating of the present invention is not particularly limited. or glass or ceramic made of silicon oxide, aluminum oxide, zirconium oxide, aluminum nitride, gallium nitride, or a mixture thereof, or inorganic materials such as metal, glass, or ceramics as constituent elements It is a preferred embodiment to be a composite part made of multiple materials including: For example, the iron alloy is preferably an iron alloy containing 10% by mass or more of chromium, such as SUS303, SUS304, SUS310, SUS316, SUS316L, SUS420, SUS420J, SUS430, SUS440C, SUS630, and SUH31. Titanium alloys include Ti-22V-4Al, Ti-3Al-2.5V, Ti-6Al-4V, Ti-15Mo, Ti-15V-3Cr-3Sn-3Al, TB340, etc., containing 60% by mass or more of titanium. It is a preferred embodiment that the alloy contains C1700, C1720, C2600, C2680, C2700, C2801, C2810, C3601, C3602, C3604, C5191, C5210, C6782, C6191, C63000, C69300, CAC502A , BC-6 and the like are preferred embodiments, and nickel alloys include Ni—Ti alloys, Ni—Cr alloys, Ni—Cr—Fe alloys, Ni—Cr—Mo alloys, Ni— A Cr—Mo—Co alloy or the like is a preferred embodiment, and aluminum alloys include A1050, A1070, A1080, A2011, A2017, A2027, A2052, A5025, A5050, A5052, A5056, A6061, A6063, and A7075. , AC4A, AC4B, AC4C, AC7A, ADC12, etc. are preferred embodiments, and magnesium alloys are preferably AZ31B, AZ61A, AZ80A, AM60, ZK60A, etc., and cobalt alloys are is a Co--Cr--Ni--Fe--Mo alloy or the like.

本発明の耐アルカリ性薄膜防汚膜被覆体を好適に製造する方法の例としては、脱脂工程や洗浄工程によって清浄で活性化された防汚膜塗布表面を設けた基材となる構造体に、末端にシラノール基を有する非晶質フッ素樹脂を溶剤に溶かした塗液を塗布し、乾燥、熱硬化を行うことで、非晶質フッ素樹脂を含む、膜厚が0.01μm以上2μm以下の樹脂膜に被覆された構造体からなる耐アルカリ性薄膜防汚膜被覆体を得るものである。 As an example of a suitable method for producing the alkali-resistant thin film antifouling film coating of the present invention, a structure to be a substrate provided with an antifouling film coated surface that has been cleaned and activated by a degreasing process or a washing process is A resin with a film thickness of 0.01 μm or more and 2 μm or less containing an amorphous fluororesin is applied by applying a coating liquid in which an amorphous fluororesin having a silanol group at the end is dissolved in a solvent, followed by drying and heat curing. To obtain an alkali-resistant thin film antifouling film coated body composed of a structure coated with a film.

本発明の耐アルカリ性薄膜防汚膜被覆体は、寸法精度への影響や形状に対する制約が少なく、被覆後の製品が曲げなどの変形を受けても防汚膜にクラックや剥離部分が発生しにくい、薄い防汚膜によって被覆された構造体であると同時に、酸性溶液や有機溶剤に晒された場合に限らず、次亜塩素酸ナトリウム水溶液などのアルカリ性溶液に晒された場合であっても良好な耐性を示す。 The alkali-resistant thin film antifouling film coating of the present invention has little influence on dimensional accuracy and restrictions on the shape, and the antifouling film is less likely to crack or peel off even if the product after coating is subjected to deformation such as bending. , It is a structure coated with a thin antifouling film, and at the same time, it is good not only when exposed to acidic solutions and organic solvents, but also when exposed to alkaline solutions such as sodium hypochlorite aqueous solution. show good tolerance.

以下に、本発明について実施例を挙げて説明するが、本発明は必ずしもこれらに限定されるものではない。
本発明の実施例における測定や分析、評価の方法について説明する。
EXAMPLES The present invention will be described below with reference to Examples, but the present invention is not necessarily limited to these.
Methods of measurement, analysis, and evaluation in Examples of the present invention will be described.

(1)防汚膜の膜厚測定方法
本発明の実施例で防汚膜の膜厚を測定した方法は以下のとおりである。防汚膜によって被覆される構造体表面を基準面として、防汚膜表面との距離を膜厚とした。具体的な方法としては、構造体の形状変化がない場所にマスキングテープを用いて防汚膜の未塗工部と、塗工部を設け、レーザー顕微鏡で測定した段差を膜厚とした。
(1) Method for measuring film thickness of antifouling film The method for measuring the film thickness of the antifouling film in the examples of the present invention is as follows. Using the surface of the structure covered with the antifouling film as a reference plane, the distance from the surface of the antifouling film was defined as the film thickness. As a specific method, a masking tape was used to provide an uncoated portion and a coated portion of the antifouling film at a location where there was no change in the shape of the structure, and the step measured with a laser microscope was used as the film thickness.

