JP7228132B2 - Metal layer-integrated polypropylene film, film capacitor, and metal layer-integrated polypropylene film production method - Google Patents

Metal layer-integrated polypropylene film, film capacitor, and metal layer-integrated polypropylene film production method Download PDF

Info

Publication number
JP7228132B2
JP7228132B2 JP2019154011A JP2019154011A JP7228132B2 JP 7228132 B2 JP7228132 B2 JP 7228132B2 JP 2019154011 A JP2019154011 A JP 2019154011A JP 2019154011 A JP2019154011 A JP 2019154011A JP 7228132 B2 JP7228132 B2 JP 7228132B2
Authority
JP
Japan
Prior art keywords
polypropylene film
metal layer
integrated
heat shrinkage
film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2019154011A
Other languages
Japanese (ja)
Other versions
JP2020124905A (en
Inventor
義和 藤城
佳宗 奥山
将裕 中田
和之 日當
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
New Oji Paper Co Ltd
Oji Holdings Corp
Original Assignee
Oji Holdings Corp
Oji Paper Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Oji Holdings Corp, Oji Paper Co Ltd filed Critical Oji Holdings Corp
Priority to KR1020217004588A priority Critical patent/KR20210047870A/en
Priority to CN201980055244.0A priority patent/CN112638645B/en
Priority to PCT/JP2019/033660 priority patent/WO2020045482A1/en
Publication of JP2020124905A publication Critical patent/JP2020124905A/en
Application granted granted Critical
Publication of JP7228132B2 publication Critical patent/JP7228132B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、金属層一体型ポリプロピレンフィルム、フィルムコンデンサ、及び、金属層一体型ポリプロピレンフィルムの製造方法に関する。 TECHNICAL FIELD The present invention relates to a metal layer-integrated polypropylene film, a film capacitor, and a method for producing a metal layer-integrated polypropylene film.

ポリプロピレンフィルムは、高い耐電圧性や低い誘電損失特性等の優れた電気特性を有し、且つ、高い耐湿性を有する。そのため、広く電子機器や電気機器に用いられている。具体的には、例えば、高電圧コンデンサ;コンバーター、インバーター等の電力変換回路のフィルター用コンデンサや平滑用コンデンサ等に使用されるフィルムとして利用されている。 Polypropylene films have excellent electrical properties such as high withstand voltage and low dielectric loss properties, and high moisture resistance. Therefore, it is widely used in electronic devices and electric devices. Specifically, for example, it is used as a film used for high-voltage capacitors, filter capacitors and smoothing capacitors of power conversion circuits such as converters and inverters.

特に、近年、ポリプロピレンフィルムは、電気自動車やハイブリッド自動車等の駆動モーターを制御するインバーター電源機器用コンデンサとして、広く用いられ始めている。自動車等に用いられるインバーター電源機器用コンデンサは、小型、軽量、高容量であり、且つ、広い温度範囲(例えば、-40℃~90℃)で、長期間にわたる高い信頼性が求められている。 In recent years, in particular, polypropylene films have begun to be widely used as capacitors for inverter power supply devices that control drive motors of electric vehicles, hybrid vehicles, and the like. Capacitors for inverter power supply devices used in automobiles and the like are required to be small, light, and have high capacity, and to have high reliability over a wide temperature range (eg, -40°C to 90°C) over a long period of time.

ここで、誘電損失とは、誘電体に加えた電気エネルギーの一部が熱エネルギーとして失われることをいい、誘電正接(以下、「tanδ」ともいう)は、誘電損失の度合いを示す指標である。tanδは、複素インピーダンスの実数部(抵抗)と虚数部(リアクタンス)の比で定義される。tanδは、値が大きいほど、加えた電気エネルギーに対して、熱エネルギーとして失われる割合が大きいことを示す。コンデンサを長期間使用すると、種々の原因によりコンデンサのtanδが上昇することになる。tanδが上昇すると、コンデンサとして使用している間に多量の熱が発生することがあり、特性の低下等、信頼性が損なわれる原因となる。そのため、長期間使用したとしても、tanδの上昇が小さいことが求められている。 Here, the dielectric loss refers to the loss of part of the electrical energy applied to the dielectric as heat energy, and the dielectric loss tangent (hereinafter also referred to as “tan δ”) is an index that indicates the degree of dielectric loss. . tan δ is defined as the ratio of the real part (resistance) and the imaginary part (reactance) of the complex impedance. The larger the value of tan δ, the greater the ratio of the electrical energy lost as heat energy to the applied electrical energy. When a capacitor is used for a long period of time, the tan δ of the capacitor will increase due to various causes. When tan δ increases, a large amount of heat may be generated during use as a capacitor, which may cause a deterioration in reliability such as deterioration of characteristics. Therefore, even if it is used for a long period of time, it is required that the increase in tan δ is small.

特許文献1には、長さ方向の熱収縮率が3.0%以下、幅方向の熱収縮率が0%以上1.0%以下であるコンデンサ用ポリプロピレンフィルム、との記載がある(請求項1参照)。また、コンデンサ用ポリプロピレンフィルムの長さ方向の熱収縮率が3.0%を越えると蒸着加工時に蒸着金属から受ける熱によるしわが発生し易くなり、コンデンサ製造時の熱処理などの高温工程において寸法安定性に欠け、安定したコンデンサ特性を得られないことが記載されている(段落[0008])。また、コンデンサ用ポリプロピレンフィルムの幅方向の熱収縮率が1.0%を越えると、コンデンサ製造時の熱処理などの高温工程において、コンデンサ素子の端面がカールしてメタリコン金属との接触抵抗が増大し、ひいてはコンデンサの誘電正接を悪化させるため、安定したコンデンサ特性を得られないことが記載されている(段落[0009])。特許文献1では、蒸着工程前のコンデンサ用ポリプロピレンフィルムの熱収縮率を所定値よりも小さくすることとしていることから、金属層が積層される前のコンデンサ用ポリプロピレンフィルムの熱収縮率を小さくすることにより、安定したコンデンサ特性を得ることを趣旨としていると考えられる。 Patent Document 1 describes a polypropylene film for capacitors having a heat shrinkage rate of 3.0% or less in the length direction and a heat shrinkage rate of 0% or more and 1.0% or less in the width direction (claim 1). In addition, if the heat shrinkage rate in the length direction of the polypropylene film for capacitors exceeds 3.0%, wrinkles are likely to occur due to the heat received from the vapor deposition metal during vapor deposition processing, and the film is dimensionally stable in high-temperature processes such as heat treatment during the manufacture of capacitors. It is described that it lacks in performance and cannot provide stable capacitor characteristics (paragraph [0008]). Further, when the heat shrinkage ratio in the width direction of the polypropylene film for capacitors exceeds 1.0%, the end surfaces of the capacitor element curl during high-temperature processes such as heat treatment during capacitor manufacturing, resulting in increased contact resistance with the metallikon metal. , and consequently the dielectric loss tangent of the capacitor is deteriorated, so that stable capacitor characteristics cannot be obtained (paragraph [0009]). In Patent Document 1, since the heat shrinkage rate of the polypropylene film for capacitors before the vapor deposition process is set to be smaller than a predetermined value, the heat shrinkage rate of the polypropylene film for capacitors before the metal layer is laminated is reduced. It is thought that the aim is to obtain stable capacitor characteristics.

特開平11-273991号公報JP-A-11-273991

しかしながら、一般的に、ポリプロピレンフィルムは、熱収縮する特性を有しているため、特許文献1のように、金属層を積層する前のポリプロピレンフィルムの熱収縮率を小さくするためには、なるべく熱収縮しないポリプロピレンフィルムを製造し得る原料樹脂を選択する必要がある。そのため、原料樹脂の選択の幅が狭くなるといった問題がある。
また、熱収縮率の小さいポリプロピレンフィルム(金属層を積層する前のポリプロピレンフィルム)を得るための製造条件(例えば、キャストシートの製造条件(例えば、原料樹脂の溶融温度、キャスト温度等)や、キャストシートを延伸してポリプロピレンフィルムを形成する際の延伸処理条件(例えば、延伸時の温度、延伸倍率、ニップ圧等))の条件出しが厳しくなる場合があり得る。
さらに、ポリプロピレンフィルムの熱収縮率を小さくするための原料樹脂の選択や製造条件の調整が、他の特性(例えば、耐電圧特性等)を犠牲にすることになる場合もあり得る。
However, in general, polypropylene films have the property of heat shrinking. It is necessary to select a raw material resin that can produce a polypropylene film that does not shrink. Therefore, there is a problem that the range of selection of the raw material resin is narrowed.
In addition, the production conditions for obtaining a polypropylene film with a small heat shrinkage (polypropylene film before laminating a metal layer) (for example, the production conditions for cast sheets (for example, the melting temperature of the raw material resin, the casting temperature, etc.), and the casting The stretching process conditions (for example, temperature during stretching, stretch ratio, nip pressure, etc.) when stretching a sheet to form a polypropylene film may be difficult to set.
Furthermore, the selection of the raw material resin and the adjustment of the manufacturing conditions for reducing the thermal shrinkage of the polypropylene film may result in sacrificing other properties (for example, withstand voltage properties, etc.).

本発明は上述した課題に鑑みてなされたものであり、その目的は、ポリプロピレンフィルムの材料選択の余地やポリプロピレンフィルムの製造条件の調整の余地を確保しつつ、メタリコン電極の剥離を抑制することが可能な金属層一体型ポリプロピレンフィルムを提供することにある。また、本発明の目的は、当該金属層一体型ポリプロピレンフィルムを有するフィルムコンデンサを提供することにある。また、本発明の目的は、当該金属層一体型ポリプロピレンフィルムの製造方法を提供することにある。 The present invention has been made in view of the above-mentioned problems, and its object is to suppress peeling of the metallikon electrode while securing room for selection of polypropylene film materials and room for adjustment of polypropylene film manufacturing conditions. The object of the present invention is to provide a metal layer-integrated polypropylene film that is capable of Another object of the present invention is to provide a film capacitor having the metal layer-integrated polypropylene film. Another object of the present invention is to provide a method for producing the metal layer-integrated polypropylene film.

本発明者らは、金属層一体型ポリプロピレンフィルムについて鋭意検討を行った。その結果、金属層を積層する前のポリプロピレンフィルムの熱収縮率と比較して、ポリプロピレンフィルムに金属層を積層した後の金属層一体型ポリプロピレンフィルムの熱収縮率が大きく変化していれば、コンデンサとして使用した際に、メタリコン電極の剥離が抑制されることを見出した。その理由として、本発明者らは、金属層を積層する前のポリプロピレンフィルムの熱収縮率と比較して、ポリプロピレンフィルムに金属層を積層した後の金属層一体型ポリプロピレンフィルムの熱収縮率が大きく減少していれば、金属層一体型ポリプロピレンフィルムは、さらに熱履歴を受けてもそれ以上は熱収縮し難くなっており、コンデンサとした後の長期使用による金属層一体型ポリプロピレンフィルムとメタリコン電極との接触面での相対的な位置ずれが抑制されるためと推察している。そして、下記構成を採用することにより、ポリプロピレンフィルムの材料選択の余地やポリプロピレンフィルムの製造条件の調整の余地を確保しつつ、メタリコン電極の剥離を抑制することが可能な金属層一体型ポリプロピレンフィルムを提供することが可能であることを見出し、本発明を完成するに至った。 The present inventors have extensively studied metal layer-integrated polypropylene films. As a result, compared to the heat shrinkage of the polypropylene film before lamination of the metal layer, if the heat shrinkage of the metal layer integrated polypropylene film after lamination of the metal layer on the polypropylene film changes significantly, the capacitor It was found that peeling of the metallikon electrode is suppressed when used as a The reason for this is that the heat shrinkage of the polypropylene film integrated with the metal layer after lamination of the metal layer on the polypropylene film is greater than the heat shrinkage of the polypropylene film before lamination of the metal layer. If it is reduced, the metal layer-integrated polypropylene film is less likely to thermally shrink even if it is subjected to further heat history, and the metal layer-integrated polypropylene film and the metallikon electrode after long-term use after being made into a capacitor. It is speculated that this is because the relative positional deviation at the contact surface is suppressed. Then, by adopting the following configuration, a metal layer integrated polypropylene film that can suppress peeling of the metallikon electrode while securing room for selection of polypropylene film material and adjustment of polypropylene film manufacturing conditions. The present inventors have found that it is possible to provide the above, and have completed the present invention.

本発明に係る金属層一体型ポリプロピレンフィルムは、
ポリプロピレンフィルムと、
前記ポリプロピレンフィルムの片面又は両面に積層された金属層と
を有する金属層一体型ポリプロピレンフィルムであって、
前記金属層を積層する前の前記ポリプロピレンフィルムの第一方向の熱収縮率をA、前記金属層一体型ポリプロピレンフィルムの第一方向の熱収縮率をBとしたとき、熱収縮率Aと熱収縮率Bとの熱収縮率比[(熱収縮率B)/(熱収縮率A)]が0.25以上0.60以下であることを特徴とする。
The metal layer-integrated polypropylene film according to the present invention is
a polypropylene film;
A metal layer-integrated polypropylene film having a metal layer laminated on one side or both sides of the polypropylene film,
When the heat shrinkage rate in the first direction of the polypropylene film before laminating the metal layer is A, and the heat shrinkage rate in the first direction of the metal layer integrated polypropylene film is B, the heat shrinkage rate A and heat shrinkage The heat shrinkage rate ratio [(heat shrinkage rate B)/(heat shrinkage rate A)] to the rate B is 0.25 or more and 0.60 or less.

前記構成によれば、前記ポリプロピレンフィルムの片面又は両面に金属層が積層されているため、ポリプロピレンフィルムを誘電体とし、金属層を電極としたフィルムコンデンサに使用することができる。
また、前記構成によれば、前記熱収縮率比が0.60以下であるため、ポリプロピレンフィルムは、金属層を積層する前と比較して、金属層を積層した後は、比較的大きく収縮しているといえる。つまり、前記熱収縮率比が0.60以下であるため、当該金属層一体型ポリプロピレンフィルムは、すでに大きく熱収縮している以上、さらに熱履歴を受けてもそれ以上は熱収縮し難くなっている。その結果、コンデンサとした後の長期使用による金属層一体型ポリプロピレンフィルムとメタリコン電極との接触面での相対的な位置ずれが抑制され、メタリコン電極の剥離を抑制できる。
また、一般的に、ポリプロピレンフィルムは、熱収縮する特性を有している。そのため、金属層を積層する工程においてポリプロピレンフィルムを意図的に大きく収縮させること等により、金属層を積層する前(金属層を積層する際の熱をうける前)に比較して、金属層を積層した後の熱収縮率を小さくすること(前記熱収縮率比を0.60以下とすること)は比較的容易である。すなわち、本発明では、金属層を積層する際の条件等を調整すれば、前記熱収縮率比を0.60以下とすることができるので、材料樹脂についての選択の幅は広く保つことができる。例えば、特許文献1のように、金属層を積層する前のポリプロピレンフィルムの熱収縮率が小さくなるような原料樹脂を必ず選択しなければならない、という制約はない。また、金属層を積層する前のポリプロピレンフィルムの熱収縮率が小さくなるようにポリプロピレンフィルムの製造条件を調整する必要もない。
また、前記熱収縮率比が0.25以上であるため、寸法安定性に優れる。
このように、前記構成によれば、前記熱収縮率比が0.60以下であるため、ポリプロピレンフィルムの材料選択の余地やポリプロピレンフィルムの製造条件の調整の余地を確保でき、かつ、前記熱収縮率比が0.60以下であるため、メタリコン電極の剥離を抑制することが可能となる。
According to the above configuration, since the metal layer is laminated on one side or both sides of the polypropylene film, it can be used in a film capacitor in which the polypropylene film is used as a dielectric and the metal layer is used as an electrode.
Further, according to the above configuration, since the heat shrinkage ratio is 0.60 or less, the polypropylene film shrinks relatively greatly after laminating the metal layer compared to before laminating the metal layer. It can be said that That is, since the heat shrinkage ratio is 0.60 or less, the metal layer-integrated polypropylene film is already greatly heat-shrinked, and even if it is subjected to heat history, it is difficult to heat-shrink any more. there is As a result, relative displacement of the contact surface between the metal layer-integrated polypropylene film and the metallikon electrode due to long-term use of the capacitor can be suppressed, and peeling of the metallikon electrode can be suppressed.
Moreover, generally, a polypropylene film has the characteristic of heat-shrinking. Therefore, by intentionally shrinking the polypropylene film greatly in the process of laminating the metal layer, the metal layer is laminated compared to before laminating the metal layer (before being subjected to heat when laminating the metal layer). It is relatively easy to reduce the thermal shrinkage ratio (the thermal shrinkage ratio is set to 0.60 or less). That is, in the present invention, the heat shrinkage rate ratio can be set to 0.60 or less by adjusting the conditions for laminating the metal layers, so that a wide range of choices for the material resin can be maintained. . For example, unlike Patent Document 1, there is no restriction that the raw material resin must be selected such that the heat shrinkage of the polypropylene film before laminating the metal layer is small. Moreover, it is not necessary to adjust the manufacturing conditions of the polypropylene film so that the heat shrinkage of the polypropylene film before laminating the metal layer is small.
Moreover, since the heat shrinkage ratio is 0.25 or more, the dimensional stability is excellent.
Thus, according to the above configuration, since the heat shrinkage ratio is 0.60 or less, it is possible to ensure room for selection of polypropylene film materials and room for adjustment of polypropylene film manufacturing conditions, and the heat shrinkage Since the index ratio is 0.60 or less, it is possible to suppress peeling of the metallikon electrode.

なお、特許文献1は、コンデンサ用ポリプロピレンフィルムの幅方向の熱収縮率を小さくすることにより、コンデンサ素子の端面のカールを抑制し、これにより、メタリコン電極の剥離を抑制しようとしているように思われる。つまり、コンデンサ用ポリプロピレンフィルムがメタリコン電極面から離れる方向に縮むことによる剥離を抑制しようとしているように思われる。
一方、本発明において第一方向は、MD方向(長手方向、流れ方向、縦方向)を意図している。そして、本発明では、巻回された金属層一体型ポリプロピレンフィルムが熱収縮により巻締り、巻締りにより生じる、金属層一体型ポリプロピレンフィルムとメタリコン電極との接触面でのせん断剥離を抑制しようとしている。
このように、本発明と特許文献1とでは、メタリコン電極の剥離の抑制という点で目的は共通し得るものの、解決手段としては、全く異なる。つまり、本発明では、前記熱収縮率比を0.60以下としたため、金属層一体型ポリプロピレンフィルムとメタリコン電極との接触面でのせん断剥離を抑制しているのに対して、特許文献1では、コンデンサ用ポリプロピレンフィルムの幅方向の熱収縮率を小さくすることにより、コンデンサ用ポリプロピレンフィルムがメタリコン電極面から離れる方向に縮むことによる剥離を抑制しており、解決手段は全く異なる。
Incidentally, Patent Document 1 seems to be intended to suppress the curling of the end faces of the capacitor element by reducing the heat shrinkage rate in the width direction of the polypropylene film for capacitors, thereby suppressing the peeling of the metallikon electrodes. . In other words, it seems that the polypropylene film for capacitors is trying to suppress peeling due to shrinkage in the direction away from the metallikon electrode surface.
On the other hand, the first direction in the present invention intends the MD direction (longitudinal direction, machine direction, machine direction). In addition, in the present invention, the wound metal layer integrated polypropylene film is tightened by heat shrinkage, and shear peeling at the contact surface between the metal layer integrated polypropylene film and the metallikon electrode caused by the tight winding is intended to be suppressed. .
As described above, the present invention and Patent Document 1 have the same purpose of suppressing peeling of the metallikon electrode, but are completely different in terms of means for solving the problem. That is, in the present invention, since the thermal shrinkage ratio is set to 0.60 or less, shear peeling at the contact surface between the metal layer integrated polypropylene film and the metallikon electrode is suppressed, whereas in Patent Document 1 By reducing the heat shrinkage ratio of the polypropylene film for capacitors in the width direction, peeling due to shrinkage of the polypropylene film for capacitors in the direction away from the metallikon electrode surface is suppressed, and the solutions are completely different.

前記構成の金属層一体型ポリプロピレンフィルムにおいては、前記金属層を積層する前の前記ポリプロピレンフィルムの第一方向の熱収縮率Aが2.0%以上10.0%以下であることが好ましい。 In the metal layer-integrated polypropylene film having the above configuration, the heat shrinkage A in the first direction of the polypropylene film before laminating the metal layer is preferably 2.0% or more and 10.0% or less.

金属層を積層する前のポリプロピレンフィルムの第一方向の熱収縮率Aが2.0%以上10.0%以下であれば、ポリプロピレンフィルムの材料選択の余地やポリプロピレンフィルムの製造条件の調整の余地をより確保できる。 If the heat shrinkage ratio A in the first direction of the polypropylene film before laminating the metal layer is 2.0% or more and 10.0% or less, there is room for selection of the material of the polypropylene film and room for adjustment of the manufacturing conditions of the polypropylene film. can be more secured.

前記構成の金属層一体型ポリプロピレンフィルムは、コンデンサ用であることが好ましい。 The metal layer-integrated polypropylene film having the above configuration is preferably used for capacitors.

前記金属層一体型ポリプロピレンフィルムは、ポリプロピレンフィルムの材料選択の余地やポリプロピレンフィルムの製造条件の調整の余地を確保でき、かつ、メタリコン電極の剥離を抑制することが可能であるため、コンデンサ用として好適に使用できる。 The metal layer-integrated polypropylene film is suitable for capacitors because it can ensure room for selection of polypropylene film materials and room for adjustment of polypropylene film manufacturing conditions, and can suppress peeling of metallikon electrodes. can be used for

前記構成のポリプロピレンフィルムは、二軸延伸されていることが好ましい。 The polypropylene film having the above structure is preferably biaxially oriented.

