JP7212486B2 - 位置推定装置 - Google Patents

位置推定装置 Download PDF

Info

Publication number
JP7212486B2
JP7212486B2 JP2018180913A JP2018180913A JP7212486B2 JP 7212486 B2 JP7212486 B2 JP 7212486B2 JP 2018180913 A JP2018180913 A JP 2018180913A JP 2018180913 A JP2018180913 A JP 2018180913A JP 7212486 B2 JP7212486 B2 JP 7212486B2
Authority
JP
Japan
Prior art keywords
image feature
vehicle
feature points
parking
route
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2018180913A
Other languages
English (en)
Other versions
JP2020052687A (ja
Inventor
貴大 酒井
盛彦 坂野
大輔 福田
純哉 村山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Faurecia Clarion Electronics Co Ltd
Original Assignee
Clarion Co Ltd
Faurecia Clarion Electronics Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Clarion Co Ltd, Faurecia Clarion Electronics Co Ltd filed Critical Clarion Co Ltd
Priority to JP2018180913A priority Critical patent/JP7212486B2/ja
Priority to EP19864740.6A priority patent/EP3859476A4/en
Priority to PCT/JP2019/010421 priority patent/WO2020066069A1/ja
Priority to US17/280,830 priority patent/US20220009552A1/en
Publication of JP2020052687A publication Critical patent/JP2020052687A/ja
Application granted granted Critical
Publication of JP7212486B2 publication Critical patent/JP7212486B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62DMOTOR VEHICLES; TRAILERS
    • B62D15/00Steering not otherwise provided for
    • B62D15/02Steering position indicators ; Steering position determination; Steering aids
    • B62D15/027Parking aids, e.g. instruction means
    • B62D15/0285Parking performed automatically
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C21/00Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00
    • G01C21/26Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00 specially adapted for navigation in a road network
    • G01C21/34Route searching; Route guidance
    • G01C21/3407Route searching; Route guidance specially adapted for specific applications
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C21/00Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00
    • G01C21/26Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00 specially adapted for navigation in a road network
    • G01C21/34Route searching; Route guidance
    • G01C21/36Input/output arrangements for on-board computers