(2)EDSを用いた元素分析
本発明の実施例でEDSを用いた元素分析を行った方法は以下のとおりである。防汚膜表面からEDS(エネルギー分散型X線分析)機能を有する走査電子顕微鏡を用いて1原子数%以上含まれる元素を分析した。使用した装置や測定条件は下記のとおりである。
A.EDS分析-1
使用装置:JCM-6000Plus(日本電子株式会社製)
加速電圧:15.0 kV
照射電流:7.47500 nA
有効時間:120 sec
分析エリア:倍率500倍における観察エリア全面
B.EDS分析-2
使用装置:JCM-7000(日本電子株式会社製)
加速電圧:10.0 kV
分析エリア:倍率500倍における観察エリア全面(256.0×192.0μm)
(2) Elemental analysis using EDS The method of elemental analysis using EDS in the examples of the present invention is as follows. A scanning electron microscope having an EDS (energy dispersive X-ray spectroscopy) function was used to analyze the elements contained at 1 atomic % or more from the surface of the antifouling film. The equipment and measurement conditions used are as follows.
A. EDS Analysis-1
Device used: JCM-6000Plus (manufactured by JEOL Ltd.)
Accelerating voltage: 15.0 kV
Irradiation current: 7.47500 nA
Effective time: 120 sec
Analysis area: entire observation area at 500x magnification B. EDS Analysis-2
Device used: JCM-7000 (manufactured by JEOL Ltd.)
Accelerating voltage: 10.0 kV
Analysis area: entire observation area (256.0 × 192.0 µm) at 500x magnification

(3)撥水性の評価
本発明の実施例で撥水性評価を行った方法は以下のとおりである。実施例3においては、管を半分に割った内面で評価を行った。
A.初期の評価
評価用試験体を、エタノールに含浸した後、精製水を用いて、フッ素を含む樹脂膜を設けた部位の撥水性の有無を確認した。
B.次亜塩素酸ナトリウム水溶液処理後の評価
(a)次亜塩素酸ナトリウム水溶液処理A
評価用試験体を、10%の次亜塩素酸ナトリウム水溶液に含浸した状態で容器に入れ、発振周波数-38kHzの超音波装置の水浴中にて10分間超音波処理を行った後、精製水にて評価用試験体を洗浄して、次亜塩素酸ナトリウム水溶液処理Aを行った。次亜塩素酸ナトリウム水溶液処理Aを行った評価用試験体のフッ素を含む樹脂膜を設けた部位において、精製水を用いて撥水性の有無を確認した。
(b)次亜塩素酸ナトリウム水溶液処理B
評価用試験体を、10%の次亜塩素酸ナトリウム水溶液に含浸した状態で容器に入れ、発振周波数-38kHzの超音波装置の40℃に温度を調整した水浴中にて30分間超音波処理を行った後、精製水にて評価用試験体を洗浄して、次亜塩素酸ナトリウム水溶液処理Bを行った。次亜塩素酸ナトリウム水溶液処理Bを行った評価用試験体のフッ素を含む樹脂膜を設けた部位において、精製水を用いて撥水性の有無を確認した。
(3) Evaluation of water repellency The method of evaluating water repellency in the examples of the present invention is as follows. In Example 3, the inner surface of the tube was cut in half and evaluated.
A. Initial Evaluation After impregnating the test specimen for evaluation in ethanol, the presence or absence of water repellency at the portion provided with the fluorine-containing resin film was confirmed using purified water.
B. Evaluation after sodium hypochlorite aqueous solution treatment (a) Sodium hypochlorite aqueous solution treatment A
Put the test specimen for evaluation in a container impregnated with a 10% sodium hypochlorite aqueous solution, and perform ultrasonic treatment for 10 minutes in a water bath of an ultrasonic device with an oscillation frequency of -38 kHz. Sodium hypochlorite aqueous solution treatment A was performed by washing the evaluation test specimen with the Purified water was used to confirm the presence or absence of water repellency in the portion of the test specimen for evaluation that had been subjected to sodium hypochlorite aqueous solution treatment A and provided with a fluorine-containing resin film.
(b) Sodium hypochlorite aqueous solution treatment B
The test specimen for evaluation is placed in a container impregnated with a 10% sodium hypochlorite aqueous solution, and subjected to ultrasonic treatment for 30 minutes in a water bath adjusted to a temperature of 40 ° C in an ultrasonic device with an oscillation frequency of -38 kHz. After the treatment, the evaluation specimen was washed with purified water, and sodium hypochlorite aqueous solution treatment B was performed. Purified water was used to confirm the presence or absence of water repellency in the portion of the test specimen for evaluation that had been subjected to sodium hypochlorite aqueous solution treatment B and provided with a fluorine-containing resin film.

