JP6961469B2 - An electrode structure, a sensor including the electrode structure, and an analyzer including the electrode structure. - Google Patents

An electrode structure, a sensor including the electrode structure, and an analyzer including the electrode structure. Download PDF

Info

Publication number
JP6961469B2
JP6961469B2 JP2017220173A JP2017220173A JP6961469B2 JP 6961469 B2 JP6961469 B2 JP 6961469B2 JP 2017220173 A JP2017220173 A JP 2017220173A JP 2017220173 A JP2017220173 A JP 2017220173A JP 6961469 B2 JP6961469 B2 JP 6961469B2
Authority
JP
Japan
Prior art keywords
electrode
film
base material
layer
electrode structure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2017220173A
Other languages
Japanese (ja)
Other versions
JP2019090709A (en
Inventor
邦彦 澁澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Taiyo Yuden Co Ltd
Original Assignee
Taiyo Yuden Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Taiyo Yuden Co Ltd filed Critical Taiyo Yuden Co Ltd
Priority to JP2017220173A priority Critical patent/JP6961469B2/en
Publication of JP2019090709A publication Critical patent/JP2019090709A/en
Application granted granted Critical
Publication of JP6961469B2 publication Critical patent/JP6961469B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Investigating Or Analyzing Materials By The Use Of Electric Means (AREA)

Description

本発明は、センサー又は評価分析装置に用いる電極構造体に関し、特に、液体や気体を対象とするセンサー又は評価分析装置における測定精度の安定・向上のための電極構造体に関する。 The present invention relates to an electrode structure used for a sensor or an evaluation analyzer, and more particularly to an electrode structure for stabilizing and improving measurement accuracy in a sensor or an evaluation analyzer for a liquid or gas.

センサーや評価分析装置は従来、研究施設のラボや手術室、恒温恒湿のクリーンルームなど屋内の整備された温和な特定環境で使用されてきており、またそのような環境下での使用を前提に設計されていた。 Sensors and evaluation analyzers have traditionally been used in indoor, well-maintained, mild specific environments such as research facility laboratories, operating rooms, and constant temperature and humidity clean rooms, and are intended for use in such environments. It was designed.

近年、センサーや評価分析装置がマイクロデバイス化され、ITO(インターネット・オン・ツール)の構成機構の一部を占めるようになると、自動車における自動無人運転用の検知装置や、屋外農園における作物の生育状況監視、や水耕栽培工場における水の監視、救急救命医療などにおける事故、災害現場などでの簡易迅速測定や診断など、過酷で変化する環境の屋外に持ち出されることになり、検知装置に降り注ぐ紫外線や腐食性の雨、暴露される腐食性の汚染大気や排出ガス、海水の塩分を含む雰囲気などへの耐性の確保、また、マイナス40℃から80℃近くまでと広範な範囲で刻々と短時間で繰り返される外界でのヒートサイクルによる構成部材の剥離や変形などの構造疲労等、これまでドライ環境での使用を前提に設計されてきたセンサー電極においてまで、ヒートサイクルにより発生する腐食性の結露やガスへの対策などウエットで使用される電極並みの耐性設計付与が必要になるなど、検知装置を取り巻く環境に対する耐候性がその性能の維持、向上に重要な、或いは主要な機能となってきている。 In recent years, when sensors and evaluation analyzers have become microdevices and occupy a part of the constituent mechanism of ITO (Internet on Tool), detection devices for automatic unmanned driving in automobiles and growth of crops in outdoor farms It will be taken outdoors in a harsh and changing environment, such as situation monitoring, water monitoring in hydroponic cultivation plants, accidents in emergency life-saving medical care, simple quick measurement and diagnosis at disaster sites, etc. Ensuring resistance to ultraviolet rays, corrosive rain, exposed corrosive polluted air and exhaust gas, and salty atmosphere of seawater, and short moments in a wide range from -40 ° C to nearly 80 ° C. Corrosive dew condensation generated by the heat cycle even in sensor electrodes that have been designed for use in a dry environment, such as structural fatigue such as peeling and deformation of components due to the heat cycle in the outside world that is repeated over time. Weather resistance to the environment surrounding the detection device has become an important or major function for maintaining and improving its performance, such as the need to provide a resistance design equivalent to that of electrodes used in wet conditions, such as measures against gas and gas. There is.

また、センサーや評価分析装置は携帯用としてより小型、軽量化が求められる一方、例えば医療分野において、疾病患者からの検体採取等においては患者の苦痛を緩和し、生体機能を保全するため、より少量で採取される検体への高い検知能力が、一層低コストで求められている。 In addition, while sensors and evaluation analyzers are required to be smaller and lighter for portable use, for example, in the medical field, in order to alleviate patient pain and preserve biological functions when collecting samples from sick patients, for example, High detection ability for samples collected in small quantities is required at even lower cost.

通常、センサー、評価分析装置等の検知電極の材料としては主に金、白金などの貴金属よりなるものが使用されている。貴金属は、耐食性、導電性に優れ、センシング用の電極として用いる場合、検体や使用環境からの腐食による電気電導性の変化などを起こさないため、安定した精度のよい測定を可能とするものである。 Usually, materials made of precious metals such as gold and platinum are mainly used as materials for detection electrodes of sensors, evaluation analyzers, and the like. Precious metals have excellent corrosion resistance and conductivity, and when used as electrodes for sensing, they do not cause changes in electrical conductivity due to corrosion from the sample or the environment in which they are used, enabling stable and accurate measurements. ..

一方、Al、Ti、Ni、Cr等に代表される「弁金属」は、卑金属ではあるがその表層に酸化膜などの薄い基材に由来する不動態層を自然形成することで貴金属のような耐食性を有する金属であり、その不動態層のもたらす電気容量の安定性や、低コスト面から、電子部品の電極等においては、前記貴金属に変えて使用することが極めて有効な場合がある。
しかしながら、センサーや評価分析装置等においては、検体試料を検知・測定系に投入した際に発生する、または発生している「変化」、例えば電流や電圧、電気抵抗値、電気容量などの変化「量」を正確に、高感度に検出する機能が極めて重要であり、特に微小な変化(量)を正しく検出することが必要であることから、検知電極の材料として、表層に電気抵抗の大きい不動態皮膜を伴う「弁金属」を選定しないことが定石であって、前述のように、通常は、耐食性に優れ、電気抵抗も低い貴金属よりなる電極が使用されている。
On the other hand, "valve metal" represented by Al, Ti, Ni, Cr, etc. is like a noble metal by naturally forming a passivation layer derived from a thin base material such as an oxide film on the surface layer of the base metal. It is a metal having corrosion resistance, and from the viewpoint of stability of electric capacity provided by the passivation layer and low cost, it may be extremely effective to use it in place of the noble metal in electrodes and the like of electronic parts.
However, in sensors, evaluation analyzers, etc., "changes" that occur or occur when a sample sample is put into the detection / measurement system, such as changes in current, voltage, electrical resistance, electrical capacity, etc. The function of accurately and highly sensitively detecting "amount" is extremely important, and in particular, it is necessary to correctly detect minute changes (amount). Therefore, as a material for a detection electrode, the surface layer has a large electrical resistance. It is a standard not to select a "valve metal" with a dynamic film, and as mentioned above, an electrode made of a noble metal having excellent corrosion resistance and low electrical resistance is usually used.

さらに、センサーや評価分析装置等においては、その検出感度を向上させる目的で、電極の検体試料との接触面積を増大させるための電極の単位表面積の拡張、つまり電極の微細化が行なわれる。例えば、櫛形電極においては、櫛の歯の部分(通常導電性の電極部分)の幅と、櫛歯間の間隔(通常、絶縁性の電極の基板表層が露出する電気絶縁部分)を極力狭くし(微小、高精細化し)、一定面積内に導電部と絶縁部を多数配置して、アノード電極とカソード電極間等、電極間を狭隣接化し、電極に物理的に接触する検体試量物との接触面積を増やし、検知、分析感度を向上させる等の、造形、構造的な工夫による改善、改良が進んでいる。 Further, in a sensor, an evaluation analyzer, or the like, in order to improve the detection sensitivity, the unit surface area of the electrode is expanded in order to increase the contact area of the electrode with the sample sample, that is, the electrode is miniaturized. For example, in a comb-shaped electrode, the width of the tooth portion of the comb (usually the conductive electrode portion) and the distance between the comb teeth (usually the electrically insulating portion where the substrate surface layer of the insulating electrode is exposed) are made as narrow as possible. (Micro and high definition), a large number of conductive parts and insulating parts are arranged in a certain area, and the electrodes are narrowly adjacent to each other, such as between the anode electrode and the cathode electrode, and the sample sample is in physical contact with the electrodes. Improvements and improvements are being made through modeling and structural ingenuity, such as increasing the contact area of the electrode and improving the detection and analysis sensitivity.

特開2016−171168号公報Japanese Unexamined Patent Publication No. 2016-171168 国際公開第2014/163038号International Publication No. 2014/163038 国際公開第2016/056466号International Publication No. 2016/056466

前述のとおり、検知用のセンサーや評価分析装置においては、検体試料を、検知・測定系に投入した際に発生する「変化」、例えば電流や電圧、電気抵抗値、電気容量などの変化「量」を正確に、高感度に検出する機能が極めて重要であり、前記の微小な変化(量)を正しく検出するには検出系を構成する部材、例えば検知電極や検知のために試料をハンドリング、保持する冶具等の不測の変化(ノイズ)を極力排除し、平行して検知自体の限界を向上させる必要がある。
一方、前述のとおり、検知用のセンサーや評価分析装置においては、低コスト化が求められており、貴金属に代えて、前記の卑金属である弁金属を使用することは、低コスト化のための1手法として期待される。
しかしながら、検知用のセンサーや評価分析装置における電極に弁金属を用いることについては、以下のように種々の解決すべき問題がある。
As described above, in detection sensors and evaluation analyzers, "changes" that occur when a sample sample is put into a detection / measurement system, such as changes in current, voltage, electrical resistance, electrical capacity, etc. The function of accurately and highly sensitively detecting "" is extremely important, and in order to correctly detect the minute change (quantity), the members constituting the detection system, such as the detection electrode and the sample for detection, are handled. It is necessary to eliminate unexpected changes (noise) in the jigs and the like to be held as much as possible, and to improve the limit of the detection itself in parallel.
On the other hand, as described above, cost reduction is required for detection sensors and evaluation analyzers, and using the above-mentioned base metal valve metal instead of the precious metal is for cost reduction. Expected as one method.
However, there are various problems to be solved regarding the use of the valve metal for the electrodes in the detection sensor and the evaluation analyzer as follows.

(弁金属表層不動態層へのガスバリア性を含む耐食性の強化)
弁金属(バルブメタル)の一例として、アルミニウムまたはアルミニウム合金の表層には、アルミニウム酸化物及び/又はアルミニウム水酸化物よりなる不動態層が、チタンやチタン合金の表層には、チタン酸化物よりなる不動態層が、ニッケルやニッケル合金の表層にはニッケル酸化物よりなる不動態層が、クロムやクロム合金の表層、さらには表層でクロム量が多いステンレス鋼合金の表層には、クロム水和オキシ酸化物よりなる不動態層が、それぞれ形成されている。これらの不動態層は、酸素供給源(空気中のO、水中のOやO等)により金属上に自然形成されて保護層となるものであるが、形成される不動態層が1〜数十nmと非常に薄い場合があり、該不動態層のみでは、電極が存在する外部環境からの進入ガスや、検出反応時に発生する各種ガス、例えばバッファー液を構成する水や、環境の温度サイクルから不用意に発生し電極表層に付着する結露水等が電気分解して発生する水素による電極の対水素脆性や、水蒸気や酸素などのガス、腐食性の検体自体、検体が含まれる溶液(溶媒)や腐食性雰囲気等に対する耐食性など耐久性、感度の維持向上は十分でない。
(Enhancement of corrosion resistance including gas barrier property to the valve metal surface passivation layer)
As an example of a valve metal, a passivation layer made of aluminum oxide and / or aluminum hydroxide is formed on the surface layer of aluminum or an aluminum alloy, and a titanium oxide is formed on the surface layer of titanium or a titanium alloy. The passivation layer is a passivation layer made of nickel oxide on the surface layer of nickel or nickel alloy, the surface layer of chromium or chromium alloy, and the surface layer of stainless steel alloy with a large amount of chromium on the surface layer is chromium hydrated oxy. Passivation layers made of oxides are formed respectively. These passivation layers are naturally formed on a metal by an oxygen supply source (O 2 in air, O 2 or O in water, etc.) to become a protective layer, and one passivation layer is formed. It may be very thin, up to several tens of nm, and with only the passivation layer, the invading gas from the external environment where the electrodes are present, various gases generated during the detection reaction, such as water constituting the buffer solution, and the environment. The electrode's brittleness to hydrogen due to hydrogen generated by the electrolysis of dew condensation water that is inadvertently generated from the temperature cycle and adheres to the surface layer of the electrode, gas such as water vapor and oxygen, the corrosive sample itself, and the solution containing the sample. Maintenance and improvement of durability and sensitivity such as corrosion resistance against (solvent) and corrosive atmosphere are not sufficient.

例えば、前記櫛形電極に対して検体の入ったバッファー液等を滴下してセンシングを行う電気化学センサーは、水溶液からなるバッファー液や液中の試料が化学反応し、イオン化するなどして電極に流れる電気(電流)や印加される電圧、電気容量の変化などを測定、検知するもので、前記反応時、試料の水などの溶媒(水など)が電気分解し発生する水素により電極が脆弱化を起こす(水素脆性)場合も有り、水等の溶液によって腐食する場合も有得る。さらには、直径が非常に小さく、金属中に拡散しやすい水素ガスが電極内部に拡散しイオン化すると、測定電流のノイズとなる場合も発生し得る。 For example, in an electrochemical sensor that performs sensing by dropping a buffer solution containing a sample onto the comb-shaped electrode, a buffer solution composed of an aqueous solution or a sample in the solution chemically reacts and is ionized to flow to the electrode. It measures and detects changes in electricity (current), applied voltage, and electric capacity. During the reaction, the electrode becomes fragile due to hydrogen generated by electrolysis of a solvent (water, etc.) such as water in the sample. It may be caused (hydrogen brittleness), and it may be corroded by a solution such as water. Further, when hydrogen gas having a very small diameter and easily diffusing into a metal diffuses inside the electrode and is ionized, noise of the measurement current may occur.

(弁金属表層不動態層への保護膜の密着性確保)
また、アルミニウムなどの弁金属で構成される櫛形電極などは、ゴム、樹脂、ガラスエポキシ、ガラス、セラミクス、Si等の半導体表層に形成される絶縁膜など、の絶縁基板(膜、物)の上層に部分的にパターンニング形成される場合が多い。例えば、前記弁金属の耐食性を確保するため、その表層に撥水性材料、撥水撥油材料よりなる皮膜を塗布し、撥水撥油性の樹脂薄膜を形成する方法があるが、弁金属の不動態層表層は反応性や結合性に乏しく、また絶縁基板である樹脂基板等には、結合性の高いカップリング剤よりなる(を含む)撥水撥油性の樹脂薄膜を含めて、定着良く形成することができず、電極の耐侯性の向上もままならないまま、撥水撥油性の樹脂薄膜カップリング剤層が、基板や電極から剥離しコンタミ源(汚染源)となる場合もある。
(Ensuring adhesion of protective film to valve metal surface passivation layer)
The comb-shaped electrode made of a valve metal such as aluminum is an upper layer of an insulating substrate (film, object) such as an insulating film formed on the surface layer of a semiconductor such as rubber, resin, glass epoxy, glass, ceramics, or Si. In many cases, patterning is partially formed. For example, in order to ensure the corrosion resistance of the valve metal, there is a method of applying a film made of a water-repellent material and a water-repellent oil-repellent material to the surface layer to form a water-repellent oil-repellent resin thin film. The surface layer of the passivation layer has poor reactivity and bondability, and the resin substrate, which is an insulating substrate, contains a water- and oil-repellent resin thin film made of (including) a coupling agent having high bondability, and is formed with good fixation. In some cases, the water- and oil-repellent resin thin film coupling agent layer peels off from the substrate and the electrode and becomes a contamination source (contamination source) without improving the weather resistance of the electrode.

(不動態層を伴う弁金属の導電性や検知感度の確保)
このように、前記弁金属に自然形成される不動態層は、電極の耐食性には貢献する一方、電気抵抗は大きく、前記不動態層に追加形成される保護層がさらに絶縁性の場合、微弱な電流を感知するセンサー電極等にとっては逆に存在しないほうが良いものとなってくる。
さらに当然、検知電極、検知機器に供する冶具については、前記不可避の感度の向上のため複雑な造形構造で検体試料をハンドリングし電極に接触させるなど複雑な構造に由来するコスト高や加工限界などの問題が生じる。
(Ensuring conductivity and detection sensitivity of valve metal with passivation layer)
As described above, the passivation layer naturally formed on the valve metal contributes to the corrosion resistance of the electrode, but has a large electrical resistance, and is weak when the protective layer additionally formed on the passivation layer is further insulating. On the contrary, it is better not to exist for a sensor electrode or the like that senses a large current.
Furthermore, as a matter of course, regarding the detection electrode and the jig used for the detection device, in order to improve the unavoidable sensitivity, the cost and processing limit due to the complicated structure such as handling the sample sample with the complicated molding structure and bringing it into contact with the electrode are present. Problems arise.

耐食性を向上させるために、アルミニウム(Al)等に形成される陽極酸化膜(不動態層)を厚くすることが考えられる。また、Al金属への耐食性付与方法として、基材上に陽極酸化皮膜を形成した後、当該陽極酸化皮膜の上にさらに非晶質炭素膜が形成された積層体も開発されている。
しかしながら、陽極酸化膜は絶縁性が高く、一定程度以上に導電性が必要な電極用途には適さない。また、陽極酸化膜の膜厚の制御は極めて困難となる。さらには非晶質炭素膜と密着が悪いなどの改善すべき点もある。
In order to improve the corrosion resistance, it is conceivable to thicken the anodic oxide film (passivation layer) formed of aluminum (Al) or the like. Further, as a method for imparting corrosion resistance to Al metal, a laminate in which an anodic oxide film is formed on a base material and then an amorphous carbon film is further formed on the anodic oxide film has been developed.
However, the anodized film has high insulating properties and is not suitable for electrode applications that require conductivity above a certain level. Moreover, it is extremely difficult to control the film thickness of the anodic oxide film. Furthermore, there are some points to be improved such as poor adhesion to the amorphous carbon film.

また、特許文献1には、正極缶と電極が導通している電気化学セルにおいて、正極缶の電解液と接する面に導電性の保護膜を形成することにより、電解液に対する耐食性を確保できるとしており、保護膜の一例として、導電性DLC(ダイヤモンドライクカーボン)膜が記載されている。
しかしながら、導電性のDLCを形成するには、B(ホウ素)やAs(砒素)などの毒性や爆発性の高い、危険でさらに高価な原料ガスの使用が必要になるか、或いは、別の方法では、一度絶縁性のDLC膜を形成した後、または形成しながら真空装置内においてDLC皮膜に逆バイアスの正電圧を印加し高エネルギーの乖離電子などをDLC皮膜に向け照射する必要があるなど、装置を含めコストが高くなるなどの課題がある。
Further, Patent Document 1 states that in an electrochemical cell in which a positive electrode can and an electrode are conductive, corrosion resistance to the electrolytic solution can be ensured by forming a conductive protective film on the surface of the positive electrode can in contact with the electrolytic solution. As an example of the protective film, a conductive DLC (diamond-like carbon) film is described.
However, forming conductive DLC requires the use of highly toxic, explosive, dangerous and more expensive source gases such as B (boron) and As (arsenic), or alternative methods. Then, after forming an insulating DLC film once, or while forming it, it is necessary to apply a reverse bias positive voltage to the DLC film and irradiate the DLC film with high-energy divergent electrons. There are problems such as high cost including equipment.

さらに、これらの従来技術では、電気化学的な検知を行うため、水などの溶液中で電気を流して使用する電極、さらには使用環境の温度サイクル等から不用意に発生する電極への結露水等において、前記水や、水に含まれる環境からのコンタミ物質などが電気分解して発生(生成)する水素ガスからの電極の保護、ノイズ源化の防止などが検討されていないのが実情である。 Furthermore, in these conventional techniques, in order to perform electrochemical detection, dew condensation water on the electrodes used by passing electricity in a solution such as water, and also on the electrodes inadvertently generated from the temperature cycle of the usage environment, etc. In the actual situation, protection of electrodes from hydrogen gas generated (generated) by electrolysis of the water and condensate substances from the environment contained in the water, prevention of noise source, etc. have not been studied. be.

本発明は、以上のような現状を鑑みてなされたものであり、電極材料として弁金属を用いたセンサーや評価分析装置において、従来技術における前記の課題を解決して、検出系を構成する部材、例えば検知電極や検知のための試料をハンドリング保持する冶具等の不測の変化(ノイズ)を極力排除し、平行して検知感度自体の限界を維持、向上させることを目的とするものである。 The present invention has been made in view of the above-mentioned current situation, and is a member constituting a detection system by solving the above-mentioned problems in the prior art in a sensor or an evaluation analyzer using a valve metal as an electrode material. For example, the purpose is to eliminate as much as possible unexpected changes (noise) in the detection electrode and the jig for handling and holding the sample for detection, and to maintain and improve the limit of the detection sensitivity itself in parallel.

本発明者は、上記目的を達成すべく検討した結果、基材と該基材上の少なくとも一部に形成された弁金属よりなる電極を備えた電極構造体において、前記電極上に膜厚が10nmを越え200nm未満の、非晶質炭素膜よりなる保護膜、或いは、珪素又は金属の、酸化物、窒化物、炭化物、酸窒化物、炭酸化物、炭窒化物又は炭酸窒化物層のいずれか1つ以上を含むドライ薄膜よりなる保護膜を形成することによって、或いは更に、前記非晶質炭素膜よりなる保護膜上又は前記ドライ薄膜よりなる保護膜上に、撥水性及び/または撥水撥油性の薄膜層を設けることにより、従来技術における課題が解決しうることを見いだした。 As a result of studies to achieve the above object, the present inventor has found that, in an electrode structure including an electrode made of a base material and a valve metal formed at least in a part of the base material, a film thickness is formed on the electrode. A protective film made of an amorphous carbon film having a thickness of more than 10 nm and less than 200 nm, or any of an oxide, a nitride, a carbide, an oxynitride, a carbon oxide, a carbon nitride or a carbonate nitride layer of silicon or metal. Water repellency and / or water repellency by forming a protective film made of a dry thin film containing one or more, or further on a protective film made of the amorphous carbon film or on a protective film made of the dry thin film. It has been found that the problems in the prior art can be solved by providing an oil-based thin film layer.

