JP7237654B2 - Automatic combustion control method for garbage incinerator - Google Patents

Automatic combustion control method for garbage incinerator Download PDF

Info

Publication number
JP7237654B2
JP7237654B2 JP2019037809A JP2019037809A JP7237654B2 JP 7237654 B2 JP7237654 B2 JP 7237654B2 JP 2019037809 A JP2019037809 A JP 2019037809A JP 2019037809 A JP2019037809 A JP 2019037809A JP 7237654 B2 JP7237654 B2 JP 7237654B2
Authority
JP
Japan
Prior art keywords
waste
incinerator
garbage
concentration
amount
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2019037809A
Other languages
Japanese (ja)
Other versions
JP2020139720A (en
Inventor
健司 中神
正二 泉
一栄 柴田
孝輔 眞田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanki Engineering Co Ltd
Original Assignee
Sanki Engineering Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanki Engineering Co Ltd filed Critical Sanki Engineering Co Ltd
Priority to JP2019037809A priority Critical patent/JP7237654B2/en
Publication of JP2020139720A publication Critical patent/JP2020139720A/en
Application granted granted Critical
Publication of JP7237654B2 publication Critical patent/JP7237654B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Incineration Of Waste (AREA)

Description

本発明は、ごみ焼却場におけるごみ焼却炉の自動燃焼制御方法に関する。 The present invention relates to an automatic combustion control method for a waste incinerator in a waste incineration plant.

事業所や家庭等から廃棄されたごみは、各地域に設けられたごみ焼却場に搬送され、焼却処理されて清浄化された排ガスや焼却灰として処分される。
ごみ焼却場には多種多様なごみ(紙、繊維、プラスチック、水分を多く含んだ生ごみなど)が搬入され、(焼却)処理されている。しかし、それらの性状は一様でなく組成も不明なため、ごみ焼却場の焼却炉内の燃焼状態(燃焼炉内温度や排ガス濃度)は、投入されるごみの組成・熱量(ごみ質)によって大きく変動し、焼却炉で安定して燃焼させることが難しい。
一般的なごみ焼却炉は、図9に示すように燃焼温度と排ガス性状を制御しごみを焼却している。
[1]一次空気吹き込み:ごみ焼却炉1のごみ燃焼室2内のストーカ6の真下から空気送風機7で空気を送り込みごみを燃焼させる。
[2]ごみ汚水噴霧+汚水噴霧用空気吹き込み:貯留しているごみから染み出した汚水(ごみ汚水)を処分するために、空気とともにごみ汚水を前記ごみ燃焼室2内へ吹き込み、燃焼させる。
[3]排ガス再循環(EGR:Exhaust Gas Recirculation):前記ごみ燃焼室2から排出された排ガスの一部を焼却炉に戻し、局所的な高温燃焼を抑制することで、NOx(窒素酸化物)の生成を抑える。
[4]補助燃料+補助燃料用空気投入:熱量の小さなごみがごみ燃焼室2に投入され焼却炉内の温度が低下した場合に、焼却炉内の温度を上げるためごみ焼却炉内に補助燃料(灯油等)と空気を投入する。
[5]二次空気吹き込み:排ガス中の未燃ガスを完全燃焼させるためと、排ガスの温度を低下させるためにごみ焼却炉2に二次空気を吹き込む。
[6]尿素水噴霧+尿素水噴霧用空気吹き付け:排ガスに尿素水を吹き付け、窒素酸化物を窒素と水に分解する。
[7]冷却水噴霧:冷却塔において排ガスに冷却水を吹き付けて排ガスの温度を下げる。
上記のように現状用いられている手法としては、焼却炉出口温度を参照し、焼却炉出口温度が目標値となるようにプッシャー速度やストーカ速度、燃焼用空気風量の調整を行い、焼却炉内の燃焼状態を制御する方法の他、様々な新たな手法も提案されている。
Garbage discarded from businesses, homes, etc. is transported to garbage incineration plants set up in each region, where it is incinerated and purified as exhaust gas and incineration ash.
A wide variety of waste (paper, textiles, plastics, food waste containing a lot of water, etc.) is brought into the waste incineration plant and (burned). However, since their properties are not uniform and their compositions are unknown, the combustion state (in-furnace temperature and flue gas concentration) in the incinerator of a waste incineration plant depends on the composition and amount of heat (waste quality) of the waste that is input. It fluctuates greatly and is difficult to burn stably in an incinerator.
A general garbage incinerator controls the combustion temperature and the properties of the exhaust gas to incinerate the garbage as shown in FIG.
[1] Primary air blowing: Air is blown by the air blower 7 from directly below the stoker 6 in the refuse combustion chamber 2 of the refuse incinerator 1 to burn the refuse.
[2] Garbage spraying + blowing of air for spraying sewage: In order to dispose of the sewage (garbage sewage) seeped out from the accumulated garbage, the garbage sewage is blown into the garbage combustion chamber 2 together with air and burned.
[3] Exhaust gas recirculation (EGR): Part of the exhaust gas discharged from the refuse combustion chamber 2 is returned to the incinerator to suppress local high-temperature combustion, thereby reducing NOx (nitrogen oxide) suppress the generation of
[4] Auxiliary fuel + air for auxiliary fuel: When garbage with a small calorific value is thrown into the garbage combustion chamber 2 and the temperature inside the incinerator drops, auxiliary fuel is added to the garbage incinerator to raise the temperature inside the incinerator. (kerosene, etc.) and air are introduced.
[5] Blowing of secondary air: Secondary air is blown into the refuse incinerator 2 in order to completely burn the unburned gas in the exhaust gas and to lower the temperature of the exhaust gas.
[6] Urea water spray + urea water spraying air: Spraying urea water on exhaust gas to decompose nitrogen oxides into nitrogen and water.
[7] Cooling water spraying: Cooling water is sprayed on the exhaust gas in the cooling tower to lower the temperature of the exhaust gas.
As mentioned above, the currently used method is to refer to the incinerator outlet temperature and adjust the pusher speed, stoker speed, and combustion air volume so that the incinerator outlet temperature reaches the target value. In addition to the method of controlling the combustion state of the fuel, various new methods have been proposed.

従来は、作業員が排ガスの温度や濃度の測定値を確認後、燃焼させるごみの量、燃焼用空気量を調整して、焼却炉内温度を安定させている。しかし、作業員の調整が反映されるまでに時間を要するため、焼却炉内における燃焼温度の調整処理が遅れる。なおかつ、反映までに時間を要するために、処理を施したごみ質と現在燃焼しているごみ質が異なってしまうことから焼却炉内の燃焼状態を常に一定に保つことは難しい。 Conventionally, after confirming the measured values of the temperature and concentration of exhaust gas, workers adjust the amount of waste to be burned and the amount of combustion air to stabilize the temperature inside the incinerator. However, since it takes time for the operator's adjustment to be reflected, the process of adjusting the combustion temperature in the incinerator is delayed. In addition, since it takes time to reflect the data, the quality of the treated waste and the quality of the waste currently being burned are different, so it is difficult to keep the combustion state in the incinerator constant.

本発明は、かかる観点に鑑みてなされたもので、予め焼却場に持ち込まれるごみの分析値のデータベース(ごみ質データベース)を作っておき、当該ごみ質データベースを使ってごみ焼却場の焼却炉内に投入したごみのごみ質を計算によって推算し特定し、当該特定されたごみ質に対応して焼却炉に吹き込む一次空気量(「一次空気吹込量」と称す。単に「一次空気量」と称すときもある。)を調整することで、ごみ焼却炉内の燃焼温度と排ガス性状を最適に制御し、排ガス中の有害成分の発生を抑制する自動燃焼制御方法を提供することを目的とするものである。
本発明に係るごみ焼却炉の自動燃焼制御方法は、ごみ焼却炉でごみを焼却処理するプロセスにおいて、以下の手順に基づき焼却炉の燃焼制御を行うことを特徴とする。
(1)ごみ質データベースを用いて焼却炉内で燃えているごみ質を特定する。
(2)特定されたごみ質に応じて一次空気の吹き込み量を制御する。
The present invention has been made in view of this point of view. A database (waste quality database) of analysis values of waste brought into an incineration plant is created in advance, and the waste quality database is used to The amount of primary air to be blown into the incinerator corresponding to the identified waste quality (referred to as "primary air blowing amount"; simply referred to as "primary air amount") The object of the present invention is to provide an automatic combustion control method that optimally controls the combustion temperature and exhaust gas properties in a waste incinerator and suppresses the generation of harmful components in the exhaust gas by adjusting the is.
An automatic combustion control method for a refuse incinerator according to the present invention is characterized in that, in a process of incinerating refuse in the refuse incinerator, combustion control of the incinerator is performed based on the following procedures.
(1) Use the waste quality database to identify the waste quality burning in the incinerator.
(2) Control the amount of primary air blown in accordance with the identified waste quality.

