JP7242321B2 - 真空ポンプ及び真空ポンプの制御装置 - Google Patents

真空ポンプ及び真空ポンプの制御装置 Download PDF

Info

Publication number
JP7242321B2
JP7242321B2 JP2019017117A JP2019017117A JP7242321B2 JP 7242321 B2 JP7242321 B2 JP 7242321B2 JP 2019017117 A JP2019017117 A JP 2019017117A JP 2019017117 A JP2019017117 A JP 2019017117A JP 7242321 B2 JP7242321 B2 JP 7242321B2
Authority
JP
Japan
Prior art keywords
vacuum pump
total time
physical quantity
stages
time
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2019017117A
Other languages
English (en)
Other versions
JP2020125693A (ja
Inventor
英夫 深美
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
EDWARDSJAPAN LIMITED
Original Assignee
EDWARDSJAPAN LIMITED
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by EDWARDSJAPAN LIMITED filed Critical EDWARDSJAPAN LIMITED
Priority to JP2019017117A priority Critical patent/JP7242321B2/ja
Priority to PCT/JP2020/002745 priority patent/WO2020158658A1/ja
Priority to US17/423,397 priority patent/US11971042B2/en
Priority to CN202080009751.3A priority patent/CN113348305A/zh
Priority to EP20748915.4A priority patent/EP3919748A4/en
Publication of JP2020125693A publication Critical patent/JP2020125693A/ja
Application granted granted Critical
Publication of JP7242321B2 publication Critical patent/JP7242321B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D27/00Control, e.g. regulation, of pumps, pumping installations or pumping systems specially adapted for elastic fluids
    • F04D27/001Testing thereof; Determination or simulation of flow characteristics; Stall or surge detection, e.g. condition monitoring
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D19/00Axial-flow pumps
    • F04D19/02Multi-stage pumps
    • F04D19/04Multi-stage pumps specially adapted to the production of a high vacuum, e.g. molecular pumps
    • F04D19/042Turbomolecular vacuum pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D19/00Axial-flow pumps
    • F04D19/02Multi-stage pumps
    • F04D19/04Multi-stage pumps specially adapted to the production of a high vacuum, e.g. molecular pumps
    • F04D19/048Multi-stage pumps specially adapted to the production of a high vacuum, e.g. molecular pumps comprising magnetic bearings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D25/00Pumping installations or systems
    • F04D25/02Units comprising pumps and their driving means
    • F04D25/06Units comprising pumps and their driving means the pump being electrically driven
    • F04D25/0606Units comprising pumps and their driving means the pump being electrically driven the electric motor being specially adapted for integration in the pump
    • F04D25/0613Units comprising pumps and their driving means the pump being electrically driven the electric motor being specially adapted for integration in the pump the electric motor being of the inside-out type, i.e. the rotor is arranged radially outside a central stator
    • F04D25/0633Details of the magnetic circuit
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01KMEASURING TEMPERATURE; MEASURING QUANTITY OF HEAT; THERMALLY-SENSITIVE ELEMENTS NOT OTHERWISE PROVIDED FOR
    • G01K13/00Thermometers specially adapted for specific purposes
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R19/00Arrangements for measuring currents or voltages or for indicating presence or sign thereof
    • G01R19/165Indicating that current or voltage is either above or below a predetermined value or within or outside a predetermined range of values
    • G01R19/16533Indicating that current or voltage is either above or below a predetermined value or within or outside a predetermined range of values characterised by the application
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B23/00Testing or monitoring of control systems or parts thereof
    • G05B23/02Electric testing or monitoring
    • G05B23/0205Electric testing or monitoring by means of a monitoring system capable of detecting and responding to faults
    • G05B23/0218Electric testing or monitoring by means of a monitoring system capable of detecting and responding to faults characterised by the fault detection method dealing with either existing or incipient faults
    • G05B23/0224Process history based detection method, e.g. whereby history implies the availability of large amounts of data
    • G05B23/0227Qualitative history assessment, whereby the type of data acted upon, e.g. waveforms, images or patterns, is not relevant, e.g. rule based assessment; if-then decisions
    • G05B23/0235Qualitative history assessment, whereby the type of data acted upon, e.g. waveforms, images or patterns, is not relevant, e.g. rule based assessment; if-then decisions based on a comparison with predetermined threshold or range, e.g. "classical methods", carried out during normal operation; threshold adaptation or choice; when or how to compare with the threshold
    • GPHYSICS
    • G08SIGNALLING
    • G08BSIGNALLING OR CALLING SYSTEMS; ORDER TELEGRAPHS; ALARM SYSTEMS
    • G08B21/00Alarms responsive to a single specified undesired or abnormal condition and not otherwise provided for
    • G08B21/18Status alarms
    • G08B21/182Level alarms, e.g. alarms responsive to variables exceeding a threshold
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2270/00Control
    • F05D2270/30Control parameters, e.g. input parameters
    • F05D2270/303Temperature
    • F05D2270/3032Temperature excessive temperatures, e.g. caused by overheating
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2270/00Control
    • F05D2270/30Control parameters, e.g. input parameters
    • F05D2270/335Output power or torque
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B23/00Testing or monitoring of control systems or parts thereof
    • G05B23/02Electric testing or monitoring
    • G05B23/0205Electric testing or monitoring by means of a monitoring system capable of detecting and responding to faults
    • G05B23/0259Electric testing or monitoring by means of a monitoring system capable of detecting and responding to faults characterized by the response to fault detection
    • G05B23/0283Predictive maintenance, e.g. involving the monitoring of a system and, based on the monitoring results, taking decisions on the maintenance schedule of the monitored system; Estimating remaining useful life [RUL]