本発明は、これらの知見に基づいて完成するに至ったものであって、以下の発明を提供するものである。
[1]基材と、該基材上の少なくとも一部に形成された弁金属よりなる電極と、該電極上に形成された膜厚が10nmを超え200nm未満の保護層を備え、
該保護層が、非晶質炭素膜よりなることを特徴とするセンサー用又は評価分析装置用の電極構造体。
[2]基材と、該基材上の少なくとも一部に形成された弁金属よりなる電極と、該電極上にドライプロセスにより形成された膜厚が10nmを超え200nm未満の保護層を備え、
該保護層が、珪素又は金属の、酸化物、窒化物、炭化物、酸窒化物、炭酸化物、炭窒化物又は炭酸窒化物層のいずれか1つ以上を含む薄膜よりなることを特徴とするセンサー用又は評価分析装置用の電極構造体。
[3]前記保護層上に、撥水性及び/または撥水撥油性の薄膜層を備えることを特徴とする[1]又は[2]に記載のセンサー用又は評価分析用装置用の電極構造体。
[4]前記薄膜層が、膜厚50nm未満のフッ素含有カップリング剤よりなる樹脂層であることを特徴とする[3]に記載のセンサー用又は評価分析用装置用の電極構造体。
[5]前記弁金属は、その表層に不動態層を備えることを特徴とする[1]〜[4]のいずれかに記載のセンサー用又は評価分析用装置用の電極構造体。
[6]負荷電圧0.39v下における電気抵抗が0.45Ω未満である[1]〜[5]のいずれかに記載のセンサー用又は評価分析用装置用の電極構造体。
[7]前記電極が形成されていない基材の最表面及び/又は前記電極が形成された部分の最表面に、水及び/または油との表面濡れ性が異なる表面を備えることを特徴とする[1]〜[6]のいずれかに記載のセンサー用又は評価分析用装置用の電極構造体。
[8]前記保護膜が、食品、添加物等の規格基準(昭和34年厚生省告示第370号)に適合していることを特徴とする[1]〜[7]のいずれかに記載のセンサー用又は評価分析用装置用の電極構造体。
[9]前記保護膜は前記基材よりも大きな水素ガス透過防止性を有することを特徴とする[1]〜[8]のいずれかに記載のセンサー用又は評価分析用の電極構造体。
[10]前記保護膜の誘電率が50未満であることを特徴とする[1]〜[9]のいずれかに記載のセンサー用又は評価分析用の電極構造体。
The present invention has been completed based on these findings, and provides the following inventions.
[1] An electrode made of a base material, a valve metal formed on at least a part of the base material, and a protective layer having a film thickness of more than 10 nm and less than 200 nm formed on the electrode are provided.
An electrode structure for a sensor or an evaluation analyzer, wherein the protective layer is made of an amorphous carbon film.
[2] A base material, an electrode made of a valve metal formed on at least a part of the base material, and a protective layer having a film thickness of more than 10 nm and less than 200 nm formed on the electrode by a dry process are provided.
A sensor characterized in that the protective layer is made of a thin film containing any one or more of oxides, nitrides, carbides, oxynitrides, carbon oxides, carbonitrides and carbonate nitride layers of silicon or metal. Electrode structure for or evaluation analyzer.
[3] The electrode structure for a sensor or an evaluation analysis device according to [1] or [2], wherein a water-repellent and / or water-repellent and oil-repellent thin film layer is provided on the protective layer. ..
[4] The electrode structure for a sensor or an evaluation analysis device according to [3], wherein the thin film layer is a resin layer made of a fluorine-containing coupling agent having a film thickness of less than 50 nm.
[5] The electrode structure for a sensor or an evaluation analysis device according to any one of [1] to [4], wherein the valve metal is provided with a passivation layer on its surface layer.
[6] The electrode structure for a sensor or an evaluation analysis device according to any one of [1] to [5], wherein the electric resistance under a load voltage of 0.39v is less than 0.45Ω.
[7] The outermost surface of the base material on which the electrode is not formed and / or the outermost surface of the portion where the electrode is formed is provided with a surface having different surface wettability with water and / or oil. The electrode structure for a sensor or an evaluation analysis device according to any one of [1] to [6].
[8] The sensor according to any one of [1] to [7], wherein the protective film conforms to standards for foods, additives, etc. (Ministry of Health and Welfare Notification No. 370, 1959). Electrode structure for use or evaluation and analysis equipment.
[9] The electrode structure for a sensor or evaluation analysis according to any one of [1] to [8], wherein the protective film has a hydrogen gas permeation prevention property larger than that of the base material.
[10] The electrode structure for a sensor or evaluation analysis according to any one of [1] to [9], wherein the protective film has a dielectric constant of less than 50.

本発明によれば、弁金属よりなる電極を用いた検知電極、特に、樹脂やガラスなどの密着をとり難い絶縁性の基材上に、厚さ数百nm以下と薄膜で、基板への接着面積も少なく、一方で、表層面積(電極の外周パターン及び外周延長)は反対に大きく形成されることが多い微細な検知電極において、該電極への特に腐食性液中での密着性の確保や、必要な導電性確保等の必要最小限の機能を維持しつつ、耐侯性、耐食性を向上させること、特に検出時に発生する、さらには検出環境に存在する水素、水蒸気又は酸素に対する劣化を防止することができる。 According to the present invention, a detection electrode using an electrode made of a valve metal, particularly an insulating base material such as resin or glass, which is difficult to adhere to, is adhered to a substrate with a thin film having a thickness of several hundred nm or less. On the other hand, in a fine detection electrode in which the surface layer area (outer circumference pattern and outer circumference extension of the electrode) is often formed to be large, the adhesion to the electrode, especially in a corrosive liquid, can be ensured. Improve weather resistance and corrosion resistance while maintaining the minimum necessary functions such as ensuring the necessary conductivity, and prevent deterioration of hydrogen, water vapor, or oxygen that occurs during detection and that exists in the detection environment. be able to.

表面の濡れ性制御による液体のパターンニング性を確認するために、純水を噴霧した表面を撮影した写真A photograph of the surface sprayed with pure water to confirm the patterning property of the liquid by controlling the wettability of the surface. 比較例についての摩擦摩耗試験の結果を示す図The figure which shows the result of the friction wear test for the comparative example 実施例についての摩擦摩耗試験の結果を示す図The figure which shows the result of the friction wear test for an Example.

本発明においては、弁金属よりなる電極を用いた検知電極において、特に弁金属電極表層の不動態層との密着性の確保や、弁金属電極表層の不動態層により既に低下している導電性において、検知電極として必要な導電性確保等の必要最小限の機能を維持しつつ、耐侯性、耐食性を向上させること、加えて特に検出時に発生する、さらには検出環境に存在する水素、水蒸気又は酸素に対する劣化防止のために、以下の実施形態が好ましく採用される。 In the present invention, in the detection electrode using the electrode made of the valve metal, in particular, the adhesion of the valve metal electrode surface layer with the passivation layer is ensured, and the conductivity already lowered by the passivation layer of the valve metal electrode surface layer. In addition to improving weather resistance and corrosion resistance while maintaining the minimum necessary functions such as ensuring conductivity required as a detection electrode, hydrogen, water vapor, or hydrogen, water vapor, or hydrogen, water vapor, which is generated especially at the time of detection and is present in the detection environment. The following embodiments are preferably adopted in order to prevent deterioration with respect to oxygen.

本発明の第一の実施形態は、ドライプロセスにより形成される非晶質炭素よりなる保護膜を、弁金属の不動態層との密着を確保可能であり、かつ、電極の導電性を一定程度以上損なわない厚みである200nm未満にて保護膜として形成するものである。
また、本発明の第二の実施形態は、保護膜を、ドライプロセスにより形成される薄膜で、弁金属の不動態層との付きまわりも良く、かつ、皮膜密度が非常に高く、酸素ガス、水蒸気バリア性等を有する、珪素、チタン、アルミニウム、ジルコニウムなどの金属の酸化物、窒化物、炭化物、酸窒化物、炭酸化物、炭窒化物、炭酸窒化物のいずれか1つ以上の素材よりなる膜厚200nm未満の膜とするものである。
さらに、本発明の第三の実施形態は、ガスバリア等の耐侯性目的でドライプロセスにより形成される保護膜のピンフォールに水等の電極を腐食させる極性物質を吸着乃至誘導して腐食を起こすことがないように、保護膜の上に、さらに撥水性又は撥水撥油性の皮膜を付与することである、
以下、順に詳しく説明する。
In the first embodiment of the present invention, the protective film made of amorphous carbon formed by the dry process can be ensured to adhere to the passivation layer of the valve metal, and the conductivity of the electrode is maintained to a certain extent. It is formed as a protective film at a thickness of less than 200 nm, which is not impaired.
Further, in the second embodiment of the present invention, the protective film is a thin film formed by a dry process, which has good adhesion to the passivation layer of the valve metal, has a very high film density, and is an oxygen gas. Consists of one or more materials of metal oxides such as silicon, titanium, aluminum, and zirconium, nitrides, carbides, oxynitrides, carbon oxides, carbonitrides, and nitrides having a water vapor barrier property. The film has a thickness of less than 200 nm.
Further, in the third embodiment of the present invention, a polar substance such as water that corrodes an electrode is adsorbed or induced on a pinfall of a protective film formed by a dry process for the purpose of weather resistance such as a gas barrier to cause corrosion. A water-repellent or water-repellent oil-repellent film is further applied on the protective film so that there is no such thing.
Hereinafter, detailed description will be given in order.

前記の耐侯性、耐食性の確保(向上)のためには、ドライプロセスによる保護膜の形成が有効である。
これは、ウエットプロセスで保護膜を形成する場合は、複雑微細な構造を有する電極に対して、液状保護膜の塗布時に重力や表面張力、塗布対象基材の表層濡れ性の影響を受け易く、検知電極等の微細で複雑な凹凸を伴う部分において重力方向に液状保護膜が流動し、例えば凹部で膜が厚く、凸部頂点で膜が薄いなど、膜厚ムラを発生させ、精度良い薄膜を形成することが困難な場合があるためである。また、カップリング剤などの数十ナノメートルの膜厚のものを除き、液状保護膜を、電気抵抗をばらつかせないように薄く、均一に塗布することが困難な場合があるためである。
In order to secure (improve) the above-mentioned weather resistance and corrosion resistance, it is effective to form a protective film by a dry process.
This is because when the protective film is formed by the wet process, the electrode having a complicated and fine structure is easily affected by gravity, surface tension, and surface wettability of the base material to be coated when the liquid protective film is applied. A liquid protective film flows in the direction of gravity in a part with fine and complicated unevenness such as a detection electrode, and causes uneven film thickness such as a thick film at a concave portion and a thin film at the apex of a convex portion, so that a thin film with high accuracy can be obtained. This is because it may be difficult to form. Further, it may be difficult to apply the liquid protective film thinly and uniformly so as not to disperse the electric resistance, except for those having a film thickness of several tens of nanometers such as a coupling agent.

さらには、液状保護膜は、一般に形成される皮膜の膜密度が低く、ガスバリア性は殆ど期待できない場合が多い。例えば、ガスバリア性を向上させるウエット皮膜には金属アルコキシドなどを出発原料としたゾル・ゲル法皮膜があるが、高い膜密度やガスバリア性を得るには500℃を超え、1000℃近い塗布後の加熱が必要で、保護対象の電極が酸化、変形破壊される懸念があり、樹脂などを基材にした電極や冶具を使用することが不可能となる。 Furthermore, the liquid protective film generally has a low film density, and gas barrier properties can hardly be expected in many cases. For example, a wet film that improves gas barrier properties includes a sol-gel method film that uses metal alkoxide as a starting material, but in order to obtain high film density and gas barrier properties, it exceeds 500 ° C and heats after application at nearly 1000 ° C. Therefore, there is a concern that the electrode to be protected may be oxidized, deformed and destroyed, and it becomes impossible to use an electrode or a jig based on a resin or the like.

一方、ドライプロセスによる保護膜、特に硬質保護膜はその高い膜密度に由来するガスバリア性の確保や、重力に影響されにくい薄膜での基材着き回り、均一な膜厚での形成が可能となり有効ではあるが、逆にその高い膜密度がもたらす内部(残留)応力由来の基材密着性低下の問題があり、特に本願の通常基材よりも密着のさらに悪い弁金属電極表層への密着性を確保する対応が必要になる。
従来のドライプロセスによる保護膜は耐磨耗、高摺動、耐焼付け、耐食用途等のものが多く、その膜密度は高く、残留内部応力は強力で、その膜厚は500nm以上、場合によっては3μm程度までの厚膜となる場合が多い。さらに電気伝導性などはほぼ検討されない、或いは重要視されていない。
また、弁金属に前記のような保護膜を形成する場合、その表層の不動態層は密着が悪いため、Arなどの不活性ガスプラズマによるスパッタリング前処理(例えばスパッタリング前処理を5分間以上行うなど)で弁金属の不動態層を十分除去し密着を確保することが当業者の常識となっている。
On the other hand, the protective film by the dry process, especially the hard protective film, is effective because it can secure the gas barrier property due to its high film density, can adhere to the base material with a thin film that is not easily affected by gravity, and can be formed with a uniform film thickness. However, on the contrary, there is a problem of deterioration of substrate adhesion due to internal (residual) stress caused by the high film density, and in particular, adhesion to the valve metal electrode surface layer, which is worse than the normal substrate of the present application, is maintained. It is necessary to take measures to secure it.
Many of the protective films produced by the conventional dry process are used for abrasion resistance, high sliding resistance, seizure resistance, corrosion resistance, etc., the film density is high, the residual internal stress is strong, and the film thickness is 500 nm or more, and in some cases, the film thickness is 500 nm or more. In many cases, the film thickness is up to about 3 μm. Furthermore, electrical conductivity and the like are rarely examined or emphasized.
Further, when the protective film as described above is formed on the valve metal, the passivation layer on the surface layer has poor adhesion, so that the sputtering pretreatment with an inert gas plasma such as Ar (for example, the sputtering pretreatment is performed for 5 minutes or more). ) Sufficiently removes the passivation layer of the valve metal to ensure adhesion.

さらに、弁金属に前記ドライプロセスで形成する内部残留応力の大きな保護膜を形成した場合、その残留応力を受けた(受け止めた)弁金属よりなる電極自体が、弁金属電極が形成されている絶縁基材から応力剥離することも容易である。
例えば、SiやAl、Tiよりなるドライ皮膜の延伸性は1%程度しかなく、延性の大きな金属電極が延伸した場合、その追随性に乏しく、クラックが容易に入り基材からの剥離や、ガス漏れ(外界からのガスの進入)を起こす。
またSiやAl、Tiよりなるドライ皮膜の熱線膨張係数は1桁×10cm・℃程度しかないが、弁金属であるAlは、23×10cm・℃程度、Niで13×10cm・℃程度と1桁大きく、マイナス40℃から80℃近くまでと広範な範囲で刻々と短時間で繰り返される外界でのヒートサイクル、検知する検体試料の滴下に伴う温度変化等により、剥離を起こしやすい状態となる場合が有り得る。
Further, when a protective film having a large internal residual stress formed in the dry process is formed on the valve metal, the electrode itself made of the valve metal that has received (received) the residual stress is an insulator on which the valve metal electrode is formed. It is also easy to remove stress from the substrate.
For example, Si x O y and Al x O y, stretchability of Ti x O y consisting dry film is only about 1%, if a large metal electrodes ductility stretched, poor its followability, cracks easily It causes peeling from the contained base material and gas leakage (intrusion of gas from the outside world).
The Si x O y and Al x O y, but Ti x linear thermal expansion coefficient of the O y dry film made of is only about 1 order of magnitude × 10 6 cm · ℃, the Al is a valve metal, 23 × 10 6 cm · ° C. approximately, 13 × 10 6 cm · ℃ about a 1 digit increase in Ni, heat cycles at ambient repeated every moment a short and wide range of minus 40 ° C. to 80 ° C. near, dripping of the test sample to detect There is a possibility that peeling is likely to occur due to a temperature change or the like accompanying the process.

例えば、PC/ABSなどの樹脂基材に公知の無電解Ni−Pめっき(膜厚概ね200nm)、電解銅めっき(膜厚概ね10μm)、電解Niめっき(膜厚概ね3μm)、電解クロムめっき(膜厚概ね100nm)と順番に層状にめっきを行い、ビッカース硬さHv1700程度の非晶質炭素幕膜を、厚さ概ね700nm程度で形成した試料と、めっき膜までは同様に作成し、非晶質炭素膜を厚さ概ね200nmで形成したものを準備し、−30℃で3時間、60℃で3時間の冷熱サイクルを20回行う冷熱衝撃試験(使用冷熱試験機器:TSA−200S−W/タバイエスペック)を行った結果では、厚さ700nmの非晶質炭素膜を形成したものは、前記無電解Ni−Pめっき層の基材からの膨れ(剥離)が確認でき、最上層に厚膜で形成した非晶質炭素膜の内部応力が無電解Ni−Pめっき層自体の基材密着を阻害する様子か観察できる。
非晶質炭素膜は1桁×10cm・℃程度の線膨張係数でありながら延伸性は3%程度と大きく各種硬質膜中では柔軟で、本発明の電極構造体の保護膜としての適正が大きいが、しかし、厚膜で形成すると上記のような剥離の問題が発生し得る。
For example, electroless Ni-P plating (thickness approximately 200 nm), electrolytic copper plating (thickness approximately 10 μm), electrolytic Ni plating (thickness approximately 3 μm), electrolytic chrome plating (thickness approximately 3 μm) known to resin substrates such as PC / ABS. A sample in which an amorphous carbon curtain film having a Vickers hardness of about Hv1700 was formed with a thickness of about 700 nm and a plating film were prepared in the same manner by plating in layers in order of a film thickness of about 100 nm), and electroless crystals were formed. A thermal shock test in which a quality carbon film having a thickness of approximately 200 nm is prepared and a cold cycle of -30 ° C for 3 hours and 60 ° C for 3 hours is performed 20 times (cold test equipment used: TSA-200S-W /) As a result of performing Tabie spec), it was confirmed that the electroless Ni-P plating layer had swelling (peeling) from the base material of the 700 nm-thick amorphous carbon film formed, and the thick film was formed on the uppermost layer. It can be observed whether the internal stress of the amorphous carbon film formed in 1) hinders the adhesion of the electroless Ni-P plating layer itself to the base material.
Amorphous carbon film 1 digit × 10 6 stretchability yet linear expansion coefficient of about cm · ° C. is flexible in large variety of hard film of about 3%, appropriate as a protective film of the electrode structure of the present invention However, when formed with a thick film, the above-mentioned peeling problem may occur.

以上の点を勘案して、本発明の第一の実施形態は、ドライプロセスにより形成される非晶質炭素よりなる保護膜を電極(特に弁金属の不動態層)との密着を確保可能であり、電極の導電性を一定程度以上損なわない厚み200nm未満にて保護膜として形成するものとする。 In consideration of the above points, in the first embodiment of the present invention, it is possible to secure the adhesion of the protective film made of amorphous carbon formed by the dry process to the electrode (particularly the passivation layer of the valve metal). It is assumed that the electrode is formed as a protective film with a thickness of less than 200 nm that does not impair the conductivity of the electrode to a certain extent or more.

本発明者はドライプロセスにより形成される非晶質炭素膜は、前記の各種被膜同様、ピンフォールを形成し易いが、油と同様な構成成分で表層が疎水性に近い濡れ性を有し、さらに極性の官能基が極めて少ない極めて不活性な表層を有するため、ピンフォールに水等の電極を腐食させる極性物質を吸着、誘導し難く、腐食を起こし難いことを確認した(実施例参照)。加えて非晶質炭素膜は、水蒸気透過防止性及び酸素透過防止性に加え、水素ガス透過防止性にも優れていることも検証した(実施例参照)。 According to the present inventor, the amorphous carbon film formed by the dry process easily forms pinfalls like the above-mentioned various coatings, but the surface layer has a wettability close to hydrophobicity with the same constituent components as oil. Furthermore, since it has an extremely inactive surface layer with extremely few polar functional groups, it was confirmed that it is difficult to adsorb and induce polar substances such as water that corrode electrodes on the pinfall, and it is difficult to cause corrosion (see Examples). In addition, it was verified that the amorphous carbon film is excellent in hydrogen gas permeation prevention property in addition to water vapor permeation prevention property and oxygen permeation prevention property (see Examples).

加えて、センサー等の電極は、その経済性や生産性のため、絶縁性の樹脂基板等、樹脂基材上に形成される場合が多い。例えば酸化ケイ素膜やSiを含むドライ薄膜(例えばSiを含む非晶質炭素膜)は、電極の金属素材(不動態層)等への密着性に優れるが、樹脂基板部分への密着はSiを含まない炭素膜(非晶質炭素膜)の方が、密着性が良い。
よって電極と基材に対して同時に非晶質炭素膜を形成する場合、樹脂基板からの非晶質炭素膜の剥離等のコンタミ源の発生を抑制することが可能となる(実施例参照)。
In addition, electrodes such as sensors are often formed on a resin substrate such as an insulating resin substrate because of its economic efficiency and productivity. For example, a silicon oxide film or a dry thin film containing Si (for example, an amorphous carbon film containing Si) has excellent adhesion to a metal material (passivation layer) of an electrode, but Si is used for adhesion to a resin substrate portion. The carbon film (amorphous carbon film) that does not contain it has better adhesion.
Therefore, when the amorphous carbon film is formed on the electrode and the base material at the same time, it is possible to suppress the generation of contamination sources such as peeling of the amorphous carbon film from the resin substrate (see Examples).