本発明者らは上記課題を下記の手段により解決した。
〈1〉ごみ焼却炉でごみを焼却処理するプロセスにおいて、以下の手順に基づき焼却炉に投入されたごみ質を特定し、当該特定されたごみ質に応じてごみ焼却炉に供給する一次空気吹込量を制御し、焼却炉の燃焼制御を行うことを特徴とするごみ焼却炉の自動燃焼制御方法。
ごみ焼却炉に投入され燃焼しているごみ質を次のステップに従って計算し推算する。
(R1)ごみ質データベースは、ごみの発熱量の順に並んでおり、前記ごみ質データベースから任意のごみ質を選び焼却炉で燃焼されたときに、発生する酸素濃度を計算式に従って計算値を出す。
(R2)ごみ焼却炉から排気された酸素濃度を測定し実測値を出す。
(R3)前記酸素濃度の計算値と実測値を比較する。
(R4)前記酸素濃度の計算値と実測値が所定の範囲内で一致するときは、ごみ質の特定を終え、前記酸素濃度の計算値と実測値を比較し酸素濃度の計算値と実測値が所定の範囲で異なっているときは、前記ごみ質データベースから別のごみ質を選び前記(R1)から(R3)のステップに従って酸素濃度の計算値と実測値が所定の範囲内で一致するまで前記ごみ質を変えて計算し、ごみ質を特定する。
(R5)前記特定されたごみ質に応じてごみ焼却炉に供給する一次空気吹込量を制御する。
なお、前記酸素の濃度に基づいてごみ質を特定する場合における計算値と実測値が所定の範囲とは、計算値と実測値の差が、例えば±0.05の範囲内であることをいう。このように、計算値と実測値とが完全一致の場合に限定されるものではなく、所定の範囲(しきい値)(例えば酸素濃度で±0.05)内で一致する場合を含む。
例えば、酸素濃度の実測値が3.07%であったとしたら計算値は3.02%~3.12%の範囲内であれば一致とする。
〈2〉ごみ焼却炉でごみを焼却処理するプロセスにおいて、以下の手順に基づき焼却炉に投入されたごみ質を特定し、当該特定されたごみ質に応じてごみ焼却炉に供給する一次空気吹込量を制御し、焼却炉の燃焼制御を行うことを特徴とするごみ焼却炉の自動燃焼制御方法。
ごみ焼却炉に投入され燃焼しているごみ質を次のステップに従って計算し推算する。
(S1)前記ごみ質データベースから任意のごみ質を選び焼却炉で燃焼されたときに、発生する二酸化炭素濃度を計算式に従って計算値を出す。
(S2)ごみ焼却炉から排気された二酸化炭素濃度を測定し実測値を出す。
(S3)前記二酸化炭素濃度の計算値と実測値を比較する。
(S4)前記二酸化炭素濃度の計算値と実測値が所定の範囲内で一致するときは、ごみ質の特定を終え、前記二酸化炭素濃度の計算値と実測値を比較し二酸化炭素濃度の計算値と実測値が所定の範囲で異なっているときは、前記ごみ質データベースから別のごみ質を選び前記(S1)から(S3)のステップに従って二酸化炭素濃度の計算値と実測値が所定の範囲内で一致するまで前記ごみ質を変えて計算し、ごみ質を特定する。
(S5)前記特定されたごみ質に応じてごみ焼却炉に供給する一次空気吹込量を制御する。
なお、前記二酸化炭素濃度に基づいてごみ質を特定する場合における計算値と実測値が所定の範囲とは、計算値と実測値の差が、例えば±2.0の範囲内であることをいう。
このように、計算値と実測値とが完全一致の場合に限定されるものではなく、所定の範囲(しきい値)(例えば二酸化炭素濃度で±2.0以内)内で一致する場合を含む。
例えば、二酸化炭素濃度の実測値が19.0%であったとしたら計算値は17.0~21.0%の範囲内であれば一致とする。
〈3〉前記ごみ質データベースから選ばれたごみ質が焼却炉で燃焼されたときに、発生する酸素及び二酸化炭素濃度の計算値を一連の計算式に従って求めることを特徴とする請求項〈1〉又は〈2〉に記載のごみ焼却炉の自動燃焼制御方法。
なお、前記一連の計算式とは、請求項3に記載する式(1)~式(10)のことである。
〈4〉前記ごみ焼却炉の自動燃焼制御方法におけるごみ質データベースから焼却炉に投入されたごみ質を次の手順により特定することを特徴とする〈1〉又は〈2〉のいずれかに記載されたごみ焼却炉の自動燃焼制御方法。
(T1)ごみ質データベースは、ごみの発熱量の順に並んでおり、発熱量が少ないごみ質はデータベースの左側、発熱量が多いごみ質はデータベースの右側に並べる。
ごみ質データベースに記載されている複数のごみ質の中心に近いごみ質を選び焼却炉で燃焼させたときに、発生する酸素濃度又は二酸化炭素濃度の計算値と実測値と比較し、酸素濃度の計算値と実測値が所定の範囲内で一致するとき又は二酸化炭素濃度の計算値と実測値が所定の範囲内で一致するときは前記焼却炉内に投入されたごみ質が選択したごみ質であると特定する。
(T2)酸素濃度の場合において、計算値と実測値が所定の範囲内で一致しなかった場合、前記計算値が前記実測値に対して高い場合と低い場合に分けて、ごみ質を選択しなおす。前記計算値が前記実測値に対して高い場合は、前記選んだ中心にあるごみ質と最も発熱量が大きい右にあるごみ質の間でごみ質選択範囲を狭め、前記計算値が前記実測値に対して低い場合は、前記選んだ中心にあるごみ質と最も発熱量が小さい左にあるごみ質の間でごみ質選択範囲を狭め、狭めた範囲内で中心に位置するごみ質を選び、選んだごみ質が焼却炉で燃焼したときに発生する酸素濃度を計算し、酸素濃度の計算値と実測値が所定の範囲内で一致するときは前記焼却炉に投入されたごみ質が、選択したごみ質であると特定する。
(T3)酸素濃度の場合において、前記により選んだごみ質を焼却炉で燃焼させたときに、発生する酸素濃度の計算値と実測値とが異なるときは再度上記手順に従ってごみ質を選び、選んだごみ質の酸素濃度の計算値と実測値が所定の範囲内で一致するまで上記(T2)の手順を繰り返す。
(T2’)二酸化炭素濃度の場合において、計算値と実測値が所定の範囲内で一致しなかった場合、前記計算値が前記実測値に対して高い場合と低い場合に分けて、ごみ質を選択しなおす。前記計算値が前記実測値に対して高い場合は、前記選んだ中心にあるごみ質と最も発熱量が小さい左にあるごみ質の間でごみ質選択範囲を狭め、前記計算値が前記実測値に対して低い場合は、前記選んだ中心にあるごみ質と最も発熱量が大きい右にあるごみ質の間でごみ質選択範囲を狭め、狭めた範囲内で中心に位置するごみ質を選び、選んだごみ質が焼却炉で燃焼したときに発生する二酸化炭素濃度を計算し、二酸化炭素濃度の計算値と実測値が所定の範囲内で一致するときは前記焼却炉に投入されたごみ質が、選択したごみ質であると特定する。
(T3’)二酸化炭素濃度の場合において、前記により選んだごみ質を焼却炉で燃焼させたときに、発生する二酸化炭素濃度の計算値と実測値が異なるときは再度上記手順に従ってごみ質を選び、選んだごみ質の二酸化炭素濃度の計算値と実測値が所定の範囲内で一致するまで上記(T2’)の手順を繰り返す。
〈5〉前記ごみ焼却炉の自動燃焼制御方法におけるごみ質データベースから焼却炉に投入されたごみ質を次の手順により特定することを特徴とする〈1〉又は〈2〉のいずれかに記載されたごみ焼却炉の自動燃焼制御方法。
(U1)ごみ質データベースは、ごみの発熱量の順に並んでおり、発熱量が少ないごみ質はデータベースの左側、発熱量が多いごみ質はデータベースの右側に並べる。
ごみ質データベースに記載されている[1]最も左側のごみ質、[2]最も右側のごみ質及び[3]複数のごみ質の中心に近いごみ質を選び焼却炉で燃焼させたときに、発生する酸素濃度又は二酸化炭素濃度の計算値と実測値と比較し、実測値の含まれる範囲が[1]~[2]か[2]~[3]を判定する。
(U2)実測値が含まれる範囲において、残りのごみ質が2又は3個になるまで(U1)を繰り返す。
(U3)ごみ質が残り2又は3個になったら、各々のごみ質の計算値を算出し、実測値に近いごみ質を選んでごみ質を特定する。
The present inventors have solved the above problems by the following means.
<1> In the process of incinerating waste in a waste incinerator, the type of waste put into the incinerator is specified based on the following procedure, and the primary air supply to the waste incinerator is blown according to the specified waste quality. An automatic combustion control method for a refuse incinerator, comprising controlling the amount of waste to control combustion in the incinerator.
Calculate and estimate the quality of waste that is put into the waste incinerator and burned according to the following steps.
(R1) The waste quality database is arranged in the order of the calorific value of the waste, and when any waste quality is selected from the waste quality database and burned in the incinerator, the oxygen concentration generated is calculated according to the formula. .
(R2) Measure the concentration of oxygen exhausted from the refuse incinerator and obtain the measured value.
(R3) Compare the calculated oxygen concentration with the measured value.
(R4) When the calculated value of the oxygen concentration and the measured value of the oxygen concentration match within a predetermined range, the identification of the waste type is completed, the calculated value of the oxygen concentration is compared with the measured value of the oxygen concentration, and the calculated value and the measured value of the oxygen concentration are compared. are different within a predetermined range, another waste type is selected from the waste type database, and according to steps (R1) to (R3), until the calculated oxygen concentration value and the measured value match within a predetermined range. The garbage quality is specified by performing calculations while changing the garbage quality.
(R5) Control the amount of primary air to be supplied to the refuse incinerator in accordance with the specified waste quality.
The predetermined range between the calculated value and the measured value when specifying the waste type based on the oxygen concentration means that the difference between the calculated value and the measured value is, for example, within a range of ±0.05. . In this way, the calculated value and the measured value are not limited to the case of complete agreement, but include the case of agreement within a predetermined range (threshold value) (for example, ±0.05 in oxygen concentration).
For example, if the measured value of the oxygen concentration is 3.07%, the calculated value will match if it is within the range of 3.02% to 3.12%.
<2> In the process of incinerating waste in a waste incinerator, identify the type of waste put into the incinerator based on the following procedure, and supply primary air to the waste incinerator according to the identified waste quality. An automatic combustion control method for a refuse incinerator, comprising controlling the amount of waste to control combustion in the incinerator.
Calculate and estimate the quality of waste that is put into the waste incinerator and burned according to the following steps.
(S1) A value is calculated according to a formula for the concentration of carbon dioxide generated when an arbitrary waste type is selected from the waste type database and burned in an incinerator.
(S2) Measure the concentration of carbon dioxide exhausted from the refuse incinerator and obtain the measured value.
(S3) Compare the calculated value and the measured value of the carbon dioxide concentration.
(S4) When the calculated value of the carbon dioxide concentration and the measured value of the carbon dioxide concentration match within a predetermined range, the identification of the waste type is completed, the calculated value of the carbon dioxide concentration is compared with the measured value of the carbon dioxide concentration, and the calculated value of the carbon dioxide concentration is obtained. and the measured values differ within a predetermined range, another waste type is selected from the waste type database, and the calculated value and the measured value of carbon dioxide concentration are within a predetermined range according to steps (S1) to (S3). , the dust quality is specified by changing the dust quality until they match.
(S5) Control the amount of primary air to be supplied to the refuse incinerator in accordance with the specified waste quality.
The predetermined range between the calculated value and the measured value when specifying the waste type based on the carbon dioxide concentration means that the difference between the calculated value and the measured value is within a range of, for example, ±2.0. .
In this way, the calculated value and the measured value are not limited to the case of complete agreement, but include the case of agreement within a predetermined range (threshold value) (for example, within ± 2.0 for carbon dioxide concentration) .
For example, if the measured value of the carbon dioxide concentration is 19.0%, the calculated value will match if it is within the range of 17.0 to 21.0%.
<3> Claim <1>, wherein the calculated values of oxygen and carbon dioxide concentrations generated when the waste selected from the waste quality database is burned in an incinerator are obtained according to a series of calculation formulas. Or the automatic combustion control method for a refuse incinerator according to <2>.
The series of calculation formulas are the formulas (1) to (10) described in claim 3.
<4> Any one of <1> or <2>, characterized in that the quality of the waste put into the incinerator is specified from the waste quality database in the automatic combustion control method for the waste incinerator by the following procedure. Automatic combustion control method for garbage incinerator.
(T1) The garbage type database is arranged in order of the calorific value of the garbage, with garbage types with low calorific value being arranged on the left side of the database and garbage types with high calorific value being arranged on the right side of the database.
By comparing the calculated value of the oxygen concentration or carbon dioxide concentration generated when burning in an incinerator, comparing the calculated value and the measured value, the oxygen concentration When the calculated value and the measured value match within a predetermined range, or when the calculated value and the measured value of carbon dioxide concentration match within a predetermined range, the type of waste put into the incinerator is the selected type of waste. Identify there is.
(T2) In the case of oxygen concentration, if the calculated value and the measured value do not match within a predetermined range, select the type of waste according to whether the calculated value is higher or lower than the measured value. fix. If the calculated value is higher than the measured value, narrow the selection range of the waste type between the selected center waste type and the right waste type with the largest calorific value, and the calculated value is the measured value. is low, narrow the selection range of the waste quality between the selected center waste quality and the left waste quality with the smallest calorific value, select the waste quality located in the center within the narrowed range, Calculate the oxygen concentration generated when the selected waste type is burned in the incinerator, and if the calculated oxygen concentration value and the measured value match within a predetermined range, the waste type put into the incinerator is selected. identify it as a waste product.
(T3) In the case of oxygen concentration, if the calculated value and the measured value of the generated oxygen concentration are different when the waste type selected above is burned in the incinerator, select the waste type again according to the above procedure, and select The above procedure (T2) is repeated until the calculated value and the measured value of the oxygen concentration of the debris match within a predetermined range.
(T2') In the case of carbon dioxide concentration, if the calculated value and the measured value do not match within a predetermined range, separate the case where the calculated value is higher than the measured value and the case where it is lower, and classify the waste. Select again. If the calculated value is higher than the measured value, narrow the selection range between the selected center waste type and the left waste type with the smallest calorific value so that the calculated value is equal to the measured value. is low, narrow the selection range of the waste quality between the selected center waste quality and the right waste quality with the largest calorific value, select the waste quality located in the center within the narrowed range, Calculate the concentration of carbon dioxide generated when the selected waste type is burned in the incinerator, and if the calculated value of carbon dioxide concentration and the measured value match within a predetermined range, the type of waste put into the incinerator is , to be the selected waste quality.
(T3') In the case of carbon dioxide concentration, if the calculated value and the measured value of the carbon dioxide concentration generated when the waste type selected above is burned in the incinerator are different, select the waste type again according to the above procedure. , the above procedure (T2') is repeated until the calculated value and the measured value of the carbon dioxide concentration of the selected waste quality match within a predetermined range.
<5> Any of <1> or <2>, characterized in that the quality of the waste put into the incinerator is identified from the waste quality database in the automatic combustion control method for the waste incinerator by the following procedure. Automatic combustion control method for garbage incinerator.
(U1) The garbage type database is arranged in order of the calorific value of the garbage, with garbage types with low calorific value being arranged on the left side of the database and garbage types with high calorific value being arranged on the right side of the database.
When selecting [1] leftmost waste type, [2] rightmost waste type and [3] multiple waste types listed in the waste type database and burning them in an incinerator, Calculated values and measured values of oxygen concentration or carbon dioxide concentration generated are compared to determine whether the range included in the measured values is [1] to [2] or [2] to [3].
(U2) Repeat (U1) until there are 2 or 3 remaining dust types within the range that includes the measured values.
(U3) When two or three garbage types remain, the calculated value of each garbage type is calculated, and a garbage type close to the actually measured value is selected to specify the garbage type.

本発明のごみ焼却炉の自動燃焼制御方法によれば、ごみ焼却場の焼却炉内に投入したごみ質を計算によって推算し、当該特定されたごみ質に対応して焼却炉に吹き込む一次空気量を調整することで焼却炉内の燃焼温度と排ガス性状を最適に制御することができる。 According to the automatic combustion control method for a waste incinerator of the present invention, the quality of waste put into the incinerator of a waste incinerator is estimated by calculation, and the amount of primary air to be blown into the incinerator corresponding to the specified waste quality. By adjusting , the combustion temperature and exhaust gas properties in the incinerator can be optimally controlled.

本発明のごみ焼却施設の全体系統図である。1 is an overall system diagram of a refuse incineration facility according to the present invention; FIG. 本発明におけるごみ質データベースの例を示す図である。It is a figure which shows the example of the garbage quality database in this invention. 本発明におけるごみ質データベースからごみ質を特定するための手順を説明するため説明図である。FIG. 4 is an explanatory diagram for explaining a procedure for specifying a waste type from a waste type database according to the present invention; 本発明におけるごみ質データベースからごみ質を特定するための別の手順を説明するため説明図である。FIG. 10 is an explanatory diagram for explaining another procedure for specifying the type of waste from the type of waste database in the present invention; 本発明におけるごみ焼却炉の自動燃焼制御方法のフローチャートである。1 is a flow chart of an automatic combustion control method for a refuse incinerator according to the present invention; 本発明における別のごみ焼却炉の自動燃焼制御方法のフローチャートである。4 is a flow chart of another automatic combustion control method for a refuse incinerator according to the present invention; 本発明を実施する他のごみ焼却施設の全体系統図である。FIG. 2 is an overall system diagram of another waste incineration facility that implements the present invention; 本発明を実施する他のごみ焼却施設の全体系統図である。FIG. 2 is an overall system diagram of another waste incineration facility that implements the present invention; 従来のごみ焼却施設を部分的に示した系統図である。It is a system diagram partially showing a conventional waste incineration facility.

本発明に係るごみ焼却炉の自動燃焼制御方法を実施するための形態を、実施例の図に基づいて説明する。
図1は、本発明に係るごみ焼却炉の自動燃焼制御方法のごみ焼却施設の概略全体系統図である。
図1において、1はごみ焼却炉、2はごみ燃焼室、3はごみ供給ホッパ、4はごみ、5はプッシャー、6はストーカ、6aは乾燥ストーカ、6bは燃焼ストーカ、6cは後燃焼ストーカ、7は空気送風機、8は冷却塔、9は煙突、10は灰シュート、11は燃焼制御部、12はコントローラ、13は演算装置である。
図1を参照してこの焼却炉へのごみ投入から当該ごみが焼却されるまでの流れを説明する。
ごみ供給ホッパ3よりクレーン(図示しない)にて投入されたごみ4はごみ焼却炉1に入り乾燥ストーカ6a、燃焼ストーカ6b、後燃焼ストーカ6c上を移動する。このとき焼却量の信号aが燃焼制御部11へ送られ演算装置13で演算された燃焼用の一次空気量[A]が空気送風機7によりごみ焼却炉1の下から供給される。ごみ焼却炉1内で、ごみ4は燃焼し灰となり、焼却炉1の灰シュート10より排出され発生した排ガス[G]はダクト等を通り冷却塔8に送られる。
A mode for carrying out the automatic combustion control method for a refuse incinerator according to the present invention will be described with reference to the drawings of the embodiment.
FIG. 1 is a schematic overall system diagram of a garbage incineration facility for an automatic combustion control method for a garbage incinerator according to the present invention.
In FIG. 1, 1 is a waste incinerator, 2 is a waste combustion chamber, 3 is a waste supply hopper, 4 is waste, 5 is a pusher, 6 is a stoker, 6a is a drying stoker, 6b is a combustion stoker, 6c is a post-combustion stoker, 7 is an air blower; 8 is a cooling tower; 9 is a chimney; 10 is an ash chute;
Referring to FIG. 1, the flow from throwing garbage into the incinerator to incinerating the garbage will be described.
Garbage 4 fed from the garbage supply hopper 3 by a crane (not shown) enters the garbage incinerator 1 and moves on the drying stoker 6a, combustion stoker 6b, and post-combustion stoker 6c. At this time, an incineration amount signal a is sent to the combustion control unit 11, and the primary air amount [A] for combustion calculated by the calculation device 13 is supplied from the bottom of the refuse incinerator 1 by the air blower 7. In the refuse incinerator 1, the refuse 4 is burned into ash, and the exhaust gas [G] emitted from the ash chute 10 of the incinerator 1 is sent to the cooling tower 8 through a duct or the like.

ごみが燃焼し灰となる過程において焼却炉1へは燃焼制御部11による制御に従い以下の処理が行われる。
ごみ焼却炉へ投入されたごみ焼却量の信号aが燃焼制御部11に送られこれに対応した一次空気量Aが空気送風機7によりごみ焼却炉1の下から供給される([A])。また、前記信号aを受け前記ごみ焼却量に対応した汚水量がごみ焼却炉1内に噴霧される(ごみ汚水噴霧量)([B])。
排ガスを再利用するため排ガスをごみ焼却炉1に供給する(排ガス再循環)([C])。
ごみ焼却炉1内の燃焼温度Aの信号bが燃焼制御部11へ送られ前記燃焼温度Aに対応した補助燃料がごみ焼却炉1内へ供給される([D])。
ごみ焼却炉1内の燃焼温度Bの信号cが燃焼制御部11へ送られ前記燃焼温度Bに対応した二次空気がごみ焼却炉1へ吹き込まれる([E])。
冷却塔8から煙突9へ送られる途中の排ガスのNOX量の信号gが燃焼制御部11に送られこれに対応した尿素水がごみ焼却炉1へ噴霧される(尿素噴霧量)([F])。
このとき焼却炉内から排出される排ガス内に含まれる酸素濃度及び二酸化炭素濃度の実測値の信号dを前記燃焼制御部11へ送る。
なお、前記酸素濃度又は二酸化炭素濃度の実測値を後述するごみ質データベース表1から選んだごみ質を前記の条件で焼却した場合に発生する排ガス内の酸素濃度又は二酸化炭素濃度を計算式で計算した計算値と比較することで前記ごみ質を特定する過程で使用する。
前記焼却炉内から排出された排ガスの温度(排ガス温度)Cの信号eが燃焼制御部11へ送られ前記排ガス温度Cに対応した冷却水が冷却塔8内へ吹き込まれる(冷却水噴霧量)([I])。
前記冷却塔8内に吹き込まれた冷却水により温度Cに冷却された排ガスの一部は、前記ごみ焼却炉1内に供給され(排ガス再循環)([C])、残りは煙突9から排出される。
In the process of burning refuse to ash, the incinerator 1 undergoes the following processes under the control of the combustion control unit 11 .
A signal a indicating the amount of incinerated refuse thrown into the refuse incinerator is sent to the combustion control unit 11, and the corresponding primary air amount A is supplied from below the refuse incinerator 1 by the air blower 7 ([A]). On receiving the signal a, the amount of sewage corresponding to the amount of refuse incineration is sprayed into the refuse incinerator 1 (spray amount of refuse and sewage) ([B]).
In order to reuse the exhaust gas, the exhaust gas is supplied to the refuse incinerator 1 (exhaust gas recirculation) ([C]).
A signal b indicating the combustion temperature A in the refuse incinerator 1 is sent to the combustion control unit 11, and auxiliary fuel corresponding to the combustion temperature A is supplied into the refuse incinerator 1 ([D]).
A signal c indicating the combustion temperature B in the refuse incinerator 1 is sent to the combustion control unit 11, and secondary air corresponding to the combustion temperature B is blown into the refuse incinerator 1 ([E]).
A signal g indicating the amount of NOx in the exhaust gas on the way from the cooling tower 8 to the chimney 9 is sent to the combustion control unit 11, and the corresponding urea water is sprayed to the refuse incinerator 1 (urea spray amount) ([F ]).
At this time, a signal d representing the measured oxygen concentration and carbon dioxide concentration contained in the exhaust gas discharged from the incinerator is sent to the combustion control unit 11 .
In addition, the oxygen concentration or carbon dioxide concentration in the exhaust gas generated when the waste material selected from the waste quality database table 1 described later is incinerated under the above conditions is calculated by the calculation formula. It is used in the process of specifying the garbage type by comparing with the calculated value.
A signal e of the temperature (exhaust gas temperature) C of the exhaust gas discharged from the incinerator is sent to the combustion control unit 11, and cooling water corresponding to the exhaust gas temperature C is blown into the cooling tower 8 (cooling water spray amount). ([I]).
A part of the exhaust gas cooled to a temperature C by the cooling water blown into the cooling tower 8 is supplied to the waste incinerator 1 (exhaust gas recirculation) ([C]), and the rest is discharged from the chimney 9. be done.