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Automation & Control Theory (AREA)
  • Business, Economics & Management (AREA)
  • Emergency Management (AREA)
  • Non-Positive Displacement Air Blowers (AREA)
  • Structures Of Non-Positive Displacement Pumps (AREA)

Description

本発明は真空ポンプ及び真空ポンプの制御装置に係わり、特に回転翼の疲労具合を定量的かつ容易に判断できる指標を作成することで、回転翼交換の時期を的確に判断できる真空ポンプ及び真空ポンプの制御装置に関する。
近年のエレクトロニクスの発展に伴い、メモリや集積回路といった半導体の需要が急激に増大している。
これらの半導体は、きわめて純度の高い半導体基板に不純物をドープして電気的性質を与えたり、エッチングにより半導体基板上に微細な回路を形成したりなどして製造される。
そして、これらの作業は空気中の塵等による影響を避けるため高真空状態のチャンバ内で行われる必要がある。このチャンバの排気には、一般に真空ポンプが用いられているが、特に残留ガスが少なく、保守が容易等の点から真空ポンプの中の一つであるターボ分子ポンプが多用されている。
また、半導体の製造工程では、さまざまなプロセスガスを半導体の基板に作用させる工程が数多くあり、ターボ分子ポンプはチャンバ内を真空にするのみならず、これらのプロセスガスをチャンバ内から排気するのにも使用される。
ところで、プロセスガスは、反応性を高めるため高温の状態でチャンバに導入される場合がある。
そして、これらのプロセスガスは、排気される際に冷却されてある温度になると固体となり排気系に生成物を析出する場合がある。そして、この種のプロセスガスがターボ分子ポンプ内で低温となって固体状となり、ターボ分子ポンプ内部に付着して堆積する場合がある。
ターボ分子ポンプ内部にプロセスガスの析出物が堆積すると、この堆積物がポンプ流路を狭め、ターボ分子ポンプの性能を低下させる原因となる。
この問題を解決するために、従来はターボ分子ポンプのベース部等の外周にヒータや環状の水冷管を巻着させ、かつ例えばベース部等に温度センサを埋め込み、この温度センサの信号に基づきベース部の温度を一定の範囲の高温に保つようにヒータの加熱や水冷管による冷却の制御が行われている(特許文献1、特許文献2、特許文献3を参照)。
この制御温度は高い方が生成物が堆積し難いため、この温度は可能な限り高くすることが望ましい。
一方、このようにベース部を高温にした際には、回転翼は、排気負荷の変動や周囲温度が高温に変化した場合等には限界温度を超えるおそれがある。
このような弊害を防止するためベース部内には例えば放射性の温度計が設置され常時回転翼の温度を測定し、その温度が一定時間予め定められたしきい値を超えた状態で運転している場合には警告が行われたり、その温度を更に超えた状態で例えば30秒間継続して運転がされたような状況のときにはポンプの停止がされる。
そして、これらの作業下ではポンプは一旦運転されると例えば1-5年間運転が継続される等、ポンプのオーバーホールメンテナンス時以外は停止される機会は少ない。
このため、通常はターボ分子ポンプのオーバーホールメンテナンスの機会に、回転翼交換の必要性を判断している。その際、目視で判断できる損傷や変色以外に、制御回路に記録されたポンプの累積稼働時間を判断項目として利用している。
特開2002-257079号公報 特許第5782378号公報 WO2010/021307A1
しかしながら、同じ累積稼動時間の回転翼でも、実際には、稼働中のガス負荷により、回転翼に作用する応力が異なるため、回転翼の疲労度合いが大きく異なる場合がある。また、稼働中の温度も無視できず、高温で稼動しているほど、回転翼の疲労度合いは大きい。
制御回路に記録されたポンプの累積稼動時間の情報だけでは、これらガス負荷や温度の情報は含まれていないため、それなりの精度でしか、回転翼交換の必要性を判断できない。
その結果、メーカとしては、安全側に判断して早期交換を推奨するが、顧客に納得してもらうことは容易ではない。
また、上述した判断項目だけでは回転翼の疲労具合を適正に判断するのには不十分な可能性がある。例えば、しきい値の温度を超えたり、下がったりを30秒以内に繰り返し行っているような状況が仮にあったとすると、ポンプ異常としては検出できないまでも回転翼には相当の疲労度が蓄積されているという状況が推定される。
更に、温度センサからのサンプリングが例えば0.5秒に1回行われたとすると、1-5年間運転中にこの温度データをずっと蓄積し続けることは膨大なデータ量となる。このデータ量について解析を行うことは解析に要する負荷も大変である。このため、制御回路に搭載のCPUに対し余り負荷のかからない状態で回転翼の疲労具合の解析を行うことが望まれる。
そこで、累積稼働時間以外にも回転翼の疲労具合を定量的かつ容易に判断できる指標を作成することが望まれる。
本発明はこのような従来の課題に鑑みてなされたもので、回転翼の疲労具合を定量的かつ容易に判断できる指標を作成することで、回転翼交換の時期を的確に判断できる真空ポンプ及び真空ポンプの制御装置を提供することを目的とする。