上述したように、非晶質炭素膜などドライプロセスにて形成される薄膜は一般に膜密度が高いためガスバリア性を持つ代償として、内部残留応力が大きく、弁金属が有する不活性で密着の取り難い不動態層との密着が悪い場合があり、応力剥離の可能性が大きくなる。
このような場合、前記非晶質炭素膜に前記のSi、Ti、Al、Zrなどの各種金属元素を添加し、非晶質炭素膜の皮膜の応力を緩和、基材への密着性を向上させる(特に基材が含む元素と同様な元素を添加する方法)方法や、比較的内部応力の小さい絶縁膜であるSi、Al、Ti、Zr等のシリコンや金属の酸化膜、窒化膜、酸窒化膜、または前記に皮膜に炭素を混ぜたドライ薄膜で代用することが可能となる。
As described above, a thin film formed by a dry process such as an amorphous carbon film generally has a high film density, so that the compensation for having gas barrier properties is that the internal residual stress is large and the valve metal is inert and difficult to adhere. Adhesion to the passive layer may be poor, increasing the possibility of stress separation.
In such a case, various metal elements such as Si, Ti, Al, and Zr are added to the amorphous carbon film to relieve the stress of the amorphous carbon film and improve the adhesion to the substrate. (In particular, a method of adding an element similar to the element contained in the base material) and an insulating film having a relatively small internal stress such as Si x O y , Al x O y , Ti x O y , Zr x O y, etc. It is possible to substitute an oxide film of silicon or metal, a nitride film, an oxynitride film, or a dry thin film in which carbon is mixed with the film.

このように、第二の実施形態として、本発明の一実施形態にかかる前記保護膜は、ドライプロセスにより形成される薄膜で、弁金属からなる電極への付きまわりも良く、皮膜密度が高く、酸素ガス、水蒸気バリア性等を有する珪素、チタン、アルミニウム、ジルコニウムなどの金属の酸化物、窒化物、炭化物、酸窒化物、炭酸化物、炭窒化物、炭酸窒化物のいずれか1つ以上の素材よりなる膜厚200nm未満の保護膜とすることが有効である。
例えば、ドライプロセスにより形成されシリコンの酸化物膜(シリカ膜)、または基材密着向上用の炭素を含むシリコンの酸化物膜などは、太陽電池バックシートや食品包装基材、電子部品の透明硬質ガスバリア保護膜として公知になっている。
As described above, as the second embodiment, the protective film according to the embodiment of the present invention is a thin film formed by a dry process, has good adhesion to an electrode made of a valve metal, and has a high film density. One or more materials of metal oxides, nitrides, carbides, oxynitrides, carbon oxides, carbonitrides, carbonates, etc. of metals such as silicon, titanium, aluminum, and zirconium having oxygen gas and water vapor barrier properties. It is effective to use a protective film having a thickness of less than 200 nm.
For example, a silicon oxide film (silica film) formed by a dry process or a silicon oxide film containing carbon for improving substrate adhesion is a transparent hard material for solar cell backsheets, food packaging substrates, and electronic parts. It is known as a gas barrier protective film.

しかしながら、ドライプロセスにより形成される、珪素や金属の、酸化物、窒化物、炭化物、酸窒化物、炭酸化物、炭窒化物、炭酸窒化物、特にガスバリア膜で多用される酸化ケイ素膜や炭素を含む酸化ケイ素膜、酸化チタン膜、Si、Ti、Al、Znとさらに酸素や窒素などの極性の元素を含む非晶質炭素膜などは、その皮膜表層にプラズマにより異常放電で形成されるピンフォールと、極性の官能基、例えばシラノール基、カルボニル基、カルボキシル基などの、極性の官能基を生成し易く、これらを表層に伴うことで、表面の濡れ性が親水性、親水親油方向に移行する。 However, silicon oxide and carbon oxides, nitrides, carbides, oxynitrides, coal oxides, carbonitrides, and carbonates of silicon and metals formed by the dry process, especially silicon oxide films and carbons often used in gas barrier films, are used. The silicon oxide film, titanium oxide film, Si, Ti, Al, Zn and the amorphous carbon film containing polar elements such as oxygen and nitrogen are pinfalls formed on the surface layer of the film by abnormal discharge due to plasma. And, it is easy to generate polar functional groups such as silanol group, carbonyl group, carboxyl group, etc., and by accompanying these with the surface layer, the wettability of the surface shifts toward hydrophilic and hydrophilic lipophilic groups. do.

櫛形電極の配線の幅と間隔は昨今10μm幅よりも狭いものも現れ、電極部分が「上に凸」等の微細な凹凸構造を採る場合、櫛形電極部分が全体として電極が作る凹凸構造に由来する構造撥水性、構造撥油性を不用意に発現する場合があり、電極部分(絶縁部分)に液体試料が十分濡れ広がらない場合がある。つまり、検知電極として機能が不可能な状況になってしまう場合がある。この場合、この第二の実施形態の構造撥水性、構造撥油性を発現する皮膜を形成することで電極、または絶縁部分、または双方を親水性、或いは親水親油性とすることにより、液体試料を十分測定に必要な位置に濡れ広がらせることもできる。このような親水性、親水親油性の櫛形電極は、液滴試料を電極部分に滴下後、該電極、並びに滴下した試料の上にガラスカバーなどを敷設する手間を省くことも可能となる。 The width and spacing of the wiring of the comb-shaped electrode has recently appeared to be narrower than 10 μm width, and when the electrode part adopts a fine uneven structure such as “convex upward”, the comb-shaped electrode part is derived from the uneven structure created by the electrode as a whole. The structural water repellency and structural oil repellency may be inadvertently developed, and the liquid sample may not sufficiently wet and spread on the electrode portion (insulating portion). That is, there is a case where the function as a detection electrode becomes impossible. In this case, the liquid sample is prepared by forming a film exhibiting structural water repellency and structural oil repellency according to the second embodiment to make the electrode, the insulating portion, or both hydrophilic or lipophilic. It can also be sufficiently wet and spread to the position required for measurement. Such a hydrophilic and hydrophilic lipophilic comb-shaped electrode can save the trouble of laying a glass cover or the like on the electrode and the dropped sample after dropping the droplet sample on the electrode portion.

一方、この第二の実施形態の構造撥水性、構造撥油性の皮膜は、その表層に極性の官能基を伴うことで、前記ピンフォールに(を通じて)水等の電極を腐食させる極性物質を吸着し、電極表面に至るまでピンフォール中を誘導し易く、電極の腐食を引き起こし易い懸念があるので、長時間の測定等には不向きな面もある。 On the other hand, the structural water-repellent and structural oil-repellent film of the second embodiment has a polar functional group on its surface layer, so that the pinfall adsorbs a polar substance that corrodes electrodes such as water. However, it is easy to guide the pin fall to the surface of the electrode, and there is a concern that the electrode is easily corroded, so that it is not suitable for long-term measurement or the like.

さらに前記第二の実施形態の珪素や金属の酸化物、窒化物、炭化物、酸窒化物、炭酸化物、炭窒化物、炭酸窒化物など、極性の官能基をその表層に自然発生(形成)させやすい(ドライプロセスにより形成される皮膜含めて)皮膜を屋外の日光などのUV光や、ヒートサイクルから発生する結露水(特に腐食性や極性成分を含むもの)や検体試料の水中などの酸化雰囲気中に暴露すると、極性の官能基の形成が一層促進され表層が親水性側の表面に移行し易くなる。
例えば、ステンレス鋼板(SUS304 2B基材)上に公知のプラズマCVDプロセスにて各々概ね40nm程度の厚さで、水素と炭素からなる非晶質炭素膜を形成した試料1と、珪素を含む非晶質炭素膜に酸素をプラズマ照射し、極性のシラノール基(Si-OH基)を表層に大量に生成した試料2と、前記試料2の表層に前記シラノール基と脱水縮合反応で皮膜を形成する公知のフッ素含有カップリング剤(フロロテクノロジー社のフロロサーフFG−5010Z130−0.2)よりなる撥水撥油層をスプレー法で概ね20nmの厚さで最表層に追加形成した2日後、IPA(イソプロピルアルコール)を満たした超音波洗浄槽で5分間洗浄した試料3をつくり、試料1、2、3を高温高湿試験用恒温恒湿槽(試験機器:PR−2GP/タバイエスペック)にて温度40℃、湿度93%にて96時間保持した前後で、摩擦磨耗試験(装置:トライボギアHHS−2000新東科学(株)、一定荷重往復測定荷重:50g、圧子:SUJ2 φ2.0mm、50往復摩擦)を行うと、高温高湿槽への投入前後で試料1と試料3は摩擦係数の劣化に大きな差が出ないが、極性のシラノール基(Si−OH基)を表層に大量に生成し親水化した試料2の最大の摩擦係数が、高温高湿槽への投入前の同試料の最大値0.5μ(ミュー)から3倍の1.5μに増大しており、皮膜自体の劣化や基材密着の劣化が確認できる。なお、ステンレス鋼はAlなどに比べ腐食し難い基材であり摩擦係数の劣化から基材の腐食に起因する試料の劣化ではなく、試料自体の高温高湿環境に対する劣化が想定でき、各試料形態での耐久性能の違いが確認できる。
Further, polar functional groups such as oxides, nitrides, carbides, oxynitrides, carbonitrides, carbonitrides, and carbonates of silicon and metal of the second embodiment are naturally generated (formed) on the surface layer thereof. Easy (including the film formed by the dry process) The film is exposed to UV light such as outdoor sunlight, dew condensation water generated from the heat cycle (particularly those containing corrosive or polar components), and the oxidizing atmosphere of the sample sample in water. When exposed to the inside, the formation of polar functional groups is further promoted, and the surface layer is easily transferred to the surface on the hydrophilic side.
For example, sample 1 in which an amorphous carbon film composed of hydrogen and carbon is formed on a stainless steel plate (SUS304 2B base material) by a known plasma CVD process to a thickness of about 40 nm, and an amorphous substance containing silicon. A known sample 2 in which a large amount of polar silanol groups (Si-OH groups) are generated on the surface layer by irradiating the quality carbon film with oxygen by plasma, and a film is formed on the surface layer of the sample 2 by a dehydration condensation reaction with the silanol groups. IPA (isopropyl alcohol) 2 days after an additional water- and oil-repellent layer made of a fluorine-containing coupling agent (Fluorosurf FG-5010Z130-0.2 from Fluorotechnology) was additionally formed on the outermost layer with a thickness of approximately 20 nm by a spray method. Sample 3 was washed for 5 minutes in an ultrasonic washing tank filled with A friction wear test (device: Tribogear HHS-2000 Shinto Kagaku Co., Ltd., constant load reciprocating measurement load: 50 g, indenter: SUJ2 φ2.0 mm, 50 reciprocating friction) is performed before and after holding at a humidity of 93% for 96 hours. Although there is no significant difference in the deterioration of the friction coefficient between sample 1 and sample 3 before and after being placed in the high-temperature and high-humidity tank, a large amount of polar silanol groups (Si-OH groups) are generated on the surface layer to make the sample hydrophilic. The maximum friction coefficient of 2 has increased from the maximum value of 0.5 μ (mu) of the same sample before being put into a high-temperature and high-humidity tank to 1.5 μ, which is three times as large as that of deterioration of the film itself and adhesion to the base material. Deterioration can be confirmed. It should be noted that stainless steel is a base material that is less likely to corrode than Al, etc., and deterioration of the sample itself due to corrosion of the base material can be assumed due to deterioration of the coefficient of friction, and deterioration of the sample itself in a high temperature and high humidity environment can be assumed. You can see the difference in durability performance between.

このことから、弁金属の中でも比較的腐食の起こり難い不動態層を伴う基材、特にTi、Ni、Cr、陽極酸化し不動態層を強化したAlなどの弁金属全般に対する試料1、3の形態の保護膜の高温高湿環境に対する有効性が確認できている。
但し、試料3の形態は、本発明に係る保護層に比べ極端に大きな絶縁性を有するフッ素樹脂膜が追加形成されるため導電性の劣化の点では試料2や試料1の形態に比べ劣ることにはなる。
また、前記試料2のような親水性側の濡れ性の皮膜中、例えば皮膜のピンフォール中に水が含まれた後、環境中で当該水が氷結した場合の水の体積膨張による皮膜の劣化は容易に想定が可能である。
From this, among the valve metals, the base materials having a passivation layer that is relatively less likely to corrode, particularly Ti, Ni, Cr, and Al, which is anodized and the passivation layer is reinforced, are used for all the valve metals of Samples 1 and 3. The effectiveness of the protective film in the form in a high temperature and high humidity environment has been confirmed.
However, the form of sample 3 is inferior to the forms of sample 2 and sample 1 in terms of deterioration of conductivity because a fluororesin film having extremely large insulating properties is additionally formed as compared with the protective layer according to the present invention. Becomes.
Further, deterioration of the film due to volume expansion of water when water is contained in a wettable film on the hydrophilic side such as sample 2, for example, during pinfall of the film and then the water freezes in the environment. Can be easily assumed.

そこで、本発明の第三の実施形態は、ガスバリア等の耐侯性目的でドライプロセスにより形成される、珪素や金属の酸化物、窒化物、炭化物、酸窒化物、炭酸化物、炭窒化物、炭酸窒化物のピンフォールに、水等の電極を腐食させる極性物質を吸着乃至誘導して腐食を起こさないように、保護膜の上に、さらに撥水性又は撥水撥油性の皮膜を付与する形態とするものである。
本発明の一実施形態である、ドライプロセスにより形成された皮膜の表面には、シラノール基、カルボニル基、カルボキシル基などの、極性の官能基が多く生成されるため、脱水縮合反応にて基材に結合するカップリング剤等よりなる撥水性又は撥水撥油性の皮膜が強力に密着しやすい。
Therefore, the third embodiment of the present invention is an oxide of silicon or metal, a nitride, a carbide, an acid nitride, a carbon oxide, a carbonitride, a carbonic acid, which is formed by a dry process for the purpose of weather resistance such as a gas barrier. A form in which a water-repellent or water-repellent oil-repellent film is further applied on the protective film so as not to cause corrosion by adsorbing or inducing a polar substance such as water that corrodes the electrode to the pinfall of the nitride. Is what you do.
Since many polar functional groups such as silanol groups, carbonyl groups, and carboxyl groups are generated on the surface of the film formed by the dry process, which is one embodiment of the present invention, the base material is subjected to the dehydration condensation reaction. A water-repellent or water-repellent oil-repellent film made of a coupling agent or the like that binds to is easily strongly adhered.

なお、通常撥水撥油性皮膜は薄膜のものでもフッ素含有カップリング剤等よりなるフッ素樹脂(層)などに代表され、体積電気抵抗率が、×1015〜20Ω・cmに迫る高い絶縁性であり、絶縁用途に使用されるものが多く、導電性の電極への塗布の適正が無い懸念もあったが、本発明者は、フッ素含有カップリング剤等よりなるフッ素樹脂(層)より成り、少なくとも50nm未満の膜厚の本絶縁皮膜が電気電極用途に使用可能であることを併せて検証した。
前記の、ドライプロセスによる膜厚200nm未満の絶縁性薄膜よりなる耐食性に優れる保護膜と、フッ素含有カップリング剤等よりなるフッ素樹脂(層)より、少なくとも50nm未満の膜厚の複合層を電極の導電性を一定程度以上損なわない厚みで保護膜として形成するものとする。
Even if the film is thin, the water- and oil-repellent film is typified by a fluororesin (layer) made of a fluorine-containing coupling agent, etc., and has a high insulating property with a volume resistivity approaching × 10 15 to 20 Ω · cm. Therefore, many of them are used for insulating applications, and there is a concern that they are not suitable for coating on conductive electrodes. However, the present inventor is made of a fluororesin (layer) made of a fluorine-containing coupling agent or the like. It was also verified that this insulating film having a thickness of at least 50 nm can be used for electric electrode applications.
The electrode is made of a composite layer having a film thickness of at least 50 nm from the protective film having excellent corrosion resistance made of an insulating thin film having a film thickness of less than 200 nm by a dry process and a fluororesin (layer) made of a fluorine-containing coupling agent or the like. It shall be formed as a protective film with a thickness that does not impair the conductivity to a certain extent or more.

なお、本発明にかかる検知電極は検体試料である溶液中や、溶液や不用意な結露水等の液体に接して使用されることが予定されるため、皮膜成分が前記液体中に溶出し検知に影響を与えないようにすることが重要である。
よって、前記の本発明の第三の実施形態における保護膜の上の撥水性又は撥水撥油性皮膜形成も抵抗加熱法や真空プラズマ法などのドライプロセスで行うことが好適である。
例えばフッ素含有カップリング剤溶液中にワークをディップして撥水性又は撥水撥油性皮膜形成する場合、フッ素含有カップリング剤溶液の高濃度の未反応残渣が基材やプライマー層である本発明の一実施形態にかかるドライ薄膜の凹凸部分、または、ドライ薄膜のピンフォール中等に進入、厚く偏在し、また、電極の凹凸構造の凹部に重力によって溜まるなどし、検知電極を使用する際に検体試料である溶液中にフッ素含有カップリング剤(成分含む)が溶出や拡散することのないようにすることが、絶縁性でもあるフッ素含有カップリング剤膜の導電性管理と並んで極めて重要である。
Since the detection electrode according to the present invention is planned to be used in a solution as a sample sample or in contact with a liquid such as a solution or careless dew condensation water, the film component elutes into the liquid and is detected. It is important not to affect.
Therefore, it is preferable to form a water-repellent or water-repellent oil-repellent film on the protective film according to the third embodiment of the present invention by a dry process such as a resistance heating method or a vacuum plasma method.
For example, when a work is dipped in a fluorine-containing coupling agent solution to form a water-repellent or water-repellent oil-repellent film, the high-concentration unreacted residue of the fluorine-containing coupling agent solution is a substrate or a primer layer of the present invention. When using the detection electrode, the sample sample may enter the uneven portion of the dry thin film or the pin fall of the dry thin film according to one embodiment, and may be thickly unevenly distributed, or may be accumulated by gravity in the concave portion of the concave-convex structure of the electrode. It is extremely important to prevent the fluorine-containing coupling agent (including components) from eluting or diffusing into the solution, as well as controlling the conductivity of the fluorine-containing coupling agent film, which is also insulating.

本発明にかかる検知電極の検体試料が生体試料や食品、飲料、医薬品などの場合もあり、よって前述のような電極からの溶出物、溶出成分に問題が無いことを確認することも重要である。
例えば、ステンレス鋼板(SUS304 2B基材)上に公知のプラズマCVDプロセスにて各々概ね40nm程度の厚さで、珪素を含む非晶質炭素膜に酸素をプラズマ照射し、極性のシラノール基(Si−OH基)を表層に大量に生成させ、前記シラノール基と脱水縮合反応で皮膜を形成する公知のフッ素含有カップリング剤(フロロテクノロジー社のフロロサーフFG−5010Z130−0.2)よりなる撥水撥油層をスプレー法で概ね20nmの厚さで最表層に追加形成した2日後、IPA(イソプロピルアルコール)を満たした超音波洗浄槽で35分間洗浄した本発明の一実施形態にかかる試料をつくり、食品、添加物等の規格基準(昭和34年厚生省告示第370号)の第3のDの2 100℃以下))器具及び容器包装規格試験(合成樹脂)一般規格溶出試験(一般財団法人日本食品分析センターにて実施)を行い、本発明前記試料が該規格に適合していること(限度内)が確認できている。
The sample sample of the detection electrode according to the present invention may be a biological sample, food, beverage, pharmaceutical product, etc. Therefore, it is important to confirm that there is no problem with the eluate and elution component from the electrode as described above. ..
For example, an amorphous carbon film containing silicon is plasma-irradiated on a stainless steel plate (SUS304 2B base material) with a known plasma CVD process to a thickness of about 40 nm, and a polar silanol group (Si-) is irradiated. A water- and oil-repellent layer made of a known fluorine-containing coupling agent (Fluorosurf FG-5010Z130-0.2 manufactured by Fluorotechnology) that forms a film by dehydration condensation reaction with the silanol group by forming a large amount of OH group) on the surface layer. Was additionally formed on the outermost layer with a thickness of about 20 nm by a spray method, and then washed in an ultrasonic washing tank filled with IPA (isopropyl alcohol) for 35 minutes to prepare a sample according to an embodiment of the present invention. Standards for additives, etc. (Ministry of Health and Welfare Notification No. 370, 1959) 3rd D 2 100 ° C or less) Equipment and container packaging standard test (synthetic resin) General standard dissolution test (Japan Food Research Laboratories) It has been confirmed that the sample of the present invention conforms to the standard (within the limit).

本発明のさらに好適な実施形態は、弁金属の表層の不動態層を損なわない製法でドライ薄膜を形成するものである。
弁金属表層の不動態層は、電極表層に電気二重層を形成しにくく、さらに不動態層自体が有する電気容量の安定性が高いので、検知電極による検出の安定性や再現性確保には極めて有利、有意義な存在となる場合が有り得る。
また、前記弁金属表層の不動態層へのドライ薄膜よりなる保護膜も電気二重層を形成しにくいため、電極も安定化に貢献する。
電気二重層は、電極近傍でのイオンの挙動に大きな影響を与えるため、電気化学などの分野では重要な意味を持つ。また、電気二重層容量は電極の腐食、溶解で電極の面粗度が上昇し電極の表面積が大きくなることによって上昇変化するため、電極の耐食性は測定系にとって非常に重要な性能となる。
A more preferred embodiment of the present invention is to form a dry thin film by a manufacturing method that does not impair the passivation layer on the surface layer of the valve metal.
The passivation layer on the surface of the valve metal is difficult to form an electric double layer on the surface of the electrode, and the capacitance of the passivation layer itself is highly stable. It may be advantageous and meaningful.
Further, since it is difficult for the protective film made of a dry thin film on the passivation layer of the valve metal surface layer to form an electric double layer, the electrode also contributes to stabilization.
The electric double layer has an important meaning in fields such as electrochemistry because it has a great influence on the behavior of ions in the vicinity of the electrode. Further, since the electric double layer capacity increases and changes as the surface roughness of the electrode increases due to corrosion and dissolution of the electrode and the surface area of the electrode increases, the corrosion resistance of the electrode becomes a very important performance for the measurement system.

一方、弁金属表層の不動態層は厚さ1ナノ〜数十ナノと非常に薄い場合もあり、例えば、通常、各種真空プラズマ成膜装置にてドライ薄膜を形成する前にはArなどの不活性ガスやフッ素ガスなどをプラズマ化して成膜対象基材の表層をスパッタリングし、成膜する基材表層の不動態層の除去や、異物のクリーニングを行うが、弁金属表層の不動態層保全のためこのクリーニング行わないものとする、または従来に比べ短時間、低エネルギーな処理とすることができる。 On the other hand, the passivation layer on the surface layer of the valve metal may be very thin with a thickness of 1 nanometer to several tens of nanometers. Active gas, fluorine gas, etc. are turned into plasma and the surface layer of the base material to be formed is sputtered to remove the passivation layer of the base material surface layer to be formed and to clean foreign substances, but the passivation layer maintenance of the valve metal surface layer is performed. Therefore, this cleaning can be performed, or the treatment can be performed with low energy for a short time as compared with the conventional case.