(4)分光エリプソメトリーを用いた光学分析
本発明の実施例で分光エリプソメトリーを用いた光学分析を行った方法は以下のとおりである。分光エリプソメトリーにより得られた分光データに対して、屈折率、消衰係数、膜厚などの光学パラメータを有する多層光学膜構造モデル化を行い、最もフィッティングの良好な多層光学膜構造モデルを解析した。使用した装置や測定条件は下記のとおりである。
使用装置:UVISEL Plus(株式会社堀場製作所製)
入射角度:70度
波長範囲:0.6~6.5eV
スポット径:1mm×約3mmの楕円形
(4) Optical analysis using spectroscopic ellipsometry The method of optical analysis using spectroscopic ellipsometry in the examples of the present invention is as follows. A multi-layer optical film structure model with optical parameters such as refractive index, extinction coefficient, and film thickness was modeled for the spectral data obtained by spectroscopic ellipsometry, and the best-fitting multi-layer optical film structure model was analyzed. . The equipment and measurement conditions used are as follows.
Apparatus used: UVISEL Plus (manufactured by HORIBA, Ltd.)
Incident angle: 70 degrees Wavelength range: 0.6 to 6.5 eV
Spot diameter: 1 mm x about 3 mm oval

[実施例1]
非晶質フッ素樹脂溶液(サイトップ CTL-107MK:旭硝子株式会社製)を塗液に用いて、SUS304製で4cm角、厚み1mmの平板にディップコートを行い、室温で30分乾燥した後、180℃で60分間熱処理して実施例1の耐アルカリ性薄膜防汚膜被膜体を得た。実施例1の耐アルカリ性薄膜防汚膜被膜体の測定、分析、評価結果を表1に示す。
[Example 1]
Using an amorphous fluororesin solution (Cytop CTL-107MK: manufactured by Asahi Glass Co., Ltd.) as a coating liquid, a flat plate of 4 cm square and 1 mm thick made of SUS304 was dip-coated and dried at room temperature for 30 minutes. C. for 60 minutes to obtain an alkali-resistant thin antifouling film body of Example 1. Table 1 shows the measurement, analysis, and evaluation results of the alkali-resistant thin antifouling film coated body of Example 1.

[実施例2]
非晶質フッ素樹脂溶液(CYTOP CTL-107MK:旭硝子株式会社製)を溶媒(サイトップCT-solv100E:旭ガラス株式会社製)を用いて重量比で7倍に稀釈した塗液を用いて、SUS304製で4cm角、厚み1mmの平板にディップコートを行い、室温で30分乾燥した後、180℃で60分間熱処理して実施例2の耐アルカリ性薄膜防汚膜被膜体を得た。実施例2の耐アルカリ性薄膜防汚膜被膜体の測定、分析、評価結果を表1に示す。
[Example 2]
Using a coating solution obtained by diluting an amorphous fluororesin solution (CYTOP CTL-107MK: manufactured by Asahi Glass Co., Ltd.) with a solvent (Cytop CT-solv100E: manufactured by Asahi Glass Co., Ltd.) by a weight ratio of 7 times, SUS304 A flat plate of 4 cm square and 1 mm thick was dip-coated, dried at room temperature for 30 minutes, and then heat-treated at 180° C. for 60 minutes to obtain an alkali-resistant thin antifouling film body of Example 2. Table 1 shows the measurement, analysis, and evaluation results of the alkali-resistant thin antifouling film coated body of Example 2.

[実施例3]
実施例2と同様に準備した塗液を用いて、SUS316製で外径φ1.5mm、内径φ0.5mmの円管にディップコートを行い、室温で30分減圧乾燥した後、180℃で60分間熱処理して、円管の内面および外面にフッ素を含む樹脂膜を設けた実施例3の耐アルカリ性薄膜防汚膜被膜体を得た。実施例2の耐アルカリ性薄膜防汚膜被膜体の測定、分析、評価結果を表1に示す。
[Example 3]
A circular tube made of SUS316 and having an outer diameter of φ1.5 mm and an inner diameter of φ0.5 mm was dip-coated using the coating liquid prepared in the same manner as in Example 2, dried under reduced pressure at room temperature for 30 minutes, and then at 180° C. for 60 minutes. After heat treatment, an alkali-resistant thin antifouling film coated body of Example 3 was obtained, in which a resin film containing fluorine was provided on the inner and outer surfaces of the circular tube. Table 1 shows the measurement, analysis, and evaluation results of the alkali-resistant thin antifouling film coated body of Example 2.