前記ポリプロピレンフィルムが二軸延伸されていると、前記ポリプロピレンフィルムの第一方向の熱収縮率は、二軸延伸される前と比較して大きくなる傾向にある。そこで、前記ポリプロピレンフィルムが二軸延伸されている場合、前記熱収縮率比が0.60以下となる金属層一体型ポリプロピレンフィルムを得易い。 When the polypropylene film is biaxially stretched, the heat shrinkage rate of the polypropylene film in the first direction tends to be greater than before the biaxial stretching. Therefore, when the polypropylene film is biaxially stretched, it is easy to obtain a metal layer-integrated polypropylene film having a heat shrinkage ratio of 0.60 or less.

また、本発明に係るフィルムコンデンサは、巻回された前記金属層一体型ポリプロピレンフィルムを有するか、又は、前記金属層一体型ポリプロピレンフィルムが複数積層された構成を有することを特徴とする。 Further, the film capacitor according to the present invention is characterized by having the wound metal layer-integrated polypropylene film or having a configuration in which a plurality of the metal layer-integrated polypropylene films are laminated.

また、本発明に係る金属層一体型ポリプロピレンフィルムの製造方法は、
ポリプロピレンフィルムを準備する工程Aと、
前記工程Aで準備した前記ポリプロピレンフィルムの片面又は両面に金属層を積層して金属層一体型ポリプロピレンフィルムを得る工程Bと
を有する金属層一体型ポリプロピレンフィルムの製造方法であって、
前記工程Aで準備する前記ポリプロピレンフィルムの第一方向の熱収縮率をA、前記工程Bで得られる前記金属層一体型ポリプロピレンフィルムの第一方向の熱収縮率Bとしたとき、熱収縮率Aと熱収縮率Bとの熱収縮率比[(熱収縮率B)/(熱収縮率A)]が0.25以上0.60以下であることを特徴とする。
In addition, the method for producing a metal layer-integrated polypropylene film according to the present invention includes:
Step A of preparing a polypropylene film;
A method for producing a metal layer-integrated polypropylene film comprising a step B of obtaining a metal layer-integrated polypropylene film by laminating a metal layer on one or both sides of the polypropylene film prepared in the step A,
When the heat shrinkage rate in the first direction of the polypropylene film prepared in the step A is A, and the heat shrinkage rate B in the first direction of the metal layer-integrated polypropylene film obtained in the step B is set, the heat shrinkage rate A and the thermal contraction rate B [(thermal contraction rate B)/(thermal contraction rate A)] is 0.25 or more and 0.60 or less.

前記構成によれば、前記熱収縮率比が0.25以上0.60以下となる原料樹脂や製造条件を採用すればよいため、当該金属層一体型ポリプロピレンフィルムを製造するための材料選択の余地や製造条件の調整の余地を確保できる。また、前記熱収縮率比が0.60以下であるため、コンデンサとして使用した際に、メタリコン電極の剥離を抑制することが可能となる。 According to the above configuration, since it is sufficient to adopt raw material resins and manufacturing conditions in which the heat shrinkage ratio is 0.25 or more and 0.60 or less, there is room for material selection for manufacturing the metal layer integrated polypropylene film. and room for adjustment of manufacturing conditions can be secured. Moreover, since the thermal contraction rate ratio is 0.60 or less, it is possible to suppress peeling of the metallikon electrode when used as a capacitor.

前記工程Aで準備する前記ポリプロピレンフィルムは、第一方向の熱収縮率Aが2.0%以上10.0%以下であることが好ましい。 The polypropylene film prepared in the step A preferably has a thermal shrinkage A in the first direction of 2.0% or more and 10.0% or less.

金属層を積層する前のポリプロピレンフィルムの第一方向の熱収縮率Aが2.0%以上10.0%以下であれば、ポリプロピレンフィルムの材料選択の余地やポリプロピレンフィルムの製造条件の調整の余地をより確保できる。 If the heat shrinkage ratio A in the first direction of the polypropylene film before laminating the metal layer is 2.0% or more and 10.0% or less, there is room for selection of the material of the polypropylene film and room for adjustment of the manufacturing conditions of the polypropylene film. can be more secured.

本発明によれば、ポリプロピレンフィルムの材料選択の余地やポリプロピレンフィルムの製造条件の調整の余地を確保しつつ、メタリコン電極の剥離を抑制することが可能な金属層一体型ポリプロピレンフィルムを提供することができる。また、当該金属層一体型ポリプロピレンフィルムを有するフィルムコンデンサを提供することができる。また、当該金属層一体型ポリプロピレンフィルムの製造方法を提供することができる。 According to the present invention, it is possible to provide a metal layer-integrated polypropylene film that can suppress peeling of the metallikon electrode while ensuring room for selection of polypropylene film material and room for adjustment of polypropylene film manufacturing conditions. can. Also, a film capacitor having the metal layer-integrated polypropylene film can be provided. Also, a method for producing the metal layer-integrated polypropylene film can be provided.

実施例、比較例として作製した金属層一体型ポリプロピレンフィルムを説明するための模式的斜視図である。BRIEF DESCRIPTION OF THE DRAWINGS It is a schematic perspective view for demonstrating the metal layer integrated polypropylene film produced as an Example and a comparative example. 実施例、比較例に係る金属層一体型ポリプロピレンフィルムの製造方法を説明するための模式図である。FIG. 2 is a schematic diagram for explaining a method for producing a metal layer-integrated polypropylene film according to Examples and Comparative Examples.

以下、本発明の実施形態について、説明する。ただし、本発明はこれらの実施形態のみに限定されるものではない。 Embodiments of the present invention will be described below. However, the invention is not limited to only these embodiments.

本明細書中において、「含有」、「含む」という表現は、「含有」、「含む」、「実質的にからなる」、「のみからなる」という概念を含む。 As used herein, the expressions "contain" and "include" include the concepts of "contain", "include", "consist essentially of" and "consist only of".

本明細書において、「素子」、「コンデンサ」、「コンデンサ素子」、「フィルムコンデンサ」は同じものを意味する。 In this specification, "element", "capacitor", "capacitor element" and "film capacitor" mean the same thing.

本実施形態に係るポリプロピレンフィルムは、微孔性フィルムではないので、多数の空孔を有していない。本実施形態に係るポリプロピレンフィルムは、2層以上の複数層で構成されていてもよいが、単層で構成されていることが好ましい。 Since the polypropylene film according to this embodiment is not a microporous film, it does not have many pores. Although the polypropylene film according to the present embodiment may be composed of two or more layers, it is preferably composed of a single layer.

本実施形態に係る金属層一体型ポリプロピレンフィルムは、
ポリプロピレンフィルムと、
前記ポリプロピレンフィルムの片面又は両面に積層された金属層と
を有する金属層一体型ポリプロピレンフィルムであって、
前記金属層を積層する前の前記ポリプロピレンフィルムの第一方向の熱収縮率をA、前記金属層一体型ポリプロピレンフィルムの第一方向の熱収縮率をBとしたとき、熱収縮率Aと熱収縮率Bとの熱収縮率比[(熱収縮率B)/(熱収縮率A)]が0.25以上0.60以下である。
The metal layer-integrated polypropylene film according to this embodiment is
a polypropylene film;
A metal layer-integrated polypropylene film having a metal layer laminated on one side or both sides of the polypropylene film,
When the heat shrinkage rate in the first direction of the polypropylene film before laminating the metal layer is A, and the heat shrinkage rate in the first direction of the metal layer integrated polypropylene film is B, the heat shrinkage rate A and heat shrinkage The thermal shrinkage rate ratio [(thermal shrinkage rate B)/(thermal shrinkage rate A)] to the rate B is 0.25 or more and 0.60 or less.

本明細書において、第一方向は、ポリプロピレンフィルムのMD方向(Machine Direction)を意図している。つまり、本実施形態において第一方向は、MD方向であることが好ましい。ただし、本実施形態において第一方向は、MD方向に限定されず、任意の方向を第一方向とすることができる。以下では、第一方向がMD方向である場合について説明する。なお、本明細書において、MD方向に直交する方向は、TD方向(Transverse Direction)(「幅方向、横方向ともいう)である。 In this specification, the first direction is intended to be MD (Machine Direction) of the polypropylene film. That is, in this embodiment, the first direction is preferably the MD direction. However, in this embodiment, the first direction is not limited to the MD direction, and any direction can be set as the first direction. Below, the case where the first direction is the MD direction will be described. In this specification, the direction orthogonal to the MD direction is the TD direction (transverse direction) (also referred to as “width direction” or “horizontal direction”).

本明細書において、メタリコン電極とは、金属層一体型ポリプロピレンフィルムが積層された側面に設けられ、内部電極としての金属層に電気的に接続された外部電極をいう。 In this specification, the metallikon electrode refers to an external electrode provided on the side surface of the laminated metal layer-integrated polypropylene film and electrically connected to the metal layer serving as an internal electrode.

本実施形態に係る金属層一体型ポリプロピレンフィルムは、熱収縮率Aと熱収縮率Bとの熱収縮率比[(熱収縮率B)/(熱収縮率A)]が0.60以下であり、好ましくは0.58以下であり、より好ましくは0.55以下であり、さらに好ましくは0.49以下であり、特に好ましくは0.48以下である。前記熱収縮率比が0.60以下であるため、ポリプロピレンフィルムは、金属層を積層する前と比較して、金属層を積層した後は、比較的大きく収縮しているといえる。つまり、前記熱収縮率比が0.60以下であるため、当該金属層一体型ポリプロピレンフィルムは、すでに大きく熱収縮している以上、さらに熱履歴を受けてもそれ以上は熱収縮し難くなっている。その結果、コンデンサとした後の長期使用による金属層一体型ポリプロピレンフィルムとメタリコン電極との接触面での相対的な位置ずれが抑制され、メタリコン電極の剥離を抑制できる。
また、一般的に、ポリプロピレンフィルムは、熱収縮する特性を有している。そのため、金属層を積層する工程においてポリプロピレンフィルムを意図的に大きく収縮させること等により、金属層を積層する前(金属層を積層する際の熱をうける前)に比較して、金属層を積層した後の熱収縮率を小さくすること(前記熱収縮率比を0.60以下とすること)は比較的容易である。すなわち、本実施形態では、金属層を積層する際の条件等を調整すれば、前記熱収縮率比を0.60以下とすることができるので、材料樹脂についての選択の幅は広く保つことができる。例えば、特許文献1のように、金属層を積層する前のポリプロピレンフィルムの熱収縮率が小さくなるような原料樹脂を必ず選択しなければならない、という制約はない。また、金属層を積層する前のポリプロピレンフィルムの熱収縮率が小さくなるようにポリプロピレンフィルムの製造条件を調整する必要もない。
また、前記熱収縮率比は、0.25以上であり、好ましくは0.28以上であり、より好ましくは0.30以上であり、さらに好ましくは0.40以上であり、特に好ましくは0.45以上である。前記熱収縮率比が0.25以上であるため、素子巻きした後の熱処理時において寸法安定性に優れる。
このように、本実施形態に係る金属層一体型ポリプロピレンフィルムによれば、前記熱収縮率比が0.60以下であるため、ポリプロピレンフィルムの材料選択の余地やポリプロピレンフィルムの製造条件の調整の余地を確保でき、かつ、前記熱収縮率比が0.60以下であるため、メタリコン電極の剥離を抑制することが可能となる。この点は実施例からも明らかである。
In the metal layer-integrated polypropylene film according to the present embodiment, the heat shrinkage ratio between heat shrinkage A and heat shrinkage B [(heat shrinkage B) / (heat shrinkage A)] is 0.60 or less. , preferably 0.58 or less, more preferably 0.55 or less, still more preferably 0.49 or less, and particularly preferably 0.48 or less. Since the heat shrinkage rate ratio is 0.60 or less, it can be said that the polypropylene film shrinks relatively greatly after laminating the metal layer compared to before laminating the metal layer. That is, since the heat shrinkage ratio is 0.60 or less, the metal layer-integrated polypropylene film is already greatly heat-shrinked, and even if it is subjected to heat history, it is difficult to heat-shrink any more. there is As a result, relative displacement of the contact surface between the metal layer-integrated polypropylene film and the metallikon electrode due to long-term use of the capacitor can be suppressed, and peeling of the metallikon electrode can be suppressed.
Moreover, generally, a polypropylene film has the characteristic of heat-shrinking. Therefore, by intentionally shrinking the polypropylene film greatly in the process of laminating the metal layer, the metal layer is laminated compared to before laminating the metal layer (before being subjected to heat when laminating the metal layer). It is relatively easy to reduce the thermal shrinkage ratio (the thermal shrinkage ratio is set to 0.60 or less). That is, in the present embodiment, the thermal shrinkage ratio can be set to 0.60 or less by adjusting the conditions and the like when laminating the metal layers, so that a wide range of choices for the material resin can be maintained. can. For example, unlike Patent Document 1, there is no restriction that the raw material resin must be selected such that the heat shrinkage of the polypropylene film before laminating the metal layer is small. Moreover, it is not necessary to adjust the manufacturing conditions of the polypropylene film so that the heat shrinkage of the polypropylene film before laminating the metal layer is small.
The thermal shrinkage ratio is 0.25 or more, preferably 0.28 or more, more preferably 0.30 or more, still more preferably 0.40 or more, and particularly preferably 0.40 or more. 45 or more. Since the thermal shrinkage ratio is 0.25 or more, the dimensional stability is excellent during the heat treatment after element winding.
Thus, according to the metal layer-integrated polypropylene film according to the present embodiment, the thermal shrinkage ratio is 0.60 or less, so there is room for selection of polypropylene film materials and room for adjustment of polypropylene film manufacturing conditions. can be ensured, and the thermal contraction rate ratio is 0.60 or less, so it is possible to suppress peeling of the metallikon electrode. This point is also clear from the examples.

<金属層一体型ポリプロピレンフィルムの第一方向の熱収縮率Bの測定方法>
金属層一体型ポリプロピレンフィルムを、幅20mm、長さ130mmの長方形に切り出して測定用サンプルを作製する。このとき、第一方向(本実施形態ではMD方向)を長さ方向として切り出す。前記測定用サンプルは、3本準備する。なお、金属層一体型ポリプロピレンフィルムにおいて、ポリプロピレンフィルム上に金属層が形成されている部分と形成されていない部分とが存在する場合(金属層がポリプロピレンフィルム上にパターン形成されている場合)、測定サンプルを切り出す際には、幅20mm、長さ130mmの全体に金属層が形成されている部分かつヘビーエッジではない部分を切り出す。次に、測定用サンプルの長さ100mmの箇所を定規で測り、当該箇所に標線を付ける。次に、3つの測定用サンプルを、120℃の熱風循環式恒温槽内に無荷重で15分間保持する。その後、室温(23℃)で冷却し、寸法を測定する。120℃加熱前の寸法100mmに対する加熱後の寸法の変化率を熱収縮率Bとする。具体的には、下記式の通りである。
(熱収縮率B)=[[(加熱前の寸法)-(加熱後の寸法)]/(加熱前の寸法)]×100(%)
なお、ここに記載した以外の測定条件については、JIS C 2151:2006の「21.寸法変化」に準ずる。
より詳細には、実施例に記載の方法による。
<Method for measuring heat shrinkage B in first direction of metal layer integrated polypropylene film>
A metal layer-integrated polypropylene film is cut into a rectangle having a width of 20 mm and a length of 130 mm to prepare a measurement sample. At this time, the first direction (MD direction in this embodiment) is cut out as the length direction. Three measurement samples are prepared. In addition, in the metal layer integrated polypropylene film, if there is a part where the metal layer is formed on the polypropylene film and a part where it is not formed (when the metal layer is patterned on the polypropylene film), the measurement When cutting out the sample, a portion having a width of 20 mm and a length of 130 mm and having a metal layer formed thereon and a portion not having a heavy edge is cut out. Next, a point of 100 mm in length of the measurement sample is measured with a ruler, and a marked line is attached to the point. Next, the three measurement samples are held in a hot air circulating constant temperature bath at 120° C. for 15 minutes without load. After that, it is cooled at room temperature (23° C.) and the dimensions are measured. The thermal contraction rate B is defined as the rate of change in dimension after heating with respect to the dimension of 100 mm before heating at 120°C. Specifically, it is represented by the following formula.
(Thermal shrinkage rate B) = [[(Dimensions before heating) - (Dimensions after heating)] / (Dimensions before heating)] x 100 (%)
Measurement conditions other than those described here conform to "21. Dimensional change" of JIS C 2151:2006.
More specifically, according to the method described in Examples.

前記熱収縮率Aの測定方法は、前記測定用サンプルとして、金属層一体型ポリプロピレンフィルムの代わりに金属層を積層する前のポリプロピレンフィルムを用いること以外は、前記熱収縮率Bの測定方法と同様である。 The method for measuring the heat shrinkage rate A is the same as the method for measuring the heat shrinkage rate B, except that a polypropylene film before laminating a metal layer is used instead of the metal layer-integrated polypropylene film as the measurement sample. is.

前記熱収縮率比の調整方法は、特に限定されない。例えば、種々の材料(原料樹脂等)のなかから目的に応じた材料を選択した上で、熱収縮率Bを調整すればよい。つまり、熱収縮率Bを調整すれば、前記熱収縮率比を0.25以上0.60以下とすることができるので、ポリプロピレンフィルムの材料選択の余地が確保できる。 A method for adjusting the thermal shrinkage ratio is not particularly limited. For example, the thermal contraction rate B may be adjusted after selecting a material suitable for the purpose from among various materials (raw material resin, etc.). That is, by adjusting the heat shrinkage ratio B, the heat shrinkage ratio can be set to 0.25 or more and 0.60 or less, so that there is room for selection of the material of the polypropylene film.

前記熱収縮率Bの調整方法は、特に限定されないが、例えば、ポリプロピレンフィルムに金属層を積層する際の条件で調整することができる。ポリプロピレンフィルムに金属層を積層する際の具体的な条件としては、例えば、(i)冷却ロールの温度、(ii)蒸発源の温度、(iii)金属層の厚さ等が挙げられる。
冷却ロールの温度は、通常、ポリプロピレンフィルムが熱負けをするのを抑えるために低く設定されることが多いが、高めに設定すれば、金属層積層時にポリプロピレンフィルムを大きく熱収縮させることができ、得られる金属層一体型ポリプロピレンフィルムの熱収縮率Bを小さくすることができる傾向にある。前記熱収縮率Bを小さくすることができると、前記収縮率比を0.6以下とし易い。
蒸発源の温度は、高めに設定すれば、金属層積層時にポリプロピレンフィルムを大きく熱収縮させることができ、得られる金属層一体型ポリプロピレンフィルムの熱収縮率Bを小さくすることができる傾向にある。前記熱収縮率Bを小さくすることができると、前記収縮率比を0.6以下とし易い。
金属層の厚さは、厚いほど、金属層の積層のために長時間、熱に晒されることになる。そのため、厚めに設定すれば、金属層積層時に長時間、熱に晒されることによりポリプロピレンフィルムを大きく熱収縮させることができ、得られる金属層一体型ポリプロピレンフィルムの熱収縮率Bを小さくすることができる傾向にある。前記熱収縮率Bを小さくすることができると、前記収縮率比を0.6以下とし易い。
Although the method for adjusting the heat shrinkage B is not particularly limited, it can be adjusted, for example, under the conditions for laminating a metal layer on a polypropylene film. Specific conditions for laminating the metal layer on the polypropylene film include, for example, (i) the temperature of the cooling roll, (ii) the temperature of the evaporation source, and (iii) the thickness of the metal layer.
The temperature of the cooling roll is usually set low in order to prevent the polypropylene film from being damaged by heat. There is a tendency that the heat shrinkage B of the obtained metal layer-integrated polypropylene film can be reduced. If the thermal shrinkage ratio B can be reduced, the shrinkage ratio can easily be made 0.6 or less.
If the temperature of the evaporation source is set higher, the polypropylene film can be greatly thermally shrunk when the metal layers are laminated, and the thermal shrinkage B of the obtained metal layer-integrated polypropylene film tends to be small. If the thermal shrinkage ratio B can be reduced, the shrinkage ratio can easily be made 0.6 or less.
The thicker the metal layer, the longer the metal layer will be exposed to heat for lamination. Therefore, if it is set to be thicker, the polypropylene film can be greatly thermally shrunk by being exposed to heat for a long time during lamination of the metal layers, and the heat shrinkage B of the obtained metal layer integrated polypropylene film can be reduced. tend to be able. If the thermal shrinkage ratio B can be reduced, the shrinkage ratio can easily be made 0.6 or less.

前記熱収縮率Bの調整方法の他の例としては、ポリプロピレンフィルムに金属層を積層した後、さらに、後加熱処理を行う方法が挙げられる。後加熱処理を行うことにより、製品となる前の金属層一体型ポリプロピレンフィルムを熱収縮させることができ、その結果、製品としての金属層一体型ポリプロピレンフィルムの熱収縮率Bを小さくすることができる。前記熱収縮率Bを小さくすることができると、前記収縮率比を0.6以下とし易い。 Another example of the method for adjusting the heat shrinkage rate B is a method of performing a post-heat treatment after laminating a metal layer on a polypropylene film. By performing the post-heating treatment, the metal layer-integrated polypropylene film before becoming a product can be thermally shrunk, and as a result, the heat shrinkage B of the metal layer-integrated polypropylene film as a product can be reduced. . If the thermal shrinkage ratio B can be reduced, the shrinkage ratio can easily be made 0.6 or less.