以下、本発明の実施形態にかかる電極構造体を構成する材料等について、順に説明する。 Hereinafter, the materials and the like constituting the electrode structure according to the embodiment of the present invention will be described in order.

(基材)
基材は、特に限定されず、様々な金属、樹脂、又はガラス、半導体、セラミクス、セルロースまたは各種素材の混合物や複合体、積層体などからなる。なお絶縁物であることが好ましい場合もある。
さらに、基材の表層の粗さは、必要な機能、例えば表面の濡れ性改質等の要求に合わせ適宜研磨や、ブラスト、ラッピング、ピーニングなどの物理処理や電解研磨や薬液エッチィングなどの化学(電気化学)処理、或いはプラズマ処理やUV処理等にて適宜調整されても良い。
(Base material)
The base material is not particularly limited, and comprises various metals, resins, or mixtures, composites, and laminates of glass, semiconductors, ceramics, celluloses, or various materials. In some cases, it is preferably an insulating material.
Furthermore, the roughness of the surface layer of the base material can be adjusted according to the required functions, such as surface wettability modification, by appropriate polishing, physical treatment such as blasting, wrapping, and peening, and chemistry such as electrolytic polishing and chemical etching. It may be appropriately adjusted by (electrochemical) treatment, plasma treatment, UV treatment, or the like.

(電極)
本発明の電極材料として用いられる弁金属としては、アルミニウム、クロム、チタン、タンタル、ニオブ、チタン、ハフニウム、ジルコニウム、亜鉛、タングステン、ビスマス、アンチモン、ニッケルなどが例示できる。さらには前記弁金属のいずれか1つ以上を含む各種合金、または複合体とすることもできる。さらに金属結晶の形を採らないアモルファス金属であってもかまわない。
また、電極の加工、形成方法は特に限定されず、公知のフォトリソグラフィー法、めっき法、めっき電鋳法、プレス加工、切削加工、レーザ加工等、様々な方法で行うことができ、特に限定されない。
さらに、電極表層の粗さは、必要な機能、例えば表面の濡れ性改質等の要求に合わせ適宜研磨や、ブラスト、ラッピング、ピーニングなどの物理処理や電解研磨や薬液エッチィングなどの化学(電気化学)処理、或いはプラズマ処理やUV処理等にて適宜調整されても良い。
(electrode)
Examples of the valve metal used as the electrode material of the present invention include aluminum, chromium, titanium, tantalum, niobium, titanium, hafnium, zirconium, zinc, tungsten, bismuth, antimony, and nickel. Further, it may be made into various alloys or composites containing any one or more of the valve metals. Further, it may be an amorphous metal that does not take the form of a metal crystal.
Further, the electrode processing and forming methods are not particularly limited, and can be performed by various methods such as a known photolithography method, plating method, plating electroforming method, press processing, cutting processing, laser processing, and the like, and are not particularly limited. ..
Furthermore, the roughness of the electrode surface layer can be adjusted according to the required functions, such as surface wettability modification, by appropriate polishing, physical treatment such as blasting, wrapping, and peening, and chemistry (electrochemical polishing) such as electrolytic polishing and chemical etching. It may be appropriately adjusted by chemical) treatment, plasma treatment, UV treatment, or the like.

本発明の電極材料として用いられる弁金属を含む電極は、弁金属が雰囲気中でその表層に自然形成する不動態層を備えるものでも良く、前記弁金属の表層に積極的に不動態層を追加形成したものでも良い。例えば、弁金属を酸素ガスやイオン、ラジカル等が存在する酸素雰囲気中に配置し、前記弁金属の不動態層を強化したり、補修したりしたものでもかまわない。また、水など酸化雰囲気中に配置することもできるし、電解研磨などを行うなど適宜弁金属の表層に不動態層を形成することも可能である。また、弁金属基材に対して窒化処理を行う、アニール処理を行い含有する水素等を排出するなど、弁金属に他の特性を付与する処理を行うことも本発明の趣旨を逸脱しない範囲で行うことができる。 The electrode containing the valve metal used as the electrode material of the present invention may include a passivation layer that the valve metal naturally forms on the surface layer of the valve metal in the atmosphere, and a passivation layer is positively added to the surface layer of the valve metal. It may be formed. For example, the valve metal may be arranged in an oxygen atmosphere in which oxygen gas, ions, radicals, etc. are present to strengthen or repair the passivation layer of the valve metal. Further, it can be arranged in an oxidizing atmosphere such as water, or a passivation layer can be appropriately formed on the surface layer of the valve metal by performing electrolytic polishing or the like. Further, it is also possible to perform a treatment for imparting other characteristics to the valve metal, such as nitriding the valve metal base material or performing an annealing treatment to discharge hydrogen or the like contained therein, as long as the gist of the present invention is not deviated. It can be carried out.

本発明の電極材料として用いられる弁金属は、例えば前記基板に真空装置などの無酸素雰囲気であるドライプロセス中で形成される前記弁金属材料も含む。例えば真空中(無酸素雰囲気中)でAlターゲットからのスパッタリングで形成されるAl電極など弁金属電極がある。前記のスパッタリングAl電極を前記真空(無酸素)雰囲気中で形成した後、真空をブレイクすることなく(酸素雰囲気に暴露することなく)その表層に本発明にかかるドライプロセスにより保護膜を連続形成することも可能である。但し、本発明にかかるドライプロセスによる保護膜を前記のように真空中(無酸素雰囲気中)で連続形成しても、本願の前記保護膜には微細な基材に至るピンフォールが必ず発生し、該ピンフォールの存在する部分において後に外気にさらされた段階で不動態層が形成されるため本願の弁金属の特徴、特性を有し、本願の対象とすることができる。 The valve metal used as the electrode material of the present invention also includes the valve metal material formed on the substrate in a dry process in an oxygen-free atmosphere such as a vacuum device. For example, there is a valve metal electrode such as an Al electrode formed by sputtering from an Al target in a vacuum (in an oxygen-free atmosphere). After the sputtering Al electrode is formed in the vacuum (oxygen-free) atmosphere, a protective film is continuously formed on the surface layer of the sputtering Al electrode without breaking the vacuum (without exposing to the oxygen atmosphere) by the dry process according to the present invention. It is also possible. However, even if the protective film by the dry process according to the present invention is continuously formed in vacuum (in an oxygen-free atmosphere) as described above, pinfalls leading to a fine base material always occur in the protective film of the present application. Since the passivation layer is formed in the portion where the pinfall is present at the stage of being exposed to the outside air later, it has the characteristics and characteristics of the valve metal of the present application and can be the subject of the present application.

本発明にかかる弁金属、並びに弁金属の不動態層は、他の基材の表層に形成されたもの
でも良く、複数の弁金属からなるものでも本発明の趣旨を逸脱しない範囲のものであればかまわない。
The valve metal according to the present invention and the passivation layer of the valve metal may be formed on the surface layer of another base material, and may be composed of a plurality of valve metals as long as they do not deviate from the gist of the present invention. I don't mind.

(前処理)
本発明にかかるドライプロセスによる薄膜からなる保護層を形成する前に行う、弁金属
基材に対するクリーニングなどの前処理について説明する。
一般的にドライプロセスによる薄膜を基材上に形成する場合のAr等の不活性ガス、その他エッチィングガスによる処理基材表層のスパッタリング(クリーニング)は、ドライプロセスにより基材上に形成する薄膜を、基材の異物を除去し、酸化物や酸化膜に起因するプラズマのチャージアップを未然に防止し、基材温度を(反応温度)を上昇させ基材を活性化し、ドライ薄膜を密着良く基材に形成するため最も重要な工程として常識的に当業者により実施される重要工程である。
しかしながら、本発明にかかる弁金属の表層に形成されている不動態層は非常に薄いため、前記ドライプロセスによるAr等の不活性ガス、その他エッチィングガスによりスパッタリング(クリーニング)を通常どおり行うと前記弁金属の不動態層が除去、消滅、または部分破壊されてしまう場合がある。
例えば、真空プラズマプロセスでは、DC高圧パルス等で十分バイアスのかかったArイオンなどの基材表層から基材内部への注入深さは30nmを超える場合もあり、例えばArプラズマクリーングをArガス圧2Pa以下程度の状態で、3000ボルトを超える印加電圧でArイオンを基材に加速注入しその処理を10分間程度行えば、数nm程度の薄い前記不動態層はきれいに除去されてしまう場合がある。
よってArプラズマクリーングは長くても概ね5分間未満、好適には3分間未満、または、基材に異物等のないきれいな状態の場合は実施しないことが最良の場合もある
(Preprocessing)
A pretreatment such as cleaning of the valve metal substrate, which is performed before forming the protective layer made of a thin film by the dry process according to the present invention, will be described.
Generally, when a thin film is formed on a base material by a dry process, an inert gas such as Ar or other etching gas is used for sputtering (cleaning) of the surface layer of the base material. , Removes foreign matter from the substrate, prevents plasma charge-up due to oxides and oxide films, raises the substrate temperature (reaction temperature) to activate the substrate, and adheres to the dry thin film. It is an important process that is commonly carried out by those skilled in the art as the most important process for forming into a material.
However, since the passivation layer formed on the surface layer of the valve metal according to the present invention is very thin, if sputtering (cleaning) is performed as usual with an inert gas such as Ar by the dry process or other etching gas, the above-mentioned The passivation layer of the valve metal may be removed, disappeared, or partially destroyed.
For example, in a vacuum plasma process, the injection depth of Ar ions or the like sufficiently biased by a DC high-pressure pulse or the like from the surface layer of the base material to the inside of the base material may exceed 30 nm. If Ar ions are acceleratedly injected into the substrate at an applied voltage exceeding 3000 volts in the following state and the treatment is performed for about 10 minutes, the thin passivation layer of about several nm may be removed cleanly.
Therefore, it may be best not to perform Ar plasma cleaning for about 5 minutes at the longest, preferably for less than 3 minutes, or when the substrate is in a clean state without foreign matter.

(保護層)
本発明にかかるドライ薄膜よりなる保護膜の形成について説明する。
一実施形態として、膜厚200nm未満の非晶質炭素膜よりなる保護層である。保護層の膜厚は厚い場合には保護膜や電極自体に応力剥離や反りなどの変形の恐れがあり、さらには、非晶質炭素膜は本来的に絶縁性の被膜であり電気抵抗が大きくなるなどの理由から、最大の膜厚を200nm未満とすることが好ましく、さらに好適には150nm未満、最適には50nm未満であり、使用条件により適宜選定される。
また、非晶質炭素膜はSi(珪素)、F(フッ素)、B(ホウ素)、S(イオウ)さらには、TiやAlなどの多様な金属など、他の元素が含有されたものでも良い。
または他の実施形態として、膜厚200nm未満の珪素または金属の酸化物、窒化物、炭化物、酸窒化物、炭酸化物、炭窒化物、炭酸窒化物層のいずれか1つ以上を含むドライ薄膜よりなる保護層となる。
前記ドライ薄膜もプラズマプロセス等で撥水撥油性の元素、例えばフッ素などを添加したものであってもかまわない。
この場合も、保護層の膜厚は厚い場合には保護膜や電極自体に応力剥離や反りなどの変形の恐れがあり、さらには電気抵抗が大きくなるなどの理由から、最大の膜厚を200nm未満とすることが好ましく、さらに好適には150nm未満、最適には50nm未満であり、使用条件により適宜選定される。
但し、本発明のいずれの実施形態においても、本発明にかかるドライ薄膜よりなる保護膜の膜厚は、その厚みが薄い場合、複雑な凹凸構造を伴う本発明にかかる電極や冶具において、凹凸部分や貫通孔の壁面(断面)を構成する面への十分な前記プラズマドライプロセスにより形成される保護膜の着き回り(カバレッジ)が確保できなくなり、着き回りに左右される耐食効果が得難いため最低でも10nmを超える膜厚とすることが望ましい。
(Protective layer)
The formation of a protective film made of a dry thin film according to the present invention will be described.
As one embodiment, it is a protective layer made of an amorphous carbon film having a film thickness of less than 200 nm. If the protective layer is thick, there is a risk of deformation such as stress peeling and warpage of the protective film and the electrode itself. Furthermore, the amorphous carbon film is essentially an insulating film and has high electrical resistance. The maximum film thickness is preferably less than 200 nm, more preferably less than 150 nm, and optimally less than 50 nm, and is appropriately selected depending on the conditions of use.
Further, the amorphous carbon film may contain other elements such as Si (silicon), F (fluorine), B (boron), S (sulfur), and various metals such as Ti and Al. ..
Or, as another embodiment, from a dry thin film containing any one or more of oxides, nitrides, carbides, oxynitrides, carbon oxides, carbonitrides, and carbonate nitrides of silicon or metal having a thickness of less than 200 nm. Becomes a protective layer.
The dry thin film may also be one to which a water- and oil-repellent element such as fluorine is added by a plasma process or the like.
In this case as well, if the film thickness of the protective layer is thick, there is a risk of deformation such as stress peeling and warpage of the protective film and the electrode itself, and the maximum film thickness is 200 nm because of the increase in electrical resistance. It is preferably less than, more preferably less than 150 nm, and optimally less than 50 nm, and is appropriately selected depending on the conditions of use.
However, in any embodiment of the present invention, when the film thickness of the protective film made of the dry thin film according to the present invention is thin, the uneven portion in the electrode or jig according to the present invention having a complicated uneven structure. At least, it becomes impossible to secure sufficient coverage of the protective film formed by the plasma dry process on the surface forming the wall surface (cross section) of the through hole, and it is difficult to obtain the corrosion resistance effect that depends on the contact. It is desirable that the film thickness exceeds 10 nm.

さらに、保護層の硬度は特に限定されないが、保護膜の内部応力による剥離や変形を抑制するため、保護層の硬度はビッカース硬さでHv4000未満のものが望ましく、さらに好適にはHv3000未満、さらに好適にはHv2000未満のものが良い。但し、硬度の低い保護層はガスバリア性が欠如し易いため、少なくともHv500以上、好適にはHv1000以上であることが望ましい。 Further, the hardness of the protective layer is not particularly limited, but in order to suppress peeling and deformation due to internal stress of the protective film, the hardness of the protective layer is preferably Vickers hardness of less than Hv4000, more preferably less than Hv3000, and further. Preferably, it is less than Hv2000. However, since the protective layer having low hardness tends to lack gas barrier properties, it is desirable that the protective layer has at least Hv500 or more, preferably Hv1000 or more.

本発明にかかるドライ薄膜よりなる保護膜の誘電率(1MHz)ならびに体積電気抵抗率は主なもので下記のようになる。
非晶質炭素膜の誘電率は8〜12程度、体積電気抵抗率は概ね×104〜14Ω・cmである。
誘電率は電極の電気二重層の形成に影響を与えるため、水溶液の誘電率が概ね50〜80、水の誘電率は80となるため、ドライ薄膜よりなる保護膜の誘電率は50未満であることが望ましく、さらに望ましくは12以下となる。
SiO :誘電率:3.7〜3.9 体積電気抵抗率 ×1018Ω・cm
Al:誘電率:9.5〜10 体積電気抵抗率 ×1014Ω・cm
TiO(ルチル):誘電率:113 体積電気抵抗率 ×1010Ω・cm
Si:誘電率:7.3〜10 体積電気抵抗率 ×1014Ω・cm
AlN:誘電率:8.5〜9 体積電気抵抗率 ×1014Ω・cm
TiC:体積電気抵抗率 ×1012Ω・cm
TiN:体積電気抵抗率 ×1012Ω・cm
SiC:体積電気抵抗率 ×1013Ω・cm
The dielectric constant (1 MHz) and volume resistivity of the protective film made of the dry thin film according to the present invention are mainly as follows.
The dielectric constant of the amorphous carbon film is about 8 to 12, and the volume resistivity is about × 104 to 14 Ω · cm.
Since the dielectric constant affects the formation of the electric double layer of the electrode, the dielectric constant of the aqueous solution is approximately 50 to 80, and the dielectric constant of water is 80, so that the dielectric constant of the protective film made of the dry thin film is less than 50. It is desirable, and more preferably 12 or less.
SiO 2 : Dielectric constant: 3.7 to 3.9 Volume resistivity × 10 18 Ω · cm
Al 2 O 3 : Dielectric constant: 9.5 to 10 Volume resistivity x 10 14 Ω · cm
TiO 2 (rutile): Dielectric constant: 113 Volume resistivity x 10 10 Ω · cm
Si 3 N 4 : Dielectric constant: 7.3 to 10 Volume resistivity x 10 14 Ω · cm
AlN: Permittivity: 8.5-9 Volume resistivity x 10 14 Ω · cm
TiC: Volume resistivity x 10 12 Ω · cm
TiN: Volume resistivity x 10 12 Ω · cm
SiC: Volume resistivity x 10 13 Ω · cm

本発明にかかるドライ薄膜よりなる保護膜は、前記各種薄膜の複数の積層膜でも良く、混合膜であっても本発明の趣旨を逸脱しない範囲のものであれば使用することができる。 The protective film made of the dry thin film according to the present invention may be a plurality of laminated films of the various thin films, and even a mixed film can be used as long as it does not deviate from the gist of the present invention.

本発明の一実施形態において、上記の非晶質炭素膜等の保護層は、プラズマCVD法、プラズマPVD法、大気圧プラズマ法、スパッタリング法、真空蒸着法等の様々なドライプロセスにより形成されるが特に限定されない。
なお、非晶質炭素膜は非晶質炭素膜を形成した後、その表面に酸素によるドライエッチィングを行うことでその面粗さを粗く、尖った形状に適宜調整することができ、抗菌性を付与することで液体試料中の菌体等の増殖を検知中に抑制することも可能となり得る
(上記特許文献3参照)。
In one embodiment of the present invention, the protective layer such as the amorphous carbon film is formed by various dry processes such as a plasma CVD method, a plasma PVD method, an atmospheric pressure plasma method, a sputtering method, and a vacuum deposition method. Is not particularly limited.
After forming the amorphous carbon film, the surface of the amorphous carbon film is dry-etched with oxygen so that the surface roughness can be appropriately adjusted to a rough and sharp shape, which is antibacterial. It may be possible to suppress the growth of bacterial cells or the like in the liquid sample during detection (see Patent Document 3 above).

本発明にかかるドライ薄膜よりなる保護膜を矩形の平板状のワークに電界を形成し、電界を利用した真空プラズマプロセスで形成すると前記矩形平板ワークの周辺部分の辺(端)から概ね10〜20mm程度幅の内部までの「額縁状の面」にプラズマのアーキング等によるピンフォールが集中して形成されることを下記のように検証している。
例えば平面視矩形のアルミニウム合金基材(A5052)(100mm×100mm、厚さ1mm)を準備し洗浄後、アルミニウム合金基材を該基材に電圧を印加し、該基材の周囲に電界を形成することで該基材にドライ薄膜を形成可能な、高圧DCμパルスプラズマCVD装置にセットし、当該CVD装置を1×10−3Paまで真空排気を行った。その後、CVD装置に流量30SCCM、ガス圧1.5PaのAr(アルゴン)ガスを導入し、−3kVpの印加電圧によって基材表面を10分間プラズマクリーニングした。続いて、CVD装置からArガスを排気した後、流量30SCCM、ガス圧1.5PaのアセチレンガスをCVD装置に導入し、−4.5kVpの電圧を印加して、基材表面に厚さ概ね1μmの非晶質炭素膜を形成した。この表面に非晶質炭素膜が形成されたアルミニウム合金基材を作成した。
続いて該非晶質炭素膜が形成されたアルミニウム合金基材に塩水噴霧による腐食劣化加速試験を行った。株式会社東洋精機製作所製の塩水噴霧試験機S−800を用い、JISZ2371に準拠して塩水噴霧は24時間行った後、該基材各試料を試験機から取り出して純水で洗浄し、乾燥させた。この乾燥後の該基材をCCDカメラで撮影した結果、前記塩水噴霧試験後の非晶質炭素膜が形成されたアルミニウム合金基材の周辺部分の辺(端)から概ね10〜20mm程度幅の内部の面に腐食部分が集中しており、前記腐食はプラズマのアーキングによる、前記基材の周辺部分の辺(端)から概ね10〜20mm程度の内部の面に発生したピンフォールに起因する腐食と推定できる。
When an electric field is formed on a rectangular flat plate-shaped work and a protective film made of a dry thin film according to the present invention is formed by a vacuum plasma process using the electric field, it is approximately 10 to 20 mm from the side (edge) of the peripheral portion of the rectangular flat plate work. It is verified as follows that pinfalls due to plasma arcing etc. are concentrated and formed on the "frame-shaped surface" up to the inside of the width.
For example, a rectangular aluminum alloy base material (A5052) (100 mm × 100 mm, thickness 1 mm) is prepared and washed, and then a voltage is applied to the base material to form an electric field around the base material. This was set in a high-pressure DCμ pulse plasma CVD apparatus capable of forming a dry thin film on the substrate, and the CVD apparatus was vacuum-exhausted to 1 × 10 -3 Pa. Then, Ar (argon) gas having a flow rate of 30 SCCM and a gas pressure of 1.5 Pa was introduced into the CVD apparatus, and the surface of the substrate was plasma-cleaned for 10 minutes with an applied voltage of -3 kVp. Subsequently, after exhausting Ar gas from the CVD device, acetylene gas having a flow rate of 30 SCCM and a gas pressure of 1.5 Pa was introduced into the CVD device, and a voltage of −4.5 kVp was applied to the surface of the substrate to have a thickness of approximately 1 μm. Amorphous carbon film was formed. An aluminum alloy base material having an amorphous carbon film formed on this surface was prepared.
Subsequently, a corrosion deterioration acceleration test was conducted by spraying salt water on the aluminum alloy base material on which the amorphous carbon film was formed. Using a salt spray tester S-800 manufactured by Toyo Seiki Seisakusho Co., Ltd., salt spray is performed for 24 hours in accordance with JISZ2371, and then each sample of the base material is taken out from the tester, washed with pure water, and dried. rice field. As a result of photographing the dried base material with a CCD camera, the width is about 10 to 20 mm from the side (edge) of the peripheral portion of the aluminum alloy base material on which the amorphous carbon film is formed after the salt spray test. Corroded parts are concentrated on the inner surface, and the corrosion is caused by pinfall generated on the inner surface about 10 to 20 mm from the side (edge) of the peripheral part of the base material due to plasma alloying. Can be estimated.