このため本発明(請求項1)は、回転翼交換の時期を判断可能な真空ポンプであって、前記真空ポンプは、真空ポンプ本体に内蔵された回転翼と、前記真空ポンプ本体に配設され、前記回転翼に関連した物理量を計測するセンサとを有し、前記真空ポンプの稼働中に前記センサで計測された前記物理量を抽出する物理量抽出手段と、該物理量抽出手段で抽出される前記物理量の変動範囲を予め複数の段階に設定する設定手段と、前記真空ポンプの稼働中に前記段階毎に前記物理量が属していたときの合計時間と全段階の合計時間を取得する時間取得手段と、該時間取得手段で取得した前記段階毎の合計時間と前記全段階の合計時間を保存する保存手段と、該保存手段で保存した前記段階毎の合計時間を表示、若しくは、前記全段階の合計時間に対する前記段階毎の合計時間の比率を表示する表示手段とを備え、前記センサは、前記回転翼の温度を計測する温度計測手段、及び前記回転翼を駆動するモータに流れる電流量を計測する電流量計測手段であることを特徴とする
センサで計測された回転翼に関連した物理量を抽出する。設定手段では物理量の変動範囲を予め複数の段階に設定する。そして、それぞれの段階に物理量が属している合計時間と全段階の合計時間を取得する。取得した段階毎の合計時間や、全段階の合計時間に対する段階毎の合計時間の比率を表示する。
このことにより、物理量の段階毎の積算時間若しくは比率という少ない数値だけで、回転翼の交換の必要性を客観的かつ正確に判断することができる。また、この数値により、真空ポンプ内部にプロセスガスの析出物が堆積する量についても指針にできる。
温度計測手段と電流量計測手段とはポンプの保護機能処理に使用される。この保護機能としての利用と併用して回転翼のオーバーホール時期の判断にも使える。
また、本発明(請求項2)は、前記時間取得手段で取得された前記段階毎の合計時間を所定のしきい値と比較する比較手段と、該比較手段での比較の結果に基づき警告を発する警告発生手段とを備えて構成した。
カウントされた時間の積算値からオーバーホールが必要か否かを判断し、回転翼のオーバーホールを促す旨を通知することができる。このようにオーバーホールを促す警告を通知することで、回転体破損事故の予防が期待できる。
更に、本発明(請求項)は、真空ポンプ本体に内蔵された回転翼と、前記真空ポンプ本体に配設され、前記回転翼に関連した物理量を計測するセンサとを有する真空ポンプの制御装置であって、前記真空ポンプの稼働中に前記センサで計測された前記物理量を抽出する物理量抽出手段と、該物理量抽出手段で抽出される前記物理量の変動範囲を予め複数の段階に設定する設定手段と、前記真空ポンプの稼働中に前記段階毎に前記物理量が属していたときの合計時間と全段階の合計時間を取得する時間取得手段と、該時間取得手段で取得した前記段階毎の合計時間と前記全段階の合計時間を保存する保存手段と、該保存手段で保存した前記段階毎の合計時間を表示、若しくは、前記全段階の合計時間に対する前記段階毎の合計時間の比率を表示する表示手段とを備え、前記センサは、前記回転翼の温度を計測する温度計測手段、及び前記回転翼を駆動するモータに流れる電流量を計測する電流量計測手段であり、前記表示手段で表示された前記段階毎の合計時間若しくは前記比率に基づき前記回転翼の交換の時期が判断可能なことを特徴とする。
以上説明したように本発明(請求項1)によれば、真空ポンプの稼働中に段階毎に物理量が属していたときの合計時間と全段階の合計時間を取得する時間取得手段と、段階毎の合計時間を表示、若しくは、全段階の合計時間に対する段階毎の合計時間の比率を表示するように構成したので、物理量の各段階毎の積算時間若しくは比率という少ない数値だけで、回転翼の交換の必要性を客観的かつ正確に判断することができる。また、この数値により、真空ポンプ内部にプロセスガスの析出物が堆積する量についても指針にできる。
本発明の実施形態の回転翼交換の必要度判定に関するシステム構成図 ターボ分子ポンプの構成図 本実施形態である回転翼交換の必要度判定のフローチャート モータ駆動電流時間サブルーチン 翼温度時間サブルーチン 回転翼温度値を5段階とする例 オーバーホールを促す警告を通知する方法を示すフローチャート
以下、本発明の実施形態について説明する。本発明の実施形態である回転翼交換の必要度判定に関するシステム構成図を図1に、また、図2に、ターボ分子ポンプの構成図を示す。
図1において、制御装置200はポンプ本体100と別体で記載されているが、ターボ分子ポンプは、ポンプ本体100と制御装置200とが一体化されていても本実施形態の適用は可能である。
制御装置200には、ポンプ本体100に備えられた磁気軸受(104、105、106)の浮上制御を行う磁気軸受制御部3とモータ121の回転制御を行うモータ駆動制御部5が配設されている。回転翼温度計測部7は回転翼温度センサ9で回転体103の温度を非接触に測定した信号を受信するようになっている。磁気軸受制御部3からは回転体103の浮上位置等が出力され、保護機能処理部11に入力されるようになっている。そして、この保護機能処理部11では回転体103の浮上位置等に異常があったときに警告やポンプ停止が行われるようになっている。
モータ駆動制御部5からは回転体103の回転速度値やモータ電流値が出力され、保護機能処理部11に入力されるようになっている。そして、保護機能処理部11では回転体103の回転速度値やモータ電流値に異常があったときに警告やポンプ停止が行われるようになっている。また、モータ駆動制御部5から出力されたモータ電流値は時間カウント処理部13に入力され、この時間カウント処理部13において電流値の段階毎に回転体103の電流値がその段階の範囲内に留まっていた時間が積算されるようになっている。
回転翼温度計測部7からは回転翼温度値が出力され、保護機能処理部11に入力されるようになっている。そして、この保護機能処理部11では回転翼温度値に異常があったときに警告やポンプ停止が行われるようになっている。また、回転翼温度計測部7から出力された回転翼温度値は時間カウント処理部13に入力される。そして、サンプリング取得された回転翼温度値は1分間の平均値が取られる。その後、その平均値が回転翼温度値の段階毎に、その範囲内に留まっていた時間が積算されるようになっている。