    • G01C21/3602Input other than that of destination using image analysis, e.g. detection of road signs, lanes, buildings, real preceding vehicles using a camera
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/20Analysis of motion
    • G06T7/246Analysis of motion using feature-based methods, e.g. the tracking of corners or segments
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/70Determining position or orientation of objects or cameras
    • G06T7/73Determining position or orientation of objects or cameras using feature-based methods
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06VIMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
    • G06V10/00Arrangements for image or video recognition or understanding
    • G06V10/40Extraction of image or video features
    • G06V10/44Local feature extraction by analysis of parts of the pattern, e.g. by detecting edges, contours, loops, corners, strokes or intersections; Connectivity analysis, e.g. of connected components
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06VIMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
    • G06V10/00Arrangements for image or video recognition or understanding
    • G06V10/40Extraction of image or video features
    • G06V10/46Descriptors for shape, contour or point-related descriptors, e.g. scale invariant feature transform [SIFT] or bags of words [BoW]; Salient regional features
    • G06V10/462Salient features, e.g. scale invariant feature transforms [SIFT]
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06VIMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
    • G06V20/00Scenes; Scene-specific elements
    • G06V20/50Context or environment of the image
    • G06V20/56Context or environment of the image exterior to a vehicle by using sensors mounted on the vehicle
    • G06V20/58Recognition of moving objects or obstacles, e.g. vehicles or pedestrians; Recognition of traffic objects, e.g. traffic signs, traffic lights or roads
    • G06V20/586Recognition of moving objects or obstacles, e.g. vehicles or pedestrians; Recognition of traffic objects, e.g. traffic signs, traffic lights or roads of parking space
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/10Image acquisition modality
    • G06T2207/10016Video; Image sequence
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/30Subject of image; Context of image processing
    • G06T2207/30232Surveillance