前記熱収縮率Bは、2.4%以下が好ましく、2.3%以下がより好ましく、2.2%以下がさらに好ましく、2.1%以下が特に好ましい。前記熱収縮率Bが2.4%以下であると、コンデンサとした後の長期使用による金属層一体型ポリプロピレンフィルムとメタリコン電極との接触面での相対的な位置ずれがより抑制される。その結果、メタリコン電極の剥離をより抑制できる。この点は実施例からも明らかである。前記熱収縮率Bは、例えば、0.5%以上、0.8%以上、1.0%以上等である。前記熱収縮率Bが0.5%以上であると、素子巻きした後の熱処理時に、素子が好適に巻き締まる。その結果、フィルム間の空隙が取り除かれ、形状が安定化する。また、耐電圧性を向上させることができる。 The heat shrinkage rate B is preferably 2.4% or less, more preferably 2.3% or less, even more preferably 2.2% or less, and particularly preferably 2.1% or less. When the heat shrinkage ratio B is 2.4% or less, relative positional displacement at the contact surface between the metal layer integrated polypropylene film and the metallikon electrode due to long-term use after being made into a capacitor is further suppressed. As a result, peeling of the metallikon electrode can be further suppressed. This point is also clear from the examples. The thermal contraction rate B is, for example, 0.5% or more, 0.8% or more, or 1.0% or more. When the thermal contraction rate B is 0.5% or more, the winding of the element is suitably tightened during the heat treatment after the element is wound. As a result, voids between films are eliminated and the shape is stabilized. In addition, voltage resistance can be improved.

前記熱収縮率A(金属層を積層する前のポリプロピレンフィルムの第一方向の熱収縮率)は、2.0%以上が好ましく、3.1%以上がより好ましく、3.5%以上がさらに好ましく、4.0%以上が特に好ましい。前記熱収縮率Aが2.0%以上であると、ポリプロピレンフィルムの材料選択の余地やポリプロピレンフィルムの製造条件の調整の余地がより確保できる。つまり、金属層を積層する前のポリプロピレンフィルムの熱収縮率(熱収縮率A)が小さくなるような原料樹脂を選択しなければならないという制約が少ない。前記熱収縮率Aの上限は、特に限定されないが、ポリプロピレンフィルムの製造上の観点から、例えば、9.0%以下、8.0%以下、7.5%以下等である。 The heat shrinkage rate A (the heat shrinkage rate in the first direction of the polypropylene film before laminating the metal layer) is preferably 2.0% or more, more preferably 3.1% or more, and further 3.5% or more. Preferably, 4.0% or more is particularly preferable. When the heat shrinkage ratio A is 2.0% or more, it is possible to secure more room for selection of the material of the polypropylene film and for adjustment of the manufacturing conditions of the polypropylene film. In other words, there is less restriction that the raw material resin must be selected such that the heat shrinkage rate (heat shrinkage rate A) of the polypropylene film before laminating the metal layer is small. Although the upper limit of the heat shrinkage ratio A is not particularly limited, it is, for example, 9.0% or less, 8.0% or less, or 7.5% or less from the viewpoint of manufacturing a polypropylene film.

上述したように、本実施形態では、ポリプロピレンフィルムとして熱収縮率Aが2.0%以上のものを使用することが好ましい。すなわち、熱収縮率Aが小さいポリプロピレンフィルムを製造する必要がない。そのため、ポリプロピレンフィルムの材料選択の余地が確保されている。従って、前記熱収縮率Aが2.0%以上のポリプロピレンフィルムを得ることは比較的容易であり、種々の材料(原料樹脂等)のなかから、選択すればよい。 As described above, in this embodiment, it is preferable to use a polypropylene film having a heat shrinkage A of 2.0% or more. That is, there is no need to produce a polypropylene film with a small heat shrinkage factor A. Therefore, there is room for material selection for the polypropylene film. Therefore, it is relatively easy to obtain a polypropylene film having a heat shrinkage ratio A of 2.0% or more, and it may be selected from various materials (raw material resins, etc.).

前記金属層一体型ポリプロピレンフィルムの厚さは、好ましくは0.8μm以上、より好ましくは1.2μm以上、さらに好ましくは1.5μm以上、特に好ましくは2.0μm以上である。また、前記ポリプロピレンフィルムの厚さは、好ましくは3.5μm以下より好ましくは3.0μm以下、さらに好ましくは2.9μm以下、特に好ましくは2.8μm以下である。 The thickness of the metal layer-integrated polypropylene film is preferably 0.8 μm or more, more preferably 1.2 μm or more, still more preferably 1.5 μm or more, and particularly preferably 2.0 μm or more. The thickness of the polypropylene film is preferably 3.5 μm or less, more preferably 3.0 μm or less, more preferably 2.9 μm or less, and particularly preferably 2.8 μm or less.

前記金属層一体型ポリプロピレンフィルムの厚さは、シチズンセイミツ社製の紙厚測定器MEI-11を用いて100±10kPaで測定したこと以外、JIS-C2330に準拠して測定した値をいう。 The thickness of the metal layer-integrated polypropylene film refers to a value measured according to JIS-C2330, except that it was measured at 100±10 kPa using a paper thickness measuring instrument MEI-11 manufactured by Citizen Seimitsu Co., Ltd.

前記金属層一体型ポリプロピレンフィルムでは、120℃での第一方向の寸法変化率が好ましくは-0.40%以上、より好ましくは-0.30%以上であり、さらに好ましくはー0.26%以上である。120℃での第一方向の寸法変化率が-0.40%以上であると、高温下でコンデンサ素子として使用した際に、フィルムの寸法変化が大きくなりすぎることを抑制することができる。その結果、メタリコン電極の剥離をより好適に抑制できる。120℃での第一方向の寸法変化率は、好ましくは0.30%以下、より好ましくは0%以下、さらに好ましくは-0.01%以下、特に好ましくは-0.05%以下である。
本実施形態において、120℃での第一方向の寸法変化率は、蒸発源の温度、金属層の厚さ等によって制御することができる。例えば、第一方向をMD方向とした場合、蒸発源の温度が低いほど、MD寸法変化率はマイナス方向に大きくなる傾向にある。また、例えば、第一方向をMD方向とした場合、金属層の厚さが厚いほど、MD寸法変化率はマイナス方向に大きくなる傾向にある(つまり、MD寸法変化率の値としては、より低くなる傾向にある)。
前記120℃での第一方向の寸法変化率は、TMA法で測定される値であり、より詳細には実施例に記載の方法による。
In the metal layer-integrated polypropylene film, the dimensional change rate in the first direction at 120° C. is preferably −0.40% or more, more preferably −0.30% or more, and still more preferably −0.26%. That's it. When the dimensional change rate in the first direction at 120° C. is −0.40% or more, it is possible to suppress excessive dimensional change of the film when used as a capacitor element at high temperatures. As a result, peeling of the metallikon electrode can be more preferably suppressed. The dimensional change rate in the first direction at 120° C. is preferably 0.30% or less, more preferably 0% or less, even more preferably −0.01% or less, and particularly preferably −0.05% or less.
In this embodiment, the dimensional change rate in the first direction at 120° C. can be controlled by the temperature of the evaporation source, the thickness of the metal layer, and the like. For example, when the first direction is the MD direction, the lower the temperature of the evaporation source, the larger the MD dimensional change rate tends to be in the negative direction. Further, for example, when the first direction is the MD direction, the thicker the metal layer, the larger the MD dimensional change rate tends to be in the negative direction (that is, the lower the MD dimensional change rate). tend to be).
The dimensional change rate in the first direction at 120° C. is a value measured by the TMA method, more specifically according to the method described in Examples.

以下では、金属層を積層した後の製品としての金属層一体型ポリプロピレンフィルムが備えるポリプロピレンフィルムについて説明する。すなわち、以下では、金属層を積層する前であるのか、それとも、金属層を積層した後であるのかについて、特段に明記せずに、「ポリプロピレンフィルム」というときは、特段の断りがない限り、金属層を積層した後のポリプロピレンフィルムを意味することとして説明する。 Below, the polypropylene film included in the metal layer-integrated polypropylene film as a product after laminating the metal layer will be described. That is, hereinafter, without specifying whether it is before lamination of the metal layer or after lamination of the metal layer, when referring to a "polypropylene film", unless otherwise specified, It is explained as meaning the polypropylene film after laminating the metal layer.

前記ポリプロピレンフィルムの厚さは、好ましくは0.8μm以上、より好ましくは1.2μm以上、さらに好ましくは1.5μm以上、特に好ましくは2.0μm以上である。また、前記ポリプロピレンフィルムの厚さは、好ましくは3.5μm以下、より好ましくは3.0μm以下、さらに好ましくは2.9μm以下、特に好ましくは2.8μm以下である。 The thickness of the polypropylene film is preferably 0.8 μm or more, more preferably 1.2 μm or more, still more preferably 1.5 μm or more, and particularly preferably 2.0 μm or more. The thickness of the polypropylene film is preferably 3.5 μm or less, more preferably 3.0 μm or less, even more preferably 2.9 μm or less, and particularly preferably 2.8 μm or less.

前記ポリプロピレンフィルムの厚さが3.0μm以下であると、コンデンサ素子としたときの単位体積当たりの静電容量を大きくすることができるため、コンデンサ用として好適に使用できる。また、フィルムの製膜安定性の観点、及び、熱収縮率Bが大きくなることを抑制する観点(前記収縮率比が0.6越えとなることを抑制する観点)から、前記ポリプロピレンフィルムの厚さは0.8μm以上とすることができる。
この点について、以下に詳細に説明する。
ポリプロピレンフィルムは、厚さが薄いほど、単位体積当たりの静電容量を大きくできる。より具体的に説明すると、静電容量Cは、誘電率ε、電極面積S、誘電体厚さd(ポリプロピレンフィルムの厚さd)を用いて、以下のように表される。
C=εS/d
ここで、フィルムコンデンサの場合、電極の厚さは、ポリプロピレンフィルム(誘電体)の厚さと比較して3桁以上薄いため、電極の体積を無視すると、コンデンサの体積Vは、以下のように表される。
V=Sd
従って、上記2つの式より、単位体積当たりの静電容量C/Vは、以下のように表される。
C/V=ε/d
上記式から分かるように、単位体積当たりの静電容量(C/V)は、ポリプロピレンフィルム厚さの自乗に反比例する。また、誘電率εは、使用する材料により決まる。そうすると、材料を変更しない限りは、厚さを薄くすること以外で単位体積当たりの静電容量(C/V)を向上させることはできないことが分かる。
なお、電極面積は、単位体積当たりの静電容量(C/V)に影響しない。この点について以下に説明する。
同じ材料、同じ厚さのフィルムを巻回してコンデンサを作製する場合を想定する。例えば、ターン数(巻き数)を増やして、10倍長く(電極面積を10倍大きく)巻いたとする。そうすると、静電容量は10倍になるが、体積も10倍になるので単位体積当たりの静電容量(C/V)は、電極面積が変化しても変わらない。
上記説明は、理解を容易にするために理想化している。つまり、実際には、例えば、フィルム間にわずかな空隙が存在する場合があることや、電極端でのフリンジ効果の影響があること等により、面積に応じて単位体積当たりの静電容量(C/V)の値に多少の変化が見られる場合はある。しかしながら、一般的には、単位体積当たりの静電容量(C/V)は、ポリプロピレンフィルム厚さによって決まるということが理解できる。
以上より、前記ポリプロピレンフィルムの厚さは、耐電圧性が担保される範囲内で、なるべく薄くすることが好ましい。そこで、前記ポリプロピレンフィルムの厚さは、3.0μm以下であることが好ましい。
一方、ポリプロピレンフィルムの厚さが薄くなると、前記熱収縮率Bは大きくなる傾向にある。そして、前記熱収縮率Bは大きくなると、前記収縮率比も大きくなる。そのため、厚さが薄すぎると、コンデンサにして長期使用した際にメタリコン電極が剥離するおそれが増大する。そこで、前記ポリプロピレンフィルムの厚さは、0.8μm以上であることが好ましい。
When the thickness of the polypropylene film is 3.0 μm or less, the capacitance per unit volume of a capacitor element can be increased, so that the polypropylene film can be suitably used for capacitors. In addition, from the viewpoint of film formation stability of the film and from the viewpoint of suppressing the thermal shrinkage ratio B from increasing (from the viewpoint of suppressing the shrinkage ratio from exceeding 0.6), the thickness of the polypropylene film The thickness can be 0.8 μm or more.
This point will be described in detail below.
The thinner the polypropylene film, the larger the capacitance per unit volume. More specifically, the capacitance C is expressed as follows using a dielectric constant ε, an electrode area S, and a dielectric thickness d (thickness d of a polypropylene film).
C=εS/d
Here, in the case of a film capacitor, the thickness of the electrodes is three orders of magnitude thinner than the thickness of the polypropylene film (dielectric). be done.
V=Sd
Therefore, from the above two equations, the capacitance C/V per unit volume is expressed as follows.
C/V=ε/d 2
As can be seen from the above formula, the capacitance per unit volume (C/V) is inversely proportional to the square of the polypropylene film thickness. Also, the dielectric constant ε is determined by the material used. Then, unless the material is changed, it can be seen that the capacitance per unit volume (C/V) cannot be improved except by reducing the thickness.
Note that the electrode area does not affect the capacitance per unit volume (C/V). This point will be described below.
Assume that a film of the same material and thickness is wound to form a capacitor. For example, assume that the number of turns (the number of windings) is increased and the length is ten times longer (the electrode area is ten times larger). Then, although the capacitance increases tenfold, the volume also increases tenfold, so the capacitance per unit volume (C/V) does not change even if the electrode area changes.
The above description is idealized for ease of understanding. In other words, in reality, the capacitance per unit volume (C /V) may show some variation. However, it can be generally understood that the capacitance per unit volume (C/V) is determined by the polypropylene film thickness.
From the above, it is preferable to make the thickness of the polypropylene film as thin as possible within the range in which the voltage resistance is ensured. Therefore, the thickness of the polypropylene film is preferably 3.0 μm or less.
On the other hand, as the thickness of the polypropylene film becomes thinner, the heat shrinkage rate B tends to increase. As the thermal shrinkage rate B increases, the shrinkage rate ratio also increases. Therefore, if the thickness is too thin, there is an increased risk that the metallikon electrode will peel off when the capacitor is used for a long period of time. Therefore, the thickness of the polypropylene film is preferably 0.8 μm or more.

本発明および本明細書における前記ポリプロピレンフィルムの厚さは、前記金属層一体型ポリプロピレンフィルムの厚さから、金属層の厚さ(膜抵抗から換算される金属層の厚さ)を引くことにより得られるものとして規定している。
金属層一体型ポリプロピレンフィルム中の金属層の厚さは0.1~10nmが好ましい。金属層の厚さが0.1~10nmである場合、金属層一体型ポリプロピレンフィルムの厚さと前記ポリプロピレンフィルムの厚さは、本実施例に記載の測定方法では、同程度の値を示す。
The thickness of the polypropylene film in the present invention and the specification is obtained by subtracting the thickness of the metal layer (the thickness of the metal layer converted from the film resistance) from the thickness of the polypropylene film integrated with the metal layer. It is stipulated that
The thickness of the metal layer in the metal layer-integrated polypropylene film is preferably 0.1 to 10 nm. When the thickness of the metal layer is 0.1 to 10 nm, the thickness of the metal layer-integrated polypropylene film and the thickness of the polypropylene film exhibit similar values according to the measurement method described in this example.

前記ポリプロピレンフィルムは、二軸延伸フィルムであってもよく、一軸延伸フィルムであってもよく、無延伸フィルムであってもよい。なかでも、二軸延伸フィルムであることが好ましい。前記ポリプロピレンフィルムが二軸延伸されていると、前記ポリプロピレンフィルムの第一方向の熱収縮率は、二軸延伸される前と比較して大きくなる傾向にある。そこで、前記ポリプロピレンフィルムが二軸延伸されている場合、前記熱収縮率比が0.60以下となる金属層一体型ポリプロピレンフィルムを得易い。 The polypropylene film may be a biaxially stretched film, a uniaxially stretched film, or a non-stretched film. Among them, a biaxially stretched film is preferable. When the polypropylene film is biaxially stretched, the heat shrinkage rate of the polypropylene film in the first direction tends to be greater than before the biaxial stretching. Therefore, when the polypropylene film is biaxially stretched, it is easy to obtain a metal layer-integrated polypropylene film having a heat shrinkage ratio of 0.60 or less.

前記ポリプロピレンフィルムは、面配向係数ΔPが0.010~0.016であることが好ましく、0.011~0.0155であることがより好ましく、0.0115~0.015であることがさらに好ましい。 The polypropylene film preferably has a plane orientation coefficient ΔP of 0.010 to 0.016, more preferably 0.011 to 0.0155, even more preferably 0.0115 to 0.015. .

前記ポリプロピレンフィルムの面配向係数ΔPが前記範囲内にあると、前記熱収縮率比を適切に制御しつつ、高温且つ高電圧下における絶縁破壊をより低減できるため好ましい。 When the plane orientation coefficient ΔP of the polypropylene film is within the above range, it is possible to appropriately control the thermal shrinkage ratio and further reduce dielectric breakdown at high temperature and high voltage, which is preferable.

<面配向係数ΔP>
本明細書において、「面配向係数ΔP」とは、光学的複屈折測定により求めたポリプロピレンフィルムの厚さ方向に対する複屈折値ΔNyz及びΔNxzの値から算出される面配向係数ΔP(ただし、ΔP=(ΔNyz+ΔNxz)/2)をいう。
本明細書において、ポリプロピレンフィルムの厚さ方向に対する「複屈折値ΔNyz」とは、光学的複屈折測定により求められる厚さ方向に対する複屈折値ΔNyzをいう。より具体的には、フィルムの面内方向の主軸をx軸及びy軸、また、フィルムの厚さ方向(面内方向に対する法線方向)をz軸とし、面内方向のうち、屈折率のより高い方向の遅相軸をx軸とすると、y軸方向の三次元屈折率からz軸方向の三次元屈折率を差し引いた値が、複屈折値ΔNyzとなる。
<Plane Orientation Factor ΔP>
As used herein, the term “plane orientation coefficient ΔP” means a plane orientation coefficient ΔP calculated from the birefringence values ΔNyz and ΔNxz in the thickness direction of the polypropylene film obtained by optical birefringence measurement (where ΔP = (ΔNyz+ΔNxz)/2).
As used herein, the “birefringence value ΔNyz” in the thickness direction of the polypropylene film refers to the birefringence value ΔNyz in the thickness direction determined by optical birefringence measurement. More specifically, the main axes in the in-plane direction of the film are the x-axis and the y-axis, and the thickness direction of the film (normal direction to the in-plane direction) is the z-axis. Assuming that the slow axis in the higher direction is the x-axis, the birefringence value ΔNyz is obtained by subtracting the three-dimensional refractive index in the y-axis direction from the three-dimensional refractive index in the z-axis direction.

また、本明細書において、ポリプロピレンフィルムの厚さ方向に対する「複屈折値ΔNxz」とは、光学的複屈折測定により求められる厚さ方向に対する複屈折値ΔNxzをいい、より具体的には、x軸(遅相軸)方向の三次元屈折率からz軸方向の三次元屈折率を差し引いた値が、複屈折値ΔNxzとなる。 Further, in this specification, the “birefringence value ΔNxz” in the thickness direction of the polypropylene film refers to the birefringence value ΔNxz in the thickness direction obtained by optical birefringence measurement, more specifically, the x-axis The birefringence value ΔNxz is obtained by subtracting the three-dimensional refractive index in the z-axis direction from the three-dimensional refractive index in the (slow axis) direction.

本実施形態では、ポリプロピレンフィルムの厚さ方向に対する「複屈折値ΔNyz」を測定するために、具体的には、大塚電子株式会社製、位相差測定装置 RE-100を用いる。レタデーション(位相差)の測定は傾斜法を用いて行う。より具体的には、フィルムの面内方向の主軸をx軸及びy軸、また、フィルムの厚さ方向(面内方向に対する法線方向)をz軸とし、面内方向のうち、屈折率のより高い方向の遅相軸をx軸とする。x軸を傾斜軸として、0°~50°の範囲でz軸に対して10°ずつ傾斜させたときの各レタデーション値を求める。得られたレタデーション値から、非特許文献「粟屋裕、高分子素材の偏光顕微鏡入門,105~120頁 、2001年」に記載の方法を用いて、厚さ方向(z軸方向)に対するy軸方向の複屈折ΔNyzを計算する。まず、各傾斜角φに対し、測定されたレタデーション値Rを、傾斜補正が施された厚さdで割ったR/dを求める。φ=10°、20°、30°、40°、50°のそれぞれのR/dについて、φ=0°のR/dとの差を求め、それらをさらにsin2r(r:屈折角)で割ったものを、それぞれのφにおける複屈折ΔNzyとし、正負の符号を逆にして複屈折値ΔNyzとする。φ=20°、30°、40°、50°におけるΔNyzの平均値として、複屈折値ΔNyzを算出する。なお、例えば、逐次延伸法において、MD方向(流れ方向)の延伸倍率よりも、TD方向(幅方向)の延伸倍率が高い場合、TD方向が遅相軸(x軸)となり、MD方向がy軸となる。また、ポリプロピレンを用いる場合、ポリプロピレンについての、各傾斜角における屈折角rの値は、前記文献の109頁に記載されているものを用いる。 In this embodiment, in order to measure the “birefringence value ΔNyz” in the thickness direction of the polypropylene film, specifically, a phase difference measuring device RE-100 manufactured by Otsuka Electronics Co., Ltd. is used. Retardation (phase difference) is measured using the tilt method. More specifically, the main axes in the in-plane direction of the film are the x-axis and the y-axis, and the thickness direction of the film (normal direction to the in-plane direction) is the z-axis. Let the slow axis in the higher direction be the x-axis. With the x-axis as the tilt axis, each retardation value is obtained when tilted by 10° with respect to the z-axis in the range of 0° to 50°. From the obtained retardation value, the y-axis direction with respect to the thickness direction (z-axis direction) using the method described in the non-patent document "Yutaka Awaya, Introduction to Polarizing Microscopes for Polymer Materials, pp. 105-120, 2001" Calculate the birefringence ΔNyz of First, for each tilt angle φ, R/d is obtained by dividing the measured retardation value R by the tilt-corrected thickness d. For each R/d of φ=10°, 20°, 30°, 40°, and 50°, find the difference from R/d of φ=0°, and divide them by sin2r (r: refraction angle). ΔNzy at each φ, and the positive and negative signs are reversed to obtain the birefringence value ΔNyz. A birefringence value ΔNyz is calculated as an average value of ΔNyz at φ=20°, 30°, 40°, and 50°. Incidentally, for example, in the sequential stretching method, when the stretching ratio in the TD direction (width direction) is higher than the stretching ratio in the MD direction (machine direction), the TD direction becomes the slow axis (x axis), and the MD direction becomes the y become the axis. Also, when polypropylene is used, the value of the refraction angle r at each tilt angle for polypropylene is described on page 109 of the aforementioned document.