表1は本発明に係るごみ焼却炉の自動燃焼制御方法を実施するためのごみ質データベースで、当該ごみ質データベースの概念を説明するものであり、本発明においては焼却炉内で燃焼しているごみ質(ごみの組成・熱量)を計算によって推算する過程で使用される。
ごみ焼却場に運び込まれるごみは季節によって異なることから、本発明の実施形態においては、ごみ焼却場に運び込まれる焼却されるごみを例えば1週間ごとにサンプリングし、組成や熱量を分析し分析値(発熱量、可燃分、水分、灰分、元素構成比)を蓄積し、月ごとの平均値をとり、ごみ質データベースを作成している。
表1の一番上の横欄に前記複数の異なるごみのごみ質が記載され、左側縦欄に、上からごみ質の含まれる水分量、可燃分量、灰分量を%で記載している。また、上記ごみ質を焼却炉内で同じ燃焼条件で燃焼させたときに発生する発熱量、可燃分に含まれている炭素(C)、水素(H)、窒素(N)、酸素(0)の元素の構成比が記載されている。
なお、表1の一番上の横欄に記載されたごみ質は、左から右に向かって前記発熱量に従って左から右に大きくなるように分けられている。
表2は、ごみ焼却場に運び込まれたごみに基づいて作成したごみ質データベースの一例であり、一番下の欄に、前記図1の本発明に係るごみ焼却炉の自動燃焼制御方法によるごみ質の排ガス内の酸素濃度と二酸化炭素濃度の計算値を記載している

Figure 0007237654000001
Figure 0007237654000002
Table 1 is a waste quality database for implementing the automatic combustion control method for a waste incinerator according to the present invention, and explains the concept of the waste quality database. It is used in the process of estimating waste quality (waste composition/calorific value) by calculation.
Since the garbage brought into the garbage incineration plant varies depending on the season, in the embodiment of the present invention, the garbage to be incinerated brought into the garbage incineration plant is sampled, for example, every week, and the composition and heat quantity are analyzed to obtain the analysis value ( calorific value, combustible content, moisture content, ash content, elemental composition ratio) are accumulated, average values are taken for each month, and a garbage quality database is created.
The horizontal column at the top of Table 1 lists the different types of waste, and the vertical column on the left indicates the water content, combustible content, and ash content of each type of waste in % from the top. In addition, the calorific value generated when the above waste is burned in the incinerator under the same combustion conditions, and the carbon (C), hydrogen (H), nitrogen (N), oxygen (0) contained in the combustible content The composition ratio of the elements of is described.
The types of waste described in the uppermost horizontal column of Table 1 are classified from left to right in accordance with the calorific value described above so as to increase from left to right.
Table 2 is an example of a garbage property database created based on the garbage brought into the garbage incinerator. It describes the calculated values of oxygen concentration and carbon dioxide concentration in exhaust gas

Figure 0007237654000001
Figure 0007237654000002

図2は、本発明におけるごみ質データベースの例を示す図であり、図3は、本発明の実施形態におけるごみ焼炉内の自動燃焼制御方法におけるごみ質データベースから焼却炉に投入されたごみ質を特定するための手順を説明するため説明図である。
前記焼却炉内に投入されたごみ質を特定するための手順の要旨は、次の手順に従ってごみ質を選択することにある。
前記図2に示すごみ質データベースからごみ質を特定するための手順の一例を、図3に基づいて説明する。
最初にごみ質データベースに記載されている複数のごみ質の中心に近いごみ質(6)を選択し発生する酸素濃度又は二酸化炭素濃度の計算値を計算式に基づいて求め、前記焼却炉から排出された排気ガスの酸素濃度又は二酸化炭素実測値と前記計算値が一致した場合は、ごみ質(6)を前記焼却炉内に投入されたごみ質とし、前記計算値と実測値が異なった場合、計算値と実測値の大小関係から次の計算で用いるごみ質を選択する。
なお、本実施の形態においては、前記ごみ質データベースの複数のごみ質の中心のごみ質を選択する場合、ごみ質の番号(1)~(12)の中心値である6.5を切り下げて(6)を選んでいるが、これに限定されるものではなく中心値を切り上げて(7)を選ぶ方法でも構わない。
なお、前記焼却炉から排出された排気ガスの酸素の濃度又は二酸化炭素の実測値と前記計算値が一致した場合とは、計算値と実測値とが完全一致の場合に限定されるものではなく、所定の範囲(しきい値)(例えば、酸素濃度で±0.05、二酸化炭素濃度で±2.0以内)内で一致する場合を含む。
例えば、酸素濃度の実測値が3.07%であったとしたら計算値は3.02%~3.12%の範囲内であれば一致とし、二酸化炭素濃度の実測値が19.0%であったとしたら計算値は17.0%~21.0%の範囲内であれば一致とする。
1)酸素濃度を計算する場合
1-1)前記選択されたごみ質(6)について計算値が実測値より小さい場合、ごみ質データベースの発熱量が小さいごみ質側の一番左(1)と上記(6)の左隣の(5)との中心のごみ質(3)を選択する。
1-1-1)前記選択されたごみ質(3)について同様に計算値を求め、当該計算値と実測値が一致した場合は、前記ごみ質(3)を前記焼却炉内に投入されたごみ質とし、当該計算値と実測値が異なった場合、計算値が実測値より小さい場合は残った(1)と(2)のうち、発熱量の大きな(2)を選択し、前記と同様に計算値を求め、計算値と実測値が一致した場合は、前記ごみ質(2)を前記焼却炉内に投入されたごみ質とし、当該計算値と実測値が異なった場合、残りのごみ質(1)を前記焼却炉内に投入されたごみ質とする。
1-1-2)前記選択されたごみ質(3)について前記と同様に計算値を求め、計算値が実測値より大きい場合は残った(4)と(5)のうち、発熱量の大きな(5)を選択し、前期と同様に計算値を求め、計算値と実測値が一致した場合は、前記ごみ質(5)を前記焼却炉内に投入されたごみ質とし、当該計算値と実測値が異なった場合、残りのごみ質(4)を前記焼却炉内に投入されたごみ質とする。
1-2) 前記選択されたごみ質(6)について計算値が実測値より大きい場合、ごみ質データベースの発熱量が大きいごみ質側の一番右の(12)と上記(6)右隣の(7)との中心に近いごみ質(9)と(10)のうち、熱量の大きな(10)を選択する。
1-2-1)前記選択されたごみ質(10)について前記と同様に計算値を求め、当該計算値と実測値が一致した場合は、前記ごみ質(10)を前記焼却炉内に投入されたごみ質とし、当該計算値と実測値が異なった場合で、計算値が実測値より小さい場合、(7)と(9)の中心のごみ質(8)を選択し、前記と同様に計算値を求め、当該計算値と実測値が一致した場合は、前記ごみ質(8)を前記焼却炉内に投入されたごみ質とし、当該計算値と実測値が異なった場合、計算値が実測値より小さい場合はごみ質(7)を、計算値が実測値より大きい場合はごみ質(9)を前記焼却炉内に投入されたごみ質とする。
1-2-2)前記選択されたごみ質(10)について、前記と同様に計算値を求め、当該計算値と実測値が異なった場合で、計算値が実測値より大きい場合、(11)と(12)のうち、発熱量の大きな(12)を選択し、前記と同様に計算値を求め、当該計算値と実測値が一致した場合は、前記ごみ質(12)を前記焼却炉内に投入されたごみ質とし、当該計算値と実測値が異なった場合、残りのごみ質(11)を前記焼却炉内に投入されたごみ質とする。
なお、1-1-1)、1-1-2)及び1-2-2)において発熱量の大きなほうを選んでいるが、もちろん発熱量の小さなほうを選ぶように決めてもよいし、ごみ質の番号(1)~(12)の中心値である6.5を切り下げて(6)を中心値として、発熱量の小さい側では残ったごみ質のうち発熱量の小さいごみ質を選択し、発熱量の大きい側では残ったごみ質のうち発熱量の大きいごみ質を選択するようにしてもよい。
上記のように選択したごみ質の計算値と実測値の大小を比較し両者の値が異なった場合、計算値と実測値の大小関係から上記手順に従って次のごみ質を選択することで、上記1-1)計算値が実測値より小さい場合は、(6)より右にあるごみ質(7)~(12)のごみ質の計算値を求める必要がなく、上記1-2)計算値が実測値より大きい場合は、(6)より左にあるごみ質(1)~(5)のごみ質の計算値を求める必要がない。このごみ質の特定手順に従えば、ごみ質データベースの全てのごみ質について計算値を求める必要がないので、実際に焼却炉内で燃焼しているごみ質を効率よく特定することができる。
なお、計算値と実測値とが完全一致の場合に限定されるものではなく、所定の範囲(しきい値)(例えば、酸素濃度で±0.05)内で一致する場合を含む。
例えば、酸素濃度の実測値が3.07%であったとしたら計算値は3.02%~3.12%の範囲内であればよい。
2)二酸化炭素濃度を計算する場合
前記酸素濃度を計算する場合と同様に、選択されたごみ質の二酸化炭素濃度について計算値と実測値が一致した場合は、前記ごみ質を前記焼却炉内に投入されたごみ質とする。以下前記酸素濃度と同様に、二酸化炭素濃度が計算値と実測値が異なった場合に、残りのごみ質を選択し前記焼却炉内に投入されたごみ質を特定する。
2-1)前記選択されたごみ質(6)について、計算値が実測値より大きい場合、ごみ質データベースの発熱量が小さいごみ質側の一番左(1)と上記(6)の左隣の(5)との中心のごみ質(3)を選択する。
2-1-1)前記選択されたごみ質(3)について、同様に計算値を求め、当該計算値と実測値が一致した場合は、前記ごみ質(3)を前記焼却炉に投入されたごみ質とし、当該計算値と実測値が異なった場合、計算値が実測値より大きい場合は残った(1)と(2)のうち、発熱量の大きな(2)を選択し、前記と同様に計算値を求め、計算値と実測値が一致した場合は、前記ごみ質(2)を前記焼却炉内に投入されたごみ質とし、当該計算値と実測値が異なった場合、残りのごみ質(1)を選択する。
2-1-2)前記選択されたごみ質(3)について、前記と同様に計算値を求め、計算値が実測値より小さい場合は残った(4)と(5)のうち、発熱量の大きな(5)を選択し、前期と同様に計算値を求め、計算値と実測値が一致した場合は、前記ごみ質(5)を前記焼却炉に投入されたごみ質とし、当該計算値と実測値が異なった場合、残りのごみ質(4)を前記焼却炉に投入されたごみ質とする。
2-2) 前記選択されたごみ質(6)について、計算値が実測値より小さい場合、ごみ質データベースの発熱量が大きいごみ質側の一番右の(12)と上記(6)右隣の(7)との中心に近いごみ質(9)と(10)のうち、熱量の大きな(10)を選択する。
2-2-1)前記選択されたごみ質(10)について、前記と同様に計算値を求め、計算値と実測値が一致した場合は、前記ごみ質(10)を前記焼却炉に投入されたごみ質とし、当該計算値と実測値が異なった場合で、計算値が実測値より大きい場合、(7)と(9)の中心のごみ質(8)を選択し、前記と同様に計算値を求め、当該計算値と実測値が一致した場合は、前記ごみ質(8)を前記焼却炉に投入されたごみ質とし、当該計算値と実測値が異なった場合、計算値が実測値より大きい場合はごみ質(7)を、計算値が実測値より小さい場合はごみ質(9)を前記焼却炉に投入されたごみ質とする。
2-2-2)前記選択されたごみ質(10)について、前記と同様に計算値を求め、当該計算値と実測値が異なった場合で、計算値が実測値より小さい場合、(11)と(12)のうち、発熱量の大きな(12)を選択し、前記と同様に計算値を求め、当該計算値と実測値が一致した場合は、前記ごみ質(12)を前記焼却炉に投入されたごみ質とし、当該計算値と実測値が異なった場合、残りのごみ質(11)を前記焼却炉内に投入されたごみ質とする。
なお、2-1-1)、2-1-2)及び2-2-2)において発熱量の大きなほうを選んでいるが、もちろん発熱量の小さなほうを選ぶように決めてもよいし、ごみ質の番号(1)~(12)の中心値である6.5を切り下げて(6)を中心値として、発熱量の小さい側では残ったごみ質のうち発熱量の小さいごみ質を選択し、発熱量の大きい側では残ったごみ質のうち発熱量の大きいごみ質を選択するようにしてもよい。
上記のように選択したごみ質の計算値と実測値の大小を比較し両者の値が異なった場合、計算値と実測値の大小関係から上記手順に従って次のごみ質を選択することで、上記2-1)計算値が実測値より大きい場合は、(6)より右にあるごみ質(7)~(12)のごみ質の計算値を求める必要がなく、上記2-2)計算値が実測値より小さい場合は、(6)より左にあるごみ質(1)~(5)のごみ質の計算値を求める必要がない。このごみ質の特定手順に従えば、ごみ質データベースの全てのごみ質について計算値を求める必要がないので、実際に焼却炉内で燃焼しているごみ質を効率よく特定することができる。
なお、計算値と実測値とが完全一致の場合に限定されるものではなく、所定の範囲(しきい値)(例えば、二酸化炭素濃度で±2.0以内)内で一致する場合を含む。
例えば、二酸化炭素濃度の実測値が19.0%であったとしたら計算値は17.0%~21.0%の範囲内、であればよい。
FIG. 2 is a diagram showing an example of the waste quality database in the present invention, and FIG. 3 is a diagram showing the waste quality data put into the incinerator from the waste quality database in the automatic combustion control method in the refuse incinerator according to the embodiment of the present invention. It is an explanatory view for explaining the procedure for specifying the .
The gist of the procedure for identifying the type of waste put into the incinerator is to select the type of waste according to the following procedure.
An example of the procedure for specifying the type of garbage from the type of garbage database shown in FIG. 2 will be described with reference to FIG.
First, a waste type (6) close to the center of a plurality of waste types listed in the waste type database is selected, the calculated value of the generated oxygen concentration or carbon dioxide concentration is obtained based on the calculation formula, and discharged from the incinerator. If the measured value of oxygen concentration or carbon dioxide in the discharged exhaust gas matches the calculated value, the waste quality (6) is taken as the waste quality put into the incinerator, and the calculated value and the measured value are different. , Select the type of waste to be used in the next calculation based on the magnitude relationship between the calculated value and the measured value.
In the present embodiment, when selecting the central garbage type among a plurality of garbage types in the garbage type database, 6.5, which is the central value of the garbage type numbers (1) to (12), is rounded down. Although (6) is selected, it is not limited to this, and a method of selecting (7) by rounding up the central value may be used.
In addition, the case where the measured value of oxygen concentration or carbon dioxide in the exhaust gas discharged from the incinerator matches the calculated value is not limited to the case where the calculated value and the measured value match perfectly. , coincides within a predetermined range (threshold value) (for example, within ±0.05 for oxygen concentration and within ±2.0 for carbon dioxide concentration).
For example, if the measured value of oxygen concentration is 3.07%, the calculated value will match if it is within the range of 3.02% to 3.12%, and the measured value of carbon dioxide concentration will be 19.0%. If the calculated value is within the range of 17.0% to 21.0%, it is regarded as a match.
1) When calculating oxygen concentration
1-1) When the calculated value for the selected waste type (6) is smaller than the measured value, the leftmost (1) on the side of the waste type with a small calorific value in the waste type database and the left side of the above (6) Select the garbage quality (3) at the center of (5).
1-1-1) A calculated value is similarly obtained for the selected waste type (3), and if the calculated value and the actual measurement value match, the waste type (3) is thrown into the incinerator. If the calculated value is different from the measured value, and if the calculated value is smaller than the measured value, select the remaining (1) and (2), (2), which has a large calorific value, and repeat the above. If the calculated value and the measured value match, the waste quality (2) is taken as the waste quality put into the incinerator, and if the calculated value and the measured value are different, the remaining waste Let the quality (1) be the quality of the waste put into the incinerator.
1-1-2) Obtain the calculated value for the selected waste type (3) in the same manner as described above. (5) is selected, the calculated value is obtained in the same manner as in the previous term, and if the calculated value and the measured value match, the waste quality (5) is taken as the waste quality put into the incinerator, and the calculated value is If the measured values are different, the remaining waste quality (4) is taken as the waste quality put into the incinerator.
1-2) When the calculated value for the selected waste type (6) is larger than the measured value, the rightmost (12) on the side of the waste type with a large calorific value in the waste type database and the right side of (6) above Of the dust types (9) and (10) near the center of (7), (10) with a large amount of heat is selected.
1-2-1) Obtain the calculated value for the selected waste type (10) in the same manner as described above, and if the calculated value and the measured value match, put the waste type (10) into the incinerator. If the calculated value and the measured value are different and the calculated value is smaller than the measured value, select the center waste type (8) between (7) and (9), and repeat the same procedure as above. A calculated value is obtained, and if the calculated value and the measured value match, the waste quality (8) is taken as the waste quality put into the incinerator, and if the calculated value and the measured value are different, the calculated value is When the calculated value is smaller than the measured value, the waste quality (7) is set as the waste quality (9) when the calculated value is greater than the measured value.
1-2-2) For the selected waste type (10), the calculated value is obtained in the same manner as above, and if the calculated value differs from the measured value, and if the calculated value is greater than the measured value, (11) and (12), select (12) with a large calorific value, obtain the calculated value in the same manner as above, and if the calculated value and the measured value match, the waste quality (12) is placed in the incinerator If the calculated value and the measured value are different, the remaining waste quality (11) is taken as the waste quality charged into the incinerator.
In addition, in 1-1-1), 1-1-2) and 1-2-2), the one with the larger calorific value is selected, but of course it may be decided to choose the one with the smaller calorific value, Round down 6.5, which is the median value of the waste quality numbers (1) to (12), and set (6) as the median value, and select the waste quality with the lowest calorific value among the remaining waste quality on the side with the smaller calorific value. On the other hand, on the side with a large calorific value, it is also possible to select a waste type with a large calorific value from among the remaining waste substances.
If the calculated value and the measured value for the selected waste type are compared in the above manner and the two values are different, the next waste type can be selected according to the above procedure based on the magnitude relationship between the calculated value and the measured value. 1-1) If the calculated value is smaller than the actual measured value, there is no need to obtain the calculated value for waste types (7) to (12) on the right of (6), and the above 1-2) calculated value is If it is larger than the measured value, it is not necessary to obtain the calculated value of the waste types (1) to (5) to the left of (6). According to this procedure for specifying the type of waste, it is not necessary to obtain calculated values for all the types of waste in the waste type database, so it is possible to efficiently identify the type of waste that is actually burning in the incinerator.
It should be noted that the calculated value and the measured value are not limited to being in perfect agreement, but may be in agreement within a predetermined range (threshold value) (for example, ±0.05 in terms of oxygen concentration).
For example, if the measured value of oxygen concentration is 3.07%, the calculated value may be within the range of 3.02% to 3.12%.
2) When calculating the carbon dioxide concentration As in the case of calculating the oxygen concentration, if the calculated value and the measured value of the carbon dioxide concentration of the selected waste type match, the waste type is placed in the incinerator. Assume the quality of the input waste. Similarly to the oxygen concentration, when the carbon dioxide concentration is different from the calculated value, the remaining waste quality is selected and the waste quality put into the incinerator is specified.
2-1) For the selected waste type (6), if the calculated value is larger than the measured value, the leftmost (1) on the side of the waste type with a small calorific value in the waste type database and the left side of (6) above (5) and (3), which is the center of the category, are selected.
2-1-1) For the selected waste type (3), a calculated value is obtained in the same way, and if the calculated value and the measured value match, the waste type (3) is thrown into the incinerator. If the calculated value is different from the measured value, and if the calculated value is larger than the measured value, select (2), which has a large calorific value, from the remaining (1) and (2), and repeat the above. If the calculated value and the measured value match, the waste quality (2) is taken as the waste quality put into the incinerator, and if the calculated value and the measured value are different, the remaining waste Select quality (1).
2-1-2) For the selected waste type (3), calculate the calculated value in the same way as above. Large (5) is selected, the calculated value is obtained in the same manner as in the previous term, and if the calculated value and the measured value match, the waste quality (5) is taken as the waste quality put into the incinerator, and the calculated value is If the measured values are different, the remaining waste quality (4) is taken as the waste quality put into the incinerator.
2-2) If the calculated value for the selected waste type (6) is smaller than the measured value, the rightmost (12) on the side of the waste type with a large calorific value in the waste type database and the right side of (6) above (10), which has a large amount of heat, is selected from (9) and (10) near the center of (7) in (7).
2-2-1) For the selected waste type (10), a calculated value is obtained in the same manner as described above. If the calculated value differs from the measured value, and the calculated value is larger than the measured value, select the garbage type (8) at the center of (7) and (9) and calculate in the same manner as above. If the calculated value and the measured value match, the waste quality (8) is taken as the waste quality put into the incinerator, and if the calculated value and the measured value are different, the calculated value is the measured value. If the calculated value is smaller than the measured value, the waste quality (9) is taken as the waste quality put into the incinerator.
2-2-2) For the selected waste type (10), the calculated value is obtained in the same manner as above, and if the calculated value differs from the measured value, and the calculated value is smaller than the measured value, (11) and (12), select (12) with a large calorific value, obtain the calculated value in the same manner as above, and if the calculated value and the measured value match, the waste quality (12) is sent to the incinerator If the calculated value is different from the measured value, the remaining waste quality (11) is taken as the waste quality charged into the incinerator.
In addition, in 2-1-1), 2-1-2) and 2-2-2), the one with the larger calorific value is selected, but of course it may be decided to choose the one with the smaller calorific value, Round down 6.5, which is the median value of the waste quality numbers (1) to (12), and set (6) as the median value, and select the waste quality with the lowest calorific value among the remaining waste quality on the side with the smaller calorific value. On the other hand, on the side with a large calorific value, it is also possible to select a waste type with a large calorific value from among the remaining waste substances.
If the calculated value and the measured value for the selected waste type are compared in the above manner and the two values are different, the next waste type can be selected according to the above procedure based on the magnitude relationship between the calculated value and the measured value. 2-1) If the calculated value is larger than the measured value, there is no need to obtain the calculated value of waste types (7) to (12) on the right of (6), and the above 2-2) calculated value is If it is smaller than the measured value, there is no need to obtain the calculated value of the waste types (1) to (5) to the left of (6). According to this procedure for specifying the type of waste, it is not necessary to obtain calculated values for all the types of waste in the waste type database, so it is possible to efficiently identify the type of waste that is actually burning in the incinerator.
It should be noted that the calculated value and the measured value are not limited to being in perfect agreement, but may be in agreement within a predetermined range (threshold value) (for example, within ±2.0 in terms of carbon dioxide concentration).
For example, if the measured carbon dioxide concentration is 19.0%, the calculated value may be within the range of 17.0% to 21.0%.