[実施例4]
非晶質フッ素樹脂溶液(CYTOP CTL-107MK:旭硝子株式会社製)を溶媒(サイトップCT-solv100E:旭ガラス株式会社製)を用いて重量比で7倍に稀釈した塗液を用いて、SUS316L製で外径φ1.6mm、内径φ0.7mmの円管にディップコートを行い、円管を立てた状態で、室温で30分減圧乾燥した後、180℃で60分間熱処理した後、円管を縦割りにして実施例4の耐アルカリ性薄膜防汚膜被膜体を得た。実施例4の耐アルカリ性薄膜防汚膜被膜体の円管内側にあたる部位の測定、分析、評価結果を表2および表3に示す。
[Example 4]
Using a coating solution obtained by diluting an amorphous fluororesin solution (CYTOP CTL-107MK: manufactured by Asahi Glass Co., Ltd.) with a solvent (Cytop CT-solv100E: manufactured by Asahi Glass Co., Ltd.) by a weight ratio of 7 times, SUS316L A circular tube with an outer diameter of φ1.6 mm and an inner diameter of φ0.7 mm was dip-coated, and the pipe was dried under reduced pressure for 30 minutes at room temperature with the pipe upright. It was cut vertically to obtain an alkali-resistant thin antifouling film body of Example 4. Tables 2 and 3 show the measurement, analysis, and evaluation results of the portion corresponding to the inner side of the circular tube of the alkali-resistant thin antifouling film body of Example 4.

[実施例5]
非晶質フッ素樹脂溶液(CYTOP CTL-107MK:旭硝子株式会社製)を溶媒(サイトップCT-solv100E:旭ガラス株式会社製)を用いて重量比で14倍に稀釈した塗液を用いて、SUS316L製で外径φ1.6mm、内径φ0.7mmの円管にディップコートを行い、円管を立てた状態で、室温で30分減圧乾燥した後、180℃で60分間熱処理した後、円管を縦割りにして実施例5の耐アルカリ性薄膜防汚膜被膜体を得た。実施例5の耐アルカリ性薄膜防汚膜被膜体の円管内側にあたる部位の測定、分析、評価結果を表2および表3に示す。
[Example 5]
Using a coating solution obtained by diluting an amorphous fluororesin solution (CYTOP CTL-107MK: manufactured by Asahi Glass Co., Ltd.) with a solvent (CYTOP CT-solv100E: manufactured by Asahi Glass Co., Ltd.) by a factor of 14 by weight, SUS316L A circular tube with an outer diameter of φ1.6 mm and an inner diameter of φ0.7 mm was dip-coated, and the pipe was dried under reduced pressure for 30 minutes at room temperature with the pipe upright. It was cut lengthwise to obtain an alkali-resistant thin antifouling film body of Example 5. Tables 2 and 3 show the measurement, analysis, and evaluation results of the portion corresponding to the inner side of the circular tube of the alkali-resistant thin antifouling film body of Example 5.

[実施例6]
非晶質フッ素樹脂溶液(CYTOP CTL-107MK:旭硝子株式会社製)を溶媒(サイトップCT-solv100E:旭ガラス株式会社製)を用いて重量比で35倍に稀釈した塗液を用いて、SUS316L製で外径φ1.6mm、内径φ0.7mmの円管にディップコートを行い、円管を立てた状態で、室温で30分減圧乾燥した後、180℃で60分間熱処理した後、円管を縦割りにして実施例6の耐アルカリ性薄膜防汚膜被膜体を得た。実施例6の耐アルカリ性薄膜防汚膜被膜体の円管内側にあたる部位の測定、分析、評価結果を表2および表3に示す。
[Example 6]
Using a coating solution obtained by diluting an amorphous fluororesin solution (CYTOP CTL-107MK: manufactured by Asahi Glass Co., Ltd.) with a solvent (CYTOP CT-solv100E: manufactured by Asahi Glass Co., Ltd.) by a factor of 35 by weight, SUS316L A circular tube with an outer diameter of φ1.6 mm and an inner diameter of φ0.7 mm was dip-coated, and the pipe was dried under reduced pressure for 30 minutes at room temperature with the pipe upright. It was cut lengthwise to obtain an alkali-resistant thin film antifouling film body of Example 6. Tables 2 and 3 show the measurement, analysis, and evaluation results of the portion corresponding to the inner side of the circular tube of the alkali-resistant thin antifouling film body of Example 6.