そして、メモリ15では時間カウント処理部13で積算された各時間値が保存されるようになっている。記憶処理部17では例えば、ポンプの減速停止時、若しくは2時間毎にメモリ15からデータが読まれ、不揮発メモリ19に保存されるようになっている。
図2において、ポンプ本体100の円筒状の外筒127の上端には吸気口101が形成されている。外筒127の内方には、ガスを吸引排気するためのタービンブレードによる複数の回転翼102a、102b、102c・・・を周部に放射状かつ多段に形成した回転体103を備える。
この回転体103の中心にはロータ軸113が取り付けられており、このロータ軸113は、例えば、いわゆる5軸制御の磁気軸受により空中に浮上支持かつ位置制御されている。
上側径方向電磁石104は、4個の電磁石が、ロータ軸113の径方向の座標軸であって互いに直交するX軸とY軸とに対をなして配置されている。この上側径方向電磁石104に近接かつ対応されて4個の電磁石からなる上側径方向センサ107が備えられている。この上側径方向センサ107はロータ軸113の径方向変位を検出し、制御装置200に送るように構成されている。
制御装置200の磁気軸受制御部3においては、上側径方向センサ107が検出した変位信号に基づき、PID調節機能を有する補償回路を介して上側径方向電磁石104の励磁を制御し、ロータ軸113の上側の径方向位置を調整する。
ロータ軸113は、高透磁率材(鉄など)などにより形成され、上側径方向電磁石104の磁力により吸引されるようになっている。かかる調整は、X軸方向とY軸方向とにそれぞれ独立して行われる。
また、下側径方向電磁石105及び下側径方向センサ108が、上側径方向電磁石104及び上側径方向センサ107と同様に配置され、磁気軸受制御部3によりロータ軸113の下側の径方向位置を上側の径方向位置と同様に調整している。
更に、軸方向電磁石106A、106Bが、ロータ軸113の下部に備えた円板状の金属ディスク111を上下に挟んで配置されている。金属ディスク111は、鉄などの高透磁率材で構成されている。ロータ軸113の軸方向変位を検出するために図示しない軸方向センサが備えられ、その軸方向変位信号が制御装置200の磁気軸受制御部3に送られるように構成されている。
そして、軸方向電磁石106A、106Bは、この軸方向変位信号に基づき磁気軸受制御部3のPID調節機能を有する補償回路を介して励磁制御されるようになっている。軸方向電磁石106Aと軸方向電磁石106Bは、磁力により金属ディスク111をそれぞれ上方と下方とに吸引する。
このように、制御装置200の磁気軸受制御部3においては、この軸方向電磁石106A、106Bが金属ディスク111に及ぼす磁力を適当に調節し、ロータ軸113を軸方向に磁気浮上させ、空間に非接触で保持するようになっている。
モータ121は、ロータ軸113を取り囲むように周状に配置された複数の磁極を備えている。各磁極は、ロータ軸113との間に作用する電磁力を介してロータ軸113を回転駆動するように、モータ駆動制御部5によって制御されている。
回転翼102a、102b、102c・・・とわずかの空隙を隔てて複数枚の固定翼123a、123b、123c・・・が配設されている。回転翼102a、102b、102c・・・は、それぞれ排気ガスの分子を衝突により下方向に移送するため、ロータ軸113の軸線に垂直な平面から所定の角度だけ傾斜して形成されている。
また、固定翼123も、同様にロータ軸113の軸線に垂直な平面から所定の角度だけ傾斜して形成され、かつ外筒127の内方に向けて回転翼102の段と互い違いに配設されている。
そして、固定翼123の一端は、複数の段積みされた固定翼スペーサ125a、125b、125c・・・の間に嵌挿された状態で支持されている。
固定翼スペーサ125はリング状の部材であり、例えばアルミニウム、鉄、ステンレス、銅などの金属、又はこれらの金属を成分として含む合金などの金属によって構成されている。
固定翼スペーサ125の外周には、わずかの空隙を隔てて外筒127が固定されている。外筒127の底部にはベース部129が配設され、固定翼スペーサ125の下部とベース部129の間にはネジ付きスペーサ131が配設されている。そして、ベース部129中のネジ付きスペーサ131の下部には排気口133が形成され、外部に連通されている。
ネジ付きスペーサ131は、アルミニウム、銅、ステンレス、鉄、又はこれらの金属を成分とする合金などの金属によって構成された円筒状の部材であり、その内周面に螺旋状のネジ溝131aが複数条刻設されている。
ネジ溝131aの螺旋の方向は、回転体103の回転方向に排気ガスの分子が移動したときに、この分子が排気口133の方へ移送される方向である。
回転体103の回転翼102a、102b、102c・・・に続く最下部には円筒部102dが垂下されている。この円筒部102dの外周面は、円筒状で、かつネジ付きスペーサ131の内周面に向かって張り出されており、このネジ付きスペーサ131の内周面と所定の隙間を隔てて近接されている。
ベース部129は、ターボ分子ポンプのポンプ本体100の基底部を構成する円盤状の部材であり、一般には鉄、アルミニウム、ステンレスなどの金属によって構成されている。
ベース部129はポンプ本体100を物理的に保持すると共に、熱の伝導路の機能も兼ね備えているので、鉄、アルミニウムや銅などの剛性があり、熱伝導率も高い金属が使用されるのが望ましい。
かかる構成において、回転翼102がモータ121により駆動されてロータ軸113と共に回転すると、回転翼102と固定翼123の作用により、吸気口101を通じてチャンバからの排気ガスが吸気される。