図4は、別の本発明の実施形態におけるごみ焼炉の自動燃焼制御方法におけるごみ質データベースから焼却炉内に投入されたごみ質を特定するための手順を説明するため説明図である。
前記焼却炉内に投入されたごみ質を特定するための手順の要旨は、次の手順に従ってごみ質を選択することにある。
前記図2に示すごみ質データベースからごみ質の特定するための手順の一例を、図4に基づいて説明する。
最初にごみ質データベースに記載されている複数の、ごみ質の最も発熱量の小さいごみ質(1)、中心に近いごみ質(7)及びごみ質の最も発熱量の大きいごみ質(12)を選択し発生する酸素濃度又は二酸化炭素濃度を計算して実測値と比較し、実測値の含まれる範囲が、<(7)か(7)≦か、を判定する。
なお本実施の形態においては、前記ごみ質データベースの複数のごみ質の中心のごみ質を選択する場合、ごみ質の番号(1)~(12)の中心値である6.5を切り上げて(7)を選んでいるが、これに限定されるものではなく中心値を切り下げて(6)を選ぶ方法でも構わない。
2-1)実測値の含まれる範囲が、<(7)の場合、<(7)のごみ質データベースに記載されている複数の、ごみ質の最も発熱量の小さいごみ質(1)、中心に近いごみ質(4)及びごみ質の最も発熱量の大きいごみ質(6)を選択し発生する酸素濃度又は二酸化炭素濃度を計算して実測値と比較し、実測値の含まれる範囲が、<(4)か(4)≦か、を判定する。
2-1-1)実測値の含まれる範囲が、<(4)の場合、<(4)のごみ質データベースに記載されている(1)~(3)の発生する酸素濃度又は二酸化炭素濃度を各々計算して実測値と比較し、最も実測値に近いごみ質を選択し、前記焼却炉内に投入されたごみ質とする。
2-1-2)実測値の含まれる範囲が、(4)≦の場合、(4)≦のごみ質データベースに記載されている(4)~(6)の発生する酸素濃度又は二酸化炭素濃度を各々計算して実測値と比較し、最も実測値に近いごみ質を選択し、前記焼却炉内に投入されたごみ質とする。
2-2)実測値の含まれる範囲が、(7)≦の場合、(7)≦のごみ質データベースに記載されている複数の、ごみ質の最も発熱量の小さいごみ質(7)、中心に近いごみ質(10)及びごみ質の最も発熱量の大きいごみ質(12)を選択し発生する酸素濃度又は二酸化炭素濃度を計算して実測値と比較し、実測値の含まれる範囲が、<(10)か(10)≦か、を判定する。
2-2-1)実測値の含まれる範囲が、<(10)の場合、<(10)のごみ質データベースに記載されている(7)~(9)の発生する酸素濃度又は二酸化炭素濃度を各々計算して実測値と比較し、最も実測値に近いごみ質を選択し、前記焼却炉内に投入されたごみ質とする。
2-2-2)実測値の含まれる範囲が、(10)≦の場合、(10)≦のごみ質データベースに記載されている(10)~(12)の発生する酸素濃度又は二酸化炭素濃度を各々計算して実測値と比較し、最も実測値に近いごみ質を選択し、前記焼却炉内に投入されたごみ質とする。
上記のように実測値の含まれるごみ質の範囲を選択して絞り込んでいくことで、上記2-1)の範囲に実測値が含まれる場合は、(7)から右にあるごみ質(7)~(12)のごみ質の計算値を求める必要がなく、上記2-2)の範囲に実測値が含まれる場合は、(7)より左にあるごみ質(1)~(6)のごみ質の計算値を求める必要がない。このごみ質の特定手順に従えば、ごみ質データベースの全てのごみ質について計算値を求める必要がないので、実際に焼却炉で燃焼しているごみ質を効率よく特定することができる。
FIG. 4 is an explanatory diagram for explaining the procedure for specifying the type of waste put into the incinerator from the waste type database in the automatic combustion control method for a refuse incinerator according to another embodiment of the present invention.
The gist of the procedure for identifying the type of waste put into the incinerator is to select the type of waste according to the following procedure.
An example of the procedure for specifying the type of waste from the type of waste database shown in FIG. 2 will be described with reference to FIG.
First, the garbage type with the lowest calorific value (1), the waste type near the center (7), and the garbage type with the highest calorific value (12) listed in the waste type database are selected. The selected and generated oxygen concentration or carbon dioxide concentration is calculated and compared with the measured value to determine whether the range in which the measured value is included is <(7) or (7)≦.
In the present embodiment, when selecting the central garbage type among a plurality of garbage types in the garbage type database, 6.5, which is the central value of the garbage type numbers (1) to (12), is rounded up ( 7) is selected, but it is not limited to this, and a method of rounding down the central value and selecting (6) may also be used.
2-1) If the range of measured values is <(7), the waste type with the lowest calorific value (1), the center Select the waste type (4) closest to the waste type and the waste type (6) with the highest calorific value, calculate the oxygen concentration or carbon dioxide concentration generated and compare it with the measured value. Determine whether <(4) or (4)≤.
2-1-1) If the range included in the measured value is <(4), the concentration of oxygen or carbon dioxide generated in (1) to (3) described in the waste quality database of <(4) are calculated and compared with the measured values, and the waste quality closest to the measured value is selected as the waste quality put into the incinerator.
2-1-2) If the range included in the measured value is (4) ≤, the generated oxygen concentration or carbon dioxide concentration of (4) to (6) described in the garbage quality database for (4) ≤ are calculated and compared with the measured values, and the waste quality closest to the measured value is selected as the waste quality put into the incinerator.
2-2) If the range of measured values is (7) ≤, multiple waste types with the lowest calorific value (7), which are listed in the garbage type database for (7) ≤ Select the waste quality (10) closest to the waste quality and the waste quality (12) with the largest calorific value of the waste quality, calculate the oxygen concentration or carbon dioxide concentration generated, compare with the measured value, and the range including the measured value is Determine whether <(10) or (10)≤.
2-2-1) If the range included in the measured value is <(10), the concentration of oxygen or carbon dioxide generated in (7) to (9) described in the waste quality database of <(10) are calculated and compared with the measured values, and the waste quality closest to the measured value is selected as the waste quality put into the incinerator.
2-2-2) If the range included in the measured value is (10) ≤, the generated oxygen concentration or carbon dioxide concentration of (10) to (12) described in the garbage quality database for (10) ≤ are calculated and compared with the measured values, and the waste quality closest to the measured value is selected as the waste quality put into the incinerator.
By selecting and narrowing down the range of garbage types that include the actual measurement value as described above, if the actual measurement value is included in the range of 2-1) above, the garbage type on the right from (7) (7 ) to (12), and if the measured values are within the range of 2-2) above, use the garbage types (1) to (6) to the left of (7). There is no need to obtain a calculated value for waste quality. According to this procedure for specifying the type of waste, it is not necessary to obtain calculated values for all the types of waste in the waste type database, so the type of waste actually burned in the incinerator can be efficiently specified.