また、本実施形態では、ポリプロピレンフィルムの厚さ方向に対する「複屈折値ΔNxz」は、傾斜角φ=0°で測定された上記レタデーション値Rを、厚さdで割った値より、前述で求めたΔNzyを除算し、複屈折値ΔNxzを算出する。
前記面配向係数のより具体的な測定方法は、実施例に記載の方法による。
Further, in the present embodiment, the "birefringence value ΔNxz" in the thickness direction of the polypropylene film is obtained above by dividing the retardation value R measured at the tilt angle φ = 0° by the thickness d. ΔNzy is divided to calculate the birefringence value ΔNxz.
A more specific method for measuring the plane orientation coefficient is according to the method described in Examples.

前記ポリプロピレンフィルムは、ポリプロピレン樹脂を含んでおり、前記熱収縮率比が0.25以上0.60以下であれば、特にその構成材料は限定されない。 The polypropylene film contains a polypropylene resin, and its constituent material is not particularly limited as long as the heat shrinkage ratio is 0.25 or more and 0.60 or less.

前記ポリプロピレン樹脂の含有量は、ポリプロピレンフィルム全体に対して(ポリプロピレンフィルム全体を100質量%としたときに)、好ましくは90質量%以上、より好ましくは95質量%以上である。前記ポリプロピレン樹脂の含有量の上限は、ポリプロピレンフィルム全体に対して、例えば、100質量%、98質量%等である。前記ポリプロピレン樹脂は、一種のポリプロピレン樹脂を単独で含むものであってもよく、二種以上のポリプロピレン樹脂を含むものであってもよい。前記ポリプロピレン樹脂は、ホモポリプロピレン樹脂であることが好ましい。 The content of the polypropylene resin is preferably 90% by mass or more, more preferably 95% by mass or more, relative to the entire polypropylene film (when the entire polypropylene film is taken as 100% by mass). The upper limit of the content of the polypropylene resin is, for example, 100% by mass, 98% by mass, etc. with respect to the entire polypropylene film. The polypropylene resin may contain one type of polypropylene resin alone, or may contain two or more types of polypropylene resins. The polypropylene resin is preferably a homopolypropylene resin.

ここで、前記ポリプロピレンフィルムに含まれるポリプロピレン樹脂が二種以上である場合、含有量の多い方のポリプロピレン樹脂を、本明細書では、「主成分のポリプロピレン樹脂」という。また、前記ポリプロピレンフィルムに含まれるポリプロピレン樹脂が一種である場合、当該ポリプロピレン樹脂を、本明細書では、「主成分のポリプロピレン樹脂」という。 Here, when two or more kinds of polypropylene resins are contained in the polypropylene film, the polypropylene resin having the higher content is referred to as the "main component polypropylene resin" in this specification. In addition, when the polypropylene resin contained in the polypropylene film is of one type, the polypropylene resin is referred to herein as the "main component polypropylene resin".

以下、本明細書において、主成分であるか否かを特に明記せずに「ポリプロピレン樹脂」というときは、特段の断りがない限り、主成分としてのポリプロピレン樹脂と、主成分以外のポリプロピレン樹脂との両方を意味する。例えば、「前記ポリプロピレン樹脂の重量平均分子量Mwは、25万以上45万以下であることが好ましい。」と記載されている場合、主成分としてのポリプロピレン樹脂の重量平均分子量Mwが25万以上45万以下であることが好ましいことと、主成分以外のポリプロピレン樹脂の重量平均分子量Mwが25万以上45万以下であることが好ましいこととの両方を意味する。 Hereinafter, in this specification, when referring to "polypropylene resin" without specifying whether it is the main component, unless otherwise specified, the polypropylene resin as the main component and the polypropylene resin other than the main component means both For example, when it is described that "the weight average molecular weight Mw of the polypropylene resin is preferably 250,000 or more and 450,000 or less." and that the weight average molecular weight Mw of the polypropylene resin other than the main component is preferably 250,000 or more and 450,000 or less.

前記ポリプロピレン樹脂の重量平均分子量Mwは、25万以上45万以下であることが好ましく、25万以上40万以下であることがより好ましい。前記ポリプロピレン樹脂の重量平均分子量Mwが25万以上45万以下であると、樹脂流動性が適度となる。その結果、キャスト原反シートの厚さの制御が容易であり、厚み均一性が良好で薄い延伸フィルムを作製することが容易となる。また、二軸延伸ポリプロピレンフィルムの力学特性、熱-機械特性、延伸成形性等の観点からも重量平均分子量Mwは、25万以上45万以下であることが好ましい。ポリプロピレン樹脂を2種以上使用する場合、上記Mwが25万以上33万未満のポリプロピレン樹脂と上記Mwが33万以上45万以下のポリプロピレン樹脂を併用することが好ましい。
前記ポリプロピレン樹脂の数平均分子量Mnは、30000以上53000以下であることが好ましく、33000以上52000以下であることがより好ましい。
前記ポリプロピレン樹脂のz平均分子量Mzは、500000以上2100000以下であることが好ましく、700000以上1700000以下であることがより好ましい。
The weight average molecular weight Mw of the polypropylene resin is preferably 250,000 or more and 450,000 or less, and more preferably 250,000 or more and 400,000 or less. When the weight average molecular weight Mw of the polypropylene resin is 250,000 or more and 450,000 or less, the resin fluidity becomes appropriate. As a result, it is easy to control the thickness of the original cast sheet, and it becomes easy to produce a thin stretched film with good thickness uniformity. The weight average molecular weight Mw is preferably 250,000 or more and 450,000 or less from the viewpoint of the mechanical properties, thermo-mechanical properties, stretch moldability, etc. of the biaxially stretched polypropylene film. When two or more polypropylene resins are used, it is preferable to use a polypropylene resin having an Mw of 250,000 or more and less than 330,000 and a polypropylene resin having an Mw of 330,000 or more and 450,000 or less.
The number average molecular weight Mn of the polypropylene resin is preferably 30,000 or more and 53,000 or less, and more preferably 33,000 or more and 52,000 or less.
The z-average molecular weight Mz of the polypropylene resin is preferably from 500,000 to 2,100,000, more preferably from 700,000 to 1,700,000.

前記ポリプロピレン樹脂の分子量分布[(重量平均分子量Mw)/(数平均分子量Mn)]は、5以上12以下であることが好ましく、5以上11以下であることがより好ましく、5以上10以下であることがさらに好ましい。前記ポリプロピレン樹脂の分子量分布[(重量平均分子量Mw)/(数平均分子量Mn)]が5以上12以下であると、二軸延伸時に適度な樹脂流動性が得られ、厚みムラのない極薄化された二軸延伸プロピレンフィルムを得ることが容易となるため好ましい。
前記ポリプロピレン樹脂の分子量分布[(z平均分子量Mz)/(数平均分子量Mn)]は、10以上70以下であることが好ましく、15以上60以下であることがより好ましく、15以上50以下であることがさらに好ましい。
The molecular weight distribution [(weight average molecular weight Mw)/(number average molecular weight Mn)] of the polypropylene resin is preferably 5 or more and 12 or less, more preferably 5 or more and 11 or less, and 5 or more and 10 or less. is more preferred. When the molecular weight distribution [(weight average molecular weight Mw) / (number average molecular weight Mn)] of the polypropylene resin is 5 or more and 12 or less, moderate resin fluidity is obtained during biaxial stretching, and ultra-thinness without thickness unevenness It is preferable because it becomes easy to obtain a biaxially stretched propylene film that has been stretched.
The molecular weight distribution [(z average molecular weight Mz) / (number average molecular weight Mn)] of the polypropylene resin is preferably 10 or more and 70 or less, more preferably 15 or more and 60 or less, and 15 or more and 50 or less. is more preferred.

本明細書において、前記ポリプロピレン樹脂の重量平均分子量(Mw)、数平均分子量(Mn)、z平均分子量(Mz)、及び、分子量分布(Mw/Mn、及び、Mz/Mn)は、ゲルパーミエーションクロマトグラフ(GPC)装置を用いて測定した値である。より具体的には、東ソー株式会社製、示差屈折計(RI)内蔵型高温GPC測定機のHLC-8121GPC-HT(商品名)を使用して測定した値である。GPCカラムとして、東ソー株式会社製の3本のTSKgel GMHHR-H(20)HTを連結して使用する。カラム温度を140℃に設定して、溶離液としてトリクロロベンゼンを1.0ml/10分の流速で流して、MwとMnの測定値を得る。東ソー株式会社製の標準ポリスチレンを用いてその分子量Mに関する検量線を作成して、測定値をポリスチレン値に換算して、Mw、Mn及びMzを得る。ここで、標準ポリスチレンの分子量Mの底10の対数を、対数分子量(「Log(M)」)という。 In the present specification, the weight average molecular weight (Mw), number average molecular weight (Mn), z average molecular weight (Mz), and molecular weight distribution (Mw/Mn and Mz/Mn) of the polypropylene resin are gel permeation It is a value measured using a chromatograph (GPC) device. More specifically, it is a value measured using HLC-8121GPC-HT (trade name), a differential refractometer (RI) built-in high-temperature GPC measuring instrument manufactured by Tosoh Corporation. As a GPC column, three TSKgel GMHHR-H(20)HT manufactured by Tosoh Corporation are used by connecting them. The column temperature is set to 140° C., and trichlorobenzene is passed as an eluent at a flow rate of 1.0 ml/10 minutes to obtain measured values of Mw and Mn. A standard polystyrene manufactured by Tosoh Corporation is used to prepare a calibration curve for the molecular weight M, and the measured values are converted into polystyrene values to obtain Mw, Mn and Mz. Here, the base 10 logarithm of the molecular weight M of standard polystyrene is referred to as the logarithmic molecular weight ("Log(M)").

前記ポリプロピレン樹脂は、分子量微分分布曲線において、対数分子量Log(M)=4.5のときの微分分布値から、Log(M)=6.0のときの微分分布値を引いた差(以下、「微分分布値差D」ともいう)が、-5%以上14%以下であることが好ましく、-4%以上12%以下であることがより好ましく、-4%以上10%以下であることがさらに好ましい。
なお、「対数分子量Log(M)=4.5のときの微分分布値から、Log(M)=6.0のときの微分分布値を引いた差(微分分布値差D)が、-5%以上14%以下である」とは、前記ポリプロピレン樹脂の有するMwの値より、低分子量側の分子量1万から10万の成分(以下、「低分子量成分」ともいう)の代表的な分布値としての対数分子量Log(M)=4.5の成分と、高分子量側の分子量100万前後の成分(以下、「高分子量成分」ともいう)の代表的な分布値としてのLog(M)=6.0前後の成分とを比較したときに、差分が正の場合は低分子量成分の方が多く、差分が負の場合は高分子量成分の方が多いと理解できる。
In the molecular weight differential distribution curve, the polypropylene resin has a difference obtained by subtracting the differential distribution value when Log (M) = 6.0 from the differential distribution value when logarithmic molecular weight Log (M) = 4.5 (hereinafter referred to as Also referred to as “differential distribution value difference D M ”) is preferably −5% or more and 14% or less, more preferably −4% or more and 12% or less, and −4% or more and 10% or less. is more preferred.
The difference ( differential distribution value difference D M ) obtained by subtracting the differential distribution value when Log (M) = 6.0 from the differential distribution value when logarithmic molecular weight Log (M) = 4.5 is - 5% or more and 14% or less” means that the Mw value of the polypropylene resin has a typical distribution of components with a molecular weight of 10,000 to 100,000 on the low molecular weight side (hereinafter also referred to as “low molecular weight components”). A component with a logarithmic molecular weight Log (M) = 4.5 as a value and a component with a molecular weight of around 1 million on the high molecular weight side (hereinafter also referred to as "high molecular weight component") Log (M) as a representative distribution value =6.0, it can be understood that when the difference is positive, there are more low-molecular-weight components, and when the difference is negative, there are more high-molecular-weight components.

つまり、例えば、分子量分布Mw/Mnが5~12である場合を例にすると、分子量分布Mw/Mnが5~12であるといっても単に分子量分布幅の広さを表しているに過ぎず、その中の高分子量成分、低分子量成分の量的な関係までは分からない。そこで、樹脂流動性、延伸成形性、厚み均一性の観点から、前記ポリプロピレン樹脂は、分子量1万から10万の成分を、分子量100万の成分と比較して、微分分布値差が-5%以上14%以下となるようにポリプロピレン樹脂を使用することが好ましい。 That is, for example, when the molecular weight distribution Mw/Mn is 5 to 12, even if the molecular weight distribution Mw/Mn is 5 to 12, it simply indicates the width of the molecular weight distribution. , the quantitative relationship between high molecular weight components and low molecular weight components therein is unknown. Therefore, from the viewpoint of resin fluidity, stretch moldability, and thickness uniformity, the polypropylene resin has a differential distribution value difference of -5% when a component with a molecular weight of 10,000 to 100,000 is compared with a component with a molecular weight of 1,000,000. It is preferable to use a polypropylene resin so that the ratio is 14% or less.

前記微分分布値は、GPCを用いて、次のようにして得た値である。GPCの示差屈折(RI)検出計によって得られる、時間に対する強度を示す曲線(一般には、「溶出曲線」ともいう)を使用する。標準ポリスチレンを用いて得た検量線を使用して、時間軸を対数分子量(Log(M))に変換することで、溶出曲線をLog(M)に対する強度を示す曲線に変換する。RI検出強度は、成分濃度と比例関係にあるので、強度を示す曲線の全面積を100%とすると、対数分子量Log(M)に対する積分分布曲線を得ることができる。微分分布曲線は、この積分分布曲線をLog(M)で、微分することによって得る。したがって、「微分分布」とは、濃度分率の分子量に対する微分分布を意味する。この曲線から、特定のLog(M)のときの微分分布値を読みとる。 The differential distribution value is a value obtained as follows using GPC. A curve of intensity against time (also commonly referred to as an "elution curve") obtained by a GPC differential refractometer (RI) detector is used. Using a calibration curve obtained with standard polystyrene, the elution curve is converted to a curve showing intensity versus Log(M) by transforming the time axis to logarithmic molecular weight (Log(M)). Since the RI detection intensity is proportional to the component concentration, if the total area of the intensity curve is set to 100%, an integral distribution curve for the logarithmic molecular weight Log(M) can be obtained. A differential distribution curve is obtained by differentiating this integral distribution curve by Log(M). Therefore, "differential distribution" means the differential distribution of the concentration fraction with respect to the molecular weight. From this curve, a differential distribution value at a specific Log(M) is read.

前記ポリプロピレン樹脂のメソペンタッド分率([mmmm])は、98.0%未満であることが好ましく、97.5%以下であることがより好ましく、97.4%以下であることがさらに好ましく、97.0%以下であることが特に好ましい。また、前記メソペンタッド分率は、94.0%以上であることが好ましく、94.5%以上であることがより好ましく、95.0%以上がさらに好ましい。メソペンタッド分率が前記数値範囲内であると、適度に高い立体規則性によって樹脂の結晶性が適度に向上し、初期耐電圧性および長期間に渡る耐電圧性が向上する一方、キャスト原反シートを成形する際の適度な固化(結晶化)速度によって所望の延伸性を得ることができる。 The mesopentad fraction ([mmmm]) of the polypropylene resin is preferably less than 98.0%, more preferably 97.5% or less, even more preferably 97.4% or less, and 97 0% or less is particularly preferred. Moreover, the mesopentad fraction is preferably 94.0% or more, more preferably 94.5% or more, and even more preferably 95.0% or more. When the mesopentad fraction is within the above numerical range, the crystallinity of the resin is moderately improved due to moderately high stereoregularity, and the initial voltage resistance and long-term voltage resistance are improved. The desired stretchability can be obtained by a moderate solidification (crystallization) speed during molding.

メソペンタッド分率([mmmm])は、高温核磁気共鳴(NMR)測定によって得ることができる立体規則性の指標である。本明細書において、メソペンタッド分率([mmmm])は、日本電子株式会社製、高温型フーリエ変換核磁気共鳴装置(高温FT-NMR)、JNM-ECP500を利用して測定した値をいう。観測核は、13C(125MHz)であり、測定温度は、135℃、ポリプロピレン樹脂を溶解する溶媒にはo-ジクロロベンゼン(ODCB:ODCBと重水素化ODCBの混合溶媒(混合比=4/1)を用いる。高温NMRによる測定方法は、例えば、「日本分析化学・高分子分析研究懇談会編、新版 高分子分析ハンドブック、紀伊国屋書店、1995年、第610頁」に記載の方法を参照して行うことができる。メソペンタッド分率([mmmm])のより詳細な測定方法は、実施例に記載の方法による。 The mesopentad fraction ([mmmm]) is an index of stereoregularity that can be obtained by high temperature nuclear magnetic resonance (NMR) measurements. As used herein, the mesopentad fraction ([mmmm]) is a value measured using a high-temperature Fourier transform nuclear magnetic resonance spectrometer (high-temperature FT-NMR) JNM-ECP500 manufactured by JEOL Ltd. The observation nucleus is 13 C (125 MHz), the measurement temperature is 135° C., and the solvent for dissolving the polypropylene resin is o-dichlorobenzene (ODCB: a mixed solvent of ODCB and deuterated ODCB (mixing ratio=4/1). ) For the measurement method by high-temperature NMR, for example, refer to the method described in "Japan Analytical Chemistry/Polymer Analysis Research Council, New Edition, Polymer Analysis Handbook, Kinokuniya Shoten, 1995, p. 610". A more detailed method for measuring the mesopentad fraction ([mmmm]) is according to the method described in Examples.

前記ポリプロピレン樹脂のヘプタン不溶分(HI)は、96.0%以上であることが好ましく、より好ましくは97.0%以上である。また、前記ポリプロピレン樹脂のヘプタン不溶分(HI)は、99.5%以下であることが好ましく、より好ましくは99.0%以下である。ここで、ヘプタン不溶分は、多いほど樹脂の立体規則性が高いことを示す。前記ヘプタン不溶分(HI)が、96.0%以上99.5%以下であると、適度に高い立体規則性により、樹脂の結晶性が適度に向上し、高温下での耐電圧性が向上する。一方、キャスト原反シート成形の際の固化(結晶化)の速度が適度となり、適度の延伸性を有する。ヘプタン不溶分(HI)の測定方法は、実施例記載の方法による。 The heptane-insoluble content (HI) of the polypropylene resin is preferably 96.0% or more, more preferably 97.0% or more. In addition, the heptane-insoluble content (HI) of the polypropylene resin is preferably 99.5% or less, more preferably 99.0% or less. Here, the higher the heptane-insoluble content, the higher the stereoregularity of the resin. When the heptane-insoluble content (HI) is 96.0% or more and 99.5% or less, moderately high stereoregularity moderately improves the crystallinity of the resin and improves the voltage resistance at high temperatures. do. On the other hand, the rate of solidification (crystallization) during cast raw sheet molding is moderate, and it has moderate stretchability. The method for measuring the heptane insolubles (HI) is according to the method described in Examples.

前記ポリプロピレン樹脂のメルトフローレート(MFR)は、1.0~8.0g/10minであることが好ましく、1.5~7.0g/10minであることがより好ましく、2.0~6.0g/10minであることがさらに好ましい。前記ポリプロピレン樹脂のメルトフローレートの測定方法は、実施例記載の方法による。 The melt flow rate (MFR) of the polypropylene resin is preferably 1.0 to 8.0 g/10 min, more preferably 1.5 to 7.0 g/10 min, and 2.0 to 6.0 g. /10 min is more preferable. The method for measuring the melt flow rate of the polypropylene resin is according to the method described in Examples.

前記ポリプロピレンフィルムに含まれるポリプロピレン樹脂が二種類以上である場合、主成分のポリプロピレン樹脂は、少なくとも重量平均分子量Mwが25万以上34.5万未満であり、MFRが4~8g/10minであることが好ましい。また、前記ポリプロピレンフィルムに含まれるポリプロピレン樹脂が二種類以上である場合、主成分以外のポリプロピレン樹脂は、少なくとも重量平均分子量Mwが34.5万以上45万以下であり、MFRが1g/10min以上4g/10min未満(更に好ましくは1g/10min以上3.9g/10min以下)であることが好ましい。 When two or more types of polypropylene resins are contained in the polypropylene film, the main component polypropylene resin has at least a weight average molecular weight Mw of 250,000 or more and less than 345,000, and an MFR of 4 to 8 g/10 min. is preferred. Further, when the polypropylene resin contained in the polypropylene film is two or more types, the polypropylene resin other than the main component has at least a weight average molecular weight Mw of 345,000 or more and 450,000 or less, and an MFR of 1 g/10 min or more and 4 g. /10 min (more preferably 1 g/10 min or more and 3.9 g/10 min or less).

前記ポリプロピレン樹脂は、一般的に公知の重合方法を用いて製造することができる。前記重合方法としては、例えば、気相重合法、塊状重合法及びスラリー重合法を例示できる。 The polypropylene resin can be produced using a generally known polymerization method. Examples of the polymerization method include a gas phase polymerization method, a bulk polymerization method and a slurry polymerization method.