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/30Subject of image; Context of image processing
    • G06T2207/30241Trajectory
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/30Subject of image; Context of image processing
    • G06T2207/30244Camera pose
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/30Subject of image; Context of image processing
    • G06T2207/30248Vehicle exterior or interior
    • G06T2207/30252Vehicle exterior; Vicinity of vehicle
    • G06T2207/30264Parking

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Multimedia (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Combustion & Propulsion (AREA)
  • Chemical & Material Sciences (AREA)
  • Automation & Control Theory (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Traffic Control Systems (AREA)
  • Length Measuring Devices By Optical Means (AREA)
  • Navigation (AREA)
  • Control Of Position, Course, Altitude, Or Attitude Of Moving Bodies (AREA)

Description

本発明は、位置推定装置に関する。
自動車の駐車位置を指定し、その駐車位置までの経路を設定して運転者による運転操作なしで自動車を自律移動させる自動駐車システムが提案されている。こうした自動駐車システムにおいては、駐車位置までの経路に従って自動車を正確に自律移動させるために、走行中の自動車の位置を高精度に推定することが求められる。
走行中の自動車の位置推定に関して、下記の特許文献1に記載の技術が知られている。特許文献1には、移動体の移動に伴って移動する撮像部によって順次撮像された複数の撮像画像に基づいて撮像画像中に存在する特徴点の実空間での位置を表す実位置を推定する3次元位置推定装置であって、前記複数の撮像画像中において1または複数の特徴点をそれぞれ抽出し、該特徴点について前記複数の撮像画像間での対応付けを行う特徴点対応付手段と、前記移動体の挙動に関わる挙動情報を取得する挙動情報取得手段と、前記挙動情報に基づいて、前記複数の撮像画像を撮像する間での前記移動体の移動量を表す移動体移動量を算出する移動量算出手段と、前記複数の撮像画像間での特徴点の移動量と前記移動体移動量とに基づいて前記実位置を推定する実位置推定手段と、を備えたものが開示されている。
特開2014-142241号公報
自動駐車システムでは、駐車位置と周囲の障害物との位置関係等に応じて、複数回の切り返しを含む複雑な経路が設定されることがある。しかしながら、特許文献1に開示された技術を自動駐車システムに適用した場合には、自動車が経路に従って正しく移動しているか否かを確認することができないため、複雑な経路の走行中に位置の推定誤差が蓄積してしまい、正確な自律移動が困難となる。したがって、経路に従って自律移動する移動体の位置推定精度に関して、改善の余地がある。
本発明による位置推定装置は、予め設定された経路に従って移動する移動体の位置を推定するものであって、前記移動体に搭載された撮像部によって所定地点から順次撮像された複数の画像から画像特徴点をそれぞれ抽出し、前記複数の画像間で前記画像特徴点同士を対応付ける画像情報計算部と、前記移動体の移動に関する情報に基づいて前記所定地点からの前記移動体の移動量を計算して前記移動体の位置を推定する移動量計算部と、前記複数の画像間での前記画像特徴点同士の対応付け結果と、前記移動量計算部により推定された前記移動体の位置とに基づいて、前記画像特徴点の実空間上の3次元位置を推定する3次元画像特徴点計算部と、前記移動量計算部推定た前記移動体の位置前記経路上に予め設定された地点に到達したか否かを判定する経路上位置判定部と、前記経路上位置判定部により前記地点に到達したと判定された場合、前記撮像部にて撮影された画像から推定した前記3次元位置を再投影したときの当該画像上での位置と、当該画像から抽出された前記画像特徴点との間の位置誤差を計算し、前記位置誤差が低減するように、前記移動体の位置および姿勢を補正する位置補正部と、前記位置補正部によ補正後の前記移動体の位置および姿勢、前記地点に対して予め設定された前記移動体の位置および姿勢との差分をそれぞれ計算し、計算した各差分の少なくとも一方が閾値以上であった場合に前記経路を再生成する判定する経路再生成判定部と、を備え、前記地点は、前記経路上で前記移動体が前進から後退又は後退から前進に切り返す切り返し地点であり、前記経路は、指定された駐車位置までの駐車経路である。