〔ごみ質データベースから選ばれたごみ質の排気ガス中の酸素濃度の算出〕
前記ごみ質データベースから選ばれたごみ質が燃焼炉で燃焼されたときに、発生する酸素濃度の計算値を求める。
ここでは、表2のごみ質4を例にして計算する。ただし、実測値と定数は以下の値で与えられているものとする。
〈1〉実測値
・(ごみ焼却量) [kg/h] = 4000
・(一次空気量) [m3N/h] = 2900
・(ごみ汚水噴霧量) [kg/h] = 200
・(補助燃料投入量) [L/h] = 95.3
・(尿素水噴霧量) [kg/h] = 52.7
・(二次空気量) [m3N/h] = 250
・EGR流量 [m3N/h] = 2380.62
〈2〉定数
・(補助燃料の燃焼で生じる水分:α1) [m3N/L] = 0.90
・(補助燃料の燃焼で生じる二酸化炭素:α2) [m3N/L] = 0.85
・(補助燃料の燃焼で生じる窒素:α3) [m3N/L] = 3.0
・(補助燃料燃焼用理論空気量:ε) [m3N/L] = 7.5
・(飛灰率β)[%] = 10
・(熱灼減量γ)[%] = 5
・(ごみ汚水噴霧用空気量:δ) [m3N/kg] = 0.5
・(補助燃料燃焼用理論空気量の空気過剰率:ζ) = 1.5
・(尿素水噴霧用空気量:η) [m3N/kg] = 0.30
・(一次空気量の空気過剰率:X)= 1.3
〈3〉ごみ質データベース値
・(ごみ中の水分)[%] = 43
・(ごみ中の可燃分)[%] = 50
・(ごみ中の灰分)[%] = 7
・(ごみ中の炭素の割合)[%] = 54
・(ごみ中の水素の割合)[%] = 7.6
・(ごみ中の窒素の割合)[%] = 0.4
〈4〉算出値
算出値は下記式(5)~式(8)で求める。
・(n-1回目の制御サイクルに冷却塔を通過した水分濃度)
(H2O’) /{(H2O’)+(CO2’)+(O2’)+(N2’)}×100 ・・・式(5)
・(n-1回目の制御サイクルに冷却塔を通過した二酸化炭素濃度)
(CO2’) /{(H2O’)+(CO2’)+(O2’)+(N2’)}×100 ・・・式(6)
・(n-1回目の制御サイクルに冷却塔を通過した酸素濃度)
(O2’) /{(H2O’)+(CO2’)+(O2’)+(N2’)}×100 ・・・式(7)
・(n-1回目の制御サイクルに冷却塔を通過した窒素濃度)
(N2’) /{(H2O’)+(CO2’)+(O2’)+(N2’)}×100 ・・・式(8)

式(5)の(n-1回目の制御サイクルに冷却塔を通過した水分濃度) [%]は、図5又は図6のフローチャートでの一次空気吹込量を出力する制御サイクルをn回目としたとき、制御サイクルn-1回目の焼却炉出口での排ガス量に、
制御サイクルn-1回目の冷却水噴霧量 [kg/h]× ((22.4L/mol)/(18.0g/mol)) を加えたときの水分濃度[%]である。ここで、制御サイクルn-1回目の冷却水噴霧量 [kg/h]は実測値である。
上記の式(6)~式(8)のガス濃度は、図5又は図6のフローチャートでの一次空気吹込量を出力する制御サイクルをn回目としたとき、制御サイクルのn-1回目で冷却塔を通過した排ガス中の二酸化炭素濃度、酸素濃度、窒素濃度である。
上記の、図5又は図6のフローチャートでの一次空気吹込量を出力する制御サイクルをn回目としたとき、制御サイクルn-1回目の焼却炉出口での水分濃度、二酸化炭素濃度、酸素濃度および窒素濃度から、酸素濃度を計算する理由としては、焼却炉へ流入する冷却塔通過後の排ガス再循環(EGR)の各成分ガス濃度がn回目の制御サイクルの酸素濃度の計算に必要で、各成分ガス濃度は制御サイクルn回目の一つ前のn-1回目の制御サイクルでの各成分ガス濃度を用いているためである。

算出にあたり、上記式(5)~式(8)に下記の値を使用した。
(H2O’)=(n-1回目の制御サイクルに冷却塔を通過した水分量) [m3N/h]=9374.8、
(CO2’)=(n-1回目の制御サイクルに冷却塔を通過した二酸化炭素量) [m3N/h]=2445、
(O2’)=(n-1回目の制御サイクルに冷却塔を通過した酸素量) [m3N/h]=339.6
(N2’)=(n-1回目の制御サイクルに冷却塔を通過した窒素量) [m3N/h]=3711.4
その結果算出された算出値は以下の通りである。
・(n-1回目の制御サイクルに冷却塔を通過した水分濃度) [%] = 59.07
・(n-1回目の制御サイクルに冷却塔を通過した二酸化炭素濃度) [%] = 15.41
・(n-1回目の制御サイクルに冷却塔を通過した酸素濃度) [%] = 2.14
・(n-1回目の制御サイクルに冷却塔を通過した窒素濃度) [%] = 23.38

上記〈1〉と〈2〉の値、表2のごみ質データベースのごみ質4の値〈3〉及び〈4〉の値を下式(1)~(4)及び式(9)に代入すると、酸素濃度3.10%を得る。

・水の総量
(H2O)[m3N/h]
= (ごみ焼却量) [kg/h]
× [ (ごみ中の水素の割合)[%] × ((22.4L/mol)/(2.0g/mol)) ×(ごみ中の可燃分)[%]
+ (ごみ中の水分)[%] × ((22.4L/mol)/(18.0g/mol)) ]
+ (ごみ汚水噴霧量) [kg/h] × ((22.4L/mol)/(18.0g/mol))
+ EGR流量[m3N/h] ×(n-1回目の制御サイクルに冷却塔を通過した水分濃度) [%]
+ (補助燃料投入量) [L/h] × (補助燃料の燃焼で生じる水分:α1) [m3N/L]
+ (尿素水噴霧量) [kg/h] × ((22.4L/mol)/(18.0g/mol)) ・・・式(1)

・二酸化炭素の総量
(CO2)[m3N/h]
= (ごみ焼却量) [kg/h] × ((22.4L/mol)/(12.0g/mol))
× [ (ごみ中の炭素の割合)[%] × (ごみ中の可燃分)[%]
-(ごみ中の灰分)[%] × [1-(飛灰率β)[%]] × (熱灼減量γ)[%] ]
+ EGR流量[m3N/h] ×(n-1回目の制御サイクルに冷却塔を通過した二酸化炭素濃度) [%]
+(補助燃料投入量) [L/h] × (補助燃料の燃焼で生じる二酸化炭素:α2) [m3N/L]
・・・式(2)

・酸素の総量
(O2)[m3N/h]
= (一次空気量) [m3N/h] × 0.21 × [(一次空気の空気過剰率:X)-1]
+(ごみ汚水噴霧量) [kg/h] × (ごみ汚水噴霧用空気量:δ) [m3N/kg] × 0.21
+ EGR流量[m3N/h] ×(n-1回目の制御サイクルに冷却塔を通過した酸素濃度) [%]
+ [ (補助燃料燃焼用理論空気量:ε) [m3N/L] × (補助燃料投入量) [L/h]
×[ (補助燃料燃焼用理論空気量の空気過剰率:ζ) - 1] × 0.21 ]
+ (二次空気量) [m3N/h] × 0.21
+ (尿素水噴霧量) [kg/h] × (尿素水噴霧用空気量:η) [m3N/kg] × 0.21
・・・式(3)

・窒素の総量
(N2)[m3N/h]
= (一次空気量) [m3N/h] × 0.79
+(ごみ焼却量) [kg/h]
× (ごみ中の窒素の割合)[%] × ((22.4L/mol)/(28.0g/mol)) × (ごみ中の可燃分)[%]
+(ごみ汚水噴霧量) [kg/h] × (ごみ汚水噴霧用空気量:δ) [m3N/kg] × 0.79
+ EGR流量[m3N/h] ×(n-1回目の制御サイクルに冷却塔を通過した窒素濃度) [%]
+ (補助燃料投入量) [L/h] × [ (補助燃料燃焼用理論空気量:ε) [m3N/L]
× (空気過剰率:ζ)× 0.79 + (補助燃料の燃焼で生じる窒素:α3) [m3N/L] ]
+ (二次空気量) [m3N/h] × 0.79
+ (尿素水噴霧量) [kg/h] × (尿素水噴霧用空気量:η) [m3N/kg] × 0.79
・・・式(4)

・排ガス中の酸素濃度を求める式
(O2)/{(H2O)+(CO2)+(O2)+(N2)}×100 ・・・式(9)
[Calculation of oxygen concentration in exhaust gas of waste selected from waste quality database]
A calculated value of the concentration of oxygen generated when the waste selected from the waste quality database is burned in the combustion furnace is obtained.
Here, the garbage type 4 in Table 2 is used as an example for calculation. However, it is assumed that the measured values and constants are given by the following values.
<1> Measured value ・(Waste incineration amount) [kg/h] = 4000
・(Primary air volume) [m 3 N/h] = 2900
・(Garbage amount of sewage water) [kg/h] = 200
・(Auxiliary fuel input) [L/h] = 95.3
・(Amount of urea water spray) [kg/h] = 52.7
・(Secondary air volume) [m 3 N/h] = 250
・EGR flow rate [ m3N /h] = 2380.62
<2> Constant ・(Moisture generated by combustion of auxiliary fuel: α1) [m 3 N/L] = 0.90
・(Carbon dioxide generated by combustion of auxiliary fuel: α2) [m 3 N/L] = 0.85
・(Nitrogen produced by combustion of auxiliary fuel: α3) [m 3 N/L] = 3.0
・(Theoretical amount of air for auxiliary fuel combustion: ε) [m 3 N/L] = 7.5
・(Fly ash rate β) [%] = 10
・(Cautery loss γ) [%] = 5
・(Amount of air for spraying dust and sewage: δ) [m 3 N/kg] = 0.5
・(Excess air ratio of theoretical air amount for auxiliary fuel combustion: ζ) = 1.5
・(Amount of air for urea water spray: η) [m 3 N/kg] = 0.30
・(Excess air ratio of primary air volume: X) = 1.3
<3> Garbage quality database value ・(Moisture content in garbage) [%] = 43
・(Combustible content in garbage) [%] = 50
・(Ash content in garbage) [%] = 7
・(Ratio of carbon in garbage) [%] = 54
・(Percentage of hydrogen in garbage) [%] = 7.6
・(Percentage of nitrogen in garbage) [%] = 0.4
<4> Calculated value The calculated value is obtained by the following formulas (5) to (8).
・(Concentration of moisture passing through the cooling tower in the n-1th control cycle)
( H2O ')/{( H2O ')+( CO2 ')+( O2 ')+( N2 ')}×100 Formula (5)
・(Concentration of carbon dioxide passing through the cooling tower in the n-1th control cycle)
( CO2 ')/{( H2O ')+( CO2 ')+( O2 ')+( N2 ')}×100 Formula (6)
・(Concentration of oxygen passing through the cooling tower in the n-1th control cycle)
( O2 ')/{( H2O ')+( CO2 ')+( O2 ')+( N2 ')}×100 Formula (7)
・(Concentration of nitrogen that passed through the cooling tower in the n-1th control cycle)
( N2 ')/{( H2O ')+( CO2 ')+( O2 ')+( N2 ')}×100 Formula (8)

(Concentration of moisture passing through the cooling tower in the n-1th control cycle) [%] in equation (5) is the nth control cycle that outputs the primary air blowing amount in the flow chart of FIG. 5 or 6 When the amount of flue gas at the incinerator outlet of the n-1th control cycle is
It is the moisture concentration [%] when adding cooling water spray amount [kg/h]×((22.4L/mol)/(18.0g/mol)) in the n-1th control cycle. Here, the cooling water spray amount [kg/h] at the n-1th control cycle is an actual measurement value.
The gas concentration in the above formulas (6) to (8) is the n-1th control cycle when the control cycle for outputting the primary air blowing amount in the flowchart of FIG. 5 or 6 is the nth time. Carbon dioxide concentration, oxygen concentration, and nitrogen concentration in the exhaust gas that has passed through the tower.
When the control cycle for outputting the primary air blowing amount in the flowchart of FIG. 5 or 6 is n, the moisture concentration, carbon dioxide concentration, oxygen concentration and The reason for calculating the oxygen concentration from the nitrogen concentration is that the concentration of each component gas in the exhaust gas recirculation (EGR) that flows into the incinerator after passing through the cooling tower is necessary for calculating the oxygen concentration in the nth control cycle. This is because the concentration of each component gas in the (n-1)-th control cycle, which is one before the n-th control cycle, is used as the component gas concentration.

For the calculation, the following values were used for the above formulas (5) to (8).
(H 2 O') = (amount of water passed through the cooling tower in the n-1th control cycle) [m 3 N/h] = 9374.8,
(CO 2 ') = (the amount of carbon dioxide that passed through the cooling tower in the n-1th control cycle) [m 3 N/h] = 2445,
(O 2 ') = (the amount of oxygen that passed through the cooling tower in the n-1th control cycle) [m 3 N/h] = 339.6
(N 2 ') = (amount of nitrogen passed through the cooling tower in the n-1th control cycle) [m 3 N/h] = 3711.4
The calculated values calculated as a result are as follows.
・(Moisture concentration that passed through the cooling tower in the n-1th control cycle) [%] = 59.07
・(Concentration of carbon dioxide passing through the cooling tower in the n-1th control cycle) [%] = 15.41
・(Concentration of oxygen passing through the cooling tower in the n-1th control cycle) [%] = 2.14
・(Concentration of nitrogen that passed through the cooling tower in the n-1th control cycle) [%] = 23.38

Substituting the values of <1> and <2> above and the values of <3> and <4> of garbage type 4 in the garbage type database in Table 2 into the following formulas (1) to (4) and (9): , to obtain an oxygen concentration of 3.10%.

・Total amount of water (H 2 O) [m 3 N/h]
= (waste incineration amount) [kg/h]
× [ (proportion of hydrogen in garbage) [%] × ((22.4L/mol)/(2.0g/mol)) × (combustible content in garbage) [%]
+ (moisture in waste) [%] × ((22.4L/mol)/(18.0g/mol)) ]
+ (Spray amount of garbage and sewage) [kg/h] × ((22.4L/mol)/(18.0g/mol))
+ EGR flow rate [m 3 N/h] × (concentration of moisture passing through the cooling tower in the n-1th control cycle) [%]
+ (Amount of supplementary fuel input) [L/h] × (Moisture produced by combustion of supplementary fuel: α1) [m 3 N/L]
+ (Aqueous urea spray amount) [kg/h] × ((22.4L/mol)/(18.0g/mol)) Equation (1)

・Total amount of carbon dioxide (CO 2 ) [m 3 N/h]
= (amount of waste incinerated) [kg/h] × ((22.4L/mol)/(12.0g/mol))
× [ (Ratio of carbon in waste) [%] × (Combustible content in waste) [%]
- (ash content in garbage) [%] × [1- (fly ash rate β) [%]] × (ignition loss γ) [%] ]
+ EGR flow rate [m 3 N/h] × (Concentration of carbon dioxide passing through the cooling tower in the n-1th control cycle) [%]
+ (Amount of supplementary fuel input) [L/h] × (Carbon dioxide produced by combustion of supplementary fuel: α2) [m 3 N/L]
・・・Formula (2)

・Total amount of oxygen (O 2 ) [m 3 N/h]
= (primary air volume) [m 3 N/h] × 0.21 × [(excess air ratio of primary air: X) - 1]
+ (Spray amount of waste and sewage) [kg/h] × (Amount of air for spraying waste and sewage: δ) [m 3 N/kg] × 0.21
+ EGR flow rate [m 3 N/h] × (concentration of oxygen passing through the cooling tower in the n-1th control cycle) [%]
+ [ (Theoretical amount of air for auxiliary fuel combustion: ε) [m 3 N/L] × (Amount of auxiliary fuel input) [L/h]
× [ (excess air ratio of theoretical air amount for auxiliary fuel combustion: ζ) - 1] × 0.21 ]
+ (Secondary air volume) [m 3 N/h] × 0.21
+ (Amount of urea water spray) [kg/h] × (Amount of air for urea water spray: η) [m3N/kg] × 0.21
・・・Formula (3)

・Total amount of nitrogen (N 2 ) [m 3 N/h]
= (primary air volume) [m 3 N/h] × 0.79
+ (waste incineration amount) [kg/h]
× (Ratio of nitrogen in garbage) [%] × ((22.4L/mol)/(28.0g/mol)) × (Combustible content in garbage) [%]
+ (Spray amount of waste and sewage) [kg/h] × (Amount of air for spraying waste and sewage: δ) [m 3 N/kg] × 0.79
+ EGR flow rate [m 3 N/h] × (nitrogen concentration passing through the cooling tower in the n-1th control cycle) [%]
+ (Auxiliary fuel input amount) [L/h] × [(Theoretical air amount for auxiliary fuel combustion: ε) [m 3 N/L]
× (excess air ratio: ζ) × 0.79 + (nitrogen produced by combustion of auxiliary fuel: α3) [m 3 N/L] ]
+ (secondary air volume) [m 3 N/h] × 0.79
+ (Amount of urea water spray) [kg/h] × (Amount of air for urea water spray: η) [m 3 N/kg] × 0.79
・・・Formula (4)

・Formula for calculating oxygen concentration in exhaust gas
( O2 )/{( H2O )+( CO2 )+( O2 )+( N2 )}×100 Formula (9)

〔ごみ質データベースから選ばれたごみ質の排気ガス中の二酸化炭素濃度の算出〕
前記ごみ質データベースから選ばれたごみ質が燃焼炉で燃焼されたときに、発生する二酸化炭素濃度の計算値を求める。ここでは、表2のごみ質4を例にして計算する。ただし、〈1〉実測値と〈2〉定数は〔0013〕と同様の値で与えられているものとする。
上記〈1〉と〈2〉の値、表2のごみ質データベースのごみ質4の値〈3〉及び〈4〉の値を〔0013〕の式(1)~(4)と下式の(10)に代入すると、二酸化炭素濃度17.6%を得る。

・排ガス中の二酸化炭素濃度を求める式
(CO2)/{(H2O)+(CO2)+(O2)+(N2)}×100 ・・・式(10)
[Calculation of carbon dioxide concentration in exhaust gas of waste selected from waste quality database]
A calculated value of the concentration of carbon dioxide generated when the waste selected from the waste quality database is combusted in the combustion furnace is obtained. Here, the garbage type 4 in Table 2 is used as an example for calculation. However, it is assumed that <1> actual measurement values and <2> constants are given as values similar to [0013].
The values of <1> and <2> above, and the values of <3> and <4> of garbage quality 4 in the garbage quality database in Table 2, are expressed by the formulas (1) to (4) of [0013] and the following formula ( Substituting into 10), we obtain a carbon dioxide concentration of 17.6%.