重合は、1つの重合反応機を用いる単段(一段)重合であってもよく、2つ以上の重合反応器を用いた多段重合であってもよい。また、重合は、反応器中に水素又はコモノマーを分子量調整剤として添加して行ってもよい。 The polymerization may be single-stage (single-stage) polymerization using one polymerization reactor, or may be multi-stage polymerization using two or more polymerization reactors. Polymerization may also be carried out with the addition of hydrogen or comonomers as molecular weight modifiers in the reactor.

重合の際の触媒には、一般的に公知のチーグラー・ナッタ触媒を使用することができ、前記ポリプロピレン樹脂を得ることができる限り特に限定されない。前記触媒は、助触媒成分やドナーを含んでもよい。触媒や重合条件を調整することによって、分子量、分子量分布、立体規則性等を制御することができる。 A generally known Ziegler-Natta catalyst can be used as a catalyst for polymerization, and is not particularly limited as long as the polypropylene resin can be obtained. The catalyst may contain co-catalyst components and donors. Molecular weight, molecular weight distribution, stereoregularity, etc. can be controlled by adjusting the catalyst and polymerization conditions.

前記ポリプロピレン樹脂の分子量分布等は、樹脂混合(ブレンド)により調整することができる。例えば、互いに分子量や分子量分布の異なるもの2種類以上の樹脂を混合する方法が挙げられる。一般的には、主樹脂に、それより平均分子量が高い樹脂、又は、低い樹脂を、樹脂全体を100質量%とすると、主樹脂が55質量%以上90質量%以下である2種のポリプロピレン混合系が、低分子量成分量の調整が行い易いため、好ましい。 The molecular weight distribution and the like of the polypropylene resin can be adjusted by resin mixing (blending). For example, a method of mixing two or more kinds of resins having different molecular weights and molecular weight distributions can be used. Generally, the main resin is a resin with a higher or lower average molecular weight than that, and when the total resin is 100% by mass, the main resin is 55% by mass or more and 90% by mass or less. Two types of polypropylene mixture system is preferred because it is easy to adjust the amount of low-molecular-weight components.

なお、前記の混合調整方法を採用する場合、平均分子量の目安として、メルトフローレート(MFR)を用いても構わない。この場合、主樹脂と添加樹脂のMFRの差は、1~30g/10分程度としておくのが、調整の際の利便性の観点から好ましい。 In addition, when the above-described mixing adjustment method is employed, the melt flow rate (MFR) may be used as a measure of the average molecular weight. In this case, the difference in MFR between the main resin and the additive resin is preferably about 1 to 30 g/10 minutes from the viewpoint of convenience during adjustment.

樹脂混合する方法としては、特に制限はないが、主樹脂と添加樹脂の重合粉、又は、ペレットを、ミキサー等を用いてドライブレンドする方法や、主樹脂と添加樹脂の重合粉、又は、ペレットを、混練機に供給し、溶融混練してブレンド樹脂を得る方法が挙げられる。 The method of mixing the resin is not particularly limited, but a method of dry blending the polymerized powder of the main resin and the additive resin, or pellets using a mixer or the like, or a method of dry-blending the polymerized powder of the main resin and the additive resin, or pellets. are supplied to a kneader and melt-kneaded to obtain a blended resin.

前記ミキサーや前記混練機は、特に制限されない。前記混練機は、1軸スクリュータイプ、2軸スクリュータイプ、それ以上の多軸スクリュータイプの何れでもよい。2軸以上のスクリュータイプの場合、同方向回転、異方向回転のどちらの混練タイプでも構わない。 The mixer and the kneader are not particularly limited. The kneader may be of single screw type, twin screw type, or multi-screw type. In the case of a screw type with two or more shafts, it may be a co-rotating kneading type or a counter-rotating kneading type.

溶融混練によるブレンドの場合は、良好な混練物が得られれば、混練温度は特に制限されない。一般的には、200℃から300℃の範囲であり、樹脂の劣化を抑制する観点から、230℃から270℃が好ましい。また、樹脂の混練混合の際の劣化を抑制するため、混練機に窒素などの不活性ガスをパージしても構わない。溶融混練された樹脂は、一般的に公知の造粒機を用いて、適当な大きさにペレタイズしてもよい。これにより、混合ポリプロピレン原料樹脂ペレットを得ることができる。 In the case of blending by melt-kneading, the kneading temperature is not particularly limited as long as a good kneaded product is obtained. Generally, the range is from 200°C to 300°C, and from the viewpoint of suppressing deterioration of the resin, 230°C to 270°C is preferable. In addition, in order to suppress deterioration during kneading and mixing of the resin, the kneader may be purged with an inert gas such as nitrogen. The melt-kneaded resin may be pelletized to an appropriate size using a generally known granulator. Thereby, mixed polypropylene raw material resin pellets can be obtained.

ポリプロピレン原料樹脂中に含まれる重合触媒残渣等に起因する総灰分は、ポリプロピレン樹脂を基準(100重量部)として、50ppm以下であることが好ましい。 The total ash content due to polymerization catalyst residues and the like contained in the raw polypropylene resin is preferably 50 ppm or less based on the polypropylene resin (100 parts by weight).

前記総灰分(ポリプロピレン原料樹脂中に含まれる総灰分)は、極性をもった低分子成分の生成を抑制しつつコンデンサとしての電気特性を向上させるために、5ppm以上35ppm以下が好ましく、5ppm以上30ppm以下がより好ましく、10ppm以上25ppm以下がさらに好ましい。 The total ash content (total ash content contained in the polypropylene raw material resin) is preferably 5 ppm or more and 35 ppm or less, more preferably 5 ppm or more and 30 ppm, in order to suppress the generation of polar low-molecular-weight components and improve the electrical characteristics of the capacitor. The following are more preferable, and 10 ppm or more and 25 ppm or less are even more preferable.

前記ポリプロピレンフィルムは、添加剤を含んでもよい。「添加剤」とは、一般的に、ポリプロピレン樹脂に使用される添加剤であって、前記熱収縮率比が0.25以上0.6以下となるポリプロピレンフィルムを得ることができる限り特に制限されない。 The polypropylene film may contain additives. The "additive" is generally an additive used in polypropylene resin, and is not particularly limited as long as a polypropylene film having a heat shrinkage ratio of 0.25 or more and 0.6 or less can be obtained. .

前記添加剤としては、例えば、酸化防止剤、塩素吸収剤、紫外線吸収剤、滑剤、可塑剤、難燃化剤、帯電防止剤、無機フィラー、有機フィラー等が挙げられる。前記無機フィラーとしては、チタン酸バリウム、チタン酸ストロンチウム、酸化アルミニウム等が挙げられる。前記ポリプロピレン樹脂は、前記添加剤を、前記ポリプロピレンフィルムに悪影響を与えない量で含めてもよい。 Examples of the additives include antioxidants, chlorine absorbers, ultraviolet absorbers, lubricants, plasticizers, flame retardants, antistatic agents, inorganic fillers, organic fillers, and the like. Examples of the inorganic filler include barium titanate, strontium titanate, and aluminum oxide. The polypropylene resin may contain the additive in an amount that does not adversely affect the polypropylene film.

前記金属層は、前記金属層一体型ポリプロピレンフィルムをコンデンサとして使用する際に、電極として機能する。前記金属層に用いられる金属としては、例えば、亜鉛、鉛、銀、クロム、アルミニウム、銅、ニッケルなどの金属単体、それらの複数種の混合物、それらの合金などを使用することができるが、環境、経済性及びコンデンサ性能などを考慮すると、亜鉛、アルミニウムが好ましい。 The metal layer functions as an electrode when the metal layer-integrated polypropylene film is used as a capacitor. As the metal used for the metal layer, for example, single metals such as zinc, lead, silver, chromium, aluminum, copper, and nickel, mixtures thereof, and alloys thereof can be used. , economy and capacitor performance, etc., zinc and aluminum are preferred.

次に、本実施形態に係る金属層一体型ポリプロピレンフィルムの製造方法について説明する。なお、本発明に係る金属層一体型ポリプロピレンフィルムは、以下に説明する金属層一体型ポリプロピレンフィルムの製造方法で製造されていることが好ましいが、以下に説明する金属層一体型ポリプロピレンフィルムの製造方法で製造されていなくてもよい。 Next, a method for manufacturing the metal layer-integrated polypropylene film according to this embodiment will be described. The metal layer-integrated polypropylene film according to the present invention is preferably manufactured by the metal layer-integrated polypropylene film manufacturing method described below, and the metal layer-integrated polypropylene film manufacturing method described below. It does not have to be manufactured by

本実施形態に係る金属層一体型ポリプロピレンフィルムの製造方法は、
ポリプロピレンフィルムを準備する工程Aと、
前記工程Aで準備した前記ポリプロピレンフィルムの片面又は両面に金属層を積層して金属層一体型ポリプロピレンフィルムを得る工程Bと
を少なくとも有し、
前記工程Aで準備する前記ポリプロピレンフィルムの第一方向の熱収縮率をA、前記工程Bで得られる前記金属層一体型ポリプロピレンフィルムの第一方向の熱収縮率Bとしたとき、熱収縮率Aと熱収縮率Bとの熱収縮率比[(熱収縮率B)/(熱収縮率A)]が0.25以上0.6以下である。
The method for producing a metal layer-integrated polypropylene film according to this embodiment includes:
Step A of preparing a polypropylene film;
At least a step B of obtaining a metal layer-integrated polypropylene film by laminating a metal layer on one or both sides of the polypropylene film prepared in the step A,
When the heat shrinkage rate in the first direction of the polypropylene film prepared in the step A is A, and the heat shrinkage rate B in the first direction of the metal layer-integrated polypropylene film obtained in the step B is set, the heat shrinkage rate A and the thermal contraction rate B [(thermal contraction rate B)/(thermal contraction rate A)] is 0.25 or more and 0.6 or less.

まず、工程Aについて説明する。 First, the process A will be explained.

前記ポリプロピレンフィルムを二軸延伸ポリプロピレンフィルムとする場合、二軸延伸ポリプロピレンフィルムを製造するための延伸前のキャスト原反シートは、次のようにして作製することができる。ただし、本実施形態に係るキャスト原反シートの製方法は、以下に記載の方法に限定されない。 When the polypropylene film is a biaxially stretched polypropylene film, a cast raw sheet before stretching for producing the biaxially stretched polypropylene film can be produced as follows. However, the method for manufacturing the cast raw fabric sheet according to this embodiment is not limited to the method described below.

まず、樹脂ペレット、ドライ混合された樹脂ペレット、又は、予め溶融混練して作製した樹脂ペレットを押出機に供給して、加熱溶融する。
溶融混練の温度は、熱可塑性樹脂の種類によって異なるが、ポリプロピレン樹脂の場合、加熱溶融時の押出機設定温度は、220~280℃が好ましく、230~270℃がより好ましい。また、加熱溶融時の樹脂温度は、220~280℃が好ましく、230~270℃がより好ましい。加熱溶融時の樹脂温度は、押出機に挿入された温度計にて測定される値である。
なお、加熱溶融時の押出機設定温度、樹脂温度は、使用する樹脂の物性も考慮して選択する。なお、加熱溶融時の樹脂温度を前記数値範囲内にすることにより、樹脂の劣化を抑制することもできる。
First, resin pellets, dry-mixed resin pellets, or resin pellets prepared by melt-kneading in advance are supplied to an extruder and heated and melted.
The melt-kneading temperature varies depending on the type of thermoplastic resin, but in the case of polypropylene resin, the extruder setting temperature during heating and melting is preferably 220 to 280°C, more preferably 230 to 270°C. Further, the resin temperature during heating and melting is preferably 220 to 280.degree. C., more preferably 230 to 270.degree. The resin temperature during heating and melting is a value measured with a thermometer inserted in the extruder.
The set temperature of the extruder and the resin temperature at the time of heating and melting are selected in consideration of the physical properties of the resin to be used. Deterioration of the resin can be suppressed by setting the temperature of the resin during heating and melting within the above numerical range.

次に、Tダイを用いて溶融樹脂をシート状に押し出し、少なくとも1個以上の金属ドラムで、冷却、固化させることで、未延伸のキャスト原反シートを成形する。
前記金属ドラムの表面温度(押し出し後、最初に接触する金属ドラムの温度)は、50~100℃であることが好ましく、より好ましくは、60~80℃である。前記金属ドラムの表面温度は、使用する樹脂の物性等に応じて決定することができる。
Next, a T-die is used to extrude the molten resin into a sheet, which is then cooled and solidified by at least one or more metal drums to form an unstretched cast material sheet.
The surface temperature of the metal drum (the temperature of the metal drum that first contacts after extrusion) is preferably 50 to 100°C, more preferably 60 to 80°C. The surface temperature of the metal drum can be determined according to the physical properties of the resin used.

前記キャスト原反シートの厚さは、前記ポリプロピレンフィルムを得ることができる限り、特に制限されることはないが、通常、0.05mm~2mmであることが好ましく、0.1mm~1mmであることがより好ましい。 The thickness of the cast raw sheet is not particularly limited as long as the polypropylene film can be obtained, but it is usually preferably 0.05 mm to 2 mm, and 0.1 mm to 1 mm. is more preferred.

本実施形態に係るポリプロピレンフィルムは、次のようにして好適に作製することができる。ただし、本実施形態に係るポリプロピレンフィルムの作製方法は、以下に記載の方法に限定されない。 The polypropylene film according to this embodiment can be suitably produced as follows. However, the method for producing the polypropylene film according to this embodiment is not limited to the method described below.

前記ポリプロピレンフィルムは、前記樹脂キャスト原反シートに延伸処理を行って製造することができる。延伸は、縦及び横に二軸に配向せしめる二軸延伸が好ましく、延伸方法としては逐次二軸延伸方法が好ましい。逐次二軸延伸方法としては、例えば、まず、キャスト原反シートを100~170℃の温度に保ち、速度差を設けたロール間に通してMD方向(流れ方向、縦方向)に3~7倍に延伸する。ニップ圧は、0.35~0.5MPaとする。
MD方向延伸時の温度は、100~170℃が好ましく、120~160℃がより好ましく、130~150℃がさらに好ましい。また、MD方向延伸時の延伸倍率は3~7倍が好ましく、4~6倍がより好ましく、4~5倍がさらに好ましい。また、MD方向延伸時のニップ圧は、0.35~0.45MPaが好ましく、0.36~0.44MPaがより好ましく、0.37~0.43MPaがさらに好ましい。MD方向延伸時のニップ圧は、高いほど加熱収縮率が小さくなりやすく、低いほど加熱収縮率が大きくなりやすい。
MD方向に延伸した後、当該シートをテンターに導いて、TD方向(横方向、幅方向)に、3~11倍に延伸する。TD方向における延伸の際の温度は155~170℃が好ましい。その後、2~10倍に緩和、熱固定を施す。以上により、二軸延伸ポリプロピレンフィルムが得られる。
The polypropylene film can be produced by stretching the resin cast original sheet. The stretching is preferably biaxial stretching in which the film is oriented biaxially in the vertical and horizontal directions, and the stretching method is preferably a sequential biaxial stretching method. As a sequential biaxial stretching method, for example, first, a cast raw fabric sheet is kept at a temperature of 100 to 170 ° C., passed between rolls provided with a speed difference, and stretched 3 to 7 times in the MD direction (machine direction, longitudinal direction). stretched to A nip pressure is set to 0.35 to 0.5 MPa.
The temperature during stretching in the MD direction is preferably 100 to 170°C, more preferably 120 to 160°C, even more preferably 130 to 150°C. Further, the draw ratio in the MD direction is preferably 3 to 7 times, more preferably 4 to 6 times, and even more preferably 4 to 5 times. Further, the nip pressure during stretching in the MD direction is preferably 0.35 to 0.45 MPa, more preferably 0.36 to 0.44 MPa, even more preferably 0.37 to 0.43 MPa. The higher the nip pressure during stretching in the MD direction, the smaller the heat shrinkage, and the lower the nip pressure, the larger the heat shrinkage.
After being stretched in the MD direction, the sheet is led to a tenter and stretched 3 to 11 times in the TD direction (horizontal direction, width direction). The temperature during stretching in the TD direction is preferably 155 to 170°C. After that, it is relaxed 2 to 10 times and heat-fixed. As described above, a biaxially stretched polypropylene film is obtained.

前記ポリプロピレンフィルムには、金属蒸着加工工程などの後工程において、接着特性を高める目的で、延伸及び熱固定工程終了後に、オンライン又はオフラインにてコロナ放電処理を行ってもよい。コロナ放電処理は、公知の方法を用いて行うことができる。雰囲気ガスとして空気、炭酸ガス、窒素ガス、又は、これらの混合ガスを用いて行うことが好ましい。 The polypropylene film may be subjected to corona discharge treatment on-line or off-line after the stretching and heat-setting steps are completed in a post-process such as a metal vapor deposition process for the purpose of enhancing adhesive properties. Corona discharge treatment can be performed using a known method. It is preferable to use air, carbon dioxide gas, nitrogen gas, or a mixed gas thereof as the atmospheric gas.

以上のようにしてポリプロピレンフィルムを得ることができる。特に、第一方向の熱収縮率Aが2.0%以上10.0%以下であるポリプロピレンフィルムを好適に得ることができる。 A polypropylene film can be obtained as described above. In particular, a polypropylene film having a heat shrinkage ratio A in the first direction of 2.0% or more and 10.0% or less can be suitably obtained.

以上、ポリプロピレンフィルムを準備する工程Aについて説明した。 The process A for preparing the polypropylene film has been described above.

次に、前記工程Aで準備した前記ポリプロピレンフィルムの片面又は両面に金属層を積層して金属層一体型ポリプロピレンフィルムを得る工程Bについて説明する。ただし、本実施形態に係る工程Bは、以下に記載の工程に限定されない。 Next, the step B of obtaining a metal layer-integrated polypropylene film by laminating a metal layer on one or both sides of the polypropylene film prepared in the step A will be described. However, the step B according to this embodiment is not limited to the steps described below.

工程Bでは、コンデンサとして加工するために、前記ポリプロピレンフィルムの片面又は両面に金属層を積層し、金属層一体型ポリプロピレンフィルムを得る。 In step B, a metal layer is laminated on one side or both sides of the polypropylene film to obtain a metal layer-integrated polypropylene film for processing as a capacitor.

前記ポリプロピレンフィルムの片面又は両面に金属層を積層する方法としては、例えば、真空蒸着法やスパッタリング法を例示することができる。生産性及び経済性などの観点から、真空蒸着法が好ましい。真空蒸着法として、一般的にるつぼ法式やワイヤー方式などを例示することができるが、特に限定されることはなく、適宜最適なものを選択することができる。 Examples of the method for laminating a metal layer on one side or both sides of the polypropylene film include a vacuum deposition method and a sputtering method. A vacuum deposition method is preferable from the viewpoint of productivity and economy. Examples of the vacuum deposition method include a crucible method and a wire method in general, but the method is not particularly limited, and an optimum method can be selected as appropriate.

前記真空蒸着法における蒸着条件として、冷却ロールの温度は、-23℃以上が好ましく、-22℃以上がより好ましく、-20℃以上がさらに好ましい。冷却ロールの温度を-23℃以上とした場合、金属層積層時にポリプロピレンフィルムを大きく熱収縮させることができ、得られる金属層一体型ポリプロピレンフィルムの熱収縮率Bを小さくすることができる傾向にある。前記熱収縮率Bを小さくすることができると、前記収縮率比を0.6以下とし易い。前記冷却ロールの温度は、ポリプロピレンフィルムの熱負けを防止する観点から、-18℃以下が好ましく、-19℃以下がより好ましい。 As vapor deposition conditions in the vacuum vapor deposition method, the temperature of the cooling roll is preferably −23° C. or higher, more preferably −22° C. or higher, and still more preferably −20° C. or higher. When the temperature of the cooling roll is set to −23° C. or higher, the polypropylene film can be greatly thermally shrunk during metal layer lamination, and the thermal shrinkage B of the obtained metal layer-integrated polypropylene film tends to be small. . If the thermal shrinkage ratio B can be reduced, the shrinkage ratio can easily be made 0.6 or less. The temperature of the cooling roll is preferably −18° C. or lower, more preferably −19° C. or lower, from the viewpoint of preventing heat loss of the polypropylene film.

前記真空蒸着法において、蒸発源の温度は、通電量で制御する。前記真空蒸着法における蒸着条件として、蒸発源への通電量は、650A以上であることが好ましく、700A以上であることがより好ましく、800A以上であることがさらに好ましい。前記通電量を多くすると(蒸発源の温度を高めに設定すれば)、金属層積層時にポリプロピレンフィルムを大きく熱収縮させることができ、得られる金属層一体型ポリプロピレンフィルムの熱収縮率Bを小さくすることができる傾向にある。前記熱収縮率Bを小さくすることができると、前記収縮率比を0.6以下とし易い。前記通電量は、ポリプロピレンフィルムの熱負けを防止する観点から、900A以下であることが好ましく、850A以下であることがより好ましい。 In the vacuum deposition method, the temperature of the evaporation source is controlled by the amount of electricity. As vapor deposition conditions in the vacuum vapor deposition method, the amount of electricity supplied to the evaporation source is preferably 650 A or more, more preferably 700 A or more, and even more preferably 800 A or more. When the amount of electricity is increased (when the temperature of the evaporation source is set higher), the polypropylene film can be greatly thermally shrunk when the metal layers are laminated, and the heat shrinkage B of the obtained metal layer integrated polypropylene film is reduced. tend to be able to If the thermal shrinkage ratio B can be reduced, the shrinkage ratio can easily be made 0.6 or less. From the viewpoint of preventing the polypropylene film from being damaged by heat, the amount of electricity is preferably 900 A or less, more preferably 850 A or less.