[実施例7]
非晶質フッ素樹脂溶液(CYTOP CTL-107MK:旭硝子株式会社製)を溶媒(サイトップCT-solv100E:旭ガラス株式会社製)を用いて重量比で14倍に稀釈した塗液を用いて、Ti-22V-4Al(DAT51、大同特殊鋼)製で外径φ1.6mm、内径φ0.6mmの円管にディップコートを行い、円管を立てた状態で、室温で30分減圧乾燥した後、180℃で60分間熱処理した後、円管を縦割りにして実施例7の耐アルカリ性薄膜防汚膜被膜体を得た。実施例7の耐アルカリ性薄膜防汚膜被膜体の円管内側にあたる部位の測定、分析、評価結果を表2および表3に示す。
[Example 7]
Using a coating solution obtained by diluting an amorphous fluororesin solution (CYTOP CTL-107MK: manufactured by Asahi Glass Co., Ltd.) with a solvent (Cytop CT-solv100E: manufactured by Asahi Glass Co., Ltd.) by a factor of 14 by weight, Ti -22V-4Al (DAT51, Daido Steel) circular tube with an outer diameter of φ1.6 mm and an inner diameter of φ0.6 mm was dip-coated. C. for 60 minutes, the circular tube was cut longitudinally to obtain an alkali-resistant thin antifouling film coated body of Example 7. Tables 2 and 3 show the measurement, analysis, and evaluation results of the portion corresponding to the inner side of the circular tube of the alkali-resistant thin antifouling film body of Example 7.

[実施例8]
非晶質フッ素樹脂溶液(CYTOP CTL-107MK:旭硝子株式会社製)を溶媒(サイトップCT-solv100E:旭ガラス株式会社製)を用いて重量比で14倍に稀釈した塗液を用いて、SUS316L製で2cm角、厚み1mmの平板にディップコートを行い、室温で30分減圧乾燥した後、180℃で60分間熱処理して実施例8の耐アルカリ性薄膜防汚膜被膜体を得た。実施例8の耐アルカリ性薄膜防汚膜被膜体の測定、分析、評価結果を表4~表6に示す。
[Example 8]
Using a coating solution obtained by diluting an amorphous fluororesin solution (CYTOP CTL-107MK: manufactured by Asahi Glass Co., Ltd.) with a solvent (CYTOP CT-solv100E: manufactured by Asahi Glass Co., Ltd.) by a factor of 14 by weight, SUS316L A flat plate of 2 cm square and 1 mm thick was dip-coated, dried under reduced pressure at room temperature for 30 minutes, and then heat-treated at 180° C. for 60 minutes to obtain an alkali-resistant thin antifouling film body of Example 8. Tables 4 to 6 show the measurement, analysis, and evaluation results of the alkali-resistant thin antifouling film body of Example 8.

[比較例1]
非晶質フッ素樹脂溶液(CYTOP CTL-107MK:旭硝子株式会社製)を溶媒(サイトップCT-solv100E:旭ガラス株式会社製)を用いて重量比で70倍に稀釈した塗液を用いて、SUS304製で4cm角、厚み1mmの平板にディップコートを行い、室温で30分乾燥した後、180℃で60分間熱処理して薄膜防汚膜被膜体を得た。比較例1の薄膜防汚膜被膜体の測定、分析、評価結果を表1に示す。
[Comparative Example 1]
Using a coating solution obtained by diluting an amorphous fluororesin solution (CYTOP CTL-107MK: manufactured by Asahi Glass Co., Ltd.) with a solvent (Cytop CT-solv100E: manufactured by Asahi Glass Co., Ltd.) by a weight ratio of 70 times, SUS304 A flat plate of 4 cm square and 1 mm thick was dip-coated, dried at room temperature for 30 minutes, and then heat-treated at 180° C. for 60 minutes to obtain a thin antifouling film coated body. Table 1 shows the measurement, analysis, and evaluation results of the thin antifouling film coated body of Comparative Example 1.

[比較例2]
フッ素樹脂溶液(タフコートエナメルTC-7113LB:ダイキン工業株式会社製)を塗液として用いて、SUS304製で4cm角、厚み1mmの平板にスプレーコートを行い、80℃で30分乾燥した後、280℃で30分間熱処理して防汚膜被膜体を得た。比較例2の防汚膜被膜体の測定、分析、評価結果を表1に示す。
[Comparative Example 2]
Using a fluororesin solution (Tough Coat Enamel TC-7113LB: manufactured by Daikin Industries, Ltd.) as a coating liquid, a flat plate of 4 cm square and 1 mm thick made of SUS304 is spray-coated, dried at 80 ° C. for 30 minutes, and then 280 ° C. for 30 minutes to obtain an antifouling film coated body. Table 1 shows the measurement, analysis, and evaluation results of the antifouling film body of Comparative Example 2.