本発明によれば、経路に従って自律移動する移動体の位置推定精度を向上させることができる。
本発明の一実施形態に係る位置推定装置の構成を示す図である。 本発明の一実施形態に係る位置推定装置および自動駐車システムによる処理の全体を示すフローチャートである。 自律移動処理のフローチャートである。 画像情報蓄積処理のフローチャートである。 自己位置補正処理のフローチャートである。 駐車枠検知を行う駐車シーンを示す図である。 駐車枠選択を行う駐車シーンを示す図である。 駐車経路の生成を説明する駐車シーンを示す図である。 中継地点を設定する駐車シーンを示す図である。 中継地点での自車両の想定位置を設定する駐車シーンを示す図である。 自車両が中継地点に到達した駐車シーンを示す図である。 中継地点での誤差が閾値以内の駐車シーンを示す図である。 中継地点での誤差が閾値以上の駐車シーンを示す図である。 駐車経路が再生成された駐車シーンを示す図である。 車両座標系を示す図である。 カメラ座標系を示す図である。 画像特徴点と推定済みの3次元画像特徴点との関連付けを説明する図である。 画像特徴点に対する3次元画像特徴点の推定を説明する図である。 3次元画像特徴点による再投影誤差の算出を説明する図である。
図1は、本発明の一実施形態に係る位置推定装置10の構成を示す図である。図1に示す位置推定装置10は、乗用車等の移動体に搭載されており、自動駐車システム50と組み合わされて使用されるものである。以下では、位置推定装置10が搭載される移動体を「自車両」と称して説明する。位置推定装置10は、あらかじめ決められた周期、例えば100ms毎に周期的に動作する。
図1に示すように、位置推定装置10は、その機能として、画像情報計算部11と、移動量計算部12と、経路上位置判定部13と、3次元画像特徴点計算部14と、位置補正部15と、経路再生成判定部16とを備えている。位置推定装置10は、例えばCPU、RAM、ROM等を有しており、ROMに格納された所定のプログラムをRAMに展開してCPUで実行することにより、これらの機能を実現することができる。なお、位置推定装置10が有する機能の一部または全部を、FPGA等のハードウェアを用いて実現してもよい。
位置推定装置10には、撮像画像20と、車両情報30と、経路情報40とが入力される。撮像画像20は、自車両に搭載された不図示の撮像部によって所定のフレームレートごとに順次撮像された画像である。この撮像部は、一般的な画角のカメラよりも広角に撮像可能な魚眼カメラなどで構成されることが好ましい。車両情報30は、自車両から得られる自車両の移動に関する情報、例えば車両速度、ハンドル角度、ブレーキの状態、シフトブレーキの状態などを表す情報である。経路情報40は、自動駐車システム50によって予め設定された駐車経路の情報であり、自車両が駐車時に走行すべき駐車経路の位置や形状を表す情報と、駐車経路上に設定された中継地点の位置を表す情報とを含む。
画像情報計算部11は、撮像部により順次撮像されて位置推定装置10に入力される複数の撮像画像20から画像特徴点をそれぞれ抽出し、複数の撮像画像20間で画像特徴点同士の対応付けを行う。そして、抽出した画像特徴点および画像特徴点間の対応付け結果を3次元画像特徴点計算部14へ出力する。
移動量計算部12は、位置推定装置10に入力される車両情報30に基づいて、デッドレコニングにより自車両の移動量を計算し、得られた移動量の計算結果から自車両の位置を推定する。そして、自車両の位置の推定結果を、経路上位置判定部13および3次元画像特徴点計算部14へ出力する。
経路上位置判定部13は、位置推定装置10に入力される経路情報40と、移動量計算部12から入力される自車両の位置の推定結果とに基づいて、自車両が駐車経路上の特定の位置に到達したか否かを判定する。本実施形態では、経路上位置判定部13は、経路情報が表す駐車経路上の中継地点や、駐車経路の終点である駐車位置を判定対象として、自車両がこれらの位置に到達したか否かを判定する。そして、判定結果を3次元画像特徴点計算部14、位置補正部15および経路再生成判定部16へ出力する。
3次元画像特徴点計算部14は、画像情報計算部11から入力される複数の撮像画像20間での画像特徴点同士の対応付け結果と、移動量計算部12から入力される自車両の位置の推定結果とに基づいて、画像特徴点の実空間上の3次元位置を推定する。そして、推定した3次元位置を表す3次元画像特徴点を設定し、対応する画像特徴点の情報とともに位置補正部15へ出力する。
位置補正部15は、経路上位置判定部13から入力される判定結果と、3次元画像特徴点計算部14から入力される3次元画像特徴点の情報、すなわち画像特徴点に対する3次元位置の推定結果とに基づいて、移動量計算部12により推定された自車両の位置を補正する。具体的には、位置補正部15は、経路上位置判定部13により自車両が中継地点に到達したと判定されると、そのときの撮像画像20に対して、3次元画像特徴点計算部14により推定された3次元画像特徴点が表す3次元位置を再投影したときの撮像画像20上での位置と、撮像画像20から抽出された画像特徴点との間の位置誤差を計算する。そして、計算した位置誤差が低減するように3次元画像特徴点および自車両の位置補正を繰り返し行い、最終的に得られた補正後の自車両の位置を経路再生成判定部16および自動駐車システム50へ出力する。ただし、自車両の位置補正をまだ行っていない場合、位置補正部15は補正前の自車両の位置、すなわち移動量計算部12から入力される自車両の位置の推定結果をそのまま出力する。なお、位置補正部15が行う処理の内容については、後で詳細に説明する。