前記真空蒸着法において、金属層の厚さは、膜抵抗で制御する。前記真空蒸着法における蒸着条件として、膜抵抗は、アルミニウム膜の場合、20Ω/sq以下であることが好ましく、17Ω/sq以下であることがより好ましい。亜鉛膜の場合、5Ω/sq以下であることが好ましく、4Ω/sq以下であることがより好ましい。前記膜抵抗が小さいということは、金属層の厚さが厚いことを意味する。前記膜抵抗を小さくすると(金属層の厚さを厚くすれば)、金属層の積層のために長時間、熱に晒されることになる。そのため、厚めに設定すれば、金属層積層時に長時間、熱に晒されることによりポリプロピレンフィルムを大きく熱収縮させることができ、得られる金属層一体型ポリプロピレンフィルムの熱収縮率Bを小さくすることができる傾向にある。前記熱収縮率Bを小さくすることができると、前記収縮率比を0.6以下とし易い。前記膜抵抗は、自己回復性(セルフヒーリング性)の観点から、アルミニウム膜の場合、1Ω/sq以上であることが好ましく、5Ω/sq以上であることがより好ましい。亜鉛膜の場合、1Ω/sq以上であることが好ましく、2Ω/sq以上であることがより好ましい。なお、自己回復性とは、ポリプロピレンフィルムに欠陥部分が生じた場合等に、印加エネルギーやコンデンサ自身が持っているエネルギーにより蒸着層の金属が瞬時に蒸散してコンデンサの機能が回復することをいう。
前記金属層の厚さ(膜抵抗)は、蒸着ライン速度と蒸発源の温度とにより調整することができる。
In the vacuum deposition method, the thickness of the metal layer is controlled by film resistance. As vapor deposition conditions in the vacuum vapor deposition method, in the case of an aluminum film, the film resistance is preferably 20 Ω/sq or less, more preferably 17 Ω/sq or less. In the case of a zinc film, it is preferably 5Ω/sq or less, more preferably 4Ω/sq or less. The low film resistance means that the thickness of the metal layer is large. If the film resistance is reduced (if the thickness of the metal layer is increased), it will be exposed to heat for a long time due to lamination of the metal layer. Therefore, if it is set to be thicker, the polypropylene film can be greatly thermally shrunk by being exposed to heat for a long time during lamination of the metal layers, and the heat shrinkage B of the obtained metal layer integrated polypropylene film can be reduced. tend to be able. If the thermal shrinkage ratio B can be reduced, the shrinkage ratio can easily be made 0.6 or less. In the case of an aluminum film, the film resistance is preferably 1 Ω/sq or more, more preferably 5 Ω/sq or more, from the viewpoint of self-healing properties. In the case of a zinc film, it is preferably 1Ω/sq or more, more preferably 2Ω/sq or more. Self-recovery means that when a defective part occurs in the polypropylene film, the applied energy or the energy that the capacitor itself possesses instantly evaporates the metal in the deposited layer and restores the function of the capacitor. .
The thickness (membrane resistance) of the metal layer can be adjusted by the deposition line speed and the temperature of the evaporation source.

蒸着により金属層を積層する際のマージンパターンは、特に限定されるものではないが、コンデンサの保安性等の特性を向上させる点から、フィッシュネットパターンないしはTマージンパターンといった、いわゆる特殊マージンを含むパターンをフィルムの片方の面上に施すことが好ましい。保安性が高まり、コンデンサの破壊、ショートの防止、などの点からも効果的である。 The margin pattern when laminating the metal layer by vapor deposition is not particularly limited, but from the viewpoint of improving characteristics such as security of the capacitor, a pattern including a so-called special margin such as a fishnet pattern or a T margin pattern is used. is preferably applied on one side of the film. Security is improved, and it is also effective in terms of prevention of capacitor destruction and short circuit.

マージンを形成する方法はテープ法、オイル法など、一般に公知の方法が、何ら制限無く使用することができる。 Generally known methods such as a tape method and an oil method can be used without any limitation for forming the margin.

前記工程Bとしては、前記ポリプロピレンフィルムの片面又は両面に金属層を積層した後に、さらに、後加熱処理を行うこととしてもよい。後加熱処理を行うことにより、製品となる前の金属層一体型ポリプロピレンフィルムを熱収縮させることができ、その結果、製品としての金属層一体型ポリプロピレンフィルムの熱収縮率Bを小さくすることができる。前記熱収縮率Bを小さくすることができると、前記収縮率比を0.6以下とし易い。後加熱処理の条件としては、例えば、120~130℃に熱したシリコンオイルの塗布などが挙げられる。 In the step B, after laminating a metal layer on one side or both sides of the polypropylene film, a post-heating treatment may be performed. By performing the post-heating treatment, the metal layer-integrated polypropylene film before becoming a product can be thermally shrunk, and as a result, the heat shrinkage B of the metal layer-integrated polypropylene film as a product can be reduced. . If the thermal shrinkage ratio B can be reduced, the shrinkage ratio can easily be made 0.6 or less. Conditions for the post-heating treatment include application of silicone oil heated to 120 to 130° C., for example.

以上、前記収縮率比が0.25以上0.60以下である金属層一体型ポリプロピレンフィルムの製造方法の一例について説明した。 An example of a method for producing a metal layer-integrated polypropylene film having a shrinkage ratio of 0.25 or more and 0.60 or less has been described above.

前記金属層一体型ポリプロピレンフィルムは、従来公知の方法で積層するか、巻回してフィルムコンデンサとすることができる。 The metal layer-integrated polypropylene film can be laminated or wound by a conventionally known method to form a film capacitor.

以下、本発明に関し実施例を用いて詳細に説明するが、本発明はその要旨を超えない限り、以下の実施例に限定されるものではない。 Hereinafter, the present invention will be described in detail using examples, but the present invention is not limited to the following examples as long as the gist thereof is not exceeded.

〔ポリプロピレン樹脂〕
実施例及び比較例のポリプロピレンフィルムを製造するために使用したポリプロピレン樹脂を、表1に示す。
樹脂Aは、プライムポリマー社製の製品(酸化防止剤としてイルガノックス(登録商標)1010が5000ppm、2,5-ジメチル-2,5-ジ(t-ブチルペロキシ)ヘキサンが20ppm添加されており、造粒機で溶融混練することにより過酸化分解処理を施して分子量分布を調整した樹脂)である。
樹脂Bは、プライムポリマー社製の製品(酸化防止剤としてイルガノックス(登録商標)1010が5000ppm添加されている樹脂)である。
樹脂Cは、大韓油化社製のHPT-1(酸化防止剤としてイルガノックス(登録商標)1010が5000ppm添加されている樹脂)である。
表1に、各樹脂の重量平均分子量(Mw)、数平均分子量(Mn)、z平均分子量(Mz)、分子量分布(Mw/Mn)、及び、分子量分布(Mz/Mn)を示した。これらの値は、原料樹脂ペレットの形態での値である。測定方法は以下の通りである。樹脂A、樹脂Bおよび樹脂Cはいずれもホモポリプロピレン樹脂である。
[Polypropylene resin]
The polypropylene resins used to produce the polypropylene films of Examples and Comparative Examples are shown in Table 1.
Resin A is a product manufactured by Prime Polymer Co., Ltd. (5000 ppm of Irganox (registered trademark) 1010 and 20 ppm of 2,5-dimethyl-2,5-di(t-butylperoxy)hexane are added as antioxidants. It is a resin that is melt-kneaded in a granulator and subjected to peroxide decomposition treatment to adjust the molecular weight distribution).
Resin B is a product manufactured by Prime Polymer (resin to which 5000 ppm of Irganox (registered trademark) 1010 is added as an antioxidant).
Resin C is HPT-1 (a resin to which 5000 ppm of Irganox (registered trademark) 1010 as an antioxidant is added) manufactured by Daehan Yuka Co., Ltd.
Table 1 shows the weight average molecular weight (Mw), number average molecular weight (Mn), z average molecular weight (Mz), molecular weight distribution (Mw/Mn), and molecular weight distribution (Mz/Mn) of each resin. These values are values in the form of raw material resin pellets. The measuring method is as follows. Resin A, resin B and resin C are all homopolypropylene resins.

<ポリプロピレン樹脂の重量平均分子量(Mw)、数平均分子量(Mn)、z平均分子量(Mz)、分子量分布(Mw/Mn)、及び、分子量分布(Mz/Mn)の測定>
GPC(ゲルパーミエーションクロマトグラフィー)を用い、以下の条件で、各樹脂の重量平均分子量(Mw)、数平均分子量(Mn)、z平均分子量(Mz)、分子量分布(Mw/Mn)、及び、分子量分布(Mz/Mn)を測定した。
具体的に、東ソー株式会社製、示差屈折計(RI)内蔵高温GPC装置であるHLC-8121GPC-HT型を使用した。カラムとして、東ソー株式会社製のTSKgel GMHHR-H(20)HTを3本連結して使用した。140℃のカラム温度で、溶離液として、トリクロロベンゼンを、1.0ml/minの流速で流して測定した。検量線を、東ソー株式会社製の標準ポリスチレンを用いて作製し、測定された分子量の値をポリスチレンの値に換算して、重量平均分子量(Mw)、数平均分子量(Mn)、及び、z平均分子量(Mz)を得た。このMwとMnの値を用いて分子量分布(Mw/Mn)を得た。また、このMzとMnの値を用いて分子量分布(Mz/Mn)を得た。
<Measurement of weight average molecular weight (Mw), number average molecular weight (Mn), z average molecular weight (Mz), molecular weight distribution (Mw/Mn), and molecular weight distribution (Mz/Mn) of polypropylene resin>
Using GPC (gel permeation chromatography), under the following conditions, the weight average molecular weight (Mw), number average molecular weight (Mn), z average molecular weight (Mz), molecular weight distribution (Mw/Mn), and Molecular weight distribution (Mz/Mn) was measured.
Specifically, HLC-8121GPC-HT type, which is a high-temperature GPC apparatus with a built-in differential refractometer (RI) manufactured by Tosoh Corporation, was used. As a column, three TSKgel GMHHR-H(20)HT manufactured by Tosoh Corporation were connected and used. At a column temperature of 140° C., trichlorobenzene was used as an eluent and measured at a flow rate of 1.0 ml/min. A calibration curve was prepared using standard polystyrene manufactured by Tosoh Corporation, and the measured molecular weight values were converted to polystyrene values, and the weight average molecular weight (Mw), number average molecular weight (Mn), and z average Molecular weight (Mz) was obtained. A molecular weight distribution (Mw/Mn) was obtained using the values of Mw and Mn. Also, the molecular weight distribution (Mz/Mn) was obtained using the values of Mz and Mn.

<対数分子量log(M)=4.5のときの微分分布値と対数分子量log(M)=6.0のときの微分分布値との差(微分分布値差D)の測定>
各樹脂について、対数分子量log(M)=4.5のときの微分分布値、対数分子量log(M)=6.0のときの微分分布値を、次のような方法で得た。まず、RI検出計を用いて検出される強度分布の時間曲線(溶出曲線)を、上記標準ポリスチレンを用いて作製した検量線を用いて標準ポリスチレンの分子量M(Log(M))に対する分布曲線に変換した。次に、分布曲線の全面積を100%とした場合のLog(M)に対する積分分布曲線を得た後、この積分分布曲線をLog(M)で、微分することによってLog(M)に対する微分分布曲線を得た。この微分分布曲線から、Log(M)=4.5およびLog(M)=6.0のときの微分分布値を読んだ。Log(M)=4.5のときの微分分布値とLog(M)=6.0のときの微分分布値との差を微分分布値差Dとした。なお、微分分布曲線を得るまでの一連の操作は、使用したGPC測定装置に内蔵されている解析ソフトウェアを用いて行った。結果を表1に示す。
<Measurement of the difference (differential distribution value difference D M ) between the differential distribution value when the logarithmic molecular weight log(M) = 4.5 and the differential distribution value when the logarithmic molecular weight log( M ) = 6.0>
For each resin, the differential distribution value when the logarithmic molecular weight log(M)=4.5 and the differential distribution value when the logarithmic molecular weight log(M)=6.0 were obtained by the following method. First, the time curve (elution curve) of the intensity distribution detected using the RI detector is converted to the distribution curve for the molecular weight M (Log (M)) of the standard polystyrene using the calibration curve prepared using the standard polystyrene. Converted. Next, after obtaining the integral distribution curve for Log (M) when the total area of the distribution curve is 100%, this integral distribution curve is differentiated by Log (M), so that the differential distribution for Log (M) got the curve. From this differential distribution curve, differential distribution values were read when Log(M)=4.5 and Log(M)=6.0. The difference between the differential distribution value when Log(M)=4.5 and the differential distribution value when Log(M)=6.0 was defined as differential distribution value difference DM . A series of operations up to obtaining a differential distribution curve were performed using analysis software incorporated in the GPC measuring apparatus used. Table 1 shows the results.

<メソペンタッド分率([mmmm])の測定>
各樹脂を溶媒に溶解し、高温型フーリエ変換核磁気共鳴装置(高温FT-NMR)を用いて、以下の条件で測定した。結果を表1に示す。
高温型核磁気共鳴(NMR)装置:日本電子株式会社製、高温型フーリエ変換核磁気共鳴装置(高温FT-NMR)、JNM-ECP500
観測核:13C(125MHz)
測定温度:135℃
溶媒:オルト-ジクロロベンゼン(ODCB:ODCBと重水素化ODCBの混合溶媒(混合比=4/1))
測定モード:シングルパルスプロトンブロードバンドデカップリング
パルス幅:9.1μsec(45°パルス)
パルス間隔:5.5sec
積算回数:4,500回
シフト基準:CH(mmmm)=21.7ppm
立体規則性度を表すペンタッド分率は、同方向並びの連子「メソ(m)」と異方向の並びの連子「ラセモ(r)」の5連子(ペンタッド)の組み合わせ(mmmmやmrrm等)に由来する各シグナルの強度積分値より、百分率(%)で算出した。mmmmやmrrm等に由来する各シグナルの帰属に関し、例えば、「T.Hayashi et al.,Polymer,29巻,138頁(1988)」等のスペクトルの記載を参考とした。
<Measurement of mesopentad fraction ([mmmm])>
Each resin was dissolved in a solvent and measured using a high temperature Fourier transform nuclear magnetic resonance spectrometer (high temperature FT-NMR) under the following conditions. Table 1 shows the results.
High-temperature nuclear magnetic resonance (NMR) device: manufactured by JEOL Ltd., high-temperature Fourier transform nuclear magnetic resonance device (high-temperature FT-NMR), JNM-ECP500
Observation nuclei: 13 C (125 MHz)
Measurement temperature: 135°C
Solvent: ortho-dichlorobenzene (ODCB: mixed solvent of ODCB and deuterated ODCB (mixing ratio = 4/1))
Measurement mode: Single pulse proton broadband decoupling Pulse width: 9.1 μsec (45° pulse)
Pulse interval: 5.5 sec
Accumulation times: 4,500 times Shift standard: CH 3 (mmmm) = 21.7 ppm
The pentad fraction, which represents the degree of stereoregularity, is a combination of pentads (mmmm or mrrm etc.) was calculated as a percentage (%) from the integrated intensity value of each signal. Regarding the attribution of each signal derived from mmmm, mrrm, etc., reference was made to the description of spectra in, for example, "T. Hayashi et al., Polymer, Vol. 29, p. 138 (1988)".

<ヘプタン不溶分(HI)の測定>
各樹脂について、10mm×35mm×0.3mmにプレス成形して約3gの測定用サンプルを作製した。次に、ヘプタン約150mLを加えてソックスレー抽出を8時間行った。抽出前後の試料質量よりヘプタン不溶分を算出した。結果を表1に示す。
<Measurement of heptane insolubles (HI)>
Each resin was press-molded into a size of 10 mm×35 mm×0.3 mm to prepare a sample for measurement weighing about 3 g. Next, about 150 mL of heptane was added and Soxhlet extraction was performed for 8 hours. The heptane-insoluble matter was calculated from the sample masses before and after extraction. Table 1 shows the results.

<メルトフローレート(MFR)の測定>
各樹脂について原料樹脂ペレットの形態でのメルトフローレート(MFR)を、東洋精機株式会社のメルトインデックサを用いてJIS K 7210の条件Mに準じて測定した。具体的には、まず、試験温度230℃にしたシリンダ内に、4gに秤りとった試料を挿入し、2.16kgの荷重下で3.5分予熱した。その後、30秒間で底穴より押出された試料の重量を測定し、MFR(g/10min)を求めた。上記の測定を3回繰り返し、その平均値をMFRの測定値とした。結果を表1に示す。
<Measurement of melt flow rate (MFR)>
The melt flow rate (MFR) of each resin in the form of raw resin pellets was measured according to JIS K 7210 condition M using a melt indexer manufactured by Toyo Seiki Co., Ltd. Specifically, first, a sample weighed to 4 g was inserted into a cylinder set to a test temperature of 230° C. and preheated for 3.5 minutes under a load of 2.16 kg. Thereafter, the weight of the sample extruded from the bottom hole was measured for 30 seconds to obtain the MFR (g/10min). The above measurements were repeated three times, and the average value was taken as the measured value of MFR. Table 1 shows the results.

Figure 0007228132000001
Figure 0007228132000001

上述の樹脂を用いて、ポリプロピレンフィルム、及び、金属層一体型ポリプロピレンフィルムを作製し、その物性を評価した。 A polypropylene film and a metal layer-integrated polypropylene film were produced using the resins described above, and their physical properties were evaluated.

<ポリプロピレンフィルムの作製>
(製造例1)
樹脂Aを押出機に供給して、255℃の温度で溶融した後、Tダイを用いて押出し、表面温度を94℃に保持した金属ドラムに巻きつけて固化させて、厚さ約120μmのキャスト原反シートを作製した。得られたキャスト原反シートを139℃の温度で速度差を設けたロール間に通してMD方向(流れ方向)に4.8倍に延伸し、直ちに室温(23℃)まで冷却した。このとき、ニップ圧は0.40MPaとした。
次に、テンターに導いて163℃の温度でTD方向(幅方向)に10倍に延伸して、二軸延伸ポリプロピレンフィルムを得た。
ここで、ニップ圧とは、縦延伸のために速度差が設けられた2本のロールのうちの回転速度の速いロール(MD方向の延伸が開始される箇所に位置するロール)の上方にニップロールが設けられており、前記速度の速いロールと前記ニップロールとの間をフィルムが通過する際に当該フィルムに加わる圧力をいう。
<Production of polypropylene film>
(Production example 1)
Resin A is supplied to an extruder and melted at a temperature of 255 ° C., extruded using a T-die, wound around a metal drum whose surface temperature is kept at 94 ° C. and solidified, cast with a thickness of about 120 μm. A raw sheet was produced. The cast raw sheet thus obtained was passed between rolls provided with a speed difference at a temperature of 139° C., stretched 4.8 times in the MD direction (flow direction), and immediately cooled to room temperature (23° C.). At this time, the nip pressure was set to 0.40 MPa.
Next, it was led to a tenter and stretched 10 times in the TD direction (width direction) at a temperature of 163° C. to obtain a biaxially stretched polypropylene film.
Here, the nip pressure refers to the nip roll above the roll with the faster rotation speed (the roll located at the point where stretching in the MD direction is started) of the two rolls provided with a speed difference for longitudinal stretching. is provided and refers to the pressure applied to the film as it passes between the fast roll and the nip roll.

(製造例2)
樹脂Bと樹脂Cとをドライブレンドした。混合比率は、質量比で(樹脂B):(樹脂C)=60:40とした。その後、ドライブレンドした樹脂を押出機に供給して、255℃の温度で溶融した後、Tダイを用いて押出し、表面温度を91.5℃に保持した金属ドラムに巻きつけて固化させて、厚さ約120μmのキャスト原反シートを作製した。得られたキャスト原反シートを139℃の温度で速度差を設けたロール間に通してMD方向(流れ方向)に4.8倍に延伸し、直ちに室温(23℃)まで冷却した。このとき、ニップ圧は0.40MPaとした。次に、テンターに導いて163℃の温度でTD方向(幅方向)に10倍に延伸して、二軸延伸ポリプロピレンフィルムを得た。
(Production example 2)
Resin B and Resin C were dry blended. The mixing ratio was (Resin B):(Resin C)=60:40 in mass ratio. After that, the dry blended resin is supplied to an extruder, melted at a temperature of 255 ° C., extruded using a T-die, and solidified by winding it around a metal drum whose surface temperature is kept at 91.5 ° C. A cast raw sheet having a thickness of about 120 μm was produced. The cast raw sheet thus obtained was passed between rolls provided with a speed difference at a temperature of 139° C., stretched 4.8 times in the MD direction (flow direction), and immediately cooled to room temperature (23° C.). At this time, the nip pressure was set to 0.40 MPa. Next, it was led to a tenter and stretched 10 times in the TD direction (width direction) at a temperature of 163° C. to obtain a biaxially stretched polypropylene film.

(製造例3)
ニップ圧を0.40MPaに代えて0.30MPaとする以外は製造例2と同様にして二軸延伸ポリプロピレンフィルムを得た。
(Production example 3)
A biaxially stretched polypropylene film was obtained in the same manner as in Production Example 2 except that the nip pressure was changed from 0.40 MPa to 0.30 MPa.

<金属層を積層する前のポリプロピレンフィルムのMD方向の熱収縮率Aの測定>
製造例で製造したポリプロピレンフィルムを、幅20mm、長さ130mmの長方形に切り出して測定用サンプルを作製した。このとき、MD方向を長さ方向として切り出した。前記測定用サンプルは、3本準備した。次に、長さ100mmの箇所を定規で測り、当該箇所に標線を付けた。次に、3つの測定用サンプルを、120℃の熱風循環式恒温槽内に無荷重で15分間保持した。その後、室温(23℃)で冷却し、寸法を測定した。120℃加熱前の寸法100mmに対する加熱後の寸法の変化率を熱収縮率Aとした。具体的には、下記式の通りとした。
(熱収縮率A)=[[(加熱前の寸法)-(加熱後の寸法)]/(加熱前の寸法)]×100(%)
なお、ここに記載した以外の条件については、JIS C 2151:2006の「21.寸法変化」に準じた。結果を表2に示す。
<Measurement of heat shrinkage A in MD direction of polypropylene film before lamination of metal layer>
A measurement sample was prepared by cutting the polypropylene film produced in Production Example into a rectangle having a width of 20 mm and a length of 130 mm. At this time, the cutting was performed with the MD direction as the length direction. Three measurement samples were prepared. Next, a point with a length of 100 mm was measured with a ruler, and a marked line was attached to the point. Next, the three measurement samples were held in a hot air circulating constant temperature bath at 120° C. for 15 minutes without load. Then, it was cooled at room temperature (23° C.) and the dimensions were measured. The thermal shrinkage ratio A was defined as the rate of change in the dimension after heating with respect to the dimension of 100 mm before heating at 120°C. Specifically, the following formula was used.
(Thermal shrinkage rate A) = [[(Dimensions before heating) - (Dimensions after heating)] / (Dimensions before heating)] x 100 (%)
Conditions other than those described here conformed to "21. Dimensional change" of JIS C 2151:2006. Table 2 shows the results.