[比較例3]
1%ポリシラザンコーティング液(アクアミカ:AZ エレクトロニック マテリアルズ社製)を用いて、SUS316L製で外径φ1.6mm、内径φ0.7mmの円管にディップコートを行い、円管を立てた状態で、室温で30分減圧乾燥した後、130℃で60分間熱処理した後、0.1%フッ化シランコーティング液(Novec1720:スリーエム ジャパン株式会社製)を用いてディップコートを行い、円管を立てた状態で、室温で30分減圧乾燥した後、180℃で60分間熱処理した後、円管を縦割りにして比較例3の耐アルカリ性薄膜防汚膜被膜体を得た。比較例3の耐アルカリ性薄膜防汚膜被膜体の円管内側にあたる部位の測定、分析、評価結果を表2および表3に示す。
[Comparative Example 3]
A 1% polysilazane coating solution (Aquamica: manufactured by AZ Electronic Materials) was used to dip-coat a circular tube made of SUS316L with an outer diameter of φ1.6 mm and an inner diameter of φ0.7 mm. After drying under reduced pressure for 30 minutes at 130 ° C., after heat treatment at 130 ° C. for 60 minutes, dip coating was performed using a 0.1% fluorosilane coating solution (Novec 1720: manufactured by 3M Japan Co., Ltd.). After drying under reduced pressure at room temperature for 30 minutes, heat treatment was performed at 180° C. for 60 minutes, and then the cylindrical tube was cut longitudinally to obtain an alkali-resistant thin antifouling film body of Comparative Example 3. Tables 2 and 3 show the results of measurement, analysis, and evaluation of the portion corresponding to the inner side of the circular tube of the alkali-resistant thin antifouling film body of Comparative Example 3.

[比較例4]
非晶質フッ素樹脂溶液(CYTOP CTL-107MK:旭硝子株式会社製)を溶媒(サイトップCT-solv100E:旭ガラス株式会社製)を用いて重量比で70倍に稀釈した塗液を用いて、SUS316L製で2cm角、厚み1mmの平板にディップコートを行い、室温で30分減圧乾燥した後、180℃で60分間熱処理して実施例8の耐アルカリ性薄膜防汚膜被膜体を得た。実施例8の耐アルカリ性薄膜防汚膜被膜体の測定、分析、評価結果を表4~表6に示す。
[Comparative Example 4]
Using a coating solution obtained by diluting an amorphous fluororesin solution (CYTOP CTL-107MK: manufactured by Asahi Glass Co., Ltd.) with a solvent (Cytop CT-solv100E: manufactured by Asahi Glass Co., Ltd.) by a weight ratio of 70 times, SUS316L A flat plate of 2 cm square and 1 mm thick was dip-coated, dried under reduced pressure at room temperature for 30 minutes, and then heat-treated at 180° C. for 60 minutes to obtain an alkali-resistant thin antifouling film body of Example 8. Tables 4 to 6 show the measurement, analysis, and evaluation results of the alkali-resistant thin antifouling film body of Example 8.

Figure 0007247434000001
Figure 0007247434000001

Figure 0007247434000002
Figure 0007247434000002

Figure 0007247434000003
Figure 0007247434000003

Figure 0007247434000004
Figure 0007247434000004

Figure 0007247434000005
Figure 0007247434000005

Figure 0007247434000006
Figure 0007247434000006

本発明の耐アルカリ性薄膜防汚膜被覆体は、薄い膜厚と優れた耐薬品性を両立する防汚膜を有することを活用し、分析分野、医療分野、食品加工分野など様々な用途で用いられる、管状の部品やバルブ状の部品、それらの接合部品など、液体、気体、粉体やそれらの混合物を吸排出やその量の調整、切り替え、輸送などを行う装置の部品に利用することができる。 The alkali-resistant thin film antifouling film coating of the present invention utilizes the fact that it has an antifouling film that achieves both a thin film thickness and excellent chemical resistance, and is used in various fields such as the analysis field, the medical field, and the food processing field. It can be used as a part of a device that absorbs and discharges liquids, gases, powders, and mixtures thereof, adjusts the amount, switches, transports, etc. can.

1 : 耐アルカリ性薄膜防汚膜被覆体の基材となる構造体
2 : 耐アルカリ性薄膜防汚膜
2a : 基材となる円管状の構造体の内面に設けられた耐アルカリ性薄膜防汚膜
2b : 基材となる円管状の構造体の外面に設けられた耐アルカリ性薄膜防汚膜
21 : 表面光学膜構造
22 : 界面光学膜構造
23 : 中間光学膜構造
1: structure to be base material of alkali-resistant thin film anti-fouling film coating 2: alkali-resistant thin film anti-fouling film 2a: alkali-resistant thin film anti-fouling film 2b provided on the inner surface of the cylindrical structure serving as base material: Alkali-resistant thin antifouling film 21 provided on the outer surface of a cylindrical structure serving as a substrate: surface optical film structure 22: interface optical film structure 23: intermediate optical film structure

Claims (5)