以上のことから、本発明にかかるドライ薄膜よりなる保護膜を電極基材に形成する際、該電極基材を一旦該基材より全周囲が20〜50mm以上大きい導電性の他の基板上(仮基板等)に前記電極基材を配置し、前記仮基板に電界を形成し、電界を利用した真空プラズマプロセスで保護膜を形成すると、前記仮基板の周辺部分の辺(端)から概ね10〜20mm程度の内部の面にプラズマのアーキングによるピンフォールが集中して形成され、前記範囲よりさらに内側に配置した電極についてはピンフォール発生の少ない、または電極の表層にピンフォールの少ない、または電極の表層にピンフォールの偏在の少ない本発明にかかる絶縁性のドライ薄膜よりなる保護膜を形成した電極を形成することが可能となり得る。 From the above, when the protective film made of the dry thin film according to the present invention is formed on the electrode base material, the electrode base material is once placed on another conductive substrate having a total circumference of 20 to 50 mm or more larger than the base material ( When the electrode base material is placed on the temporary substrate, etc., an electric field is formed on the temporary substrate, and a protective film is formed by a vacuum plasma process using the electric field, approximately 10 from the side (edge) of the peripheral portion of the temporary substrate. Pinfalls due to plasma arcing are concentrated and formed on the inner surface of about 20 mm, and the electrodes arranged further inside the above range have less pinfalls, or the surface layer of the electrodes has less pinfalls, or the electrodes. It may be possible to form an electrode having a protective film made of an insulating dry thin film according to the present invention having less uneven distribution of pinfalls on the surface layer of the above.

(撥水膜、撥水撥油膜)
本発明の一実施形態において、フッ素含有カップリング剤膜は、フッ素含有カップリング剤からなる薄膜である。本発明の一実施形態におけるフッ素含有カップリング剤膜は、フッ素を含有するカップリング剤を前記ドライプロセスよりなる保護層に塗布することにより形成されるが塗布方法は特に限定されないが、抵抗加熱法や真空プラズマ法などのドライプロセスで行うことが好適である。
撥水撥油層はフッ素を含む絶縁性の被膜であり電気抵抗が大きくなるなどの理由から最大の膜厚を50nm未満することが好ましく、さらに好適には30nm満、最適には20nm未満であり、使用条件により適宜選定される。
なお、フッ素樹脂の誘電率は4.0〜8.0、体積電気抵抗率は×1018〜22Ω・cmと非常に大きな電気抵抗値を有する。
フッ素含有カップリング剤は、その分子構造内にフッ素の置換基を有するカップリング剤であり、撥水・撥油機能を奏する。フッ素含有カップリング剤膜として使用可能なフッ素含有カップリング剤には、以下のものが含まれる。
(Water repellent film, water repellent oil repellent film)
In one embodiment of the present invention, the fluorine-containing coupling agent film is a thin film made of a fluorine-containing coupling agent. The fluorine-containing coupling agent film according to the embodiment of the present invention is formed by applying a fluorine-containing coupling agent to the protective layer made of the dry process, but the coating method is not particularly limited, but the resistance heating method. It is preferable to use a dry process such as a vacuum plasma method or a vacuum plasma method.
The water- and oil-repellent layer is an insulating film containing fluorine, and the maximum film thickness is preferably less than 50 nm because of an increase in electrical resistance, more preferably 30 nm, and optimally less than 20 nm. It is appropriately selected according to the conditions of use.
The fluororesin has a dielectric constant of 4.0 to 8.0 and a volume resistivity of × 10 18 to 22 Ω · cm, which are extremely large electrical resistance values.
The fluorine-containing coupling agent is a coupling agent having a fluorine substituent in its molecular structure, and exhibits water-repellent and oil-repellent functions. Fluorine-containing coupling agents The fluorine-containing coupling agents that can be used as a film include the following.

(i) CF(CFCHCHSi(OCH
(ii) CF(CFCHCHSiCHCl
(iii) CF(CFCHCHSiCH(OCH
(iv) (CHSiOSOCF
(v) CFCON(CH)SiCH
(vi) CFCHCHSi(OCH
(vii) CFCHSiCl
(Viii) CF(CFCHCHSiCl
(ix) CF(CFCHCHSi(OCH
(x) CF(CFCHCHSiCl
(i) CF 3 (CF 2 ) 7 CH 2 CH 2 Si (OCH 3 ) 3
(ii) CF 3 (CF 2 ) 7 CH 2 CH 2 SiCH 3 Cl 2
(iii) CF 3 (CF 2 ) 7 CH 2 CH 2 SiCH 3 (OCH 3 ) 2
(iv) (CH 3 ) 3 SiOSO 2 CF 3
(v) CF 3 CON (CH 3 ) SiCH 3
(vi) CF 3 CH 2 CH 2 Si (OCH 3 ) 3
(vii) CF 3 CH 2 SiCl 3
(Viii) CF 3 (CF 2 ) 5 CH 2 CH 2 SiCl 3
(ix) CF 3 (CF 2 ) 5 CH 2 CH 2 Si (OCH 3 ) 3
(x) CF 3 (CF 2 ) 7 CH 2 CH 2 SiCl 3

これらのフッ素カップリング剤はあくまで一例であり、本発明に適用可能なフッ素含有カップリング剤はこれらの例に限定されるものではない。フッ素を含有するカップリング剤として、例えば、フロロテクノロジー社のフロロサーフFG−5010Z130−0.2の溶液(フッ素樹脂0.02〜0.2%、フッ素系溶剤99.8%〜99.98%)を用いることができる。 These fluorine coupling agents are merely examples, and the fluorine-containing coupling agents applicable to the present invention are not limited to these examples. As a fluorine-containing coupling agent, for example, a solution of Fluorosurf FG-5010Z130-0.2 manufactured by Fluorotechnology Co., Ltd. (fluororesin 0.02-0.2%, fluorine-based solvent 99.8% to 99.98%) Can be used.

本発明の他の実施形態においては、フッ素を含有しないカップリング剤を基材に塗布した後に、当該塗布されたカップリング剤の薄膜にフッ素が導入される。フッ素含有カップリング剤は、基材上に直接形成してもよく、基材上に形成されたフッ素を含有しないカップリング剤のさらに上層に形成してもよい。 In another embodiment of the present invention, after applying a fluorine-free coupling agent to a substrate, fluorine is introduced into a thin film of the applied coupling agent. The fluorine-containing coupling agent may be formed directly on the base material, or may be formed on an upper layer of the fluorine-free coupling agent formed on the base material.

本発明に適用し得るカップリング剤には、シランカップリング剤、チタネート系カップリング剤、アルミネート系カップリング剤、及びジルコネート系カップリング剤が含まれる。これらのカップリング剤は、他の種類のカップリング剤と混合して用いることもできる。 Coupling agents applicable to the present invention include silane coupling agents, titanate-based coupling agents, aluminate-based coupling agents, and zirconate-based coupling agents. These coupling agents can also be used in combination with other types of coupling agents.

シランカップリング剤は、例示するまでもなく広く普及している。本発明の実施形態においては、市販されている様々なシランカップリング剤を用いることができる。本発明に適用可能なシランカップリング剤の一例は、デシルトリメトキシシラン(商品名「KBM−3103」信越化学工業(株))等である。 Silane coupling agents are widely used, needless to say. In the embodiment of the present invention, various commercially available silane coupling agents can be used. An example of a silane coupling agent applicable to the present invention is decyltrimethoxysilane (trade name “KBM-3103”, Shin-Etsu Chemical Co., Ltd.).

撥水撥油層を構成する本発明に適用可能なチタネート系カップリング剤には、テトラメトキシチタネート、テトラエトキシチタネート、テトラプロポキシチタネート、テトライソプロポキシチタネート、テトラブトキシチタネート、イソプロピルトリイソステアロイルチタネート、イソプロピルトリデシルベンゼンスルホニルチタネート、イソプロピルトリス(ジオクチルパイロホスフェート)チタネート、テトライソプロピルビス(ジオクチルホスファイト)チタネート、テトラ(2、2−ジアリルオキシメチル−1−ブチル)ビス(ジ−トリデシル)ホスファイトチタネート、ビス(ジオクチルパイロホスフェート)オキシアセテートチタネート、ビス(ジオクチルパイロホスフェート)エチレンチタネート、イソプロピルトリオクタノイルチタネート、及びイソプロピルトリクミルフェニルチタネートが含まれる。商品名「プレンアクト38S」(味の素ファインテクノ株式会社)が市販されている。 The titanate-based coupling agents applicable to the present invention constituting the water- and oil-repellent layer include tetramethoxy titanate, tetraethoxy titanate, tetrapropoxytitanate, tetraisopropoxytitanate, tetrabutoxytitanate, isopropyltriisostearoyl titanate, and isopropyltri. Decylbenzenesulfonyl titanate, isopropyltris (dioctylpyrophosphate) titanate, tetraisopropylbis (dioctylphosphite) titanate, tetra (2,2-diallyloxymethyl-1-butyl) bis (di-tridecyl) phosphite titanate, bis ( Includes dioctylpyrophosphate) oxyacetate titanate, bis (dioctylpyrophosphate) ethylene titanate, isopropyltrioctanoyl titanate, and isopropyltricylphenyl titanate. The product name "Plenact 38S" (Ajinomoto Fine-Techno Co., Ltd.) is commercially available.

撥水撥油層を構成する本発明に適用可能なアルミネート系カップリング剤には、アルミニウムアルキルアセトアセテート・ジイソプロピレート、アルミニウムエチルアセトアセテート・ジイソプロピレート、アルミニウムトリスエチルアセトアセテート、アルミニウムイソプロピレート、アルミニウムジイソプロピレートモノセカンダリーブチレート、アルミニウムセカンダリーブチレート、アルミニウムエチレート、アルミニウムビスエチルアセトアセテート・モノアセチルアセトネート、アルミニウムトリスアセチルアセトネート、及びアルミニウムモノイソプロポキシモノオレキシエチルアセトアセテートが含まれる。商品名「プレンアクトAL−M」(アルキルアセテートアルミニウムジイソプロピレート、味の素ファインテクノ(株)製)が市販されている。 Aluminum alkyl acetoacetate / diisopropyrate, aluminum ethyl acetoacetate / diisopropirate, aluminum trisethyl acetoacetate, aluminum isopropylate, aluminum alkyl acetoacetate / diisopropirate, aluminum alkyl acetoacetate / diisopropirate, aluminum alkyl acetoacetate / diisopropirate, Includes aluminum diisopropirate monosecondary butyrate, aluminum secondary butyrate, aluminum ethylate, aluminum bisethylacetate / monoacetylacetonate, aluminumtrisacetylacetonate, and aluminum monoisopropoxymonoolexieethylacetate. The trade name "Plenact AL-M" (alkyl acetate aluminum diisopropirate, manufactured by Ajinomoto Fine-Techno Co., Ltd.) is commercially available.

撥水撥油層を構成する本発明に適用可能なジルコニア系カップリング剤には、ネオペンチル(ジアリル)オキシ、トリメタクリルジルコネイト、テトラ(2、2ジアリロキシメチル)ブチル、ジ(ジトリデシル)ホスフェイトジルコネイト、及びシクロ[ジネオペンチル(ジアリル)]ピロホスフェイトジネオペンチル(ジアリル)ジルコネイトが含まれる。商品名「ケンリアクトNZ01」(ケンリッチ社)が市販されている。 The zirconia-based coupling agents applicable to the present invention constituting the water-repellent and oil-repellent layer include neopentyl (diallyl) oxy, trimethacryl zirconeate, tetra (2,2 diaryloxymethyl) butyl, and di (ditridecyl) phosphate. Includes zirconeate and cyclo [dineopentyl (diallyl)] pyrophosphite dineopentyl (diallyl) zirconeate. The product name "Kenreact NZ01" (Kenrich Co., Ltd.) is commercially available.

次に、前記の耐侯性、耐食性を向上させるために犠牲になる電極の検知感度、その他を補う方法などについて説明する。 Next, the detection sensitivity of the electrode sacrificed in order to improve the weather resistance and the corrosion resistance, and the method of supplementing the other will be described.

(表面改質)
本発明の一実施形態に用いる非晶質炭素膜は、本来的に絶縁性であるため、非晶質炭素膜を電極の表層に形成すると導電性が低下し、電気的な感度が低下する場合があるが、非晶質炭素膜に非晶質炭素膜が蒸散しない程度のレーザ光、電子ビーム等の電磁波を照射すると照射部分において残存部分を電気導電体に改質できることが公知になっている(上記特許文献2参照)。
よって、本発明の一実施形態の電極上に形成された非晶質炭素膜において、導電性が必要な部分に、レーザ光を全面照射、またはパターニング照射して、レーザ照射部分のみを導電性とすることによって、1面の非晶質炭素膜を、全面、または部分的に電気導電性部分に改質するができる。また、非晶質炭素膜の本来の絶縁部分とレーザ照射して形成した導電部分とでパターンニングされた炭素材料からなる電極も形成可能となる。
当該レーザ光を照射した部分は、レーザ光照射の酸素アシストガスや熱による酸化などから極性の官能基が生成し、親水性を示す。また、面粗度が荒くなることから濡れ性が向上し、当該部分に液状の試料を集め、濡れ広がらせることができるため、本実施形態も、導電性に劣る弁金属上に非晶質炭素からなる保護膜を有する電極の電気導電性や感度や腐食への安定性を向上させるために有効である。
さらに前記非晶質炭素膜にレーザ光等の電磁波を照射して改質形成した導電体(導電性の炭素)は、イオンマイグレーション、ガルバニ腐食などを起こしにくいため、電極機能の劣化、変質を抑制し得る。
(Surface modification)
Since the amorphous carbon film used in one embodiment of the present invention is inherently insulating, when the amorphous carbon film is formed on the surface layer of the electrode, the conductivity is lowered and the electrical sensitivity is lowered. However, it is known that when the amorphous carbon film is irradiated with an electromagnetic wave such as a laser beam or an electron beam to the extent that the amorphous carbon film does not evaporate, the remaining portion can be modified into an electric conductor in the irradiated portion. (See Patent Document 2 above).
Therefore, in the amorphous carbon film formed on the electrode of one embodiment of the present invention, the portion requiring conductivity is irradiated with laser light on the entire surface or patterned, and only the portion irradiated with the laser is made conductive. By doing so, the amorphous carbon film on one surface can be modified into an electrically conductive portion on the entire surface or partially. Further, it is possible to form an electrode made of a carbon material patterned by the original insulating portion of the amorphous carbon film and the conductive portion formed by laser irradiation.
The portion irradiated with the laser beam exhibits hydrophilicity due to the generation of polar functional groups from the oxygen assist gas of the laser beam irradiation and oxidation by heat. In addition, since the surface roughness becomes rough, the wettability is improved, and a liquid sample can be collected in the portion and spread wet, so that this embodiment also has amorphous carbon on the valve metal having poor conductivity. It is effective for improving the electrical conductivity, sensitivity, and stability to corrosion of an electrode having a protective film made of.
Furthermore, the conductor (conductive carbon) formed by irradiating the amorphous carbon film with electromagnetic waves such as laser light is less likely to cause ion migration, galvanic corrosion, etc., and thus suppresses deterioration and deterioration of electrode function. Can be done.

前記本発明の一実施形態の電極上に形成された非晶質炭素膜において、レーザ光等を照射して導電性とする構造体は、3D立体部品(電極)等の非平面表面にもレーザ光等を照射して任意のレーザスキャニング部分を導電体に改質可能なため、検査分析に必要な3D形状の電極が簡単に作成できることになる。
また、レーザ光は公知の金属加工用のYAGレーザなどが使用でき、特に限定されないが、例えば波長340nm付近のUV光、パルス周波数10kHzで照射を使ったUV−YAGパルスレーザなども使用可能である。
In the amorphous carbon film formed on the electrode of the embodiment of the present invention, the structure made conductive by irradiating with laser light or the like also has a laser on a non-planar surface such as a 3D solid component (electrode). Since any laser scanning portion can be modified into a conductor by irradiating light or the like, it is possible to easily create a 3D-shaped electrode necessary for inspection and analysis.
Further, as the laser light, a known YAG laser for metal processing or the like can be used, and the laser light is not particularly limited, but for example, UV light having a wavelength of around 340 nm, UV-YAG pulse laser using irradiation at a pulse frequency of 10 kHz, or the like can also be used. ..

(電極や検査冶具の表面濡れ性制御、特にパターニング部分濡れ性制御の活用)
また、本発明の第二の実施形態の、珪素又は金属の、酸化物、窒化物、炭化物、酸窒化物、炭酸化物、炭窒化物又は炭酸窒化物層のいずれか1つ以上を含むドライ薄膜に、酸素や窒素のプラズマを照射することで、大量に極性の官能基を表層に形成し、強く安定的な親水性(親水親油性)の表層も簡単に同一のプラズマ装置(プロセスで)形成することが可能となる。
(Utilization of surface wettability control of electrodes and inspection jigs, especially patterning part wettability control)
In addition, a dry thin film containing any one or more of oxides, nitrides, carbides, oxynitrides, carbon oxides, carbonitrides, and carbonate nitride layers of silicon or metal according to the second embodiment of the present invention. By irradiating with plasma of oxygen or nitrogen, a large amount of polar functional groups are formed on the surface layer, and a strong and stable hydrophilic (hydrophilic lipophilic) surface layer is easily formed by the same plasma device (in the process). It becomes possible to do.

なお、前記の表面の親水性や濡れ性を向上させる効果は、前記本発明の第三の実施形態の珪素又は金属の、酸化物、窒化物、炭化物、酸窒化物、炭酸化物、炭窒化物、炭酸窒化物のいずれか1つ以上を含むドライ薄膜にさらに撥水性又は撥水撥油性の皮膜を付与する場合にも得ることができる。
さらに電極に限らず、検知機器に供する冶具の表面に、撥水性、撥水撥油性、親水性、親水親油の皮膜等を適宜形成することで、検知機器に供する冶具の表面の濡れ性制御(表面自由エネルギーの制御)を行うことができる。
The effect of improving the hydrophilicity and wettability of the surface is the oxide, nitride, carbide, acid nitride, carbon oxide, carbonitride of the silicon or metal according to the third embodiment of the present invention. It can also be obtained when a water-repellent or water-repellent oil-repellent film is further applied to a dry thin film containing any one or more of the nitrides.
Furthermore, by appropriately forming a film of water repellency, water repellency, oil repellency, hydrophilicity, hydrophilic parent oil, etc. on the surface of the jig used for the detection device, not limited to the electrode, the wettability of the surface of the jig used for the detection device is controlled. (Control of surface free energy) can be performed.

(パターニング電極や検知機器に供する冶具)
この場合の一実施形態においては、絶縁部分(例えば絶縁性の電極基板上に)に、電極を構成する導電部分がパターニングされたもの(櫛形電極など)の場合、前記、絶縁基板部分を除く、電極部分の表層部分のみ、絶縁部分に比べ強い撥水性、撥水撥油性とすること、または、前記絶縁部分を電極部分よりも強い親水性、親水親油性とすることもできる。
このように、電極部分と絶縁部分の表面濡れ性を全部、または必要な部分において変えることで、液体試料の配置を適宜濡れ性の強い部分に誘導し、液体試料が電極の表層を占めること(接触すること)による腐食の加速を防止すると伴に、検体の液体試料が電極と電極の間(絶縁基板)上に収集配置され、少ない量の液体試料の付与で隈なく電極や冶具の必要部分(通電部分等)に試料を誘導し、また、必要に応じて濡れ性改質を行った所望の形状で液体試料を配置することが容易となり、貴金属電極等他の全ての電極でも共通で有効ではあるが、特に本発明にかかる弁金属などの不動態を伴い電気への感度の劣る電極の感度補完、感度向上、耐食性付与に好適である。
(Jigs for patterning electrodes and detection equipment)
In one embodiment in this case, in the case of an insulating portion (for example, on an insulating electrode substrate) in which the conductive portion constituting the electrode is patterned (comb-shaped electrode or the like), the insulating substrate portion is excluded. Only the surface layer portion of the electrode portion may have stronger water repellency and water repellency and oil repellency than the insulating portion, or the insulating portion may have stronger hydrophilicity and hydrophilic lipophilicity than the electrode portion.
In this way, by changing the surface wettability of the electrode portion and the insulating portion in all or in the necessary portion, the arrangement of the liquid sample is appropriately guided to the portion with strong wettability, and the liquid sample occupies the surface layer of the electrode ( Along with preventing the acceleration of corrosion due to contact), the liquid sample of the sample is collected and placed between the electrodes (insulating substrate), and a small amount of liquid sample is applied to all the necessary parts of the electrode and metal fittings. It becomes easy to guide the sample to (energized part, etc.) and arrange the liquid sample in the desired shape with wettability modification as necessary, and it is also effective for all other electrodes such as precious metal electrodes. However, it is particularly suitable for complementing the sensitivity, improving the sensitivity, and imparting corrosion resistance of an electrode which is inferior in sensitivity to electricity due to immobility of the valve metal or the like according to the present invention.

またこの場合、電極を、本発明にかかる金属層(弁金属層)とドライ薄膜からなる積層構造体とすることで、電極と絶縁性のドライ薄膜を交互に「地層」のように幾重にも積層形成し、検体試料と電極接触面を前記地層のような積層体の厚み方向の露出断面とすることにより、前記露出断面部分に於いて絶縁性のドライ薄膜(厚み)部分を挟んで幾重にも層状に露出する電極(の厚み)を1本の電極線幅とし、前記電極が1本、または複数、多数の極細線で露出した電極を容易に、また安価に形成できる。
この積層電極構造を採ることで電極の平面視の面積を広げないで電極の試料への絶対接触面積を確保することも可能となることから、貴金属電極等他の全ての電極においても有効ではあるが、特に本発明にかかる弁金属などの不動態を伴い電気への感度の劣る電極の感度補完、感度向上に好適である。また本発明の一実施形態において、前記のように形成した積層構造断面部分の濡れ性を他の部分に対して良く設計し、または他の部分の濡れ性を悪く設計することで、当該断面からなる積層電極部分に液体試料を誘導し、効率良く充填することが容易になる。
Further, in this case, by forming the electrode into a laminated structure composed of the metal layer (valve metal layer) and the dry thin film according to the present invention, the electrode and the insulating dry thin film are alternately layered like a "ground layer". By forming a stack and forming the contact surface between the sample sample and the electrode as an exposed cross section in the thickness direction of the laminated body such as the formation layer, the exposed cross section portion sandwiches the insulating dry thin film (thickness) portion in multiple layers. The electrode (thickness) exposed in layers is defined as one electrode line width, and an electrode exposed by one, a plurality of, or a large number of ultrafine wires can be easily and inexpensively formed.
By adopting this laminated electrode structure, it is possible to secure the absolute contact area of the electrode with the sample without expanding the area of the electrode in plan view, so that it is also effective for all other electrodes such as precious metal electrodes. However, it is particularly suitable for complementing and improving the sensitivity of an electrode which is inferior in sensitivity to electricity due to the passivation of the valve metal or the like according to the present invention. Further, in one embodiment of the present invention, the wettability of the cross-sectional portion of the laminated structure formed as described above is designed to be good with respect to other parts, or the wettability of the other parts is poorly designed to obtain the wettability from the cross section. It becomes easy to guide the liquid sample to the laminated electrode portion and fill it efficiently.