<金属層一体型ポリプロピレンフィルムの作製>
蒸着装置(アルバック社製、製品名:巻取式真空蒸着装置EWE-060)を用い、表2に示す蒸着条件にて、各製造例で得られたポリプロピレンフィルムに金属層を積層し、実施例、比較例に係る金属層一体型ポリプロピレンフィルムを得た。具体的には、下記のようにして、実施例、比較例に係る金属層一体型ポリプロピレンフィルムを得た。実施例および比較例に係る金属層一体型ポリプロピレンフィルムの厚さは全て2.5μmであった。なお、金属層一体型ポリプロピレンフィルムの厚さは、シチズンセイミツ社製の紙厚測定器MEI-11を用いて100±10kPaで測定したこと以外は、JIS-C2330に準拠して測定した。
<Preparation of metal layer integrated polypropylene film>
Using a vapor deposition apparatus (manufactured by ULVAC, product name: winding vacuum vapor deposition apparatus EWE-060), under the vapor deposition conditions shown in Table 2, a metal layer was laminated on the polypropylene film obtained in each production example. , a metal layer-integrated polypropylene film according to the comparative example was obtained. Specifically, metal layer-integrated polypropylene films according to Examples and Comparative Examples were obtained in the following manner. All the metal layer-integrated polypropylene films according to Examples and Comparative Examples had a thickness of 2.5 μm. The thickness of the metal layer-integrated polypropylene film was measured according to JIS-C2330 except that it was measured at 100±10 kPa using a paper thickness measuring instrument MEI-11 manufactured by Citizen Seimitsu Co., Ltd.

図1は、実施例、比較例として作製した金属層一体型ポリプロピレンフィルムを説明するための模式的斜視図である。
図1に示すように、実施例、比較例として作製した金属層一体型ポリプロピレンフィルム1は、ポリプロピレンフィルム2と、絶縁マージン4を残すようにポリプロピレンフィルム2上に積層された金属蒸着電極3とを有する。金属蒸着電極3は、ポリプロピレンフィルム2に直接接するようにポリプロピレンフィルム2上に積層された金属蒸着層3aと、金属蒸着層3aの一部上面に形成された電極取り出し部3bとを有する。電極取り出し部3bは、いわゆるヘビーエッジと呼ばれる部分である。
FIG. 1 is a schematic perspective view for explaining metal layer-integrated polypropylene films produced as examples and comparative examples.
As shown in FIG. 1, metal layer-integrated polypropylene films 1 prepared as examples and comparative examples consist of a polypropylene film 2 and a metal-deposited electrode 3 laminated on the polypropylene film 2 so as to leave an insulating margin 4. have. The metal vapor deposition electrode 3 has a metal vapor deposition layer 3a laminated on the polypropylene film 2 so as to be in direct contact with the polypropylene film 2, and an electrode extraction part 3b formed on a part of the metal vapor deposition layer 3a. The electrode lead-out portion 3b is a so-called heavy edge portion.

図2は、実施例、比較例に係る金属層一体型ポリプロピレンフィルムの製造方法を説明するための模式図である。実施例、比較例として作製した金属層一体型ポリプロピレンフィルムは、以下に説明する製造装置により製造した。
図2に示すように、金属層一体型ポリプロピレンフィルムの製造装置は、誘電体フィルム供給部101と、絶縁マージン形成部102と、パターン形成部103と、蒸着部104と、巻き取りロール105とを備える。
FIG. 2 is a schematic diagram for explaining a method for producing metal layer-integrated polypropylene films according to Examples and Comparative Examples. Metal layer-integrated polypropylene films produced as Examples and Comparative Examples were produced by the production apparatus described below.
As shown in FIG. 2, the metal-layer-integrated polypropylene film manufacturing apparatus includes a dielectric film supply unit 101, an insulating margin forming unit 102, a pattern forming unit 103, a vapor deposition unit 104, and a winding roll 105. Prepare.

誘電体フィルム供給部101は、ポリプロピレンフィルム2(製造例で作製したポリプロピレンフィルム)が巻回された誘電体フィルムロール2Rを支持し、誘電体フィルム2を供給する。誘電体フィルムロール2Rから供給されたポリプロピレンフィルム2は絶縁マージン形成部102に搬送される。 The dielectric film supply unit 101 supports a dielectric film roll 2R around which the polypropylene film 2 (the polypropylene film produced in the manufacturing example) is wound, and supplies the dielectric film 2 . The polypropylene film 2 supplied from the dielectric film roll 2R is conveyed to the insulation margin forming section 102. As shown in FIG.

絶縁マージン形成部102は、ポリプロピレンフィルム2の面2aに絶縁マージン4のパターンに対応するパターンのオイルを塗布してオイルマスクを形成する。オイルマスクは、金属層一体型ポリプロピレンフィルム1において絶縁マージンとなる部分に、蒸着工程で金属粒子が付着するのを防止するためのものである。絶縁マージン形成部102は、オイルタンクに貯蔵しているオイルを気化してタンクに設けたノズル(スリット)より、直接、ポリプロピレンフィルム2の一の面2aにオイルを塗布しオイルマスクを形成する。 The insulating margin forming part 102 applies oil in a pattern corresponding to the pattern of the insulating margin 4 on the surface 2a of the polypropylene film 2 to form an oil mask. The oil mask is for preventing metal particles from adhering to the insulation margin portion of the metal layer integrated polypropylene film 1 during the vapor deposition process. The insulating margin forming part 102 vaporizes the oil stored in the oil tank and directly applies the oil to one surface 2a of the polypropylene film 2 from a nozzle (slit) provided in the tank to form an oil mask.

パターン形成部103は、ポリプロピレンフィルム2の一の面2aに、金属蒸着層3aの電極パターンに概ね対応するパターンでオイルを塗布し、オイルマスクを形成する。オイルマスクは、金属層一体型ポリプロピレンフィルム1において縦マージンや横マージンとなる部分に、蒸着工程で金属粒子が付着するのを防止するためのものである。パターン形成部103は、オイルタンク103aと、アニロックスロール103bと、転写ロール103cと、版ロール103dと、バックアップロール103eを有する。オイルタンク103aは、貯蔵しているオイルを気化してノズルから噴出する。アニロックスロール103bと転写ロール103cは、その外周面にオイルタンク103aのノズルから噴出されたオイルが付着した状態で回転する。バックアップロール103eはポリプロピレンフィルム2を介して版ロール103dと対向し、ポリプロピレンフィルム2の面2bに当接する。 The pattern forming unit 103 applies oil to one surface 2a of the polypropylene film 2 in a pattern generally corresponding to the electrode pattern of the metal deposition layer 3a to form an oil mask. The oil mask is for preventing metal particles from adhering to the vertical margins and horizontal margins of the metal layer integrated polypropylene film 1 during the vapor deposition process. The pattern forming section 103 has an oil tank 103a, an anilox roll 103b, a transfer roll 103c, a plate roll 103d, and a backup roll 103e. The oil tank 103a evaporates the stored oil and ejects it from a nozzle. The anilox roll 103b and the transfer roll 103c rotate with the oil jetted from the nozzle of the oil tank 103a adhered to their outer peripheral surfaces. The backup roll 103 e faces the plate roll 103 d with the polypropylene film 2 interposed therebetween, and contacts the surface 2 b of the polypropylene film 2 .

絶縁マージン形成部102及びパターン形成部103を通過したポリプロピレンフィルム2は蒸着部104へと搬送される。 The polypropylene film 2 that has passed through the insulating margin forming section 102 and the pattern forming section 103 is conveyed to the vapor deposition section 104 .

蒸着部104は、金属蒸気生成部104a、104bと、金属蒸気生成部104a、104bにポリプロピレンフィルム2を介して対向する冷却ロール104cとを備える。金属蒸気生成部104aは、金属蒸着層3aの材料である金属のワイヤーに電流を流すことで加熱したボート上に供給することで、金属蒸気を発生させ、その金属蒸気をポリプロピレンフィルム2の面2aに蒸着させる。金属蒸気生成部104bは、電極取り出し部3bの材料である金属を熱して蒸発させて金属蒸気を発生し、金属蒸気生成部104aによってポリプロピレンフィルム2の面2a上に先に形成された金属蒸着層3a上に重ねて蒸着される。これにより、電極取り出し部3b部分の金属蒸着層は、それ以外の部分の金属蒸着層よりも厚くなり、ヘビーエッジ構造が形成される。なお、金属蒸気生成部104a、104bで発生した金属蒸気は、ポリプロピレンフィルム2の面2a上に形成されたオイルマスク以外の部分に付着することで金属蒸着電極3を形成する。冷却ロール104bはポリプロピレンフィルム2に当接してポリプロピレンフィルム2を冷却する。
金属蒸気の温度は、流す電流量(通電量)に応じて高くなる。
金属蒸着層3aの厚さは、膜抵抗(単位面積当たりの抵抗値)で管理する。抵抗値は厚さに反比例するので、膜抵抗が低いほど,膜厚は厚いという関係になる。
The vapor deposition unit 104 includes metal vapor generation units 104a and 104b, and a cooling roll 104c facing the metal vapor generation units 104a and 104b with the polypropylene film 2 interposed therebetween. The metal vapor generation unit 104a generates metal vapor by supplying it onto a heated boat by passing an electric current through a metal wire that is the material of the metal vapor deposition layer 3a, and directs the metal vapor to the surface 2a of the polypropylene film 2. evaporate on. The metal vapor generator 104b heats and evaporates the metal that is the material of the electrode lead-out portion 3b to generate metal vapor, and the metal vapor layer previously formed on the surface 2a of the polypropylene film 2 by the metal vapor generator 104a. It is vapor-deposited over 3a. As a result, the metal vapor deposition layer in the electrode lead-out portion 3b portion becomes thicker than the metal vapor deposition layer in the other portions, and a heavy edge structure is formed. The metal vapor generated by the metal vapor generating portions 104a and 104b adheres to portions other than the oil mask formed on the surface 2a of the polypropylene film 2, thereby forming the metal deposition electrode 3. The cooling roll 104b contacts the polypropylene film 2 to cool it.
The temperature of the metal vapor rises according to the amount of electric current (energization amount).
The thickness of the metal deposition layer 3a is controlled by film resistance (resistance value per unit area). Since the resistance value is inversely proportional to the thickness, the lower the film resistance, the thicker the film thickness.

ポリプロピレンフィルム2に蒸着部104で金属蒸着電極3が形成されることで形成された金属層一体型ポリプロピレンフィルム1は、巻き取りロール105に搬送され巻き取られる。 The metal-layer-integrated polypropylene film 1 formed by forming the metal vapor-deposited electrode 3 on the polypropylene film 2 in the vapor deposition unit 104 is conveyed to the winding roll 105 and wound up.

上記製造装置を用い、ポリプロピレンフィルム2の面2a上に金属蒸着電極3を形成し、金属層一体型ポリプロピレンフィルム1を得た。 Metal-deposited electrode 3 was formed on surface 2a of polypropylene film 2 using the above manufacturing apparatus, and metal-layer-integrated polypropylene film 1 was obtained.

金属層一体型ポリプロピレンフィルムの厚みは、シチズンセイミツ社製の紙厚測定器MEI-11を用いて100±10kPaで測定すること以外、JIS-C2330に準拠して測定した。 The thickness of the metal layer-integrated polypropylene film was measured according to JIS-C2330 except that it was measured at 100±10 kPa using a paper thickness measuring instrument MEI-11 manufactured by Citizen Seimitsu Co., Ltd.

<膜抵抗の測定方法>
株式会社三菱ケミカルアナリテック製、低抵抗 抵抗率計ロレスタGX MCP-T610を用い、作製した金属層一体型ポリプロピレンフィルムにプローブ当てて測定した。測定は、フィルム幅方向の中央付近(電極取り出し部3bではない所)のベタ部分5ヶ所で行い、平均値を、膜抵抗とした。
<Method for measuring membrane resistance>
Using a low resistance resistivity meter Loresta GX MCP-T610 manufactured by Mitsubishi Chemical Analytech Co., Ltd., the metal layer integrated polypropylene film was probed and measured. The measurement was performed at five solid portions near the center in the width direction of the film (where the electrode lead-out portion 3b was not formed), and the average value was taken as the film resistance.

<金属層一体型ポリプロピレンフィルムのMD方向の熱収縮率Bの測定>
実施例、比較例で得られた金属層一体型ポリプロピレンフィルムを、幅20mm、長さ130mmの長方形に切り出して測定用サンプルを作製した。このとき、MD方向を長さ方向として切り出した。前記測定用サンプルは、3本準備した。次に、長さ100mmの箇所を定規で測り、当該箇所に標線を付けた。次に、3つの測定用サンプルを、120℃の熱風循環式恒温槽内に無荷重で15分間保持した。その後、室温(23℃)で冷却し、寸法を測定した。120℃加熱前の寸法100mmに対する加熱後の寸法の変化率を熱収縮率Bとした。具体的には、下記式の通りとした。
(熱収縮率B)=[[(加熱前の寸法)-(加熱後の寸法)]/(加熱前の寸法)]×100(%)
なお、ここに記載した以外の測定条件については、JIS C 2151:2006の「21.寸法変化」に準じた。結果を表2に示す。
また、表2には、熱収縮率Aと熱収縮率Bとの熱収縮率比[(熱収縮率B)/(熱収縮率A)]も合わせて示す。
<Measurement of heat shrinkage B in MD direction of metal layer integrated polypropylene film>
The metal layer-integrated polypropylene films obtained in Examples and Comparative Examples were cut into rectangles having a width of 20 mm and a length of 130 mm to prepare measurement samples. At this time, the cutting was performed with the MD direction as the length direction. Three measurement samples were prepared. Next, a point with a length of 100 mm was measured with a ruler, and a marked line was attached to the point. Next, the three measurement samples were held in a hot air circulating constant temperature bath at 120° C. for 15 minutes without load. Then, it was cooled at room temperature (23° C.) and the dimensions were measured. The thermal shrinkage rate B was defined as the rate of change in the dimension after heating with respect to the dimension of 100 mm before heating at 120°C. Specifically, the following formula was used.
(Thermal shrinkage rate B) = [[(Dimensions before heating) - (Dimensions after heating)] / (Dimensions before heating)] x 100 (%)
Measurement conditions other than those described here conformed to "21. Dimensional change" of JIS C 2151:2006. Table 2 shows the results.
Table 2 also shows the thermal contraction rate ratio between the thermal contraction rate A and the thermal contraction rate B [(thermal contraction rate B)/(thermal contraction rate A)].

<面配向係数の測定>
<レタデーション値>
まず、実施例、比較例に係るポリプロピレンフィルムのレタデーション(位相差)値を、下記の通り、傾斜法により測定した。
測定機:大塚電子社製レタデーション測定装置 RE-100
光源:波長550nmのLED光源
測定方法:次のような傾斜法により、レタデーション値の角度依存性を測定した。フィルムの面内方向の主軸をx軸及びy軸、また、フィルムの厚さ方向(面内方向に対する法線方向)をz軸とし、面内方向のうち、屈折率のより高い方向の遅相軸をx軸としたとき、x軸を傾斜軸として、0°~50°の範囲でz軸に対して10°ずつ傾斜させたときの各レタデーション値を求めた。例えば、逐次延伸法において、MD方向(流れ方向)の延伸倍率よりも、TD方向(幅方向)の延伸倍率が高い場合、TD方向が遅相軸(x軸)、MD方向がy軸となる。
<Measurement of Plane Orientation Factor>
<Retardation value>
First, the retardation (retardation) values of the polypropylene films according to Examples and Comparative Examples were measured by a tilt method as described below.
Measuring device: Retardation measuring device RE-100 manufactured by Otsuka Electronics Co., Ltd.
Light source: LED light source with a wavelength of 550 nm Measurement method: Angle dependence of retardation value was measured by the following tilt method. The main axes in the in-plane direction of the film are the x-axis and y-axis, and the thickness direction of the film (normal direction to the in-plane direction) is the z-axis, and the retardation in the direction with the higher refractive index among the in-plane directions With the x-axis as the tilt axis, each retardation value was obtained when the x-axis was tilted by 10° with respect to the z-axis in the range of 0° to 50°. For example, in the sequential stretching method, when the stretching ratio in the TD direction (width direction) is higher than the stretching ratio in the MD direction (machine direction), the TD direction is the slow axis (x axis) and the MD direction is the y axis. .

<複屈折値及び面配向係数ΔP>
レタデーション値から、非特許文献「粟屋裕、高分子素材の偏光顕微鏡入門、105~120頁、2001年」に記載の通り、次のようにして面配向係数ΔPを算出した。
まず、各傾斜角φに対し、測定されたレタデーション値Rを、傾斜補正が施された厚さdで割ったR/dを求めた。φ=10°、20°、30°、40°、50°のそれぞれのR/dについて、φ=0°のR/dとの差を求め、それらをさらにsin2r(r:屈折角)で割ったものを、それぞれのφにおける複屈折ΔNzyとし、正負の符号を逆にして複屈折値ΔNyzとした。φ=20°、30°、40°、50°におけるΔNyzの平均値として、複屈折値ΔNyzを算出した。
次に、傾斜角φ=0°で測定されたレタデーション値Rを、厚さdで割った値より、前述で求めたΔNzyを除算し、複屈折値ΔNxzを算出した。
最後に、複屈折値のΔNyzとΔNxzを、式:ΔP=(ΔNyz+ΔNxz)/2に代入しΔPを求めた。なお、ポリプロピレンについての、各傾斜角φにおける屈折角rの値は、前記非特許文献の109頁に記載されているものを用いた。結果を表2に示す。
<Birefringence value and planar orientation coefficient ΔP>
From the retardation value, the plane orientation coefficient ΔP was calculated as follows, as described in the non-patent document “Yutaka Awaya, Introduction to Polarizing Microscopes for Polymer Materials, pp. 105-120, 2001”.
First, for each tilt angle φ, R/d was obtained by dividing the measured retardation value R by the tilt-corrected thickness d. For each R/d of φ=10°, 20°, 30°, 40°, and 50°, find the difference from R/d of φ=0°, and divide them by sin2r (r: refraction angle). ΔNzy at each φ, and the birefringence value ΔNyz is obtained by reversing the positive and negative signs. A birefringence value ΔNyz was calculated as an average value of ΔNyz at φ=20°, 30°, 40°, and 50°.
Next, the birefringence value ΔNxz was calculated by dividing the value obtained by dividing the retardation value R measured at the tilt angle φ=0° by the thickness d by ΔNzy obtained above.
Finally, the birefringence values ΔNyz and ΔNxz were substituted into the formula: ΔP=(ΔNyz+ΔNxz)/2 to obtain ΔP. As for the value of the refraction angle r at each tilt angle φ for polypropylene, the value described on page 109 of the non-patent document was used. Table 2 shows the results.

<熱衝撃試験前後でのtanδの増加率、及び、静電容量の変化率>
[コンデンサの作製]
実施例、比較例で作成した金属層一体型ポリプロピレンフィルムを60mm幅にスリットした。次に、2枚の金属層一体型ポリプロピレンフィルムを相合わせた。株式会社皆藤製作所製自動巻取機3KAW-N2型を用い、相合わせた前記金属層一体型ポリプロピレンフィルムを、巻き取り張力250g、接圧880g、巻き取り速度4m/sにて、1137ターン巻回を行った。素子巻きした素子は、荷重5.9kg/cmでプレスしながら120℃にて15時間熱処理を施した。その後、素子端面に亜鉛金属を溶射した。溶射条件としては、フィード速度15mm/s、溶射電圧22V、溶射圧力0.3MPaとし、厚さ0.7mmになるよう溶射を行った。こうして扁平型コンデンサを得た。扁平型コンデンサの端面にリード線をはんだ付けした。その後、扁平型コンデンサをエポキシ樹脂で封止した。エポキシ樹脂の硬化は、90℃で2.5時間加熱した後、さらに、120℃で2.5時間加熱して行った。出来上がったコンデンサの静電容量は、75μFであった。
<Increase rate of tan δ before and after thermal shock test, and change rate of capacitance>
[Fabrication of capacitor]
The metal layer-integrated polypropylene films prepared in Examples and Comparative Examples were slit to a width of 60 mm. Next, the two metal layer integrated polypropylene films were put together. Using an automatic winding machine 3KAW-N2 manufactured by Kaito Seisakusho Co., Ltd., the metal layer integrated polypropylene film is wound 1137 turns at a winding tension of 250 g, a contact pressure of 880 g, and a winding speed of 4 m / s. did The wound element was subjected to heat treatment at 120° C. for 15 hours while being pressed with a load of 5.9 kg/cm 2 . After that, zinc metal was thermally sprayed on the element end faces. The thermal spraying conditions were a feed speed of 15 mm/s, a thermal spraying voltage of 22 V, and a thermal spraying pressure of 0.3 MPa. A flat type capacitor was thus obtained. Lead wires were soldered to the end faces of the flat capacitor. After that, the flat-type capacitor was sealed with an epoxy resin. Curing of the epoxy resin was performed by heating at 90° C. for 2.5 hours and then heating at 120° C. for 2.5 hours. The resulting capacitor had a capacitance of 75 μF.