膜厚が0.01μm以上2μm以下であり、EDSを用いた元素分析において検出されるフッ素が1原子数%以上であることを特徴とするフッ素を含む樹脂膜に、部分的にあるいは全体を被覆された構造体からなり、前記構造体のフッ素を含む樹脂膜に被覆された部分 が、10質量%以上のクロムを含む鉄合金、または、60質量%以上のチタンを含む合金 からなることを特徴とする耐アルカリ性薄膜防汚膜被覆体。Partially or entirely covering a fluorine-containing resin film having a film thickness of 0.01 μm or more and 2 μm or less and having 1 atomic % or more of fluorine detected in elemental analysis using EDS wherein the portion of the structure covered with the fluorine-containing resin film is made of an iron alloy containing 10% by mass or more of chromium, or an alloy containing 60% by mass or more of titanium. An alkali- resistant thin film antifouling film covering. フッ素を含む樹脂膜に被覆された管状、孔状、溝状、谷状の立体構造を有することを特徴とする請求項1に記載の耐アルカリ性薄膜防汚膜被覆体。2. The alkali-resistant thin film antifouling film-coated body according to claim 1, which is coated with a fluorine-containing resin film and has a tubular, pore-shaped, groove-shaped, or valley-shaped three-dimensional structure. 10%の次亜塩素酸ナトリウム水溶液に含浸して10分間超音波をかけたのちに撥水性を有することを特徴とする請求項1または請求項2に記載の耐アルカリ性薄膜防汚膜被覆体。3. The alkali-resistant thin antifouling film coating according to claim 1, wherein the coating has water repellency after being immersed in a 10% sodium hypochlorite aqueous solution and subjected to ultrasonic waves for 10 minutes. フッ素を含む樹脂膜が、波長633nmにおける屈折率が1.3以上1.5以下であり、膜厚が50Å以上である表面光学膜構造を有することを特徴とする請求項1~3に記載の耐アルカリ性薄膜防汚膜被覆体。4. A surface optical film structure according to any one of claims 1 to 3, wherein the resin film containing fluorine has a refractive index of 1.3 or more and 1.5 or less at a wavelength of 633 nm and a film thickness of 50 Å or more. Alkali-resistant thin film antifouling coating. 10%の次亜塩素酸ナトリウム水溶液に含浸して30分間超音波をかけたのちに、EDSを用いた元素分析において検出されるフッ素が1原子数%以上であることを特徴とするフッ素を含む樹脂膜に、部分的にあるいは全体を被覆された構造体からなることを特徴とする請求項1~4に記載の耐アルカリ性薄膜防汚膜被覆体。
After being immersed in a 10% sodium hypochlorite aqueous solution and applying ultrasonic waves for 30 minutes, fluorine detected in elemental analysis using EDS is 1 atomic % or more. An alkali-resistant thin film antifouling film coating according to any one of claims 1 to 4, characterized in that it comprises a structure partially or wholly coated with a resin film.
JP2020000152A 2019-02-12 2020-01-06 Alkali-resistant thin film antifouling coating Active JP7247434B2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019022249 2019-02-12
JP2019022249 2019-02-12

Publications (2)

Publication Number Publication Date
JP2020131702A JP2020131702A (en) 2020-08-31
JP7247434B2 true JP7247434B2 (en) 2023-03-29

Family

ID=72262012

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020000152A Active JP7247434B2 (en) 2019-02-12 2020-01-06 Alkali-resistant thin film antifouling coating

Country Status (1)

Country Link
JP (1) JP7247434B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023048082A1 (en) * 2021-09-23 2023-03-30 Ntn株式会社 Filter and filter assembly

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000062105A (en) 1998-08-24 2000-02-29 Daikin Ind Ltd Structure having transparent layer composed of fluorinecontaining polymer and reflecting sheet using it
JP2000326441A (en) 1999-05-19 2000-11-28 Daikin Ind Ltd Coated article having excellent durable antistaining properties and corrosion resistance
JP2004256759A (en) 2003-02-27 2004-09-16 Nippon Steel Corp Coating composition having excellent stain resistance and alkali resistance and coated metal plate
JP2005165252A (en) 2003-11-14 2005-06-23 Sony Corp Optical functionality diffusion board, reflection screen and its manufacturing method
JP2008139733A (en) 2006-12-05 2008-06-19 Seiko Epson Corp Artifact and its manufacturing method
WO2009004962A1 (en) 2007-07-03 2009-01-08 Sumitomo Electric Fine Polymer, Inc. Flat-membrane element for filtration and flat-membrane filtration module
JP2014191094A (en) 2013-03-26 2014-10-06 Fujifilm Corp Sunlight-collecting film mirror
JP2017030205A (en) 2015-07-30 2017-02-09 新日鉄住金マテリアルズ株式会社 Surface-treated stainless steel foil