櫛形電極の配線の幅と間隔は昨今10μm幅よりも狭いものも現れ、電極部分が「上に凸」の構造を採る場合、櫛形電極部分が全体として電極が作る凹凸構造に由来する構造撥水性、構造撥油性を発現する場合があり、電極部分(絶縁部分)に液体試料が十分濡れ広がらない場合がある。この場合、電極またはドライ膜部分、または双方を親水性、或いは親水親油性とすることにより、液体試料を十分測定に必要な位置に濡れ広がらせることもできる。 The width and spacing of the wiring of the comb-shaped electrode has recently appeared to be narrower than 10 μm width, and when the electrode part adopts a structure of “convex upward”, the structure of the comb-shaped electrode part is derived from the uneven structure formed by the electrode as a whole. , Structural oil repellency may be exhibited, and the liquid sample may not sufficiently wet and spread on the electrode portion (insulating portion). In this case, by making the electrode, the dry film portion, or both hydrophilic or lipophilic, the liquid sample can be sufficiently wetted and spread at a position necessary for measurement.

(一面電極や検知機器に供する冶具)
本発明の一実施形態にかかるドライプロセスにより形成される、珪素や金属の酸化物、窒化物、炭化物、酸窒化物、炭酸化物、炭窒化物、炭酸窒化物にさらに撥水性、撥水撥油性の皮膜(以下撥水膜、または撥水層という場合もある)を単一の面からなる電極に付与する場合、撥水部分、または撥水撥油性部分で取り囲んだ該電極面上の例えば中央部分に前記撥水部分、または撥水撥油性部分に比べ、親水性表面、或いは親水親油性表面等を含むさらに濡れ性の良い部分を形成、付与する形態とすることができる。
この場合、液体試料を同一電極上の濡れ性の高い部分に所望の形状や配置で集め、また液体試料が水滴状にならないよう電極の表層にもれなく濡れ広げることが可能となり、貴金属電極等他の全ての電極でも有効ではあるが、特に本発明にかかる弁金属などの不動態を伴い電気への感度の劣る電極の感度補完、感度向上に好適である。
(Jigs for single-sided electrodes and detection equipment)
Further water repellency, water repellency and oil repellency to oxides, nitrides, carbides, acid nitrides, carbon oxides, carbon nitrides and carbonates of silicon and metals formed by the dry process according to the embodiment of the present invention. (Hereinafter referred to as a water-repellent film or a water-repellent layer) is applied to an electrode composed of a single surface, for example, in the center of the electrode surface surrounded by a water-repellent portion or a water-repellent oil-repellent portion. Compared to the water-repellent portion or the water-repellent oil-repellent portion, a portion having a hydrophilic surface, a hydrophilic lipophilic surface, or the like, which has better wettability, can be formed and imparted to the portion.
In this case, the liquid sample can be collected in a highly wettable portion on the same electrode in a desired shape and arrangement, and the liquid sample can be wetted and spread without leaking to the surface layer of the electrode so as not to form water droplets. Although it is effective for all electrodes, it is particularly suitable for complementing and improving the sensitivity of electrodes having inferior sensitivity to electricity due to immobility of the valve metal or the like according to the present invention.

通常、液体試料など流動性を伴う試料に対して検知、計測、分析、解析等を行う場合、凹形状や、すり鉢状とした基材の中に液体試料を保持して行うことが多い。この場合、例えば、凹部を構成する部分の壁面に毛管圧力等にて液体試料が濡れ上がると凹部底部において、試料が偏在したり、不足したり、凹部に保持収納した液体試料が凹部壁面部分で壁面に濡れ上がり、凹部保持収納部分内において液面が「下に凸」(凹形の)の局面を形成してしまう場合がある。
このような事態を回避するため、例えば、液体試料を保持する凹部分の壁面部分を撥水性や撥水撥油性の壁面とすること、または凹部壁面に比べ、底部の液体試料濡れ性を高くすること(例えば親水性や親水親油性の表面とする)などの対応方法がある。
Usually, when detecting, measuring, analyzing, analyzing, or the like on a fluid sample such as a liquid sample, the liquid sample is often held in a concave or mortar-shaped base material. In this case, for example, when the liquid sample gets wet on the wall surface of the portion constituting the recess due to capillary pressure or the like, the sample is unevenly distributed or insufficient at the bottom of the recess, or the liquid sample held and stored in the recess is stored in the recess wall portion. It may get wet on the wall surface and form a "downwardly convex" (concave) aspect in the recess holding and storing portion.
In order to avoid such a situation, for example, the wall surface portion of the recessed portion for holding the liquid sample is made into a water-repellent or water-repellent oil-repellent wall surface, or the wettability of the liquid sample at the bottom is made higher than that of the recessed wall surface. There are countermeasures such as (for example, a hydrophilic or hydrophilic lipophilic surface).

さらには、仕切りのない平面基材上に、液体試料が良く濡れる部分を所望の形状にて形成し、さらには該部分の回りを液体試料の濡れ難い部分(弾く部分)とすること、つまり、液体試料に接する電極や冶具面に大して、液体試料に対する濡れ性の異なる部分を部分形成することにより、液体試料の流失防止や保持を目的とした仕切りを無くし、液体試料の凹部壁面への濡れ上がりなどの不具合を解決することができる。
この部分的に濡れ性の異なる部分の作成においては、撥水性や撥水撥油性の部分と親水性や親水親油性部分とでなることが理想ではあるが、部分的に濡れ性の異なる部分間の接触角の差が油の場合で概ね20°以上、水の場合では概ね40°以上とすることで、液体が異なる濡れ性の面に進出する際に現れる「濡れのピン止め効果」「濡れのヒステリシス効果」を利用し液体試料の流動、流出を制御することができる。
Further, on a flat base material without a partition, a portion where the liquid sample gets wet well is formed in a desired shape, and further, a portion around the portion which is difficult to get wet (a portion to be repelled) of the liquid sample is formed, that is, a portion which is difficult to get wet. By partially forming parts with different wettability to the liquid sample on the electrode or jig surface in contact with the liquid sample, there is no partition for the purpose of preventing or holding the liquid sample from flowing out, and the liquid sample gets wet on the concave wall surface of the liquid sample. It is possible to solve problems such as.
In creating this part with different wettability, it is ideal to have a water-repellent or water-repellent oil-repellent part and a hydrophilic or hydrophilic lipophilic part, but the parts with partially different wettability are separated. By setting the difference in contact angles to approximately 20 ° or more in the case of oil and approximately 40 ° or more in the case of water, the "wetting pinning effect" and "wetting" that appear when the liquid advances to different wettable surfaces The flow and outflow of the liquid sample can be controlled by utilizing the "hydrophilic effect of".

前記のように同一面上に部分的に濡れ性の異なる部分の作成においては、撥水性や撥水撥油性の部分と親水性や親水親油性部分と、未処理の基材自体(基材本来)の濡れ性の部分とを細かく区切ってあることで表層に接する液体の流動性(洗浄性や保持性)を制御することが可能となり得る。
該構造を検知電極や検知用の冶具の表面に採用することで、検体である液体試料を測定後、速やかにまた完全に廃棄し、電極への残留を抑制し、次なる試料の同一電極や冶具での再測定が可能、容易となり得る。
In creating the parts having different wettability on the same surface as described above, the water-repellent or water-repellent oil-repellent part, the hydrophilic or hydrophilic lipophilic part, and the untreated base material itself (the base material originally). It may be possible to control the fluidity (cleanability and retention) of the liquid in contact with the surface layer by finely dividing the wettable portion of).
By adopting this structure on the surface of the detection electrode and the jig for detection, the liquid sample that is the sample is measured and then promptly and completely discarded, the residue on the electrode is suppressed, and the same electrode of the next sample or Remeasurement with a jig is possible and can be easy.

(保護膜表層のゼータ電位の活用)
様々な検体のうち、タンパク質などの生体分子を主成分とするもの、例えば細菌や毛髪は、pH7付近の中性条件下で、その表面のカルボキシル基やリン酸基などが解離し負に帯電しているので、弱酸性領域に等電点を有することが通常であるため、例えばステンレス鋼始めとする金属など、アルカリ性領域に等電点を有し中性条件下で正に帯電する基材(検知用の電極や検知用の冶具等)に吸着されやすい。また、微生物細胞も、pH7近傍の中性条件で通常正に帯電している金属電極や冶具表面に吸着(付着)しやすい状態になっている。
このように、基材である電極や冶具が中性条件下に存在する場合には、基材(例えば検知用の電極や検知用の冶具等)が金属である場合は殆ど正に帯電する一方、タンパク質などの生体分子を主成分とする物質は負に帯電するので、この物質が電極や冶具などの基材に電気的に吸着されてしまうことになる。
本発明の実施形態においては、検知用の電極や検知用の冶具等の表層に形成する非晶質炭素膜等の保護膜の等電点を調整すること、或いは、生体分子を含む液体試料のpHを調整することで、検知用の電極や検知用の冶具等とタンパク質等生体分子を主成分とする検体の極性の違いを利用し、生体分子よりなる検体を検知用の電極や検知用の冶具等の表層に吸着させたり、逆に反発させ引き離したりすることが可能となる。
(Utilization of zeta potential on the surface layer of protective film)
Among various samples, those containing biomolecules such as proteins as main components, such as bacteria and hair, are negatively charged due to dissociation of carboxyl groups and phosphate groups on the surface under neutral conditions near pH 7. Therefore, since it is usual to have an isoelectric point in a weakly acidic region, a substrate having an isoelectric point in an alkaline region and being positively charged under neutral conditions, such as a metal such as stainless steel (for example, a metal such as stainless steel). It is easily adsorbed on detection electrodes, detection jigs, etc.). Further, the microbial cells are also in a state of being easily adsorbed (adhered) to the surface of a metal electrode or jig which is normally positively charged under a neutral condition near pH 7.
In this way, when the electrode or jig that is the base material is present under neutral conditions, the base material (for example, the electrode for detection or the jig for detection) is almost positively charged when it is made of metal. , A substance whose main component is a biomolecule such as a protein is negatively charged, so that this substance is electrically adsorbed on a base material such as an electrode or a jig.
In the embodiment of the present invention, the isoelectric point of a protective film such as an amorphous carbon film formed on the surface layer of an electrode for detection or a jig for detection is adjusted, or a liquid sample containing a biomolecule is prepared. By adjusting the pH, the difference in polarity between the electrode for detection and the jig for detection and the sample containing biomolecules such as proteins as the main components is used to detect the sample composed of biomolecules as the electrode for detection and detection. It is possible to adsorb it to the surface layer of a jig or the like, or to repel it and pull it apart.

ここで、タンパク質とは、任意のサイズ、構造及び機能を有するタンパク質、ポリペプチド及びオリゴペプチドを含み、例えば、各種タンパク質、酵素、抗原、抗体、レクチン又は細胞膜レセプター等を挙げることができる。 Here, the protein includes proteins, polypeptides and oligopeptides having an arbitrary size, structure and function, and examples thereof include various proteins, enzymes, antigens, antibodies, lectins and cell membrane receptors.

本発明の一実施形態においては、非晶質炭素膜に酸素プラズマや窒素プラズマを照射することにより、非晶質炭素膜の表層に、カルボキシル基(−COOH)、水酸基(−OH)等の官能基を形成することができる。これらの官能基のHイオンがアルカリ液中に存在する水酸化物イオン(OH)に奪われると,非晶質炭素膜の表層に負にイオン化した−COO基や−O基が生成されるので、非晶質炭素膜の表層を負に帯電させることができる。
このように、非晶質炭素膜の表層にカルボキシル基(−COOH)や水酸基(−OH)を形成することにより、非晶質炭素膜をさらに負に帯電させて、負に帯電したタンパク質などの生体分子を主成分とする検体の付着を抑制することができる。
In one embodiment of the present invention, by irradiating the amorphous carbon film with oxygen plasma or nitrogen plasma, the surface layer of the amorphous carbon film is functionalized with a carboxyl group (-COOH), a hydroxyl group (-OH), or the like. A group can be formed. When the H + ions of these functional groups are deprived by the hydroxide ions (OH ) present in the alkaline solution, negatively ionized −COO − groups and −O groups are formed on the surface layer of the amorphous carbon film. Since it is generated, the surface layer of the amorphous carbon film can be negatively charged.
In this way, by forming a carboxyl group (-COOH) or a hydroxyl group (-OH) on the surface layer of the amorphous carbon film, the amorphous carbon film is further negatively charged, and a negatively charged protein or the like can be produced. Adhesion of a sample containing a biomolecule as a main component can be suppressed.

また、一実施形態におけるSiを含む非晶質炭素膜にさらに酸素プラズマを照射した構造体、またSiO(石英,等電点はpH2.5前後程度)は,Siを含まない水素と炭素からなる非晶質炭素膜の等電点や、PET(等電点がpH4程度,pH8〜9付近で最低ゼータ電位が−70mV程度)等の樹脂の等電点よりもさらに酸性領域側に等電点を有する(例えば、pH4未満の等電点を有する)から,より酸性側に広い領域で付着防止対象物質の付着を防止することが可能となる。 Further, the structure in which the amorphous carbon film containing Si in one embodiment is further irradiated with oxygen plasma, and SiO 2 (quartz, isoelectric point is about pH 2.5) is composed of hydrogen and carbon containing no Si. The isoelectric point of the amorphous carbon film and the isoelectric point of PET (isoelectric point is about pH4, minimum zeta potential is about -70 mV at around pH8-9) are more isoelectric to the acidic region side than the isoelectric point. Since it has a point (for example, it has an isoelectric point of less than pH 4), it is possible to prevent the adhesion of the substance to be prevented from adhering in a wider region on the more acidic side.

水素と炭素から構成される非晶質炭素膜を形成したものの等電点はpH3.8付近に確認することができる。よって検体がマイナスに帯電しているものの場合、pHを3.8未満の酸性にすれば電極に形成したマイナスのゼータ電位を持つ水素と炭素から構成される非晶質炭素膜から(マイナスに帯電している検体は)反発し、pHを3.8を超える領域にすれば、プラスのゼータ電位を持つ水素と炭素から構成される非晶質炭素膜に(マイナスに帯電している検体は)吸着し易くなる。
このように電極に検体を付着させたり、反発させ引き離したりすることが可能となり得る。
The isoelectric point of the amorphous carbon film composed of hydrogen and carbon can be confirmed to be around pH 3.8. Therefore, if the sample is negatively charged, if the pH is made acidic below 3.8, it will be formed on the electrode from an amorphous carbon film composed of hydrogen and carbon with a negative zeta potential (negatively charged). If the pH is set to a range exceeding 3.8, the amorphous carbon film composed of hydrogen and carbon with a positive zeta potential (for the negatively charged sample) will be repulsed. It becomes easy to adsorb.
In this way, it may be possible to attach the sample to the electrode, or to repel and separate the sample.

一方、水素と炭素から構成される非晶質炭素膜にSiとOを付加したものの等電点 はpH2.5よりも更に酸性側にあることが確認できる。
水素と炭素から構成される非晶質炭素膜のゼータ電位は概ね、pH4:−5mV,pH5:−50mV、pH6:−80mV、pH7:−95mV、pH8:−105mVである。
また水素と炭素から構成される非晶質炭素膜にSiとOを付加したものゼータ電位は概ね、pH4:−50mV、pH5:−85mV、pH6:−98mV、pH7:−100mV、pH8:−105mVである。このように,非晶質炭素膜を例えばSiと酸素を含有させた非晶質炭素膜等に改質することで,その等電点が酸性側にシフトすることが確認できた。さらには同一pHの環境にて、より大きなマイナスのゼータ電位が得られることができる。
On the other hand, it can be confirmed that the isoelectric point of the amorphous carbon film composed of hydrogen and carbon with Si and O added is on the more acidic side than pH 2.5.
The zeta potentials of the amorphous carbon film composed of hydrogen and carbon are approximately pH4: -5 mV, pH5: -50 mV, pH6: -80 mV, pH7: -95 mV, and pH8: -105 mV.
In addition, the zeta potential of an amorphous carbon film composed of hydrogen and carbon with Si and O added is approximately pH 4: -50 mV, pH 5: -85 mV, pH 6: -98 mV, pH 7: -100 mV, pH 8: -105 mV. Is. In this way, it was confirmed that the isoelectric point shifts to the acidic side by modifying the amorphous carbon film to, for example, an amorphous carbon film containing Si and oxygen. Furthermore, a larger negative zeta potential can be obtained in an environment of the same pH.

以上のように、電極の表層に形成する保護膜のゼータ電位を正しく理解、調整することにより、検知用のセンサーや評価、分析、解析装置において、検出系を構成する部材、例えば検知電極や検知のために試料をハンドリング、保持する冶具等の不測の変化(検体である生体分子等の検知電極への不測の吸着や反発等のノイズ)を把握、または極力排除し、平行して検知自体の限界を向上させ得る。 As described above, by correctly understanding and adjusting the zeta potential of the protective film formed on the surface layer of the electrode, the members constituting the detection system, such as the detection electrode and the detection, are used in the detection sensor, evaluation, analysis, and analysis device. For this purpose, unexpected changes in the jigs that handle and hold the sample (noise such as unexpected adsorption and repulsion of biological molecules that are the sample) are grasped or eliminated as much as possible, and the detection itself is performed in parallel. The limits can be raised.

以下、本発明の様々な実施形態に係る実施例を説明するが、以下の実施例は、例示であり、本発明は以下に述べる実施例に限定されるものではない。 Examples of various embodiments of the present invention will be described below, but the following examples are examples, and the present invention is not limited to the examples described below.

《腐食雰囲気における導電性についての検証》
アルミニウム箔(サイズ100mm×100mm)の基材(以下、単に「アルミ箔基材」ということもある)を必要枚数準備し、以下の、比較例1及び実施例1〜3により4種のサンプルを作成した。
<< Verification of conductivity in a corrosive atmosphere >>
Prepare a required number of aluminum foil (size 100 mm × 100 mm) base materials (hereinafter, also simply referred to as “aluminum foil base materials”), and prepare four types of samples according to Comparative Example 1 and Examples 1 to 3 below. Created.

(比較例1)
まず無処理のアルミ箔基材を比較例1のサンプルとした。
(Comparative Example 1)
First, an untreated aluminum foil base material was used as a sample of Comparative Example 1.

(実施例1)
準備したアルミ箔基材の表面に、公知の方法でSiを含有する非晶質炭素膜を20nmの厚さで、以下のようにして形成した。
まず、準備したアルミ箔基材を高圧パルスプラズマCVD装置に投入し、CVD装置の反応容器を1×10−3Paまで真空減圧した。通常は最初にアルゴンガスを導入し、アルゴンガスプラズマにより基材をクリーニングするが、不動態層を保全するためクリーニング工程を省略した。次に当該CVD装置に、流量30SCCM、ガス圧2Paでトリメチルシランガスを導入し、印加電圧−4kV、パルス周波数10kHz、パルス幅10μsの条件でプラズマを形成し、アルミ箔基材上にSiを含有する非晶質炭素膜を概ね20nmの厚みで形成した。得られたものを実施例1のサンプルとした。
(Example 1)
An amorphous carbon film containing Si was formed on the surface of the prepared aluminum foil base material with a thickness of 20 nm by a known method as follows.
First, the prepared aluminum foil base material was put into a high-pressure pulse plasma CVD apparatus, and the reaction vessel of the CVD apparatus was evacuated to 1 × 10 -3 Pa. Normally, argon gas is first introduced and the substrate is cleaned with argon gas plasma, but the cleaning step is omitted in order to preserve the passivation layer. Next, trimethylsilane gas is introduced into the CVD apparatus at a flow rate of 30 SCCM and a gas pressure of 2 Pa, plasma is formed under the conditions of an applied voltage of -4 kV, a pulse frequency of 10 kHz, and a pulse width of 10 μs, and Si is contained on the aluminum foil substrate. An amorphous carbon film was formed with a thickness of approximately 20 nm. The obtained sample was used as a sample of Example 1.

(実施例2)
実施例1の方法で作成したSiを含む非晶質炭素膜が形成されたアルミ箔基材の表面(非晶質炭素膜が形成された面)に、フッ素含有シランカップリング剤(フロロテクノロジー社のフロロサーフFG−5010Z130−0.2)を旭化成株式会社製のベンコット(製品名)を用いて塗布した。2日後、IPA(イソプロピルアルコール)を満たした超音波洗浄槽で1分間洗浄した後、得られたものを実施例2のサンプルとした。
(Example 2)
A fluorine-containing silane coupling agent (Fluorotechnology) on the surface of the aluminum foil base material on which the amorphous carbon film containing Si produced by the method of Example 1 was formed (the surface on which the amorphous carbon film was formed). Fluorosurf FG-5010Z130-0.2) was applied using Bencot (product name) manufactured by Asahi Kasei Co., Ltd. Two days later, the sample was washed in an ultrasonic cleaning tank filled with IPA (isopropyl alcohol) for 1 minute, and the obtained sample was used as a sample of Example 2.

(実施例3)
準備したアルミ箔基材の表面に、以下のようにして、非晶質炭素膜を20nmの厚さで形成した。
まず、準備したアルミ箔基材を高圧パルスプラズマCVD装置に投入し、CVD装置の反応容器を1×10−3Paまで真空減圧した。通常は最初にアルゴンガスを導入し、アルゴンガスプラズマにより基材をクリーニングするが、不動態層を保全するためクリーニング工程を省略した。次に当該CVD装置に、流量30SCCM、ガス圧2Paでアセチレンガスを導入し、印加電圧−4kV、パルス周波数10kHz、パルス幅10μsの条件でプラズマを形成し、アルミ箔基材上に非晶質炭素膜を概ね20nmの厚みで形成した。得られたものを実施例3のサンプルとした。
(Example 3)
An amorphous carbon film having a thickness of 20 nm was formed on the surface of the prepared aluminum foil base material as follows.
First, the prepared aluminum foil base material was put into a high-pressure pulse plasma CVD apparatus, and the reaction vessel of the CVD apparatus was evacuated to 1 × 10 -3 Pa. Normally, argon gas is first introduced and the substrate is cleaned with argon gas plasma, but the cleaning step is omitted in order to preserve the passivation layer. Next, acetylene gas was introduced into the CVD apparatus at a flow rate of 30 SCCM and a gas pressure of 2 Pa, plasma was formed under the conditions of an applied voltage of -4 kV, a pulse frequency of 10 kHz, and a pulse width of 10 μs, and amorphous carbon was formed on an aluminum foil substrate. The film was formed to a thickness of approximately 20 nm. The obtained sample was used as a sample of Example 3.