経路再生成判定部16は、経路上位置判定部13から入力される判定結果に基づいて、位置補正部15から入力される補正後の自車両の位置と、経路情報40が表す駐車経路との比較を行い、その比較の結果に基づいて駐車経路を再生成するか否かを判定する。そして、駐車経路を再生成すると判定した場合には、自動駐車システム50に対して駐車経路の再生成を指示する。
自動駐車システム50は、撮像部から入力される撮像画像20に基づいて駐車候補位置を認識し、いずれかの駐車候補位置を駐車位置に設定する。そして、自車両の現在位置から設定した駐車位置までの駐車経路を生成し、その駐車経路に従って自車両を駐車位置まで自律移動させるように制御する。このとき自動駐車システム50は、位置推定装置10から出力される補正後の自車両の位置を用いて、自車両の制御を行う。また、位置推定装置10から駐車経路の再生成が指示された場合には、その指示に応じて駐車経路を再生成し、以降の制御では再生成した駐車経路に従って自車両を自律移動させる。
次に、位置推定装置10および自動駐車システム50がそれぞれ実施する処理について図2~5のフローチャートを参照して説明する。図2は、本発明の一実施形態に係る位置推定装置10および自動駐車システム50による処理の全体を示すフローチャートである。図3は、図2の処理における自律移動処理のフローチャートである。図4は、図3の自律移動処理において位置推定装置10が実施する画像情報蓄積処理のフローチャートである。図5は、図3の自律移動処理において位置推定装置10が実施する自己位置補正処理のフローチャートである。なお、以下では図6~14に示すような自車両の駐車シーンを例として想定し、図2~5の各フローチャートを説明する。
ここで、図2~5の説明に先立って、位置推定装置10の処理で用いられる座標系について以下に説明する。図15は、位置推定装置10が自車両の位置および姿勢を表すために使用する車両座標系を示す図であり、図16は、位置推定装置10が撮像部の位置および姿勢を表すために使用するカメラ座標系を示す図である。
図15に示す車両座標系では、自車両の向きに対して前後方向をx軸、左右方向をy軸、上下方向をz軸とそれぞれ定義している。ここで、x軸は自車両の進行方向(正面方向)を正とし、y軸は自車両の進行方向に対して左手方向を正とし、z軸は自車両の真上方向を正としている。また、各軸周りの回転(roll、pitch、yaw)は、時計回り方向をそれぞれ正としている。本実施形態では、図15の車両座標系を用いて、自車両の回転量と並進量を以下の式(1)のように表現し、これらを用いて自車両の位置と姿勢を表すこととする。式(1)において、θrollはx軸周りの回転量、θpitchはy軸周りの回転量、θyawはz軸周りの回転量をそれぞれ表し、xcarはx軸方向の並進量、ycarはy軸方向の並進量、zcarはz軸方向の並進量をそれぞれ表している。なお、回転量は自車両の姿勢に相当し、並進量は自車両の位置に相当する。
自車両の回転量=(θroll,θpitch,θyaw
自車両の並進量=(xcar,ycar,zcar) ・・・(1)
図16に示すカメラ座標系では、撮像部を真上方向から見たときの左右方向をx軸、上下方向をy軸とそれぞれ定義し、撮像部の光軸方向をz軸と定義している。ここで、x軸は撮像部の右手方向を正とし、y軸は撮像部の真下方向を正とし、z軸は撮像部の撮像方向を正としている。また、各軸周りの回転は、時計回り方向をそれぞれ正としている。本実施形態では、図16のカメラ座標系を用いて、撮像部の回転量と並進量を以下の式(2)のように表現し、これらを用いて撮像部の位置と姿勢を表すこととする。式(2)において、θxはx軸周りの回転量、θyはy軸周りの回転量、θzはz軸周りの回転量をそれぞれ表し、xcameraはx軸方向の並進量、ycameraはy軸方向の並進量、zcameraはz軸方向の並進量をそれぞれ表している。なお、回転量は撮像部の姿勢に相当し、並進量は撮像部の位置に相当する。
撮像部の回転量=(θx,θy,θz
撮像部の並進量=(xcamera,ycamera,zcamera) ・・・(2)
以下の説明では、上記の式(1)で表される車両座標系における自車両の回転量および並進量と、上記の式(2)で表されるカメラ座標系における撮像部の回転量および並進量とは、位置推定装置10において移動量計算部12により、車両情報30に基づいて所定の処理周期ごとに計算されるものとする。
続いて、図2のフローチャートについて説明する。図2のフローチャートに示す全体処理は、ユーザが自動駐車システム50を立ち上げることで開始される。
ステップ100において、自動駐車システム50は駐車枠検知を行う。ここでは、例えば図6の駐車シーンの例に示すように、自車両が駐車開始位置500から矢印501の方向に移動しているときに、白線502に囲まれた各領域のうち他の駐車が駐車済みでない領域を、駐車候補位置503、504として検出する。
ステップ110において、自動駐車システム50は駐車枠選択を行う。ここでは、例えば図7の駐車シーンの例に示すように、ステップ100で検出された駐車候補位置の中でいずれか一つを選択し、駐車位置510として設定する。なお、選択されなかった駐車候補位置は、未選択位置511として設定され、以降の処理対象から除外される。あるいは、駐車位置510への駐車が不可能になったときに、未選択位置511を新たに駐車位置として設定するようにしてもよい。図7に示す駐車シーンの例では、図6の駐車候補位置503が駐車位置510に設定され、駐車候補位置504が未選択位置511に設定された様子を示している。