・Formula for calculating carbon dioxide concentration in exhaust gas
(CO 2 )/{(H 2 O)+(CO 2 )+(O 2 )+(N 2 )}×100 Formula (10)

図5のフローチャートにより本発明に係るごみ焼却炉の〔0011〕の場合の自動燃焼制御方法を説明する。
本発明に係るごみ焼却炉の自動燃焼制御への切替えは、作業者が焼却炉を稼働させ焼却炉にごみを投入し、ごみ投入量を燃焼制御部11で当該ごみ投入量を計算し、一次空気量、ごみ汚水噴霧量、排ガス再循環量、補助燃料投入量、尿素水噴霧量等を計算し焼却炉へ供給したうえで、問題がない(定常状態)ことを確認してから行う。自動制御へ切り替えると、演算装置13のプログラムにより計算開始となる。
前記の工程において、投入されたごみのごみ質を特定するために、燃焼制御部11においてごみ質データベースの表1に基づきごみ質を選択し式(1)~(4)と式(9)、(10)に基づき選択されたごみ質の排ガスに含まれる酸素濃度又は二酸化炭素濃度の計算値を求める(S-1)。一方で排ガスに含まれている酸素濃度又は二酸化炭素濃度を測定し実測値を求める。
燃焼制御部において酸素濃度又は二酸化炭素濃度の計算値と実測値を比較する(S-2)。
計算値と実測値がしきい値の範囲内で一致した場合は投入したごみ質が特定できたことになるので、燃焼制御部において前記特定されたごみ質に対応して焼却炉に吹き込む一次空気量を決めて送風機からごみ焼却炉へ吹き込むことで燃焼温度を最適に制御することができる(S-3、S-4)。
計算値と実測値が一致しない場合は、改めてごみ質データベースの表1から別のごみ質を選択し、一致するごみ質が特定されるまで上記のステップを繰り返す(S-5)。
The automatic combustion control method for [0011] of the refuse incinerator according to the present invention will be described with reference to the flow chart of FIG.
In order to switch the garbage incinerator to automatic combustion control according to the present invention, the worker operates the incinerator and puts garbage into the incinerator, and the amount of garbage thrown is calculated by the combustion control unit 11. After calculating the amount of air, waste water spray amount, exhaust gas recirculation amount, supplementary fuel input amount, urea water spray amount, etc., and supplying it to the incinerator, check that there are no problems (steady state). When switching to automatic control, calculation is started by the program of the arithmetic unit 13 .
In the above process, in order to specify the waste quality of the thrown-in waste, the combustion control unit 11 selects the waste quality based on Table 1 of the waste quality database, formulas (1) to (4) and formula (9), Based on (10), a calculated value of oxygen concentration or carbon dioxide concentration contained in exhaust gas of the selected refuse is obtained (S-1). On the other hand, the oxygen concentration or carbon dioxide concentration contained in the exhaust gas is measured to obtain the actual measurement value.
The calculated value of oxygen concentration or carbon dioxide concentration is compared with the measured value in the combustion control unit (S-2).
If the calculated value and the measured value match within the range of the threshold value, it means that the type of the thrown-in waste has been identified. The combustion temperature can be optimally controlled by determining the amount and blowing it from the blower into the refuse incinerator (S-3, S-4).
If the calculated value and the measured value do not match, another waste type is selected again from Table 1 of the waste type database, and the above steps are repeated until a matching waste type is specified (S-5).

図6のフローチャートにより本発明に係るごみ焼却炉の〔0012〕の場合の自動燃焼制御方法を説明する。
本発明に係るごみ焼却炉の自動燃焼制御への切替えは、作業者が焼却炉を稼働させ焼却炉にごみを投入しごみ投入量を燃焼制御部11で当該ごみ投入量を計算し、一次空気量、ごみ汚水噴霧量、排ガス再循環量、補助燃料投入量、尿素水噴霧量等を計算し焼却炉へ供給したうえで、問題がない(定常状態)ことを確認してから行う。自動制御へ切り替えると、演算装置13のプログラムにより計算開始となる。
前記の工程において、投入されたごみのごみ質データベースのごみ質範囲を判定するために、燃焼制御部11においてごみ質データベースの表1に基づき表1の最小、中間及び最大のごみ質を選択し式(1)~(4)と式(9)、(10)に基づき選択されたごみ質の排ガスに含まれる酸素濃度又は二酸化炭素濃度の各計算値を求める(S-1)。一方で排ガスに含まれている酸素濃度又は二酸化炭素濃度を測定し実測値を求める。
燃焼制御部において酸素濃度又は二酸化炭素濃度の計算値と実測値を比較し、実測値が(最小~中間)と(中間~最大)のどちらにあるかを判定し、実測値がある範囲を選択する(S-2)。
残りのごみ質データベースのごみ質が2又は3個であれば(S-3)、最小、中間及び最大の各計算値のうち最も実測値に近いごみ質を選択し、特定する(S-4)。
投入したごみ質が特定できたことになるので、制御部において前記特定されたごみ質に対応して焼却炉に吹き込む一次空気量を決めて送風機からごみ焼却炉へ吹き込むことで焼却炉の燃焼温度を最適に制御することができる(S-5)。
ごみ質データベースの残りのごみ質個数が4個以上の場合は、ごみ質データベースの選択範囲の最小、中間及び最大のごみ質を選択し式(1)~(4)と式(9)、(10)に基づき選択されたごみ質の排ガスに含まれる酸素濃度又は二酸化炭素濃度の各計算値を求めるステップを繰り返す(S-6)。
The automatic combustion control method for the case [0012] of the refuse incinerator according to the present invention will be described with reference to the flow chart of FIG.
In order to switch the garbage incinerator to automatic combustion control according to the present invention, the worker operates the incinerator, puts garbage into the incinerator, calculates the amount of garbage thrown in by the combustion control unit 11, and uses the primary air. After calculating the amount of waste, sewage spray amount, flue gas recirculation amount, auxiliary fuel input amount, urea water spray amount, etc., and supplying it to the incinerator, check that there are no problems (steady state). When switching to automatic control, calculation is started by the program of the arithmetic unit 13 .
In the above process, the combustion control unit 11 selects the minimum, intermediate, and maximum garbage qualities in Table 1 based on Table 1 of the garbage quality database in order to determine the garbage quality range of the garbage quality database of the thrown-in waste. Calculated values of the concentration of oxygen or carbon dioxide contained in the exhaust gas of the selected refuse based on the formulas (1) to (4) and the formulas (9) and (10) are obtained (S-1). On the other hand, the oxygen concentration or carbon dioxide concentration contained in the exhaust gas is measured to obtain the actual measurement value.
In the combustion control unit, the calculated value of oxygen concentration or carbon dioxide concentration is compared with the measured value, and it is determined whether the measured value is (minimum to middle) or (middle to maximum), and the range with the measured value is selected. (S-2).
If there are 2 or 3 garbage types in the remaining garbage type database (S-3), the garbage type closest to the actual measurement value is selected from among the minimum, intermediate and maximum calculated values and specified (S-4 ).
Since the quality of the thrown-in waste has been specified, the amount of primary air to be blown into the incinerator is determined by the control unit corresponding to the specified waste quality, and the amount of primary air to be blown into the incinerator from the blower is adjusted to the combustion temperature of the incinerator. can be optimally controlled (S-5).
If the number of remaining garbage types in the garbage type database is 4 or more, select the minimum, middle, and maximum garbage types in the selection range of the garbage type database, and use formulas (1) to (4) and formulas (9), ( 10), the step of calculating each calculated value of the oxygen concentration or the carbon dioxide concentration contained in the exhaust gas of the selected refuse is repeated (S-6).

上記本発明のごみ焼却炉の自動燃焼制御方法によれば、ごみが焼却炉内に投入される都度、当該投入されたごみ質を特定することができるので、焼却炉内に吹き込む一次空気量を調整することでごみ焼却炉内の燃焼温度と排ガス性状を最適に制御し、排ガス中の有害成分の発生を抑制することができる。 According to the automatic combustion control method for a refuse incinerator of the present invention, the quality of the refuse thrown into the incinerator can be identified each time the refuse is thrown into the incinerator, so the amount of primary air blown into the incinerator can be determined. By adjusting, it is possible to optimally control the combustion temperature and exhaust gas properties in the waste incinerator and suppress the generation of harmful components in the exhaust gas.

図7及び図8は本発明を実施する他のごみ焼却施設の全体系統図である。
図7はボイラ付き焼却炉で、乾燥段・燃焼段・後燃焼段から成るストーカの下方から一次空気を供給するライン、焼却炉内の温度が一定以下なら補助燃料を投入する補助燃料供給装置、ごみ汚水噴霧装置、排ガスの一部を焼却炉内に戻し窒素酸化物生成を抑止する排ガス再循環、未燃ガスや未燃物を完全燃焼させる二次空気供給ラインで構成されていて、その他、ガス濃度測定部、ボイラ、エコノマイザ、バグフィルタ、誘引送風機、煙突を備えている。
図8は乾燥段・燃焼段・後燃焼段から成るストーカの下方から一次空気を供給するライン、焼却炉内の温度が一定以下なら補助燃料を投入する補助燃料供給装置、ごみ汚水噴霧装置、排ガスの一部を焼却炉内に戻し窒素酸化物生成を抑止する排ガス再循環、未燃ガスや未燃物を完全燃焼させる二次空気供給ラインで構成されていて、その他、ガス濃度測定部、ガス冷却塔、熱交換器、温水熱交換器、減温塔、バグフィルタ、誘引送風機、煙突を備えている。
7 and 8 are general system diagrams of other garbage incineration facilities that implement the present invention.
Figure 7 shows an incinerator with a boiler, a line that supplies primary air from below a stoker consisting of a drying stage, a combustion stage, and a post-combustion stage; It consists of a waste water spray system, exhaust gas recirculation that returns part of the exhaust gas to the incinerator to suppress the formation of nitrogen oxides, and a secondary air supply line that completely burns unburned gas and unburned materials. It is equipped with a gas concentration measurement unit, boiler, economizer, bag filter, induced draft fan, and chimney.
Figure 8 shows a line that supplies primary air from below the stoker consisting of the drying stage, combustion stage, and post-combustion stage, an auxiliary fuel supply device that feeds auxiliary fuel if the temperature inside the incinerator is below a certain level, a garbage and sewage spray device, and exhaust gas. is returned to the incinerator to suppress the formation of nitrogen oxides, and a secondary air supply line to completely burn unburned gas and unburned matter. It is equipped with a cooling tower, heat exchanger, hot water heat exchanger, cooling tower, bag filter, induced draft fan, and chimney.

1 ごみ焼却炉
2 ごみ燃焼室
3 ごみ供給ホッパ
4 ごみ
5 プッシャー
6 ストーカ
7 空気送風機
8 冷却塔
9 煙突
10 灰シュート
11 燃焼制御部
12 コントローラ
13 演算装置
1 Garbage Incinerator 2 Garbage Combustion Chamber 3 Garbage Supply Hopper 4 Garbage 5 Pusher 6 Stoker 7 Air Blower 8 Cooling Tower 9 Chimney 10 Ash Chute 11 Combustion Control Section 12 Controller 13 Arithmetic Device

Claims (5)