吸気口101から吸気された排気ガスは、回転翼102と固定翼123の間を通り、ベース部129へ移送される。このとき、排気ガスが回転翼102に接触又は衝突する際に生ずる摩擦熱や、モータ121で発生した熱の伝導や輻射などにより、回転翼102の温度は上昇するが、この熱は、輻射又は排気ガスの気体分子等による伝導により固定翼123側に伝達される。
固定翼スペーサ125は、外周部で互いに接合しており、固定翼123が回転翼102から受け取った熱や排気ガスが固定翼123に接触又は衝突する際に生ずる摩擦熱などを外筒127やネジ付きスペーサ131へと伝達する。
ネジ付きスペーサ131に移送されてきた排気ガスは、ネジ溝131aに案内されつつ排気口133へと送られる。
また、吸気口101から吸引されたガスがモータ121、下側径方向電磁石105、下側径方向センサ108、上側径方向電磁石104、上側径方向センサ107などで構成される電装部側に侵入することのないよう、電装部は周囲をステータコラム122で覆われ、この電装部内はパージガスにて所定圧に保たれている。
このステータコラム122の外径部で、かつ排気口133の近傍には回転翼温度センサ9が設置されている。
次に、本実施形態の作用について説明する。
本実施形態では、回転翼交換の判定の指標を作成するため累積稼動時間情報を備える。そして、この累積稼動時間情報として特定の条件を満足する時間を定義し、その累積時間を記録するものである。具体的には、次の2項目に条件を設定する。
(1)ガス負荷の傾向を判断できるモータ121へ供給している電流値に関し、この電流値がある規定値を超えている累積時間を記録する。
(2)異常検知に利用している回転翼102の温度値に関し、この温度値がある規定値を超えている累積時間を記録する。
なお、近年の半導体プロセス装置では、複雑なレシピでターボ分子ポンプが利用されるので、その利用状況の傾向を示すために、前述の規定値を複数段階的に設定し、各段階に留まっていた時間の累積値を記録する。
例えば、モータ121へ供給している電流値のレベルとして、電流値の多い順に多/中/少の3段階を設定する。ここに、多/中/少の3段階としたのは説明を分かりやすくするためであり、より多段階とするのが望ましい。この点は、後述する回転翼温度値の設定についても同様である。
「多」は電流値が大きく、警報のレベルや異常のレベルを含む通常の運転としては期待されていない電流値の範囲である。警報やポンプの運転停止となるには規定の電流値を超えた状態が例えば30秒間継続することが条件になっている。このため、警報のレベルや異常のレベルに留まっていた時間が数秒等短時間である場合には警報やポンプの停止に迄は至らないが、負荷が異常に多くかかることでこのような状況が繰り返し累積されると回転翼102は疲労することが想定される。この回転翼102の疲労具合は「多」にいた時間の累積をもって指標とすることができる。
「中」はポンプとして通常の稼働状況であり運転が期待されている電流値の範囲である。この運転が期待されている電流値の範囲はポンプ毎に決められる。「少」は負荷が軽いか、回転体103が磁気浮上しているがモータ121の回転がされていない状況である。
それぞれの段階に留まっていた時間の累積値を記録した場合、累積稼動時間を100%として、例えば、[多 10%/中 70%/少 20%]の記録を持つポンプは、ガス負荷の変動が少なく、さほど負荷が大きくない稼動状況で利用されていたと判断できる。
一方、[多 50%/中 40%/少 10%]の記録を持つポンプは、ガス負荷変動が多く、かつ、負荷も大きい稼動状況で利用されていたと判断できる。
もし、累積稼動時間が同じならば、後者の方が、回転翼102の疲労度合いが大きいポンプと判断できる。累積稼動時間が異なっている場合でも、供給電流レベル「多」で利用されていた累積時間が記録されていることが、その値からも疲労度合いを判断できる。
なお、回転翼温度値も同様に、異常検出には至らない温度範囲を、高/中/低の3段階のレベルを設定し、それぞれの段階に留まっていた時間の累積値の記録より、回転翼102の疲労度合いを判断できる。
次に、本実施形態の作用をフローチャートに基づき説明する。
図3に本実施形態である回転翼交換の必要度判定のフローチャートを示す。このフローチャートは時間カウント処理部13において動作する。時間カウント処理部13は時間取得手段に相当する。
図3において、ステップ1(図中S1と略す。以下、同様)では、例えば1分毎にタイマの割り込みがされステップ2以降の処理が行われる。ステップ2では累積通電時間カウンタをカウントアップする。このカウントアップは累積通電時間カウンタの数値を一つ増加(以下、インクリメントと言う)することで行う(以下、同旨)。累積通電時間カウンタは、制御電源がオンされている状態での通電時間のカウントであって、回転翼102が回転されずに磁気軸受制御部3で浮上支持されている状態でもカウントされる。この通電時間のカウント数に対しタイマの割り込み時間を掛けた値が全段階の合計時間に相当する。ステップ3ではポンプが回転中か否かを判断し、回転中と判断したときにはステップ4に進み、累積稼働時間カウンタをカウントアップする。
一方、ステップ3でポンプが回転中でないと判断されたときにはステップ10のモータ駆動電流時間サブルーチンに進み、段階毎のモータ駆動電流の積算時間が計測される。その後、続けてステップ20では翼温度時間サブルーチンに進み、段階毎の翼温度の積算時間が計測される。この段階毎のモータ駆動電流の積算時間と段階毎の翼温度の積算時間とは、段階毎に物理量が属していたときの合計時間に相当する。
図4のモータ駆動電流時間サブルーチンについて説明する。