ステップ110における駐車枠選択では、例えば、ステップ100で検出した各駐車候補位置をディスプレイ等によりユーザに提示し、その中でいずれかを選択させる。あるいは、自動駐車システム50が自動的に駐車候補位置を選択してもよい。例えば、複数の駐車候補位置のうち領域が広い方や、駐車までの切り返し回数が少なくなる方などを、駐車候補位置として自動的に選択することができる。ただし、駐車候補位置の選択方法はこれに限定するものではなく、他の選択方法としてもよい。
ステップ110の駐車枠選択によって駐車位置を決定した後、ステップ120では、決定した駐車位置まで自車両を自律移動させる自律移動処理を実行する。この自律移動処理では、図3に示すフローチャートに従って、位置推定装置10および自動駐車システム50を協調動作させる。ステップ120の自律移動処理によって自車両が駐車位置に到着したら、図2に示すフローチャートを終了する。
次に、図2のステップ120で実施される自律移動処理について、図3を参照して以下に説明する。
ステップ400において、自動駐車システム50は、駐車位置までの駐車経路を生成する。ここでは、自車両の位置と駐車位置との関係や、自車両の周囲に存在する障害物等の位置に基づいて駐車経路を生成し、その駐車経路上に一つまたは複数の中継地点を設定する。そして、中継地点に到達したときの自車両の位置および姿勢を計算し、これらの計算結果に基づいて中継地点での自車両の想定位置を設定する。これにより、例えば図8の駐車シーンの例に示すように、自車両の現在位置から駐車位置510の間に駐車経路520が設定される。また、例えば図9の駐車シーンの例に示すように、駐車経路520上で自車両が前進から後退に、または後退から前進に切り返す切り返し地点に中継地点530が設定され、この中継地点530に対して、図10の駐車シーンの例に示すように自車両の想定位置540が設定される。なお、駐車経路の生成には任意の手法を用いることができるが、その具体的な説明は省略する。また、中継地点は、例えば数メートル毎に設定したり、切り返し地点毎に設定したりするなど、任意の間隔や位置に設定することができる。
次にステップ410において、自動駐車システム50は、位置推定装置10の位置補正部15から出力される自車両の位置を取得し、この位置情報に基づいて、ステップ400で生成した駐車経路に従って自車両を自律移動させるように制御する。
次にステップ420において、位置推定装置10は、経路上位置判定部13により、自車両が駐車位置に到着したか否かを判定する。ここでは、例えば駐車位置到達時に想定される自車両の位置および姿勢と、現在の自車両の位置および姿勢との差分をそれぞれ求め、求めた各差分が予め設定された閾値以下であるか否かにより、自車両が駐車位置に到着したか否かを判定する。その結果、自車両が駐車位置にまだ到着していないと判定した場合はステップ430に進み、到着したと判定した場合は図3のフローチャートに示す自律移動処理を終了する。なお、駐車位置到達時に想定される自車両の位置および姿勢は、ステップ400で計算される中継地点での自車両の想定位置と同様の方法により、経路情報40に基づいて計算可能である。
ステップ420で経路上位置判定部13は、例えば以下の計算式(3)~(7)を用いて、駐車位置到達時に想定される自車両の位置および姿勢と、現在の自車両の位置および姿勢との差分を計算する。
Figure 0007212486000001
Perror=Pcar -1Pcurrent ・・・(4)
diff=0.5×(r11_error+r22_error+r33_error-1.0) ・・・(5)
Erotation=acos(max(min(diff,1.0),-1.0)) ・・・(6)
Etranslation=√(t1_error 2+t2_error 2+t3_error 2) ・・・(7)
式(3)は、各地点での自車両の位置および姿勢を表すアフィン行列であり、式(4)のPerror、Pcar -1およびPcurrentはこのアフィン行列を用いてそれぞれ表される。なお、Pcar -1は駐車位置での自車両の位置および姿勢を表すアフィン行列の逆行列であり、Pcurrentは現在位置での自車両の位置および姿勢を表すアフィン行列である。
式(3)のアフィン行列における各行列成分は、以下の式(8)、(9)により表される。
Figure 0007212486000002
式(8)において、行列Rroll、Rpitch、Ryawは、式(1)における自車両の回転量の各成分θroll、θpitch、θyawを用いて、それぞれ以下の式(10)~(12)により表される。
Figure 0007212486000003
一方、式(9)におけるxcar、ycar、zcaは、式(1)における自車両の並進量の各成分である。
なお、自車両の回転量および並進量は、前述のように移動量計算部12によって計算される。ただし、位置補正部15が後述のステップ450で自己位置補正処理を実行済みであり、これによって自車両の位置が補正されている場合には、その補正後の位置に対応する回転量および並進量を用いて、ステップ420の判定を行うことが好ましい。