[熱衝撃試験の方法]
上記で作製した測定用のコンデンサを冷熱衝撃試験装置(エスペックTSA-101S-W)に入れ、下限温度-40℃と上限温度105℃の間で急昇降温のサイクルを500回繰り返した。具体的には、-40℃で50分保持と105℃で50分保持とを1セットとして500回繰り返した。なお、温度の切り替えは、設定温度の空気を送風して、強制的に入れ替えした。また、温度切り替え時間も、50分保持の時間に含めた。
[Method of thermal shock test]
The capacitor for measurement prepared above was placed in a thermal shock tester (Espec TSA-101S-W), and a rapid temperature rise/fall cycle between a lower limit temperature of -40°C and an upper limit temperature of 105°C was repeated 500 times. Specifically, a set of holding at −40° C. for 50 minutes and holding at 105° C. for 50 minutes was repeated 500 times. The temperature was changed by forcibly blowing air at a set temperature. The temperature switching time was also included in the 50 minute hold time.

[熱衝撃試験前と熱衝撃試験後のtanδ、及び、静電容量の測定]
作製したコンデンサ素子について、熱衝撃試験前と熱衝撃試験後のtanδ及び静電容量を、日置電機株式会社製LCRハイテスター3522-50を用いて測定した。テストフィクスチャとしては、4端子プローブ9140を用いた。具体的な測定条件は、印加電圧0.1V、周波数1kHzとした。測定は、コンデンサ素子3個について行い、平均値を測定値とした。
その後、tanδの増加率を、下記式にて求めた。
(tanδの増加率)=[[(熱衝撃試験後のtanδ)-(熱衝撃試験前のtanδ)]/(熱衝撃試験前のtanδ)]×100(%)
また、静電容量の変化率を、下記式にて求めた。
(静電容量の変化率)=[[(熱衝撃試験後の静電容量)-(熱衝撃試験前の静電容量)]/(熱衝撃試験前の静電容量)]×100(%)
結果を表2に示す。
[Measurement of tan δ and capacitance before and after thermal shock test]
The tan δ and capacitance of the fabricated capacitor element before and after the thermal shock test were measured using an LCR Hitester 3522-50 manufactured by HIOKI ELECTRIC CO., LTD. A four-terminal probe 9140 was used as a test fixture. Specific measurement conditions were an applied voltage of 0.1 V and a frequency of 1 kHz. Three capacitor elements were measured, and the average value was used as the measured value.
After that, the rate of increase of tan δ was determined by the following formula.
(Increase rate of tan δ) = [[(tan δ after thermal shock test) - (tan δ before thermal shock test)]/(tan δ before thermal shock test)] × 100 (%)
Also, the rate of change in capacitance was determined by the following formula.
(Capacitance change rate) = [[(Capacitance after thermal shock test) - (Capacitance before thermal shock test)]/(Capacitance before thermal shock test)] x 100 (%)
Table 2 shows the results.

[評価]
前記tanδの増加率が100%以下である場合、メタリコン電極の剥離をより好適に抑制できているといえる。すなわち、メタリコン電極が剥離すると、電流経路が限定されることにより抵抗が増加することに起因して、tanδが増加することとなるが、前記tanδの増加率が100%以下であれば、メタリコン電極の大きな剥離は発生していないと推察できる。従って、前記tanδの増加率が100%以下である場合をA、100%より大きい場合をBとして評価した。結果を表2に示す。
[evaluation]
When the rate of increase in tan δ is 100% or less, it can be said that peeling of the metallikon electrode can be more preferably suppressed. That is, when the metallikon electrode peels off, the current path is limited and the resistance increases, resulting in an increase in tan δ. It can be inferred that no large peeling of the Therefore, A was evaluated when the rate of increase in tan δ was 100% or less, and B was evaluated when it was greater than 100%. Table 2 shows the results.

ここで、静電容量は、メタリコン電極が大きく剥離したとしても、わずかでも電気的な接続が得られていれば大きく変化しない。一方、仮に、熱衝撃試験前後において静電容量が大きく変化していたとしたら、メタリコン電極の剥離以外の不具合(例えば、金属層の不具合)が生じていることになる。
比較例1-4では、静電容量の変化率が-1.0%以上1.0%以下の範囲内であり、メタリコン電極の剥離以外の不具合は生じていないことが推察される。従って、比較例1-4では、tanδの増加が、たしかにメタリコン電極の剥離に起因しており、メタリコン電極の剥離以外の不具合に起因しているのではないことが推察される。
Here, even if the metallikon electrode is largely exfoliated, the capacitance does not change significantly as long as electrical connection is obtained, even if only slightly. On the other hand, if the capacitance changes significantly before and after the thermal shock test, it means that there is a problem other than peeling of the metallikon electrode (for example, a problem with the metal layer).
In Comparative Example 1-4, the rate of change in capacitance was within the range of -1.0% or more and 1.0% or less. Therefore, in Comparative Example 1-4, it is speculated that the increase in tan δ is certainly caused by the peeling of the metallikon electrode, and not by any trouble other than the peeling of the metallikon electrode.

<120℃でのMD方向の寸法変化率>
MD方向の寸法変化率は、熱機械的分析装置(セイコーインスツルメンツ株式会社製「SS-6000」)を使用して、温度変調TMA測定により求めた。
実施例、比較例で作製した金属層一体型ポリプロピレンフィルムから測定方向に30mm、測定方向と直交方向に幅4mmとなるように短冊を切り出してサンプルを作製した。前記測定用サンプルは、3本準備した。このとき、サンプルの測定方向がMD方向と一致するようにサンプルを切り出した。測定条件は、チャック間距離を15mm、測定温度範囲を25℃から150℃、昇温速度を10℃/分、サンプル片にかけ続ける引張荷重を20mNとした。炉内温度が120℃に到達したときのチャック間距離(mm)から、以下の式を用いてMD方向の寸法変化率を求めた。
[120℃でのMD方向の寸法変化率(%)]=[(120℃のチャック間距離-25℃のチャック間距離)/25℃のチャック間距離]×100
3本の測定値の平均値を120℃でのMD方向の寸法変化率(%)とした。
なお、寸法変化率は、温度上昇に伴ってフィルム寸法が大きくなる(膨張する)場合は正(プラス)となり、温度上昇に伴ってフィルム寸法が小さくなる(収縮する)場合は負(マイナス)となる。結果を表2に示す。
<Dimensional change rate in MD direction at 120°C>
The dimensional change rate in the MD direction was determined by temperature modulation TMA measurement using a thermomechanical analyzer ("SS-6000" manufactured by Seiko Instruments Inc.).
Samples were prepared by cutting strips having a width of 30 mm in the measurement direction and a width of 4 mm in the direction orthogonal to the measurement direction from the metal layer-integrated polypropylene films produced in Examples and Comparative Examples. Three measurement samples were prepared. At this time, the sample was cut out so that the measurement direction of the sample coincided with the MD direction. The measurement conditions were as follows: chuck-to-chuck distance of 15 mm, measurement temperature range of 25° C. to 150° C., temperature increase rate of 10° C./min, and tensile load continuously applied to the sample piece of 20 mN. From the chuck-to-chuck distance (mm) when the furnace temperature reached 120° C., the dimensional change rate in the MD direction was determined using the following formula.
[Dimensional change rate in the MD direction at 120°C (%)] = [(distance between chucks at 120°C - distance between chucks at 25°C)/distance between chucks at 25°C] x 100
The average value of the three measured values was taken as the dimensional change rate (%) in the MD direction at 120°C.
The dimensional change rate is positive when the film size increases (expands) as the temperature rises, and negative when the film size decreases (shrinks) as the temperature rises. Become. Table 2 shows the results.

Figure 0007228132000002
Figure 0007228132000002

1 金属層一体型ポリプロピレンフィルム
2 ポリプロピレンフィルム
3 金属蒸着電極
3a 金属蒸着層
3b 電極取り出し部
4 絶縁マージン
REFERENCE SIGNS LIST 1 metal layer-integrated polypropylene film 2 polypropylene film 3 vapor-deposited metal electrode 3a vapor-deposited metal layer 3b electrode extraction portion 4 insulation margin

Claims (9)

ポリプロピレンフィルムと、
前記ポリプロピレンフィルムの片面又は両面に積層された金属層と
を有する金属層一体型ポリプロピレンフィルムであって、
前記金属層を積層する前の前記ポリプロピレンフィルムの第一方向の熱収縮率をA、前記金属層一体型ポリプロピレンフィルムの第一方向の熱収縮率をBとしたとき、熱収縮率Aと熱収縮率Bとの熱収縮率比[(熱収縮率B)/(熱収縮率A)]が0.25以上0.60以下であることを特徴とする金属層一体型ポリプロピレンフィルム。
a polypropylene film;
A metal layer-integrated polypropylene film having a metal layer laminated on one side or both sides of the polypropylene film,
When the heat shrinkage rate in the first direction of the polypropylene film before laminating the metal layer is A, and the heat shrinkage rate in the first direction of the metal layer integrated polypropylene film is B, the heat shrinkage rate A and heat shrinkage A polypropylene film integrated with a metal layer, wherein the heat shrinkage rate ratio [(heat shrinkage rate B)/(heat shrinkage rate A)] to the rate B is 0.25 or more and 0.60 or less.
前記金属層を積層する前の前記ポリプロピレンフィルムの第一方向の熱収縮率Aが2.0%以上10.0%以下であることを特徴とする請求項1に記載の金属層一体型ポリプロピレンフィルム。 2. The metal layer-integrated polypropylene film according to claim 1, wherein the heat shrinkage ratio A in the first direction of the polypropylene film before laminating the metal layer is 2.0% or more and 10.0% or less. . 120℃での前記第一方向の寸法変化率が-0.40%以上であること特徴とする請求項1又は2に記載の金属層一体型ポリプロピレンフィルム。 3. The metal layer-integrated polypropylene film according to claim 1, wherein the dimensional change rate in the first direction at 120° C. is −0.40% or more. 前記ポリプロピレンフィルムの面配向係数ΔPが0.010~0.016であること特徴とする請求項1~3のいずれか1に記載の金属層一体型ポリプロピレンフィルム。 The metal layer-integrated polypropylene film according to any one of claims 1 to 3, wherein the polypropylene film has a plane orientation coefficient ΔP of 0.010 to 0.016. コンデンサ用であることを特徴とする請求項1~4のいずれか1に記載の金属層一体型ポリプロピレンフィルム。 5. The metal layer-integrated polypropylene film according to any one of claims 1 to 4, which is used for capacitors. 前記ポリプロピレンフィルムは、二軸延伸されていることを特徴とする請求項1~5のいずれか1に記載の金属層一体型ポリプロピレンフィルム。 The metal layer-integrated polypropylene film according to any one of claims 1 to 5, wherein the polypropylene film is biaxially oriented. 巻回された請求項1~6のいずれか1に記載の金属層一体型ポリプロピレンフィルムを有するか、又は、請求項1~6のいずれか1に記載の金属層一体型ポリプロピレンフィルムが複数積層された構成を有することを特徴とするフィルムコンデンサ。 It has a wound metal layer-integrated polypropylene film according to any one of claims 1 to 6, or a plurality of metal layer-integrated polypropylene films according to any one of claims 1 to 6 are laminated. A film capacitor characterized by having a configuration of ポリプロピレンフィルムを準備する工程Aと、
前記工程Aで準備した前記ポリプロピレンフィルムの片面又は両面に金属層を積層して金属層一体型ポリプロピレンフィルムを得る工程Bと
を有する金属層一体型ポリプロピレンフィルムの製造方法であって、
前記工程Aで準備する前記ポリプロピレンフィルムの第一方向の熱収縮率をA、前記工程Bで得られる前記金属層一体型ポリプロピレンフィルムの第一方向の熱収縮率Bとしたとき、熱収縮率Aと熱収縮率Bとの熱収縮率比[(熱収縮率B)/(熱収縮率A)]が0.25以上0.60以下であることを特徴とする金属層一体型ポリプロピレンフィルムの製造方法。
Step A of preparing a polypropylene film;
A method for producing a metal layer-integrated polypropylene film comprising a step B of obtaining a metal layer-integrated polypropylene film by laminating a metal layer on one or both sides of the polypropylene film prepared in the step A,
When the heat shrinkage rate in the first direction of the polypropylene film prepared in the step A is A, and the heat shrinkage rate B in the first direction of the metal layer-integrated polypropylene film obtained in the step B is set, the heat shrinkage rate A Manufacture of a metal layer-integrated polypropylene film characterized in that the heat shrinkage ratio [(heat shrinkage B) / (heat shrinkage A)] of 0.25 to 0.60 Method.
前記工程Aで準備する前記ポリプロピレンフィルムは、第一方向の熱収縮率Aが2.0%以上10.0%以下であることを特徴とする請求項8に記載の金属層一体型ポリプロピレンフィルムの製造方法。 9. The metal layer-integrated polypropylene film according to claim 8, wherein the polypropylene film prepared in the step A has a heat shrinkage A in the first direction of 2.0% or more and 10.0% or less. Production method.
JP2019154011A 2018-08-29 2019-08-26 Metal layer-integrated polypropylene film, film capacitor, and metal layer-integrated polypropylene film production method Active JP7228132B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
KR1020217004588A KR20210047870A (en) 2018-08-29 2019-08-28 Metal layer-integrated polypropylene film, film capacitor, and metal layer-integrated polypropylene film manufacturing method
CN201980055244.0A CN112638645B (en) 2018-08-29 2019-08-28 Metal layer-integrated polypropylene film, film capacitor, and method for producing metal layer-integrated polypropylene film
PCT/JP2019/033660 WO2020045482A1 (en) 2018-08-29 2019-08-28 Metal layer-integrated polypropylene film, film capacitor, and method for producing metal layer-integrated polypropylene film

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2018166349 2018-09-05
JP2018166349 2018-09-05
JP2019022987 2019-02-12
JP2019022987 2019-02-12

Publications (2)

Publication Number Publication Date
JP2020124905A JP2020124905A (en) 2020-08-20
JP7228132B2 true JP7228132B2 (en) 2023-02-24

Family

ID=72084621

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019154011A Active JP7228132B2 (en) 2018-08-29 2019-08-26 Metal layer-integrated polypropylene film, film capacitor, and metal layer-integrated polypropylene film production method

Country Status (1)

Country Link
JP (1) JP7228132B2 (en)

Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3233923B2 (en) 1989-09-12 2001-12-04 クラレケミカル株式会社 Air purification filter
WO2004084242A1 (en) 2003-03-19 2004-09-30 Toray Industries, Inc. Flat type capacitor-use polypropylene film and flat type capacitor using it
JP2005199515A (en) 2004-01-14 2005-07-28 Dainippon Printing Co Ltd Transparent vapour deposition film and its manufacturing method
JP4110752B2 (en) 2001-06-28 2008-07-02 富士ゼロックス株式会社 A method of reducing the resistance of a transparent conductive film provided on a substrate.
JP2009132059A (en) 2007-11-30 2009-06-18 Dainippon Printing Co Ltd Gas-barrier deposition film, its manufacturing method, and laminated material using the film
JP2009132060A (en) 2007-11-30 2009-06-18 Dainippon Printing Co Ltd Gas-barrier deposition film, its manufacturing method, and laminated material using the film
JP2009132058A (en) 2007-11-30 2009-06-18 Dainippon Printing Co Ltd Gas-barrier deposition film, its manufacturing method, and laminated material using the film
JP2009132061A (en) 2007-11-30 2009-06-18 Dainippon Printing Co Ltd Gas-barrier deposition film, infusion solution bag using the film, and outer packaging bag for infusion solution bag
JP5065644B2 (en) 2005-09-30 2012-11-07 大日本印刷株式会社 Decorative sheet, manufacturing method thereof, and injection-molded article with decorative sheet
WO2015146893A1 (en) 2014-03-28 2015-10-01 東レ株式会社 Biaxially oriented polypropylene film
JP2016187959A (en) 2015-03-27 2016-11-04 東レ株式会社 Biaxially oriented polypropylene film, metal film laminated film, and film capacitor
WO2017022706A1 (en) 2015-08-03 2017-02-09 東レ株式会社 Olefin multilayer film and film capacitor
JP6108230B2 (en) 2013-08-28 2017-04-05 日本電気硝子株式会社 Glass film ribbon manufacturing method, glass film ribbon manufacturing apparatus, and glass roll manufacturing method
WO2018056404A1 (en) 2016-09-23 2018-03-29 王子ホールディングス株式会社 Biaxially stretched polypropylene film, metallized film for capacitors, and capacitor

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03233923A (en) * 1990-02-08 1991-10-17 Matsushita Electric Ind Co Ltd Manufacture of metallized film capacitor
JP3295955B2 (en) * 1991-03-12 2002-06-24 凸版印刷株式会社 Manufacturing method of vapor-deposited film
JPH04110752U (en) * 1991-03-12 1992-09-25 凸版印刷株式会社 Vacuum deposition equipment
JP3252480B2 (en) * 1992-09-30 2002-02-04 凸版印刷株式会社 Manufacturing method of metallized film
JP3444456B2 (en) * 1995-10-12 2003-09-08 東レ株式会社 Manufacturing method of vapor deposition film
JPH11162779A (en) * 1997-11-27 1999-06-18 Toray Ind Inc Polypropylene film for capacitor

Patent Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3233923B2 (en) 1989-09-12 2001-12-04 クラレケミカル株式会社 Air purification filter
JP4110752B2 (en) 2001-06-28 2008-07-02 富士ゼロックス株式会社 A method of reducing the resistance of a transparent conductive film provided on a substrate.
WO2004084242A1 (en) 2003-03-19 2004-09-30 Toray Industries, Inc. Flat type capacitor-use polypropylene film and flat type capacitor using it
JP2005199515A (en) 2004-01-14 2005-07-28 Dainippon Printing Co Ltd Transparent vapour deposition film and its manufacturing method
JP5065644B2 (en) 2005-09-30 2012-11-07 大日本印刷株式会社 Decorative sheet, manufacturing method thereof, and injection-molded article with decorative sheet
JP2009132058A (en) 2007-11-30 2009-06-18 Dainippon Printing Co Ltd Gas-barrier deposition film, its manufacturing method, and laminated material using the film
JP2009132060A (en) 2007-11-30 2009-06-18 Dainippon Printing Co Ltd Gas-barrier deposition film, its manufacturing method, and laminated material using the film
JP2009132061A (en) 2007-11-30 2009-06-18 Dainippon Printing Co Ltd Gas-barrier deposition film, infusion solution bag using the film, and outer packaging bag for infusion solution bag
JP2009132059A (en) 2007-11-30 2009-06-18 Dainippon Printing Co Ltd Gas-barrier deposition film, its manufacturing method, and laminated material using the film
JP6108230B2 (en) 2013-08-28 2017-04-05 日本電気硝子株式会社 Glass film ribbon manufacturing method, glass film ribbon manufacturing apparatus, and glass roll manufacturing method
WO2015146893A1 (en) 2014-03-28 2015-10-01 東レ株式会社 Biaxially oriented polypropylene film
JP2016187959A (en) 2015-03-27 2016-11-04 東レ株式会社 Biaxially oriented polypropylene film, metal film laminated film, and film capacitor
WO2017022706A1 (en) 2015-08-03 2017-02-09 東レ株式会社 Olefin multilayer film and film capacitor
WO2018056404A1 (en) 2016-09-23 2018-03-29 王子ホールディングス株式会社 Biaxially stretched polypropylene film, metallized film for capacitors, and capacitor

Also Published As

Publication number Publication date
JP2020124905A (en) 2020-08-20

Similar Documents

Publication Publication Date Title
JP4962082B2 (en) Metallized biaxially oriented polypropylene film and capacitor comprising the same
US10910164B2 (en) Biaxially stretched polypropylene film for capacitors, metallized film, and capacitor
US11795282B2 (en) Polypropylene film, metal film laminated film using same, and film capacitor
US20160024641A1 (en) Biaxially oriented polypropylene film, metallized film and film capacitor
JP6365918B1 (en) Biaxially oriented polypropylene film, metallized film and capacitor
JP6319293B2 (en) Biaxially oriented polypropylene film for capacitors, metallized film, and film capacitor
EP4105281A1 (en) Polypropylene film, polypropylene film integrated with metal layer, and film capacitor
JP7367769B2 (en) Biaxially oriented polypropylene film for capacitors
JP7192973B2 (en) Polypropylene film, metal layer integrated polypropylene film, and film capacitor
WO2021166994A1 (en) Polypropylene film, metal membrane layered film using same, and film capacitor
US11961683B2 (en) Biaxially stretched polypropylene film, metallized film, metallized film roll and film capacitor
WO2020045482A1 (en) Metal layer-integrated polypropylene film, film capacitor, and method for producing metal layer-integrated polypropylene film
JP7228132B2 (en) Metal layer-integrated polypropylene film, film capacitor, and metal layer-integrated polypropylene film production method
JP7256960B2 (en) Manufacturing method of metal layer integrated polypropylene film
CN112638645B (en) Metal layer-integrated polypropylene film, film capacitor, and method for producing metal layer-integrated polypropylene film
US20230416479A1 (en) Polypropylene film, polypropylene film integrated with metal layer, and film capacitor
JP2023007667A (en) Metal layer-integrated type polypropylene film
EP4324642A1 (en) Metallized polypropylene film
JP7245026B2 (en) Resin film, metal layer integrated resin film, and film capacitor
JP2022056903A (en) Polypropylene film with integrated metal layer, film capacitor, and manufacturing method of propylene film with integrated metal layer
JP2022162462A (en) Metal layer integrated type polypropylene film
EP4289890A1 (en) Polypropylene film, metal layer-integrated polypropylene film, and capacitor
CN117480582A (en) Metallized polypropylene film

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220120

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220819

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230113

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230126

R150 Certificate of patent or registration of utility model

Ref document number: 7228132

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150