ステップ11では、モータ駆動制御部5から出力されたモータ電流値が予め設定されたレベル大よりも大きいか否かが判断される。そして、レベル大よりも大きい場合にはステップ12に進み、電流「多」カウンタをカウントアップした後ステップ20に進む。一方、ステップ11でモータ電流値が予め設定されたレベル大以下のときにはステップ13に進み、モータ電流値が予め設定されたレベル中よりも大きいか否かが判断される。そして、レベル中よりも大きい場合にはステップ14に進み、電流「中」カウンタをカウントアップした後ステップ20に進む。一方、ステップ13でモータ電流値が予め設定されたレベル中以下のときにはステップ20に進む。
電流「少」のカウントは行わないが、これは累積通電時間カウンタのカウント値から電流「多」カウンタのカウント値と電流「中」カウンタのカウント値を引けば得られるためである。
このことにより、1分毎に、計測されたモータ電流値が電流「多」、電流「中」、電流「少」のいずれの段階にいるのかが判断され、該当する段階に対しインクリメントにより積算される。
カウント値に1分を掛ければ積算された時間が算出できる。この時間データを段階毎に表示する。また、この段階毎に積算された時間同士の比率をそれら全段階の合計時間を100%として算出し表示するようにしてもよい。
このことにより、電流「多」、電流「中」、電流「少」毎の積算時間若しくは比率という3つの数値だけで、回転翼102の交換の必要性を客観的かつ正確に判断することができる。また、この数値により、ターボ分子ポンプ内部にプロセスガスの析出物が堆積する量についても指針にできる。
次に、図5の翼温度時間サブルーチンについて説明する。
ステップ21では、回転翼温度計測部7から出力された回転翼温度値が予め設定されたレベル高の温度値よりも高いか否かが判断される。そして、レベル高の温度値よりも高い場合にはステップ22に進み、翼温度「高」カウンタをカウントアップする。その後ステップ30に進みこのタイマ割り込み処理を終了する。一方、ステップ21で回転翼温度値が予め設定されたレベル高の温度値以下のときにはステップ23に進み、回転翼温度値が予め設定されたレベル中の温度値よりも高いか否かが判断される。そして、レベル中の温度値よりも高い場合にはステップ24に進み、翼温度「中」カウンタをカウントアップする。その後ステップ30に進みこのタイマ割り込み処理を終了する。一方、ステップ23で回転翼温度値が予め設定されたレベル中の温度値以下のときにはステップ30に進みタイマ割り込み処理を終了する。
翼温度「低」のカウントは行わないが、これは累積通電時間カウンタのカウント値から翼温度「高」カウンタのカウント値と翼温度「中」カウンタのカウント値を引けば得られるためである。
このことにより、1分毎に、計測された回転翼温度値が翼温度「高」、翼温度「中」、翼温度「低」のいずれの段階にいるのかが判断され、該当する段階に対しインクリメントにより積算される。
従って、モータ電流値のときと同様に、翼温度「高」、翼温度「中」、翼温度「低」毎の積算時間若しくは比率という3つの数値だけで、回転翼102の交換の必要性を客観的かつ正確に判断することができる。また、これらのデータは、顧客を説得する情報としても利用できる。
図5の翼温度時間サブルーチンは3段階の回転翼温度値で説明をしたが、図6に回転翼温度値を5段階とする例を示す。
図6において、回転翼温度値に関し、高温過熱警告検知の温度を例えば135℃に設定したとする。この温度に達したときには警告が発せられる。この警告解除はヒステリシスを持たせるため130℃に設定がされる。また、高温過熱異常検知の温度を例えば145℃に設定したとする。この温度に達したときには例えば30秒間この状態が継続された後にポンプの停止指令が発せられる。この異常解除はヒステリシスを持たせるため140℃に設定がされる。
ここに、翼温度カウンタのレベルは、このように回転翼102の安全管理上設定された温度値に合わせる形で5段階を用意する。即ち、高温過熱警告検知の温度135℃から高温過熱異常検知の温度145℃までをレベル4とし、高温過熱異常検知の温度145℃以上をレベル5とする。なお、回転翼温度値が90℃以上135℃未満をレベル3としたのは、この温度範囲がポンプ運用上期待している稼働範囲だからである。また、回転翼温度値が40℃以上90℃未満をレベル2としたのは、この温度範囲が運用上負荷が余りかかっていない余裕のある運転状況の範囲だからである。更に、回転翼温度値が40℃未満をレベル1としたのは、この温度範囲では、回転翼102が回転せずに磁気浮上で浮いている状態だからである。
このように回転翼温度値を5段階に設定することで回転翼102の交換の必要性をより客観的かつ正確に判断することができる。この点は、段階を更に増やすことでより一層客観的かつ正確な判断を行うことができる。
次に、オーバーホールを促す警告を通知する方法を図7に基づき説明する。なお、図4と同一要素については、同一の符号を付して説明を省略する。図7では、ステップ12において電流「多」カウンタをカウントアップした後ステップ15に進む。ステップ15では、電流「多」カウンタのカウント値が予め定めた警告しきい値を超えているか否かが判断される。そして、警告しきい値を超えている場合には、ステップ16で回転体疲労大警告通知が発せられる。
このことにより、1分毎に電流「多」カウンタのカウント値からオーバーホールが必要か否かを判断し、オーバーホールを促す旨を通知することができる。このようにオーバーホールを促す警告を通知することで、回転体破損事故の予防が期待できる。
なお、本発明は、本発明の精神を逸脱しない限り種々の改変をなすことができ、そして、本発明が当該改変されたものにも及ぶことは当然である。
3 磁気軸受制御部
5 モータ駆動制御部
7 回転翼温度計測部
9 回転翼温度センサ
11 保護機能処理部
13 時間カウント処理部(時間取得手段)
15 メモリ
17 記憶処理部
19 不揮発メモリ
100 ポンプ本体
102 回転翼
103 回転体
104 上側径方向電磁石
105 下側径方向電磁石
106A、106B 軸方向電磁石
121 モータ
200 制御装置