式(5)におけるr11_error、r22_error、r33_errorは、式(4)で計算される位置姿勢誤差Perrorのアフィン行列において式(3)の各行列成分r11、r22、r33にそれぞれ対応する行列成分の値を表す。式(6)は、式(5)で計算される角度差diffまたは1のうち小さい方の値と-1とを比較して、いずれか大きい方の値の逆余弦から回転誤差Erotationが計算されることを表している。また、式(7)におけるt1_error、t2_error、t3_errorは、式(4)で計算される位置姿勢誤差Perrorのアフィン行列において式(3)の各行列成分t1、t2、t3にそれぞれ対応する行列成分の値を表す。式(7)は、これらの値により位置誤差Etranslationが計算されることを表している。
ステップ420では、上記の回転誤差Erotationおよび位置誤差Etranslationを計算することで、駐車位置到達時に想定される自車両の姿勢と現在の自車両の姿勢との差分、および駐車位置到達時に想定される自車両の位置と現在の自車両の位置との差分を、それぞれ計算することができる。そして、これらの差分をそれぞれの閾値と比較することで、自車両が駐車位置に到着したか否かを判定することができる。
図11は、自車両が中継地点に到達した駐車シーンの例を示している。図11の駐車シーンでは、ステップ400で設定された想定位置540と中継地点での実際の自車両の位置551との間にずれが生じている。これは、ステップ410の制御において車両情報30から求められる自車両の移動量には、誤差が含まれているためである。
ステップ420からステップ430に進んだ場合、ステップ430において位置推定装置10は、画像情報蓄積処理を行う。ここでは、画像情報計算部11、移動量計算部12および3次元画像特徴点計算部14により、図4に示すフローチャートに従って画像情報蓄積処理を実行する。これにより、撮像部によって所定のフレームレートごとに順次撮像された撮像画像20からそれぞれ抽出された画像特徴点の情報や、撮像画像20間での画像特徴点同士の対応付け情報、実空間上で推定された画像特徴点の3次元位置の情報などが、位置推定装置10において蓄積される。なお、ステップ420の画像情報蓄積処理の詳細は後述する。
ステップ440において、位置推定装置10は、自車両の位置を補正するか否かを判定する。ここでは、経路上位置判定部13により自車両が次の中継地点に到達したか否かを判定することで、自車両の位置を補正するか否かを判定する。すなわち、自車両が次の中継地点にまだ到達していない場合は、自車両の位置を補正しないと判定してステップ410に戻り、前述の処理を繰り返す。一方、自車両が次の中継地点に到達した場合は、自車両の位置を補正すると判定してステップ450に進む。なお、ステップ440における自車両が次の中継地点に到達したか否かの判定は、ステップ400で計算した中継地点での自車両の想定位置を表す位置および姿勢に基づき、ステップ420で行った駐車位置への到着判定と同様の方法により行うことが可能である。
ステップ450において、位置推定装置10は、自己位置補正処理を行う。ここでは、位置補正部15により、図5に示すフローチャートに従って自己位置補正処理を実行する。これにより、ステップ430の画像情報蓄積処理によって蓄積された情報を用いて、自車両の位置が補正される。なお、ステップ450の自己位置補正処理の詳細は後述する。
ステップ460において、位置推定装置10は、経路再生成判定部16により、ステップ450の自己位置補正処理によって補正された自車両の位置と駐車経路とを比較する。ここでは、補正後の自車両の位置および姿勢と、駐車経路上に設定した中継地点に対して予め設定された自車両の位置および姿勢との間の差分をそれぞれ計算することにより、補正後の自車両の位置と駐車経路との比較を行う。なお、このときの計算には、ステップ440で行った中継地点への到着判定と同様の方法を用いることができる。すなわち、ステップ400で計算した中継地点での自車両の想定位置を表す位置および姿勢に基づき、ステップ420で行った駐車位置への到着判定と同様の方法により、補正後の自車両の位置および姿勢と、中継地点において想定される自車両の位置および姿勢との間の差分をそれぞれ計算することができる。
ステップ470において、位置推定装置10は、経路再生成判定部16により、ステップ460で計算した位置および姿勢の差分、すなわち補正後の自車両の位置および姿勢に対する中継地点での誤差が、それぞれ所定の閾値以内であるか否かを判定する。その結果、これらの計算結果がいずれも閾値以内であれば、補正後の自車両の位置が適切であり、そのため駐車経路を再生成しないと判断してステップ410に戻る。この場合、自動駐車システム50では補正後の自車両の位置を用いた制御が行われることにより、自車両の自律移動が継続される。
図12は、ステップ470で補正後の自車両の位置および姿勢に対する中継地点での誤差がいずれも閾値以内と判定される駐車シーンの例を示している。図12の駐車シーンでは、ステップ400で設定された想定位置540と中継地点での実際の自車両の位置551との間のずれが小さい。そのため、ステップ470では、補正後の自車両の位置および姿勢に対する中継地点での誤差がいずれも閾値以内と判定される。
一方、ステップ460で計算した補正後の自車両の位置および姿勢に対する中継地点での誤差の少なくとも一方が閾値以上であれば、ステップ470において経路再生成判定部16は、補正後の自車両の位置が適切ではなく、このままでは自動駐車に失敗する可能性が高いため、駐車経路を再生成すると判断してステップ400に戻る。この場合、自動駐車システム50ではステップ400において駐車経路が再生成され、以降は再生成後の駐車経路に従って自車両の自律移動が行われる。