(各サンプルの腐食)
JISZ2371に準拠したキャス試験の条件で各サンプルを腐食させた。
キャス試験は、サンプルの腐食(さび)具合を調べるための環境試験であり、試験に使用する液は、酢酸を用いて酸性(pH3.1〜3.3)にし、さらに塩化銅を加えた塩化ナトリウム水溶液であり、同様の試験である中性の食塩水を用いた試験に比べ、腐食促進試験として効果的で、短い試験時間で評価することができる。
具体的には、
○キャス試験機
CAP−90 スガ試験機株式会社
○JISZ2371(キャス試験)準拠
・試験液:塩化ナトリウム 50±5g/L、塩化銅(II) 0.205±0.015g/L、pH=3.1〜3.3(酢酸酸性)
・噴霧室内温度:50±2℃
・噴霧量:1.5±0.5mL/h(80cm
○噴霧:噴霧塔方式(噴霧室中央に噴霧塔があります)
○試験槽の大きさ:奥行60cm×幅86cm×高さ22cm
○試験時間:6時間
(Corrosion of each sample)
Each sample was corroded under the conditions of the Cass test according to JIS Z2371.
The Cass test is an environmental test for examining the degree of corrosion (rust) of a sample, and the liquid used in the test is made acidic (pH 3.1-3.3) with acetic acid, and chloride is further added with copper chloride. It is a sodium aqueous solution, and is more effective as a corrosion acceleration test than a test using a neutral saline solution, which is a similar test, and can be evaluated in a short test time.
In particular,
○ Cass tester CAP-90 Suga tester Co., Ltd. ○ JISZ2371 (cass test) compliant ・ Test solution: sodium chloride 50 ± 5 g / L, copper (II) chloride 0.205 ± 0.015 g / L, pH = 3. 1-3.3 (acidic acetate)
・ Spray room temperature: 50 ± 2 ℃
-Spray amount: 1.5 ± 0.5 mL / h (80 cm 2 )
○ Spray: Spray tower method (there is a spray tower in the center of the spray room)
○ Size of test tank: Depth 60 cm x Width 86 cm x Height 22 cm
○ Test time: 6 hours

(電気抵抗の測定)
6時間キャス試験の状態で各サンプルの腐食を保持加速させた後、公知の4端子測定法にて負荷電圧は概ね0.39v付近で電気抵抗を測定した。抵抗測定器はAgilent社製34420Aを使用した。
結果を、表1に示す。
(Measurement of electrical resistance)
After holding and accelerating the corrosion of each sample in the state of the Cass test for 6 hours, the electric resistance was measured at a load voltage of about 0.39v by a known 4-terminal measuring method. As the resistance measuring instrument, a 34420A manufactured by Agilent was used.
The results are shown in Table 1.

Figure 0006961469
Figure 0006961469

各サンプルの基材であるアルミニウム箔の電気抵抗は0.0000982Ωである。また、キャス試験投入前の各実施例の電気抵抗は実施例1が0.01344Ω、実施例2が0.03554Ω、実施例3が0.012262Ωであった。
まずこのことから、保護膜をアルミ箔基材に形成してある各実施例のサンプルの電気抵抗(Ω)は×10−2(−2剰代)であり、電極として使用可能なレベルであることが確認できる。
キャス試験投入後はいずれの実施例も、比較例に比べキャス試験投入前後の抵抗の上昇が低く抑制されており、アルミ箔が腐食から守られていることでアルミニウムの腐食膜による電気抵抗の上昇が極端に低く抑えられていることがわかる。また、各実施例における抵抗の増加率の有意差も確認でき、本キャス試験における腐食の防止効果の差として理解できる。
The electrical resistance of the aluminum foil that is the base material of each sample is 0.0000982Ω. The electrical resistance of each example before the cas test was introduced was 0.01344 Ω in Example 1, 0.03554 Ω in Example 2, and 0.012262 Ω in Example 3.
First Therefore, the electric resistance of samples of each example a protective film is formed on the aluminum foil substrate (Omega) are × 10 -2 (-2 tilefish), is usable level as electrode Can be confirmed.
In each of the examples after the cas test was introduced, the increase in resistance before and after the cas test was introduced was suppressed to be lower than that in the comparative example, and the increase in electrical resistance due to the corrosive film of aluminum was suppressed because the aluminum foil was protected from corrosion. Can be seen to be kept extremely low. In addition, a significant difference in the increase rate of resistance in each example can be confirmed, which can be understood as a difference in the corrosion prevention effect in this Cass test.

検証の結果、比較例のサンプル(無処理のアルミ箔)の電気抵抗は3桁上昇し、保護膜を形成した各実施例のサンプルの電気抵抗値よりも逆に大きくなった。
また各実施例のサンプルは、皮膜剥離も発生せず、さらに電極として使用可能な×10−2(−2剰代)の低い導電性の電気抵抗を維持しており、中でも保護膜の表層に、さらに薄膜フッ素樹脂層を形成した実施例2は電気抵抗の上昇率が最も低く、安定性(耐食保護性能)を発揮したことが確認できた。
As a result of the verification, the electric resistance of the sample of the comparative example (untreated aluminum foil) increased by three orders of magnitude, which was conversely larger than the electric resistance value of the sample of each example in which the protective film was formed.
The samples of each example, the film peeling does not occur, maintains a more usable × 10 -2 (-2 tilefish) lower conductive electrical resistance as an electrode, on the surface layer of inter alia the protective film Furthermore, it was confirmed that Example 2 in which the thin film fluororesin layer was formed had the lowest rate of increase in electrical resistance and exhibited stability (corrosion resistance protection performance).

前記腐食試験前の、実施例1のサンプル及び実施例3のサンプルの皮膜について、その表面電気抵抗率の測定を、2重リング法(定電圧電流測定法)による面抵抗の測定で行った。
測定装置は、Agilent Technologies社製ハイレジスタンスメータ 4339B、Agilent Technologies社製レジスティビティ・セル16008B
主電極サイズ26mmφ、対電極内径38mmφ、カード電極110mm×110mm
荷重1kgfの条件である。
また、測定環境は、温度:23±1℃、湿度:50%±5%、電磁気計測室(シールドルーム)内にて測定を行っている。
The surface electrical resistivity of the coatings of the sample of Example 1 and the sample of Example 3 before the corrosion test was measured by the double ring method (constant voltage current measurement method).
The measuring devices are the high resistance meter 4339B manufactured by Agilent Technologies and the resistance cell 1608B manufactured by Agilent Technologies.
Main electrode size 26 mmφ, counter electrode inner diameter 38 mmφ, card electrode 110 mm × 110 mm
It is a condition of a load of 1 kgf.
The measurement environment is temperature: 23 ± 1 ° C., humidity: 50% ± 5%, and measurement is performed in an electromagnetic measurement room (shield room).

試験電圧10Vでの表面抵抗率の測定結果は、実施例3のサンプルが2.9×10Ω/□、実施例1のサンプルが1.6×1012Ω/□となり、実施例3のSiを含まない非晶質炭素膜に比べ、実施例1のSiを含む非晶質炭素膜の方が、表面抵抗率が極端に大きいことが確認された。 The measurement results of the surface resistivity at a test voltage of 10 V were 2.9 × 10 9 Ω / □ for the sample of Example 3 and 1.6 × 10 12 Ω / □ for the sample of Example 1, and the sample of Example 3 was 1.6 × 10 12 Ω / □. It was confirmed that the surface resistivity of the Si-containing amorphous carbon film of Example 1 was extremely higher than that of the Si-free amorphous carbon film.

《櫛形電極における応力剥離の状況の確認》
弁金属よりなる微細幅、間隔で配置される櫛形電極は、表面積に比べ、面積当りの周囲の辺部延長が長く、細かな浮き島状態のため基材密着が取りにくい電極である。
このような電極に対してドライプロセスにて形成する薄膜を形成した場合の応力剥離の状況を、以下のようにして確認した。
100mm×100mm矩形で、厚さ1mmのソーダライムガラス基板を準備した。
超音波洗浄を行った後、公知のフォトリソグラフィー法にて幅30μm、隣接する対抗電極なでのスペースが30μmの微細な櫛形電極をレジストで描画形成し「型」とした。
<< Confirmation of stress peeling status in comb-shaped electrodes >>
The comb-shaped electrodes, which are made of valve metal and are arranged with a fine width and at intervals, have a longer peripheral edge extension per area than the surface area, and are difficult to adhere to the base material due to a fine floating island state.
The state of stress peeling when a thin film formed by a dry process was formed on such an electrode was confirmed as follows.
A soda lime glass substrate having a rectangle of 100 mm × 100 mm and a thickness of 1 mm was prepared.
After ultrasonic cleaning, a fine comb-shaped electrode having a width of 30 μm and an adjacent counter electrode stroking space of 30 μm was drawn and formed with a resist by a known photolithography method to form a “mold”.

続いて、SRDS−7000T型汎用小型成膜装置(サンユー電子製)を用いてアルミニウム薄膜をスパッタリング形成した。このスパッタリングは、スパッタリングガスとして流量100sccm、圧力3PaのArガスを用い、初期真空度が10−3Pa、DCが400W、TS距離が100mm、OFSが55mm、試料台回転速度が10rpmの条件において5分間行った。ガラス基板上には概ね厚さ100nmのアルミニウム薄膜を形成し、その後エッチィングでレジストを除去し、アルミニウムよりなる櫛形電極を形成した。
Alターゲットは、株式会社高純度化学研究所製、Al 4N 4“φ×5t 純度99.99%を使用した。
Subsequently, an aluminum thin film was sputtered and formed using an SRDS-7000T type general-purpose compact film forming apparatus (manufactured by Sanyu Denshi). This sputtering uses Ar gas with a flow rate of 100 sccm and a pressure of 3 Pa as the sputtering gas , and is 5 under the conditions of an initial vacuum degree of 10 -3 Pa, DC of 400 W, TS distance of 100 mm, OFS of 55 mm, and sample table rotation speed of 10 rpm. I went for a minute. An aluminum thin film having a thickness of about 100 nm was formed on the glass substrate, and then the resist was removed by etching to form a comb-shaped electrode made of aluminum.
As the Al target, Al 4N 4 “φ × 5t purity 99.99%” manufactured by High Purity Chemical Laboratory Co., Ltd. was used.

次に、実施例1と同様にして、以下のとおり、ドライ保護膜を形成した。
まず予め、スパッタリング法にて、Al(アルミニウム)電極を形成したガラス基板全体に、公知のプラズマCVD法でSiを含有する非晶質炭素膜を200nmの厚さで形成した。
Siを含む非晶質炭素膜の形成は以下のようにして行った。まず、準備したガラス基材を高圧パルスプラズマCVD装置に投入し、CVD装置の反応容器を1x10−3Paまで真空減圧した。通常は最初にアルゴンガスを導入し、通常はここでアルゴンガスプラズマにより基材をクリーニングするが、不動態層を保全するためクリーニング工程を省略した。次に当該CVD装置に、流量30SCCM、ガス圧2Paでトリメチルシランガスを導入し、印加電圧−5kV、パルス周波数10kHz、パルス幅10μsの条件でプラズマし、Al(アルミニウム)電極上にSiを含有する非晶質炭素膜を概ね200nmの厚みで形成した。
Next, in the same manner as in Example 1, a dry protective film was formed as follows.
First, an amorphous carbon film containing Si was formed in advance on the entire glass substrate on which the Al (aluminum) electrode was formed by a sputtering method to a thickness of 200 nm by a known plasma CVD method.
The formation of the amorphous carbon film containing Si was carried out as follows. First, the prepared glass substrate was put into a high-pressure pulse plasma CVD apparatus, and the reaction vessel of the CVD apparatus was evacuated to 1 x 10 -3 Pa. Normally, argon gas was introduced first, and the substrate was usually cleaned with argon gas plasma here, but the cleaning step was omitted in order to preserve the passivation layer. Next, trimethylsilane gas was introduced into the CVD apparatus at a flow rate of 30 SCCM and a gas pressure of 2 Pa, plasma was generated under the conditions of an applied voltage of -5 kV, a pulse frequency of 10 kHz, and a pulse width of 10 μs. A crystalline carbon film was formed with a thickness of approximately 200 nm.

上記処理後1週間経過した後、Siを含有する非晶質炭素膜を概ね200nmの厚みで形成されたAl電極の状況を観察したが、Al電極と基材間、Al電極とSiを含有する非晶質炭素膜間で応力剥離等が発生していないことが確認できた。
さらに、作成したSiを含む非晶質炭素膜が形成されたAl電極の表面(非晶質炭素膜が形成された面)に、フッ素含有シランカップリング剤(フロロテクノロジー社のフロロサーフFG−5010Z130−0.2)をスプレー塗布し、処理後1週間経過した後、Al電極の状況を観察したが、Al電極と基材間、Al電極とSiを含有する非晶質炭素膜間で応力剥離等が発生していないことが確認できた。
フッ素含有シランカップリング剤は表面張力が低く、剥離の隙間に這いいりこみ皮膜の浮きを助長し易いが問題が発生しないレベルの密着が取れていることが確認できた。
One week after the above treatment, the state of the Al electrode in which the Si-containing amorphous carbon film was formed with a thickness of about 200 nm was observed. It was confirmed that stress separation did not occur between the amorphous carbon films.
Further, a fluorine-containing silane coupling agent (Fluorosurf FG-5010Z130- of Fluorotechnology Co., Ltd.) is formed on the surface of the Al electrode on which the created amorphous carbon film containing Si is formed (the surface on which the amorphous carbon film is formed). 0.2) was spray-coated, and one week after the treatment, the condition of the Al electrode was observed. Was confirmed not to occur.
It was confirmed that the fluorine-containing silane coupling agent has a low surface tension and easily crawls into the peeling gap to promote the floating of the film, but the adhesion is at a level that does not cause any problem.

《バリア性の確認》
次に、実施例3と同様の方法で、東レ株式会社のPETフィルム(ルミラーT60(t=25μm)上に非晶質炭素膜を概ね35nmの厚みで形成し、水素、水蒸気、酸素バリア性を確認した。
なお測定は、GTRテック製GTR−10XFKS、JIS−K7176−2ガスクログラム法(25℃DRY)にて実施した。
《Confirmation of barrier property》
Next, an amorphous carbon film having a thickness of about 35 nm was formed on a PET film of Toray Industries, Inc. (Lumilar T60 (t = 25 μm)) by the same method as in Example 3, and hydrogen, water vapor, and oxygen barrier properties were obtained. confirmed.
The measurement was carried out by GTR-10XFKS manufactured by GTR Tech and JIS-K7176-2 gas chromatography method (25 ° C. DRY).

その結果、無処理のPETフィルム ルミラーT60(t=25μm)自体のガス透過率は、
・水素透過率:2599ml/(m・24h/atm)
・水蒸気透過率:64.0g/(m・2day)
・酸素透過率:79.0cc/(m・day/atm)
であったが、非晶質炭素膜形成後は、
・水素透過率:73.5ml/(m・24h/atm) 概ね93%のガス透過防止性
・水蒸気透過率:2.0g/(m・2day)
・酸素透過率:9.0cc/(m・day/atm)
と非常に高いガスバリア性が確認された。
As a result, the gas permeability of the untreated PET film mirror T60 (t = 25 μm) itself is increased.
Hydrogen permeability: 2599ml / (m 2 · 24h / atm)
- water vapor transmission rate: 64.0g / (m 2 · 2day )
-Oxygen permeability: 79.0 cc / (m 2 · day / atm)
However, after the formation of the amorphous carbon film,
Hydrogen permeability: 73.5ml / (m 2 · 24h / atm) approximately 93% of the gas permeation preventive property and water vapor transmission rate: 2.0g / (m 2 · 2day )
-Oxygen permeability: 9.0 cc / (m 2 · day / atm)
Very high gas barrier property was confirmed.

例えば、AlやSiの皮膜についてもその膜密度などに由来する実施例3と同等以上の高い水蒸気、酸素バリア性を有しており、実施例3と同様に水素バリア性が
あることが推定できる。
For example, Al x O y and Si x for O y film also from the like the film density Example 3 equal to or higher than that of the high water vapor, has an oxygen barrier property, Example 3 in the same manner as in the hydrogen barrier property It can be estimated that there is.

《表面の濡れ性制御による液体のパターンニング性》
表面の濡れ性制御による液体のパターンニング性について確認した。
まずPETフィルム ルミラーT60(t=100μm)幅600mm長さ600mmの矩形のシートに、全面親水性の表面処理を行った。
このPETフィルムをCVD装置にセットし、当該CVD装置を1×10−3Paまで
真空排気を行った。その後、CVD装置に流量30SCCM、ガス圧2Paのアルゴンガスを導入し、−3kVpの印加電圧によって基材表面を2分間プラズマクリーニングした。続いて、CVD装置からアルゴンガスを排気した後、流量30SCCM、ガス圧1PaのトリメチルシランガスをCVD装置に導入し、−3kVpの電圧を印加して、基材表面に厚さ30nmのSiを含有する非晶質炭素膜を形成した。
その後CVD装置からトリメチルシランガスを排気した後、流量30SCCM、ガス圧1Paの酸素ガスをCVD装置に導入し、−3kVpの電圧を印加して、1分間基材表面に酸素プラズマを照射して親水親油性表面を形成した。
<< Liquid patterning by controlling the wettability of the surface >>
The patterning property of the liquid by controlling the wettability of the surface was confirmed.
First, a rectangular sheet having a width of 600 mm and a length of 600 mm of PET film mirror T60 (t = 100 μm) was subjected to a hydrophilic surface treatment on the entire surface.
This PET film was set in a CVD device, and the CVD device was evacuated to 1 × 10 -3 Pa. Then, argon gas having a flow rate of 30 SCCM and a gas pressure of 2 Pa was introduced into the CVD apparatus, and the substrate surface was plasma-cleaned for 2 minutes with an applied voltage of -3 kVp. Subsequently, after exhausting the argon gas from the CVD device, a trimethylsilane gas having a flow rate of 30 SCCM and a gas pressure of 1 Pa is introduced into the CVD device, and a voltage of -3 kVp is applied to contain Si having a thickness of 30 nm on the surface of the base material. An amorphous carbon film was formed.
After that, trimethylsilane gas is exhausted from the CVD device, oxygen gas having a flow rate of 30 SCCM and a gas pressure of 1 Pa is introduced into the CVD device, a voltage of -3 kVp is applied, and the substrate surface is irradiated with oxygen plasma for 1 minute to form a hydrophilic parent. An oily surface was formed.

続いて、プラズマプロセスにおけるマスキング(パターンニング)に使用可能で、かつ形成後に水で簡単に除去可能なスクリーン印刷用インク(互応化学製インクTMS−397)をパターンニングレジストとして使用し、概ねφ500μmの六角形部分にインクが残り、六角形の周囲6辺が100μmの幅でインクが印刷されないパターンにて、前記親水親油性表面上に前記インクを転写させた。
続いてPETフィルム全面にフッ素含有シランカップリング剤(フロロテクノロジー社のフロロサーフFG−5010Z130−0.2)をスプレー塗布し1日間乾燥定着させ作成したパターンの「インクが印刷されないパターン」100μm幅の六角形を囲む線部に、フッ素含有シランカップリング剤よりなる撥水撥油層を形成した。
続いて、超音波洗浄機に前記PETフィルムを投入しインク部分を剥離し、インクでマスキングされていた下層の親水親油性のSiと酸素を含む非晶質炭素膜を露出させ概ね500μmφの直径の六角形の親水親油性部分を100μm幅の撥水撥油性表面が囲む表面を形成した。
当該親水親油性表面部分と撥水撥油性表面部分よりなる表面に純水を噴霧した。
Subsequently, a screen printing ink (TMS-397, a reciprocal chemical ink) that can be used for masking (patterning) in a plasma process and can be easily removed with water after formation is used as a patterning resist, and has a diameter of approximately φ500 μm. The ink was transferred onto the hydrophilic lipophilic surface in a pattern in which ink remained in the hexagonal portion and the six sides around the hexagon had a width of 100 μm and the ink was not printed.
Subsequently, a fluorine-containing silane coupling agent (Fluorosurf FG-5010Z130-0.2 manufactured by Fluoro Technology Co., Ltd.) was spray-coated on the entire surface of the PET film and dried and fixed for 1 day. A water- and oil-repellent layer made of a fluorine-containing silane coupling agent was formed on the line portion surrounding the square.
Subsequently, the PET film was put into an ultrasonic cleaner to peel off the ink portion, and an amorphous carbon film containing hydrophilic lipophilic Si and oxygen in the lower layer masked with ink was exposed to have a diameter of about 500 μmφ. A surface was formed in which a hexagonal hydrophilic lipophilic portion was surrounded by a water- and oil-repellent surface having a width of 100 μm.
Pure water was sprayed on the surface composed of the hydrophilic lipophilic surface portion and the water-repellent oil-repellent surface portion.

図1は、純水を噴霧した両表面を撮影した写真である。なお、中央に白く見える部分はCCDカメラのライトの映りこみ部分である。
写真から純水が親水親油性の六角形部分にのみ濡れ広がっていることは確認できる。
このように、表面の濡れ性(の差)を形成することで、液体試料を適宜必要な場所に
所望の形で配置することが可能となることが確認できた。
FIG. 1 is a photograph of both surfaces sprayed with pure water. The part that looks white in the center is the part where the light of the CCD camera is reflected.
From the photograph, it can be confirmed that the pure water is wet and spreads only on the hydrophilic lipophilic hexagonal part.
It was confirmed that by forming the wettability (difference) of the surface in this way, the liquid sample can be appropriately arranged in a required place in a desired shape.