Claims (3)

  1. 回転翼交換の時期を判断可能な真空ポンプであって、
    前記真空ポンプは、
    真空ポンプ本体に内蔵された回転翼と、
    前記真空ポンプ本体に配設され、前記回転翼に関連した物理量を計測するセンサとを有し、
    前記真空ポンプの稼働中に前記センサで計測された前記物理量を抽出する物理量抽出手段と、
    該物理量抽出手段で抽出される前記物理量の変動範囲を予め複数の段階に設定する設定手段と、
    前記真空ポンプの稼働中に前記段階毎に前記物理量が属していたときの合計時間と全段階の合計時間を取得する時間取得手段と、
    該時間取得手段で取得した前記段階毎の合計時間と前記全段階の合計時間を保存する保存手段と、
    該保存手段で保存した前記段階毎の合計時間を表示、若しくは、前記全段階の合計時間に対する前記段階毎の合計時間の比率を表示する表示手段とを備え
    前記センサは、前記回転翼の温度を計測する温度計測手段、及び前記回転翼を駆動するモータに流れる電流量を計測する電流量計測手段であることを特徴とする真空ポンプ。
  2. 前記時間取得手段で取得された前記段階毎の合計時間を所定のしきい値と比較する比較手段と、
    該比較手段での比較の結果に基づき警告を発する警告発生手段とを備えたことを特徴とする請求項1記載の真空ポンプ。
  3. 真空ポンプ本体に内蔵された回転翼と、
    前記真空ポンプ本体に配設され、前記回転翼に関連した物理量を計測するセンサとを有する真空ポンプの制御装置であって、
    前記真空ポンプの稼働中に前記センサで計測された前記物理量を抽出する物理量抽出手段と、
    該物理量抽出手段で抽出される前記物理量の変動範囲を予め複数の段階に設定する設定手段と、
    前記真空ポンプの稼働中に前記段階毎に前記物理量が属していたときの合計時間と全段階の合計時間を取得する時間取得手段と、
    該時間取得手段で取得した前記段階毎の合計時間と前記全段階の合計時間を保存する保存手段と、
    該保存手段で保存した前記段階毎の合計時間を表示、若しくは、前記全段階の合計時間に対する前記段階毎の合計時間の比率を表示する表示手段とを備え、
    前記センサは、前記回転翼の温度を計測する温度計測手段、及び前記回転翼を駆動するモータに流れる電流量を計測する電流量計測手段であり、
    前記表示手段で表示された前記段階毎の合計時間若しくは前記比率に基づき前記回転翼の交換の時期が判断可能なことを特徴とする制御装置。
JP2019017117A 2019-02-01 2019-02-01 真空ポンプ及び真空ポンプの制御装置 Active JP7242321B2 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2019017117A JP7242321B2 (ja) 2019-02-01 2019-02-01 真空ポンプ及び真空ポンプの制御装置
PCT/JP2020/002745 WO2020158658A1 (ja) 2019-02-01 2020-01-27 真空ポンプ及び真空ポンプの制御装置
US17/423,397 US11971042B2 (en) 2019-02-01 2020-01-27 Vacuum pump and control device for vacuum pump
CN202080009751.3A CN113348305A (zh) 2019-02-01 2020-01-27 真空泵以及真空泵的控制装置
EP20748915.4A EP3919748A4 (en) 2019-02-01 2020-01-27 VACUUM PUMP AND CONTROL DEVICE FOR VACUUM PUMP