ごみ焼却炉でごみを焼却処理するプロセスにおいて、以下の手順に基づき焼却炉に投入されたごみ質を特定し、当該特定されたごみ質に応じてごみ焼却炉に供給する一次空気吹込量を制御し、焼却炉の燃焼制御を行うことを特徴とするごみ焼却炉の自動燃焼制御方法。
ごみ焼却炉に投入され燃焼しているごみ質を次のステップに従って計算し推算する。
(R1)ごみ質データベースは、ごみの発熱量の順に並んでおり、前記ごみ質データベースから任意のごみ質を選び焼却炉で燃焼されたときに、発生する酸素濃度を計算式に従って計算値を出す。
(R2)ごみ焼却炉から排気された酸素濃度を測定し実測値を出す。
(R3)前記酸素濃度の計算値と実測値を比較する。
(R4)前記酸素濃度の計算値と実測値が所定の範囲内で一致するときは、ごみ質の特定を終え、前記酸素濃度の計算値と実測値を比較し酸素濃度の計算値と実測値が所定の範囲で異なっているときは、前記ごみ質データベースから別のごみ質を選び前記(R1)から(R3)のステップに従って酸素濃度の計算値と実測値が所定の範囲内で一致するまで前記ごみ質を変えて計算し、ごみ質を特定する。
(R5)前記特定されたごみ質に応じてごみ焼却炉に供給する一次空気吹込量を制御する。
In the process of incinerating waste in a waste incinerator, the type of waste put into the incinerator is specified based on the following procedure, and the amount of primary air supplied to the waste incinerator is controlled according to the specified waste type. and an automatic combustion control method for a refuse incinerator, characterized by controlling combustion in the incinerator.
Calculate and estimate the quality of waste that is put into the waste incinerator and burned according to the following steps.
(R1) The waste quality database is arranged in the order of the calorific value of the waste, and when any waste quality is selected from the waste quality database and burned in the incinerator, the oxygen concentration generated is calculated according to the formula. .
(R2) Measure the concentration of oxygen exhausted from the refuse incinerator and obtain the measured value.
(R3) Compare the calculated oxygen concentration with the measured value.
(R4) When the calculated value of the oxygen concentration and the measured value of the oxygen concentration match within a predetermined range, the identification of the waste type is completed, the calculated value of the oxygen concentration is compared with the measured value of the oxygen concentration, and the calculated value and the measured value of the oxygen concentration are compared. are different within a predetermined range, another waste type is selected from the waste type database, and according to steps (R1) to (R3), until the calculated oxygen concentration value and the measured value match within a predetermined range. The garbage quality is specified by performing calculations while changing the garbage quality.
(R5) Control the amount of primary air to be supplied to the refuse incinerator in accordance with the specified waste quality.
ごみ焼却炉でごみを焼却処理するプロセスにおいて、以下の手順に基づき焼却炉に投入されたごみ質を特定し、当該特定されたごみ質に応じてごみ焼却炉に供給する一次空気吹込量を制御し、焼却炉の燃焼制御を行うことを特徴とするごみ焼却炉の自動燃焼制御方法。
ごみ焼却炉に投入され燃焼しているごみ質を次のステップに従って計算し推算する。
(S1)前記ごみ質データベースから任意のごみ質を選び焼却炉で燃焼されたときに、発生する二酸化炭素濃度を計算式に従って計算値を出す。
(S2)ごみ焼却炉から排気された二酸化炭素濃度を測定し実測値を出す。
(S3)前記二酸化炭素濃度の計算値と実測値を比較する。
(S4)前記二酸化炭素濃度の計算値と実測値が所定の範囲内で一致するときは、ごみ質の特定を終え、前記二酸化炭素濃度の計算値と実測値を比較し二酸化炭素濃度の計算値と実測値が所定の範囲で異なっているときは、前記ごみ質データベースから別のごみ質を選び前記(S1)から(S3)のステップに従って二酸化炭素濃度の計算値と実測値が所定の範囲内で一致するまで前記ごみ質を変えて計算し、ごみ質を特定する。
(S5)前記特定されたごみ質に応じてごみ焼却炉に供給する一次空気吹込量を制御する。
In the process of incinerating waste in a waste incinerator, the type of waste put into the incinerator is specified based on the following procedure, and the amount of primary air supplied to the waste incinerator is controlled according to the specified waste type. and an automatic combustion control method for a refuse incinerator, characterized by controlling combustion in the incinerator.
Calculate and estimate the quality of waste that is put into the waste incinerator and burned according to the following steps.
(S1) A value is calculated according to a formula for the concentration of carbon dioxide generated when an arbitrary waste type is selected from the waste type database and burned in an incinerator.
(S2) Measure the concentration of carbon dioxide exhausted from the refuse incinerator and obtain the measured value.
(S3) Compare the calculated value and the measured value of the carbon dioxide concentration.
(S4) When the calculated value of the carbon dioxide concentration and the measured value of the carbon dioxide concentration match within a predetermined range, the identification of the waste type is completed, the calculated value of the carbon dioxide concentration is compared with the measured value of the carbon dioxide concentration, and the calculated value of the carbon dioxide concentration is obtained. and the measured values differ within a predetermined range, another waste type is selected from the waste type database, and the calculated value and the measured value of carbon dioxide concentration are within a predetermined range according to steps (S1) to (S3). , the dust quality is specified by changing the dust quality until they match.
(S5) Control the amount of primary air to be supplied to the refuse incinerator in accordance with the specified waste quality.
前記ごみ質データベースから選ばれたごみ質が焼却炉で燃焼されたときに、発生する酸素及び二酸化炭素濃度の計算値を次の計算式に従って求めることを特徴とする請求項1又は2に記載のごみ焼却炉の自動燃焼制御方法。
酸素濃度及び二酸化炭素濃度の算出は、まず下記(A) 式(1)~式(4)及び(B)式(5)~式(8)に従い、制御サイクルn回目の焼却炉出口での水の総量:(H2O)、二酸化炭素の総量:(CO2)、酸素の総量:(O2)、窒素の総量:(N2)を求める。
その後、(C) 式(9)、式(10)を用いて排ガス中の酸素濃度、二酸化炭素濃度を求める。
なお、式中で用いる数値の〈1〉実測値、〈2〉定数、〈3〉ごみ質データベース値、
〈4〉算出値の分類は以下の通りになる。
〈1〉実測値
・(ごみ焼却量) [kg/h]
・(一次空気吹込量) [m3N/h]
・(ごみ汚水噴霧量) [kg/h]
・(補助燃料投入量) [L/h]
・(尿素水噴霧量) [kg/h]
・(二次空気量) [m3N/h]
・EGR流量 [m3N/h]
〈2〉定数
・(補助燃料の燃焼で生じる水分:α1) [m3N/L]
・(補助燃料の燃焼で生じる二酸化炭素:α2) [m3N/L]
・(補助燃料の燃焼で生じる窒素:α3) [m3N/L]
・(補助燃料燃焼用理論空気量:ε) [m3N/L]
・(飛灰率β)[%]
・(熱灼減量γ)[%]
・(ごみ汚水噴霧用空気量:δ) [m3N/kg]
・(補助燃料燃焼用理論空気量の空気過剰率:ζ)
・(尿素水噴霧用空気量:η) [m3N/kg]
・(一次空気吹込量の空気過剰率:X)
〈3〉ごみ質データベース値
・(ごみ中の水分)[%]
・(ごみ中の可燃分)[%]
・(ごみ中の灰分)[%]
・(ごみ中の炭素の割合)[%]
・(ごみ中の水素の割合)[%]
・(ごみ中の窒素の割合)[%]
〈4〉算出値(詳細は(B)項で記述)
・(n-1回目の制御サイクルに冷却塔を通過した水分濃度) [%]
・(n-1回目の制御サイクルに冷却塔を通過した二酸化炭素濃度) [%]
・(n-1回目の制御サイクルに冷却塔を通過した酸素濃度) [%]
・(n-1回目の制御サイクルに冷却塔を通過した窒素濃度) [%]
(A)焼却炉出口での各排ガスの総排出量
(A)-1 水の総量
(H2O)[m3N/h]
= (ごみ焼却量) [kg/h]
× [ (ごみ中の水素の割合)[%] × ((22.4L/mol)/(2.0g/mol)) ×(ごみ中の可燃分)[%]
+(ごみ中の水分)[%] × ((22.4L/mol)/(18.0g/mol)) ]
+(ごみ汚水噴霧量) [kg/h] × ((22.4L/mol)/(18.0g/mol))
+ EGR流量[m3N/h] ×(n-1回目の制御サイクルに冷却塔を通過した水分濃度) [%]
+(補助燃料投入量) [L/h] × (補助燃料の燃焼で生じる水分:α1) [m3N/L]
+(尿素水噴霧量) [kg/h] × ((22.4L/mol)/(18.0g/mol)) ・・・式(1)
(A)-2 二酸化炭素の総量
(CO2)[m3N/h]
= (ごみ焼却量) [kg/h] × ((22.4L/mol)/(12.0g/mol))
× [ (ごみ中の炭素の割合)[%] × (ごみ中の可燃分)[%]
- (ごみ中の灰分)[%] × (1-(飛灰率β)[%]) × (熱灼減量γ)[%] ]
+ EGR流量[m3N/h] ×(n-1回目の制御サイクルに冷却塔を通過した二酸化炭素濃度) [%]
+ (補助燃料投入量) [L/h] × (補助燃料の燃焼で生じる二酸化炭素:α2) [m3N/L]
・・・式(2)
(A)-3 酸素の総量
(O2)[m3N/h]
= (一次空気吹込量) [m3N/h] × 0.21 × [(一次空気吹込量の空気過剰率:X)-1]
+(ごみ汚水噴霧量) [kg/h] × (ごみ汚水噴霧用空気量:δ) [m3N/kg] × 0.21
+ EGR流量[m3N/h] ×(n-1回目の制御サイクルに冷却塔を通過した酸素濃度) [%]
+ [ (補助燃料燃焼用理論空気量:ε) [m3N/L] × (補助燃料投入量) [L/h]
×[ (補助燃料燃焼用理論空気量の空気過剰率:ζ) - 1] × 0.21 ]
+ (二次空気量) [m3N/h] × 0.21
+ (尿素水噴霧量) [kg/h] × (尿素水噴霧用空気量:η) [m3N/kg] × 0.21
・・・式(3)
(A)-4 窒素の総量
(N2)[m3N/h]
=(一次空気吹込量) [m3N/h] × 0.79
+(ごみ焼却量) [kg/h]
×(ごみ中の窒素の割合)[%] × ((22.4L/mol)/(28.0g/mol))× (ごみ中の可燃分)[%]
+(ごみ汚水噴霧量) [kg/h] × (ごみ汚水噴霧用空気量:δ) [m3N/kg] × 0.79
+ EGR流量[m3N/h] ×(n-1回目の制御サイクルに冷却塔を通過した窒素濃度) [%]
+ (補助燃料投入量) [L/h] ×[ (補助燃料燃焼用理論空気量:ε) [m3N/L] ×
(補助燃料燃焼用理論空気量の空気過剰率:ζ)× 0.79 + (補助燃料の燃焼で生じる窒素
:α3) [m3N/L] ]
+ (二次空気量) [m3N/h] × 0.79
+ (尿素水噴霧量) [kg/h] × (尿素水噴霧用空気量:η) [m3N/kg] × 0.79
・・・式(4)
(B)( n-1回目の制御サイクルに冷却塔を通過したガス濃度) [%]について
[1](n-1回目の制御サイクルに冷却塔を通過した水分濃度) [%]
[2](n-1回目の制御サイクルに冷却塔を通過した二酸化炭素濃度) [%]
[3](n-1回目の制御サイクルに冷却塔を通過した酸素濃度) [%]
[4](n-1回目の制御サイクルに冷却塔を通過した窒素濃度) [%]
[1](n-1回目の制御サイクルに冷却塔を通過した水分濃度) [%]は、一次空気吹込量を出力する制御サイクルをn回目としたとき、制御サイクルn-1回目の焼却炉出口での排ガス量に、
制御サイクルn-1回目の冷却水噴霧量 [kg/h]× ((22.4L/mol)/(18.0g/mol)) を加えたときの水分濃度[%]である。
ここで、制御サイクルn-1回目の冷却水噴霧量 [kg/h]は実測値である。
上記の[2]~[4]のガス濃度は、一次空気吹込量が出力される制御サイクルのn-1回目で冷却塔を通過した排ガス中の二酸化炭素の濃度、酸素の濃度、窒素の濃度である。
それぞれの濃度は、
(H2O’)=(n-1回目の制御サイクルに冷却塔を通過した水分量) [m3N/h]
(CO2’)=(n-1回目の制御サイクルに冷却塔を通過した二酸化炭素量) [m3N/h]
(O2’)=(n-1回目の制御サイクルに冷却塔を通過した酸素量) [m3N/h]
(N2’)=(n-1回目の制御サイクルに冷却塔を通過した窒素量) [m3N/h]
を用いて下式で計算される。
・(n-1回目の制御サイクルに冷却塔を通過した水分濃度)
(H2O’) /{(H2O’)+(CO2’)+(O2’)+(N2’)}×100 ・・・式(5)
・(n-1回目の制御サイクルに冷却塔を通過した二酸化炭素濃度)
(CO2’) /{(H2O’)+(CO2’)+(O2’)+(N2’)}×100 ・・・式(6)
・(n-1回目の制御サイクルに冷却塔を通過した酸素濃度)
(O2’) /{(H2O’)+(CO2’)+(O2’)+(N2’)}×100 ・・・式(7)
・(n-1回目の制御サイクルに冷却塔を通過した窒素濃度)
(N2’) /{(H2O’)+(CO2’)+(O2’)+(N2’)}×100 ・・・式(8)
(C)酸素濃度及び二酸化炭素濃度の算出
・酸素濃度
(O2)/{(H2O)+(CO2)+(O2)+(N2)}×100 ・・・式(9)
・二酸化炭素濃度
(CO2)/{(H2O)+(CO2)+(O2)+(N2)}×100 ・・・式(10)
3. The method according to claim 1 or 2, wherein calculated values of concentrations of oxygen and carbon dioxide generated when the waste selected from the waste quality database is burned in an incinerator are obtained according to the following formulas. Automatic combustion control method for garbage incinerator.
To calculate the oxygen concentration and carbon dioxide concentration, first, according to the following (A) formulas (1) to (4) and (B) formulas (5) to (8), the water at the incinerator outlet of the nth control cycle The total amount of: (H 2 O), the total amount of carbon dioxide: (CO 2 ), the total amount of oxygen: (O 2 ), and the total amount of nitrogen: (N 2 ).
After that, (C) the oxygen concentration and the carbon dioxide concentration in the exhaust gas are obtained using the equations (9) and (10).
In addition, <1> actual measurement value, <2> constant, <3> garbage quality database value,
<4> Classification of calculated values is as follows.
<1> Measured value (waste incineration amount) [kg/h]
・( Primary air blowing volume ) [m 3 N/h]
・(Garbage amount of sewage water) [kg/h]
・(Auxiliary fuel input) [L/h]
・(Amount of urea spray) [kg/h]
・(Secondary air volume) [m 3 N/h]
・EGR flow rate [m 3 N/h]
<2> Constant (moisture generated by combustion of auxiliary fuel: α1) [m 3 N/L]
・(Carbon dioxide produced by combustion of auxiliary fuel: α2) [m 3 N/L]
・(Nitrogen produced by combustion of auxiliary fuel: α3) [m 3 N/L]
・(Theoretical amount of air for auxiliary fuel combustion: ε) [m 3 N/L]
・(Fly ash rate β) [%]
・(Causing loss γ) [%]
・(Amount of air for dust and sewage spraying: δ) [m 3 N/kg]
・(Excess air ratio of theoretical air amount for auxiliary fuel combustion: ζ)
・(Amount of air for urea water spray: η) [m 3 N/kg]
・(Excess air ratio of primary air blowing volume : X)
<3> Garbage quality database value (moisture in garbage) [%]
・(Combustible content in garbage) [%]
・(Ashes in garbage)[%]
・(Ratio of carbon in garbage) [%]
・(Percentage of hydrogen in garbage) [%]
・(Percentage of nitrogen in garbage) [%]
<4> Calculated value (details are described in section (B))
・(Concentration of moisture passing through the cooling tower in the n-1th control cycle) [%]
・(Concentration of carbon dioxide passing through the cooling tower in the n-1th control cycle) [%]
・(Concentration of oxygen passing through the cooling tower in the n-1th control cycle) [%]
・(Concentration of nitrogen that passed through the cooling tower in the n-1th control cycle) [%]
(A) Total emissions of each flue gas at the incinerator outlet
(A)-1 Total amount of water (H 2 O) [m 3 N/h]
= (waste incineration amount) [kg/h]
× [ (proportion of hydrogen in garbage) [%] × ((22.4L/mol)/(2.0g/mol)) × (combustible content in garbage) [%]
+ (Moisture in garbage) [%] × ((22.4L/mol)/(18.0g/mol)) ]
+ (Spray amount of garbage and sewage) [kg/h] × ((22.4L/mol)/(18.0g/mol))
+ EGR flow rate [m3N/h] × (Moisture concentration that passed through the cooling tower in the n-1th control cycle) [%]
+ (supplementary fuel input amount) [L/h] × (moisture generated by combustion of supplementary fuel: α1) [m 3 N/L]
+ (Aqueous urea spray amount) [kg/h] × ((22.4L/mol)/(18.0g/mol)) Equation (1)
(A)-2 Total amount of carbon dioxide (CO 2 ) [m 3 N/h]
= (amount of waste incinerated) [kg/h] × ((22.4L/mol)/(12.0g/mol))
× [ (Ratio of carbon in waste) [%] × (Combustible content in waste) [%]
- (ash content in garbage) [%] × (1-(fly ash rate β) [%]) × (ignition loss γ) [%] ]
+ EGR flow rate [m 3 N/h] × (Concentration of carbon dioxide passing through the cooling tower in the n-1th control cycle) [%]
+ (Amount of supplementary fuel input) [L/h] × (Carbon dioxide produced by combustion of supplementary fuel: α2) [m 3 N/L]
・・・Formula (2)
(A)-3 Total amount of oxygen (O 2 ) [m 3 N/h]
= ( Primary air blowing volume ) [m 3 N/h] × 0.21 × [(Excess air ratio of primary air blowing volume : X) - 1]
+ (Spray amount of waste and sewage) [kg/h] × (Amount of air for spraying waste and sewage: δ) [m 3 N/kg] × 0.21
+ EGR flow rate [m 3 N/h] × (concentration of oxygen passing through the cooling tower in the n-1th control cycle) [%]
+ [ (Theoretical amount of air for auxiliary fuel combustion: ε) [m 3 N/L] × (Amount of auxiliary fuel input) [L/h]
× [ (excess air ratio of theoretical air amount for auxiliary fuel combustion: ζ) - 1] × 0.21 ]
+ (Secondary air volume) [m 3 N/h] × 0.21
+ (Amount of urea water spray) [kg/h] × (Amount of air for urea water spray: η) [m 3 N/kg] × 0.21
・・・Formula (3)
(A)-4 Total amount of nitrogen (N 2 ) [m 3 N/h]
= ( Primary air blowing volume ) [m 3 N/h] × 0.79
+ (waste incineration amount) [kg/h]
× (Ratio of nitrogen in garbage) [%] × ((22.4L/mol)/(28.0g/mol)) × (Combustible content in garbage) [%]
+ (Spray amount of waste and sewage) [kg/h] × (Amount of air for spraying waste and sewage: δ) [m 3 N/kg] × 0.79
+ EGR flow rate [m 3 N/h] × (nitrogen concentration passing through the cooling tower in the n-1th control cycle) [%]
+ (Auxiliary fuel input amount) [L/h] ×[ (Theoretical air volume for auxiliary fuel combustion: ε) [m 3 N/L] ×
(Excess air ratio of theoretical air amount for auxiliary fuel combustion: ζ) × 0.79 + (Nitrogen generated by combustion of auxiliary fuel: α3) [m 3 N/L] ]
+ (secondary air volume) [m 3 N/h] × 0.79
+ (Amount of urea water spray) [kg/h] × (Amount of air for urea water spray: η) [m 3 N/kg] × 0.79
・・・Formula (4)
(B) (Concentration of gas that passed through the cooling tower in the n-1th control cycle) [%] [1] (Concentration of moisture that passed through the cooling tower in the n-1th control cycle) [%]
[2] (Concentration of carbon dioxide passing through the cooling tower in the n-1th control cycle) [%]
[3] (Oxygen concentration passing through the cooling tower in the n-1th control cycle) [%]
[4] (Concentration of nitrogen passing through the cooling tower in the n-1th control cycle) [%]
[1] (Concentration of moisture passed through the cooling tower in the n-1th control cycle) [%] is the control cycle n-1th incinerator when the control cycle for outputting the primary air blowing amount is nth. The amount of exhaust gas at the exit is
It is the moisture concentration [%] when adding cooling water spray amount [kg/h]×((22.4L/mol)/(18.0g/mol)) in the n-1th control cycle.
Here, the cooling water spray amount [kg/h] at the n-1th control cycle is an actual measurement value.
The gas concentrations of [2] to [4] above are the concentrations of carbon dioxide, oxygen, and nitrogen in the exhaust gas that passed through the cooling tower at the n-1th control cycle in which the primary air blowing amount is output. is.
Each concentration is
(H 2 O') = (the amount of water that passed through the cooling tower in the n-1th control cycle) [m 3 N/h]
(CO 2 ') = (the amount of carbon dioxide that passed through the cooling tower in the n-1th control cycle) [m 3 N/h]
(O 2 ') = (the amount of oxygen that passed through the cooling tower in the n-1th control cycle) [m 3 N/h]
(N 2 ') = (the amount of nitrogen that passed through the cooling tower in the n-1th control cycle) [m 3 N/h]
It is calculated by the following formula using
・(Concentration of moisture passing through the cooling tower in the n-1th control cycle)
( H2O ')/{( H2O ')+( CO2 ')+( O2 ')+( N2 ')}×100 Formula (5)
・(Concentration of carbon dioxide passing through the cooling tower in the n-1th control cycle)
( CO2 ')/{( H2O ')+( CO2 ')+( O2 ')+( N2 ')}×100 Formula (6)
・(Concentration of oxygen passing through the cooling tower in the n-1th control cycle)
( O2 ')/{( H2O ')+( CO2 ')+( O2 ')+( N2 ')}×100 Formula (7)
・(Concentration of nitrogen that passed through the cooling tower in the n-1th control cycle)
( N2 ')/{( H2O ')+( CO2 ')+( O2 ')+( N2 ')}×100 Formula (8)
(C) Calculation of oxygen concentration and carbon dioxide concentration ・Oxygen concentration
( O2 )/{( H2O )+( CO2 )+( O2 )+( N2 )}×100 Formula (9)
・Carbon dioxide concentration
(CO 2 )/{(H 2 O)+(CO 2 )+(O 2 )+(N 2 )}×100 Formula (10)
前記ごみ焼却炉の自動燃焼制御方法におけるごみ質データベースから焼却炉に投入されたごみ質を次の手順により特定することを特徴とする請求項1又は2のいずれかに記載されたごみ焼却炉の自動燃焼制御方法。
(T1)ごみ質データベースは、ごみの発熱量の順に並んでおり、発熱量が少ないごみ質はデータベースの左側、発熱量が多いごみ質はデータベースの右側に並べる。
ごみ質データベースに記載されている複数のごみ質の中心に近いごみ質を選び焼却炉で燃焼させたときに、発生する酸素濃度又は二酸化炭素濃度の計算値と実測値と比較し、酸素濃度の計算値と実測値が所定の範囲内で一致するとき又は二酸化炭素濃度の計算値と実測値が所定の範囲内で一致するときは前記焼却炉内に投入されたごみ質が選択したごみ質であると特定する。
(T2)酸素濃度の場合において、計算値と実測値が所定の範囲内で一致しなかった場合、前記計算値が前記実測値に対して高い場合と低い場合に分けて、ごみ質を選択しなおす。前記計算値が前記実測値に対して高い場合は、前記選んだ中心にあるごみ質と最も発熱量が大きい右にあるごみ質の間でごみ質選択範囲を狭め、前記計算値が前記実測値に対して低い場合は、前記選んだ中心にあるごみ質と最も発熱量が小さい左にあるごみ質の間でごみ質選択範囲を狭め、狭めた範囲内で中心に位置するごみ質を選び、選んだごみ質が焼却炉で燃焼したときに発生する酸素濃度を計算し、酸素濃度の計算値と実測値が所定の範囲内で一致するときは前記焼却炉に投入されたごみ質が、選択したごみ質であると特定する。
(T3)酸素濃度の場合において、前記により選んだごみ質を焼却炉で燃焼させたときに、発生する酸素濃度の計算値と実測値とが異なるときは再度上記手順に従ってごみ質を選び、選んだごみ質の酸素濃度の計算値と実測値が所定の範囲内で一致するまで上記(T2)の手順を繰り返す。
(T2’)二酸化炭素濃度の場合において、計算値と実測値が所定の範囲内で一致しなかった場合、前記計算値が前記実測値に対して高い場合と低い場合に分けて、ごみ質を選択しなおす。前記計算値が前記実測値に対して高い場合は、前記選んだ中心にあるごみ質と最も発熱量が小さい左にあるごみ質の間でごみ質選択範囲を狭め、前記計算値が前記実測値に対して低い場合は、前記選んだ中心にあるごみ質と最も発熱量が大きい右にあるごみ質の間でごみ質選択範囲を狭め、狭めた範囲内で中心に位置するごみ質を選び、選んだごみ質が焼却炉で燃焼したときに発生する二酸化炭素濃度を計算し、二酸化炭素濃度の計算値と実測値が所定の範囲内で一致するときは前記焼却炉に投入されたごみ質が、選択したごみ質であると特定する。
(T3’)二酸化炭素濃度の場合において、前記により選んだごみ質を焼却炉で燃焼させたときに、発生する二酸化炭素濃度の計算値と実測値が異なるときは再度上記手順に従ってごみ質を選び、選んだごみ質の二酸化炭素濃度の計算値と実測値が所定の範囲内で一致するまで上記(T2’)の手順を繰り返す。
3. The garbage incinerator according to claim 1 or 2, wherein the garbage quality put into the incinerator is identified from the garbage quality database in the automatic combustion control method of the garbage incinerator by the following procedure. Automatic combustion control method.
(T1) The garbage type database is arranged in order of the calorific value of the garbage, with garbage types with low calorific value being arranged on the left side of the database and garbage types with high calorific value being arranged on the right side of the database.
By comparing the calculated value of the oxygen concentration or carbon dioxide concentration generated when burning in an incinerator, comparing the calculated value and the measured value, the oxygen concentration When the calculated value and the measured value match within a predetermined range, or when the calculated value and the measured value of carbon dioxide concentration match within a predetermined range, the type of waste put into the incinerator is the selected type of waste. Identify there is.
(T2) In the case of oxygen concentration, if the calculated value and the measured value do not match within a predetermined range, select the type of waste according to whether the calculated value is higher or lower than the measured value. fix. If the calculated value is higher than the measured value, narrow the selection range of the waste type between the selected center waste type and the right waste type with the largest calorific value, and the calculated value is the measured value. is low, narrow the selection range of the waste quality between the selected center waste quality and the left waste quality with the smallest calorific value, select the waste quality located in the center within the narrowed range, Calculate the oxygen concentration generated when the selected waste type is burned in the incinerator, and if the calculated oxygen concentration value and the measured value match within a predetermined range, the waste type put into the incinerator is selected. identify it as a waste product.
(T3) In the case of oxygen concentration, if the calculated value and the measured value of the generated oxygen concentration are different when the waste type selected above is burned in the incinerator, select the waste type again according to the above procedure, and select The above procedure (T2) is repeated until the calculated value and the measured value of the oxygen concentration of the debris match within a predetermined range.
(T2') In the case of carbon dioxide concentration, if the calculated value and the measured value do not match within a predetermined range, separate the case where the calculated value is higher than the measured value and the case where it is lower, and classify the waste. Select again. If the calculated value is higher than the measured value, narrow the selection range between the selected center waste type and the left waste type with the smallest calorific value so that the calculated value is equal to the measured value. is low, narrow the selection range of the waste quality between the selected center waste quality and the right waste quality with the largest calorific value, select the waste quality located in the center within the narrowed range, Calculate the concentration of carbon dioxide generated when the selected waste type is burned in the incinerator, and if the calculated value of carbon dioxide concentration and the measured value match within a predetermined range, the type of waste put into the incinerator is , to be the selected waste quality.
(T3') In the case of carbon dioxide concentration, if the calculated value and the measured value of the carbon dioxide concentration generated when the waste type selected above is burned in the incinerator are different, select the waste type again according to the above procedure. , the above procedure (T2') is repeated until the calculated value and the measured value of the carbon dioxide concentration of the selected waste quality match within a predetermined range.
前記ごみ焼却炉の自動燃焼制御方法におけるごみ質データベースから焼却炉に投入されたごみ質を次の手順により特定することを特徴とする請求項1又は2のいずれかに記載されたごみ焼却炉の自動燃焼制御方法。
(U1)ごみ質データベースは、ごみの発熱量の順に並んでおり、発熱量が少ないごみ質はデータベースの左側、発熱量が多いごみ質はデータベースの右側に並べる。
ごみ質データベースに記載されている[1]最も左側のごみ質、[2]最も右側のごみ質及び[3]複数のごみ質の中心に近いごみ質を選び焼却炉で燃焼させたときに、発生する酸素濃度又は二酸化炭素濃度の計算値と実測値と比較し、実測値の含まれる範囲が[1]~[2]か[2]~[3]を判定する。
(U2)実測値が含まれる範囲において、残りのごみ質が2又は3個になるまで(U1)を繰り返す。
(U3)ごみ質が残り2又は3個になったら、各々のごみ質の計算値を算出し、実測値に近いごみ質を選んでごみ質を特定する。
3. The garbage incinerator according to claim 1 or 2, wherein the garbage quality put into the incinerator is identified from the garbage quality database in the automatic combustion control method of the garbage incinerator by the following procedure. Automatic combustion control method.
(U1) The garbage type database is arranged in order of the calorific value of the garbage, with garbage types with low calorific value being arranged on the left side of the database and garbage types with high calorific value being arranged on the right side of the database.
When selecting [1] leftmost waste type, [2] rightmost waste type and [3] multiple waste types listed in the waste type database and burning them in an incinerator, Calculated values and measured values of oxygen concentration or carbon dioxide concentration generated are compared to determine whether the range included in the measured values is [1] to [2] or [2] to [3].
(U2) Repeat (U1) until there are 2 or 3 remaining dust types within the range that includes the measured values.
(U3) When two or three garbage types remain, the calculated value of each garbage type is calculated, and a garbage type close to the actually measured value is selected to specify the garbage type.
JP2019037809A 2019-03-01 2019-03-01 Automatic combustion control method for garbage incinerator Active JP7237654B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019037809A JP7237654B2 (en) 2019-03-01 2019-03-01 Automatic combustion control method for garbage incinerator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019037809A JP7237654B2 (en) 2019-03-01 2019-03-01 Automatic combustion control method for garbage incinerator