《Siを含む非晶質炭素膜と含まない非晶質炭素膜の樹脂密着性比較試験》
NBCメッシュ製のポリエステルメッシュで大きさ縦横100mmの方形を2枚準備した。
(有機高分子基材へ水素フリーで炭素が60%未満のSiを含む非晶質炭素膜密着層を形成した後、Siを含まない非晶質炭素膜層を形成した試料の作成)
前記ポリエステルメッシュ試料をステンレス鋼板上に平置きし、前記ステンレス鋼板にマイナス電圧が印加可能なように直流パルス方式の公知のプラズマCVD装置の成膜室の反応容器内に設置し、ポリエステルメッシュ試料のステンレス鋼と接する面の反対面に非晶炭素膜を成膜した。具体的には、成膜室反応容器を1×10−3Paの真空度まで排気した。次にArガスをガス流量30SCCM、ガス圧2Paで導入し、印加電圧−3kVpの条件でArガスプラズマを発生させ、試料台上の基材を1分間クリーニングした。Arガスを排気し15分間冷却した後、反応容器にトリメチルシランガスを流量30SCCM、1.5Paのガス圧で導入し、印加電圧−3kVp、パルス幅10μs、パルス周波数10kHzの条件で1分間Siを含む非晶質炭素膜を成膜した。当該Siを含む非晶質炭素膜の基材密着層の水素フリー基準での炭素含有量は概ね53.2at%、Siの含有量は概ね37.6at%であった。
トリメチルシランガスを排気し、15分間冷却した後、アセチレンガスを反応容器に流量30SCCM、1.5Paのガス圧で導入し、印加電圧−3.5kVp、パルス幅10μs、パルス周波数10kHzの条件で3分間Siを含まない、水素と炭素のみからなる晶質炭素膜を成膜し、一旦成膜を中断、15分間冷却した後、再度同じ条件でSiを含まない水素と炭素のみからなる非晶質炭素膜を同様の成膜時間と冷却時間で繰り返し成膜し、膜厚が概ね100nmの非晶質炭素膜を形成した。その後真空容器を常圧に戻し、ポリエステルメッシュ試料を取り出して比較例とした。
<< Resin adhesion comparison test of amorphous carbon film containing Si and amorphous carbon film not containing Si >>
Two squares with a size of 100 mm in length and width were prepared with a polyester mesh made of NBC mesh.
(Preparation of a sample in which an amorphous carbon film adhesion layer containing Si, which is hydrogen-free and contains less than 60% carbon, is formed on an organic polymer base material, and then an amorphous carbon film layer containing no Si is formed)
The polyester mesh sample is placed flat on a stainless steel plate and installed in a reaction vessel in a film forming chamber of a known plasma CVD apparatus of a DC pulse method so that a negative voltage can be applied to the stainless steel plate. An amorphous carbon film was formed on the surface opposite to the surface in contact with stainless steel. Specifically, the reaction vessel in the film forming chamber was evacuated to a degree of vacuum of 1 × 10 -3 Pa. Next, Ar gas was introduced at a gas flow rate of 30 SCCM and a gas pressure of 2 Pa, Ar gas plasma was generated under the condition of an applied voltage of -3 kVp, and the substrate on the sample table was cleaned for 1 minute. After exhausting Ar gas and cooling for 15 minutes, trimethylsilane gas is introduced into the reaction vessel at a gas pressure of 30 SCCM and 1.5 Pa, and Si is contained for 1 minute under the conditions of an applied voltage of -3 kVp, a pulse width of 10 μs, and a pulse frequency of 10 kHz. An amorphous carbon film was formed. The carbon content of the substrate-adhesive layer of the amorphous carbon film containing Si on a hydrogen-free basis was approximately 53.2 at%, and the content of Si was approximately 37.6 at%.
After exhausting the trimethylsilane gas and cooling it for 15 minutes, the acetylene gas was introduced into the reaction vessel at a gas pressure of 30 SCCM and 1.5 Pa, and the applied voltage was −3.5 kVp, the pulse width was 10 μs, and the pulse frequency was 10 kHz for 3 minutes. A Si-free crystalline carbon film consisting of hydrogen and carbon is formed, the filming is interrupted, the film is cooled for 15 minutes, and then again under the same conditions, the amorphous carbon consisting of only hydrogen and carbon containing no Si is formed. The film was repeatedly formed with the same film formation time and cooling time to form an amorphous carbon film having a film thickness of approximately 100 nm. After that, the vacuum vessel was returned to normal pressure, and the polyester mesh sample was taken out and used as a comparative example.

(有機高分子基材へ水素と炭素のみを含む非晶質炭素膜密着層を形成した後、Siを含まない非晶質炭素膜層を形成した試料の作成)
続いて、他方のポリエステルメッシュ試料をステンレス鋼板上に平置きし、前記ステンレス鋼板にマイナス電圧が印加可能なように直流パルス方式の公知のプラズマCVD装置の成膜室の反応容器内に設置し、非晶炭素膜を成膜した。成膜室反応容器を1×10−3Paの真空度まで排気した。次にArガスをガス流量30SCCM、ガス圧2Paで導入し、印加電圧−3kVpの条件でArガスプラズマを発生させ、試料台上の基材を1分間クリーニングした。Arガスを排気し15分間冷却した後、アセチレンガスを反応容器に流量30SCCM、1.5Paのガス圧で導入し、印加電圧−3.0kVp、パルス幅10μs、パルス周波数10kHzの条件で1分間Siを含まない、水素と炭素のみからなる非晶質炭素膜(Siを含まない密着層に相当する部分)を成膜し、一旦成膜を中断、15分間冷却した後、アセチレンガスを反応容器に流量30SCCM、1.5Paのガス圧で導入し、印加電圧−3.5kVp、パルス幅10μs、パルス周波数10kHzの条件で3分間Siを含まない、水素と炭素のみからなる晶質炭素膜を成膜し、一旦成膜を中断、15分間冷却した後、再度同じ条件でSiを含まない水素と炭素のみからなる非晶質炭素膜を同様の成膜時間と冷却時間で繰り返し成膜し、膜厚が概ね100nmの非晶質炭素膜を形成した。その後真空容器を常圧に戻し、ポリエステルメッシュ試料を取り出して実施例とした
(Preparation of a sample in which an amorphous carbon film adhesion layer containing only hydrogen and carbon is formed on an organic polymer base material and then an amorphous carbon film layer containing no Si is formed)
Subsequently, the other polyester mesh sample was placed flat on the stainless steel sheet and installed in the reaction vessel of the film forming chamber of a known plasma CVD apparatus of the DC pulse method so that a negative voltage could be applied to the stainless steel sheet. An amorphous carbon film was formed. The reaction vessel in the film forming chamber was evacuated to a degree of vacuum of 1 × 10 -3 Pa. Next, Ar gas was introduced at a gas flow rate of 30 SCCM and a gas pressure of 2 Pa, Ar gas plasma was generated under the condition of an applied voltage of -3 kVp, and the substrate on the sample table was cleaned for 1 minute. After exhausting Ar gas and cooling for 15 minutes, acetylene gas was introduced into the reaction vessel at a gas pressure of 30 SCCM and 1.5 Pa, and Si for 1 minute under the conditions of an applied voltage of −3.0 kVp, a pulse width of 10 μs, and a pulse frequency of 10 kHz. An amorphous carbon film (the part corresponding to the adhesion layer that does not contain Si) that does not contain hydrogen and carbon is formed, the film formation is interrupted once, and after cooling for 15 minutes, acetylene gas is placed in the reaction vessel. Introduced at a gas pressure of a flow rate of 30 SCCM and 1.5 Pa, an amorphous carbon film consisting of only hydrogen and carbon, which does not contain Si, is formed for 3 minutes under the conditions of an applied voltage of −3.5 kVp, a pulse width of 10 μs, and a pulse frequency of 10 kHz. Then, once the film formation was interrupted and cooled for 15 minutes, an amorphous carbon film consisting only of hydrogen and carbon containing no Si was repeatedly formed under the same conditions with the same film formation time and cooling time, and the film thickness was formed. Formed an amorphous carbon film of approximately 100 nm. After that, the vacuum vessel was returned to normal pressure, and the polyester mesh sample was taken out and used as an example.

比較例、実施例について、摩擦摩耗試験を行った。
摩擦摩耗試験は、新東科学株式会社製のトライボギアHHS−2000を用い、常温、無潤滑にて以下の測定条件により、各試料の非晶質炭素膜が形成された面上で、直径2.0mmのSUJ2の圧子を繰り返し往復させながら各試料表面の摩擦係数を測定した。この摩擦係数の測定は、一定加圧往復測定により実施した。
測定条件
・測定距離: 20mm
・測定速度: 5mm/sec
・圧子の荷重: 100g一定
A frictional wear test was conducted on Comparative Examples and Examples.
For the friction and wear test, a tribogear HHS-2000 manufactured by Shinto Kagaku Co., Ltd. was used, and the diameter of each sample was 2. The friction coefficient of the surface of each sample was measured while repeatedly reciprocating an indenter of 0 mm SUJ2. The coefficient of friction was measured by constant pressure reciprocating measurement.
Measurement conditions / measurement distance: 20 mm
・ Measurement speed: 5 mm / sec
・ Indenter load: 100g constant

比較例及び実施例の結果を、それぞれ図2及び図3に示す。
図2、3のグラフは、縦軸が摩擦係数(μ)、横軸が摩擦往復回数を示している。
比較例は、概ね5往復目付近で摩擦係数(縦軸)が0.3(μ)を超え、非晶質炭素膜が通常示す0.2μ未満を大きく超えており、非晶質炭素膜が部分剥離していることが推定できる。
これに対して、実施例の摩擦係数(縦軸)は0.2μ未満で50往復まで安定していることが確認でき、非晶質炭素膜の基材密着性に優れていることが推定できる。
The results of Comparative Examples and Examples are shown in FIGS. 2 and 3, respectively.
In the graphs of FIGS. 2 and 3, the vertical axis shows the coefficient of friction (μ) and the horizontal axis shows the number of friction reciprocations.
In the comparative example, the coefficient of friction (vertical axis) exceeds 0.3 (μ) around the 5th round trip, and greatly exceeds less than 0.2 μ that the amorphous carbon film usually shows, and the amorphous carbon film has. It can be estimated that the part is partially peeled off.
On the other hand, it can be confirmed that the friction coefficient (vertical axis) of the examples is less than 0.2 μ and stable up to 50 reciprocations, and it can be estimated that the amorphous carbon film has excellent substrate adhesion. ..

以上の結果から、樹脂やゴムなど有機高分子よりなる基材に非晶質炭素膜を密着良く形成する場合は、樹脂など有機高分子の組成であるC(炭素)、H(水素)と同様の組成からなる水素と炭素からなる非晶質炭素膜を直接形成したものの方が、金属基材に非晶質炭素膜を密着良く形成する場合に多用されるSiを含む非晶質炭素膜からなる中間層を密着層として形成した後に水素と炭素からなる非晶質炭素膜を形成したものよりも、密着性に優れることが推定できた。
このことは、例えば非晶質炭素膜よりなる水蒸気と酸素の双方のガスバリア膜を効率良く形成したい場合、水素と炭素からなる非晶質炭素膜は水蒸気の透過防止性に優れており、Si(さらにはSiと酸素)を含む非晶質炭素膜は酸素ガスの透過防止性能に優れていることが知られている。よって、樹脂などの有機高分子材料よりなる基材への水蒸気、並びに酸素の双方の透過防止を行う場合は、水素と炭素からなる非晶質炭素膜を基材にまず形成した後、その後Siを含む非晶質炭素膜を形成する方法が、有機高分子材料よりなる基材へ直接Siを含む非晶質炭素膜を形成し、後に水素と炭素からなる非晶質炭素膜を形成する方法より優れていることが推定できた。無論、Siを含む非晶質炭素膜、水素と炭素からなる非晶質炭素膜をその後続けて複数層積層等することも可能である。
From the above results, when forming an amorphous carbon film on a substrate made of an organic polymer such as resin or rubber with good adhesion, it is the same as C (carbon) and H (hydrogen) which are the compositions of the organic polymer such as resin. The one in which the amorphous carbon film composed of hydrogen and carbon having the composition of the above is directly formed is from the amorphous carbon film containing Si, which is often used when forming the amorphous carbon film on the metal substrate with good adhesion. It was presumed that the adhesion was superior to that of the amorphous carbon film composed of hydrogen and carbon after the intermediate layer was formed as the adhesion layer.
This means that, for example, when it is desired to efficiently form both water vapor and oxygen gas barrier films made of an amorphous carbon film, the amorphous carbon film made of hydrogen and carbon has excellent water vapor permeation prevention properties, and Si ( Further, it is known that the amorphous carbon film containing Si) and oxygen) is excellent in the permeation prevention performance of oxygen gas. Therefore, when preventing the permeation of both water vapor and oxygen into a base material made of an organic polymer material such as resin, an amorphous carbon film composed of hydrogen and carbon is first formed on the base material, and then Si. The method of forming an amorphous carbon film containing Si is a method of forming an amorphous carbon film containing Si directly on a substrate made of an organic polymer material, and then forming an amorphous carbon film composed of hydrogen and carbon. It could be estimated to be better. Of course, it is also possible to continuously laminate a plurality of layers of an amorphous carbon film containing Si and an amorphous carbon film composed of hydrogen and carbon.

Claims (12)

基材と、該基材上の少なくとも一部に形成された弁金属よりなる電極と、該電極上に形成された膜厚が10nmを超え200nm未満の保護層を備え、
該保護層が、非晶質炭素膜よりなることを特徴とするセンサー用又は評価分析装置用の電極構造体。
A base material, an electrode made of a valve metal formed on at least a part of the base material, and a protective layer having a film thickness of more than 10 nm and less than 200 nm formed on the base material are provided.
An electrode structure for a sensor or an evaluation analyzer, wherein the protective layer is made of an amorphous carbon film.
基材と、該基材上の少なくとも一部に形成された弁金属よりなる電極と、該電極上にドライプロセスにより形成された膜厚が10nmを超え200nm未満の保護層を備え、
該保護層が、珪素又は金属の、酸化物、窒化物、炭化物、酸窒化物、炭酸化物、炭窒化物又は炭酸窒化物層のいずれか1つ以上を含む薄膜よりなることを特徴とするセンサー用又は評価分析装置用の電極構造体。
A base material, an electrode made of a valve metal formed on at least a part of the base material, and a protective layer having a film thickness of more than 10 nm and less than 200 nm formed on the electrode by a dry process are provided.
A sensor characterized in that the protective layer is made of a thin film containing any one or more of oxides, nitrides, carbides, oxynitrides, carbon oxides, carbonitrides and carbonate nitride layers of silicon or metal. Electrode structure for or evaluation analyzer.
前記保護層上に、撥水性及び/または撥水撥油性の薄膜層を備えることを特徴とする請求項1又は2に記載のセンサー用又は評価分析用装置用の電極構造体。 The electrode structure for a sensor or evaluation analysis device according to claim 1 or 2, wherein a water-repellent and / or water-repellent and oil-repellent thin film layer is provided on the protective layer. 前記薄膜層が、膜厚50nm未満のフッ素含有カップリング剤よりなる樹脂層であることを特徴とする請求項3記載のセンサー用又は評価分析用装置用の電極構造体。 The electrode structure for a sensor or an evaluation analysis device according to claim 3, wherein the thin film layer is a resin layer made of a fluorine-containing coupling agent having a film thickness of less than 50 nm. 前記弁金属は、その表層に不動態層を備えることを特徴とする請求項1〜3のいずれか1項に記載のセンサー用又は評価分析用装置用の電極構造体。 The electrode structure for a sensor or an evaluation analysis device according to any one of claims 1 to 3, wherein the valve metal is provided with a passivation layer on its surface layer. 負荷電圧0.39v下における電気抵抗が0.45Ω未満である請求項1〜5のいずれか1項に記載のセンサー用又は評価分析用装置用の電極構造体。 The electrode structure for a sensor or an evaluation analysis device according to any one of claims 1 to 5, wherein the electric resistance under a load voltage of 0.39v is less than 0.45Ω. 前記電極が形成されていない基材の最表面及び/又は前記電極が形成された部分の最表面に、水及び/または油との表面濡れ性が異なる表面を備えることを特徴とする請求項1〜6のいずれか1項に記載のセンサー用又は評価分析用装置用の電極構造体。 Claim 1 is characterized in that the outermost surface of the base material on which the electrode is not formed and / or the outermost surface of the portion where the electrode is formed is provided with a surface having different surface wettability with water and / or oil. The electrode structure for a sensor or an evaluation and analysis device according to any one of Items to 6. 前記保護が、食品、添加物等の規格基準(昭和34年厚生省告示第370号)に適合していることを特徴とする請求項1〜7のいずれか1項に記載のセンサー用又は評価分析用装置用の電極構造体。 The sensor or evaluation according to any one of claims 1 to 7, wherein the protective layer conforms to standards for foods, additives, etc. (Ministry of Health and Welfare Notification No. 370, 1959). Electrode structure for analytical equipment. 前記保護は前記基材よりも大きな水素ガス透過防止性を有することを特徴とする請求項1〜8のいずれか1項に記載のセンサー用又は評価分析用の電極構造体。 The electrode structure for a sensor or evaluation analysis according to any one of claims 1 to 8, wherein the protective layer has a hydrogen gas permeation prevention property larger than that of the base material. 前記保護の誘電率が50未満であることを特徴とする請求項1〜9のいずれか1項に記載のセンサー用又は評価分析用の電極構造体。 The electrode structure for a sensor or evaluation analysis according to any one of claims 1 to 9, wherein the protective layer has a dielectric constant of less than 50. 請求項1〜請求項10のいずれか1項に記載の前記電極構造体を備えるセンサー。 A sensor comprising the electrode structure according to any one of claims 1 to 10. 請求項1〜請求項10のいずれか1項に記載の前記電極構造体を備える分析装置。 An analyzer comprising the electrode structure according to any one of claims 1 to 10.
JP2017220173A 2017-11-15 2017-11-15 An electrode structure, a sensor including the electrode structure, and an analyzer including the electrode structure. Active JP6961469B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017220173A JP6961469B2 (en) 2017-11-15 2017-11-15 An electrode structure, a sensor including the electrode structure, and an analyzer including the electrode structure.

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017220173A JP6961469B2 (en) 2017-11-15 2017-11-15 An electrode structure, a sensor including the electrode structure, and an analyzer including the electrode structure.

Publications (2)

Publication Number Publication Date
JP2019090709A JP2019090709A (en) 2019-06-13
JP6961469B2 true JP6961469B2 (en) 2021-11-05

Family

ID=66836205

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017220173A Active JP6961469B2 (en) 2017-11-15 2017-11-15 An electrode structure, a sensor including the electrode structure, and an analyzer including the electrode structure.

Country Status (1)

Country Link
JP (1) JP6961469B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021193564A1 (en) * 2020-03-25 2021-09-30 パナソニックIpマネジメント株式会社 Gas molecule adsorbent and gas sensor
CN111504890B (en) * 2020-04-28 2022-11-22 烟台大学 Rapid detection method for weather resistance of titanium dioxide

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5331830B2 (en) * 2011-01-28 2013-10-30 株式会社日立ハイテクノロジーズ Electrode for electrochemical measurement and electrochemical analyzer
JP5898437B2 (en) * 2011-09-16 2016-04-06 太陽誘電ケミカルテクノロジー株式会社 Amorphous carbon film laminated member and manufacturing method thereof
WO2013069711A1 (en) * 2011-11-09 2013-05-16 Shinshu University Electrode for electrochemistry and manufacturing method for the same
JP2013103487A (en) * 2011-11-16 2013-05-30 Taiyo Kagaku Kogyo Kk Corrosion resistant laminate
US20160281216A1 (en) * 2013-03-19 2016-09-29 Taiyo Yuden Chemical Technology Co., Ltd. Structure having stain-proofing amorphous carbon film and method of forming stain-proofing amorphous carbon film
US20160056455A1 (en) * 2013-04-02 2016-02-25 Taiyo Chemical Technology Co., Ltd. Structure equipped with amorphous carbon film having electrically conductive part and containing silicon, and method for manufacturing same
JP2017019279A (en) * 2015-07-14 2017-01-26 太陽誘電ケミカルテクノロジー株式会社 Structure having water repellent and oil repellent surface, and production method thereof

Also Published As

Publication number Publication date
JP2019090709A (en) 2019-06-13

Similar Documents

Publication Publication Date Title
WO2016056466A1 (en) Antibacterial laminate structure and method for manufacturing same
US9834849B2 (en) Method of preparing corrosion resistant coatings
Gnedenkov et al. Wettability and electrochemical properties of the highly hydrophobic coatings on PEO-pretreated aluminum alloy
TW200829720A (en) Corrosion-resisting member and method for making the same
JP2009185391A (en) Member inside plasma treatment vessel
JP6961469B2 (en) An electrode structure, a sensor including the electrode structure, and an analyzer including the electrode structure.
KR20070044508A (en) Mixture layer coated member in plasma processing container and production method therefor
Wang et al. Effects of silver segregation on sputter deposited antibacterial silver-containing diamond-like carbon films
JP4327177B2 (en) Corrosion-resistant thermal spray coating and method of sealing coating of thermal spray coating
Emelyanenko et al. Superhydrophobic corrosion resistant coatings for copper via IR nanosecond laser processing
Shi et al. Thermal stability, wettability and corrosion resistance of sputtered ceria films on 316 stainless steel
US20160281216A1 (en) Structure having stain-proofing amorphous carbon film and method of forming stain-proofing amorphous carbon film
Vasilescu et al. Microstructure, surface characterization, and electrochemical behavior of new Ti-Zr-Ta-Ag alloy in simulated human electrolyte
JP2007324353A (en) Member for semiconductor machining device and manufacturing method therefor
Ensinger The influence of ion irradiation during film growth on the chemical stability of film/substrate systems
Santos et al. Antimicrobial properties dependence on the composition and architecture of copper-alumina coatings prepared by plasma electrolytic oxidation (PEO)
JP4728306B2 (en) Electrostatic chuck member and manufacturing method thereof
JP5286528B2 (en) Method for manufacturing member for semiconductor processing apparatus
JP2009068097A (en) Member for semiconductor processing apparatus and method for manufacturing thereof
Marin et al. Tribological properties of nanometric atomic layer depositions applied on AISI 420 stainless steel
Liu et al. Mitigating Contamination with Nanostructure-Enabled Ultraclean Storage
Hirpara et al. Anticorrosive behavior enhancement of stainless steel 304 through tantalum-based coatings: Role of coating morphology
AU2002327100B2 (en) Member excellent in antibacterial and/or antialgae effects and process for producing the same
CN106191793B (en) Film forming apparatus and cleaning method thereof
Lee et al. Enhancement of wettability by wet surface modification and application of rare-earth element in sealing of ceramic oxide thin film on al alloy

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20190129

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20190320

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20201110

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210713

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210906

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210928

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20211013

R150 Certificate of patent or registration of utility model

Ref document number: 6961469

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150