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000062105A (en) 1998-08-24 2000-02-29 Daikin Ind Ltd Structure having transparent layer composed of fluorinecontaining polymer and reflecting sheet using it
JP2000326441A (en) 1999-05-19 2000-11-28 Daikin Ind Ltd Coated article having excellent durable antistaining properties and corrosion resistance
JP2004256759A (en) 2003-02-27 2004-09-16 Nippon Steel Corp Coating composition having excellent stain resistance and alkali resistance and coated metal plate
JP2005165252A (en) 2003-11-14 2005-06-23 Sony Corp Optical functionality diffusion board, reflection screen and its manufacturing method
JP2008139733A (en) 2006-12-05 2008-06-19 Seiko Epson Corp Artifact and its manufacturing method
WO2009004962A1 (en) 2007-07-03 2009-01-08 Sumitomo Electric Fine Polymer, Inc. Flat-membrane element for filtration and flat-membrane filtration module
JP2014191094A (en) 2013-03-26 2014-10-06 Fujifilm Corp Sunlight-collecting film mirror
JP2017030205A (en) 2015-07-30 2017-02-09 新日鉄住金マテリアルズ株式会社 Surface-treated stainless steel foil

Also Published As

Publication number Publication date
JP2020131702A (en) 2020-08-31

Similar Documents

Publication Publication Date Title
US20180094358A1 (en) Method of Preparing Corrosion Resistant Coatings
Weibel et al. Adjustable hydrophobicity of Al substrates by chemical surface functionalization of nano/microstructures
Grips et al. Electrochemical behavior of single layer CrN, TiN, TiAlN coatings and nanolayered TiAlN/CrN multilayer coatings prepared by reactive direct current magnetron sputtering
Fazel et al. Comparing electrochemical behavior of applied CrN/TiN nanoscale multilayer and TiN single-layer coatings deposited by CAE-PVD method
TW200925316A (en) Protective coating applied to metallic reactor components to reduce corrosion products into the nuclear reactor environment
JP7247434B2 (en) Alkali-resistant thin film antifouling coating
Savio et al. Correlating hydrophobicity to surface chemistry of microstructured aluminium surfaces
Emelyanenko et al. Superhydrophobic corrosion resistant coatings for copper via IR nanosecond laser processing
Łęcka et al. Adhesion and corrosion resistance of laser-oxidized titanium in potential biomedical application
Chou et al. Characterization and haemocompatibility of fluorinated DLC and Si interlayer on Ti6Al4V
Gopi et al. Hydroxyapatite coating on selectively passivated and sensitively polymer-protected surgical grade stainless steel
Zhang et al. Variable corrosion behavior of a thick amorphous carbon coating in NaCl solution
Basiaga et al. Mechanical properties of atomic layer deposition (ALD) TiO2 layers on stainless steel substrates: Mechanische Eigenschaften von Atomlagenabscheidung (ALD) TiO2 Schichten auf Substraten aus rostfreiem Stahl
Canning et al. Water on Au sputtered films
Kayali et al. Investigation of wear and corrosion behaviour of AISI 316 L stainless steel coated by ESD surface modification
Lone et al. Impact of femtosecond laser treatment accompanied with anodization of titanium alloy on fibroblast cell growth
Jambor et al. Directing Surface Functions by Inducing Ordered and Irregular Morphologies at Single and Two‐Tiered Length Scales
Ko et al. The enhanced abrasion resistance of an anti-fingerprint coating on chrome-plated brass substrate by integrating sputtering and atmospheric pressure plasma jet technologies
Kalisz et al. The hybrid graphene multilayer system (graphene/SiN/graphene) coupled with titanium alloy (Ti6Al4V)—structural, mechanical and corrosion characterisation
Viswanathan et al. Carbon plasma immersion ion implantation and DLC deposition on Ni− Ti alloy
Barragán et al. Electrochemical corrosion of hot pressing titanium coated steels for biomaterial applications
KR102239162B1 (en) Medical tool and manufacturing method thereof
Staszuk et al. Structure and properties of the TiN/ZnO coating obtained by the hybrid method combining PVD and ALD technologies on austenitic Cr-Ni-Mo steel substrate
JP6961469B2 (en) An electrode structure, a sensor including the electrode structure, and an analyzer including the electrode structure.
Staszuk et al. Investigation of Ti/Al2O3+ TiO2 and Ti+ TiO2/Al2O3+ TiO2 hybrid coatings as protection of ultra-light Mg–(Li)–Al–RE alloys against corrosion

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20211220

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20220926

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20221101

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20221121

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230131

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230207

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230302

R150 Certificate of patent or registration of utility model

Ref document number: 7247434

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150