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019017117A JP7242321B2 (ja) 2019-02-01 2019-02-01 真空ポンプ及び真空ポンプの制御装置

Publications (2)

Publication Number Publication Date
JP2020125693A JP2020125693A (ja) 2020-08-20
JP7242321B2 true JP7242321B2 (ja) 2023-03-20

Family

ID=71840054

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019017117A Active JP7242321B2 (ja) 2019-02-01 2019-02-01 真空ポンプ及び真空ポンプの制御装置

Country Status (5)

Country Link
US (1) US11971042B2 (ja)
EP (1) EP3919748A4 (ja)
JP (1) JP7242321B2 (ja)
CN (1) CN113348305A (ja)
WO (1) WO2020158658A1 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2022021844A (ja) 2020-07-22 2022-02-03 キヤノン株式会社 通信装置、制御方法、及び、プログラム

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009074512A (ja) 2007-09-25 2009-04-09 Shimadzu Corp ターボ分子ポンプ
JP2018003615A (ja) 2016-06-28 2018-01-11 株式会社島津製作所 ロータ寿命推定装置および真空ポンプ

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3681033B2 (ja) * 1997-11-17 2005-08-10 株式会社小松製作所 エンジン並びに熱源を有する機械の寿命予測装置
JP3874993B2 (ja) * 2000-05-18 2007-01-31 アルプス電気株式会社 ターボ分子ポンプ
JP2002048088A (ja) * 2000-07-31 2002-02-15 Seiko Instruments Inc 真空ポンプ
US6793466B2 (en) * 2000-10-03 2004-09-21 Ebara Corporation Vacuum pump
JP2002155891A (ja) * 2000-11-22 2002-05-31 Seiko Instruments Inc 真空ポンプ
JP4657463B2 (ja) * 2001-02-01 2011-03-23 エドワーズ株式会社 真空ポンプ
JP2002257079A (ja) 2001-02-27 2002-09-11 Koyo Seiko Co Ltd ターボ分子ポンプ
JP4184638B2 (ja) * 2001-08-31 2008-11-19 株式会社東芝 半導体製造装置の寿命診断方法
US20030175112A1 (en) * 2002-03-13 2003-09-18 Hirotaka Namiki Vacuum pump system and vacuum pump RPM control method
WO2010021307A1 (ja) 2008-08-19 2010-02-25 エドワーズ株式会社 真空ポンプ
FI125797B (fi) * 2009-01-09 2016-02-29 Metso Flow Control Oy Menetelmä ja laitteisto venttiilin kunnonvalvontaan
JP5782378B2 (ja) 2009-08-21 2015-09-24 エドワーズ株式会社 真空ポンプ
US9677990B2 (en) * 2014-04-30 2017-06-13 Particles Plus, Inc. Particle counter with advanced features

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009074512A (ja) 2007-09-25 2009-04-09 Shimadzu Corp ターボ分子ポンプ
JP2018003615A (ja) 2016-06-28 2018-01-11 株式会社島津製作所 ロータ寿命推定装置および真空ポンプ

Also Published As

Publication number Publication date
WO2020158658A1 (ja) 2020-08-06
EP3919748A4 (en) 2022-11-02
US20220074421A1 (en) 2022-03-10
JP2020125693A (ja) 2020-08-20
US11971042B2 (en) 2024-04-30
CN113348305A (zh) 2021-09-03
EP3919748A1 (en) 2021-12-08

Similar Documents

Publication Publication Date Title
EP2469096B1 (en) Vacuum pump
CN112219034B (zh) 真空泵及温度控制装置
JP7242321B2 (ja) 真空ポンプ及び真空ポンプの制御装置
US10578158B2 (en) Vacuum pump and abnormality cause estimating method for vacuum pump
US20230151826A1 (en) Vacuum pump and controller
JP2003278692A (ja) 真空ポンプ
US11549515B2 (en) Vacuum pump, temperature adjustment controller used for vacuum pump, inspection tool, and method of diagnosing temperature-adjustment function unit
EP4108929A1 (en) Vacuum pump and controller
CN113653658A (zh) 真空泵
WO2023112998A1 (ja) 真空ポンプ及び制御装置
WO2023095851A1 (ja) 真空ポンプ及び制御装置
CN118265850A (en) Vacuum pump and control device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20211221

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20221011

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20221116

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230214

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230308

R150 Certificate of patent or registration of utility model

Ref document number: 7242321

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150