Publications (2)

Publication Number Publication Date
JP2020139720A JP2020139720A (en) 2020-09-03
JP7237654B2 true JP7237654B2 (en) 2023-03-13

Family

ID=72280231

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019037809A Active JP7237654B2 (en) 2019-03-01 2019-03-01 Automatic combustion control method for garbage incinerator

Country Status (1)

Country Link
JP (1) JP7237654B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7418070B1 (en) 2023-06-02 2024-01-19 Alchemist Material株式会社 Combustibles identification device, combustibles identification program, and combustibles identification method

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000018549A (en) 1998-06-25 2000-01-18 Hitachi Ltd Incineration plant operation control method and apparatus
JP2017026172A (en) 2015-07-16 2017-02-02 株式会社タクマ Waste heat value measuring method and waste processing device using the same
JP2017145979A (en) 2016-02-15 2017-08-24 日立造船株式会社 Stoker type incinerator

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0240410A (en) * 1988-07-29 1990-02-09 Kubota Ltd Automatic combustion control of municipal waste incinerating furnace
JPH06265124A (en) * 1993-03-11 1994-09-20 N K K Plant Kensetsu Kk Method for controlling combustion of dust in dust incinerator
JP3822328B2 (en) * 1997-09-26 2006-09-20 住友重機械工業株式会社 Method for estimating the lower heating value of combustion waste in refuse incinerators
JPH11264534A (en) * 1998-03-18 1999-09-28 Hitachi Ltd Incinerating plant control device and operating method therefor

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000018549A (en) 1998-06-25 2000-01-18 Hitachi Ltd Incineration plant operation control method and apparatus
JP2017026172A (en) 2015-07-16 2017-02-02 株式会社タクマ Waste heat value measuring method and waste processing device using the same
JP2017145979A (en) 2016-02-15 2017-08-24 日立造船株式会社 Stoker type incinerator

Also Published As

Publication number Publication date
JP2020139720A (en) 2020-09-03

Similar Documents

Publication Publication Date Title
CN102016418B (en) Method of controlling oxygen supply in oxygen combustion boiler and apparatus therefor
EP1726876B1 (en) Improved method of combusting solid waste
JP5361595B2 (en) Combustion object processing system, processing method, and combustion furnace combustion control system using the same, supplied to combustion furnace
KR100304244B1 (en) Combustion control method and apparatus for waste incinerators
JP5996762B1 (en) Waste combustion control method and combustion control apparatus to which the method is applied
JP2008057935A (en) Stoker type incinerator and its combustion control method
JP6153090B2 (en) Waste incinerator and waste incineration method
JP7237654B2 (en) Automatic combustion control method for garbage incinerator
JP3822328B2 (en) Method for estimating the lower heating value of combustion waste in refuse incinerators
JP6146701B2 (en) Evaluation apparatus and evaluation method for combustion control device of waste incinerator
CN203744265U (en) Denitration system of incinerator
WO2019235377A1 (en) Method for estimating state quantity of combustion facility, combustion control method, and combustion control device
JP7053244B2 (en) Combustion condition determination device, combustion condition determination method, and combustion system of the combustion furnace
JP5452906B2 (en) Combustion control system for combustion furnace and combustion control method thereof
JP3466555B2 (en) Combustion control method and device for refuse incineration plant
JP2001033017A (en) Method for controlling combustion of refuse incinerator
JP7397627B2 (en) Incineration plant and its combustion control method
JP7120105B2 (en) Control parameter determination support device and control parameter determination support method for combustion control device of waste incinerator
JP5179163B2 (en) Combustion control system for combustion furnace and combustion control method thereof
JPH0470528B2 (en)
JPH07217843A (en) Incinerator and method of controlling flame in same
JPH09273732A (en) Control method of combustion in incinerating furnace
KR100306291B1 (en) Control method of flue gas mixture discharged from garbage incinerator
JP7093709B2 (en) Incinerator
JP2002147732A (en) Refuse incinerator

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20211217

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20220930

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20221004

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20221201

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230221

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230301

R150 Certificate of patent or registration of utility model

Ref document number: 7237654

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150