図13は、ステップ470で補正後の自車両の位置および姿勢に対する中継地点での誤差の少なくとも一方が閾値以上と判定される駐車シーンの例を示している。図13の駐車シーンでは、ステップ400で設定された想定位置540と中継地点での実際の自車両の位置551との間のずれが大きい。そのため、ステップ470では、補正後の自車両の位置および姿勢に対する中継地点での誤差が閾値以上と判定される。
図14は、駐車経路が再生成された駐車シーンの例を示している。図14の駐車シーンでは、図13で想定位置540との誤差が閾値以上と判定された自車両の位置551と駐車位置510の間に、新たな駐車経路570が再生成されている。
次に、図3のステップ430で実行される画像情報蓄積処理について、図4のフローチャートを参照して以下に説明する。
ステップ200において、画像情報計算部11は、撮像部で撮像された撮像画像20を読み込む。この撮像画像20は、例えば魚眼カメラで撮像された広角画像などが望ましいが、これに限定しない。
ステップ201において、画像情報計算部11は、ステップ200で読み込んだ撮像画像20から画像特徴点を抽出する。本実施形態では、例えばORB(Oriented FAST and Rotated BRIEF)と呼ばれる周知の処理手法により、画像特徴点を抽出する。なお、他の処理手法、例えばHarrisコーナー検出やTomasi、FAST(Features from Accelerated Segment Test)などの特徴量の記述がないコーナー点抽出手法や、SURFやSIFTなどの特徴点抽出手法などを用いてもよく、処理手法は限定しない。
ステップ202において、画像情報計算部11は、ステップ201で抽出した画像特徴点の対応付けを行う。ここでは、時系列で取得された複数の撮像画像からそれぞれ抽出された画像特徴点のうち、同一の被写体の同じ部分を撮像した画像特徴点同士を互いに対応付ける。この対応付けは、画像特徴点の特徴量同士の比較や、画像特徴点の周囲の画素値の比較などにより実施される。例えば、本実施形態で画像特徴点の抽出に使用されるORBの場合、バイナリで記述された特徴量の排他的論理和をとることで画像特徴点の特徴量の比較を行うことが可能であり、その差が小さいほど、同一被写体の同じ部分を撮像した特徴点の可能性が高くなる。また、Harrisなどの特徴量のない方法で検出したコーナー点の場合は、例えばSSD(Sum of Squared Difference)やKLT(Kanade-Lucas-Tomasi Feature Tracker)法などの画像特徴点の周辺画素の比較により、画像特徴点同士の対応付けを行うことができる。
なお、本実施形態では、ステップ202で画像特徴点同士を対応付ける際に、ある撮像画像における一つの画像特徴点に対して、他の画像における二つの画像特徴点を対応付けることが好ましい。位置補正部15において後述する自己位置補正処理の際に行われるバンドル調整では、3次元画像特徴点の数が多いほど安定した結果が得られることが知られている。そのため、一つの画像特徴点に対して二つの画像特徴点を対応付けることは、後段のステップ206で3次元画像特徴点への関連付けを行う際や、続くステップ207で3次元画像特徴点の推定を行う際に、3次元画像特徴点の数が増加することに繋がる。その結果、バンドル調整の精度や安定性の向上に寄与する。なお、ステップ202で一つの画像特徴点に対応付ける画像特徴点の数は二つに限らず、複数であれば任意の数としてもよい。あるいは、一つの画像特徴点に対して一つの画像特徴点を対応付けてもよい。
また、ステップ202で画像特徴点の対応付けを行う際には、誤って対応付けされた画像特徴点に対する対応付け結果の除去を行うようにしてもよい。例えば、クロスチェックと呼ばれる公知の手法を用いて、画像特徴点の対応付け結果が正しいか否かを確認することができる。詳細な説明は省略するが、この手法は、画像特徴点同士が対応付けされた二つの撮像画像を画像A、Bとすると、一方の画像Aから他方の画像Bへと対応付けを行った結果と、画像Bから画像Aへと対応付けを行った結果とを比較し、共通の結果が得られた場合はこれを画像特徴点の対応付け結果として採用する手法である。
ステップ203において、画像情報計算部11は、ステップ202で対応付けされた画像特徴点の歪みを補正する。カメラを用いて構成された撮像部で撮像された画像には、一般にカメラの光学系によるレンズ歪みが生じている。このため、ステップ203では、対応付けされた画像特徴点に対してレンズ歪みを取り除く処理を行う。なお、ここでは画像特徴点に対してレンズ歪みを取り除く処理を行ったが、ステップ201で画像特徴点を抽出しやすくなるように、ステップ200で読み込んだ撮像画像20に対してレンズ歪みを取り除く処理を実施しても構わない。また、レンズ歪みが小さい場合は、ステップ203の処理を省略してもよい。
ステップ204において、移動量計算部12は、自車両から車両情報30を読み込む。ここで読み込まれる車両情報30は、前述したように、例えば車両速度やハンドル角度、シフトブレーキの状態などの自車両の移動に関する情報であり、自車両から取得可能なものである。
ステップ205において、移動量計算部12は、ステップ204で読み込んだ車両情報30から自車両の移動量を推定する。ここでは、前述の式(1)に示した自車両の回転量および並進量を表す6つの変数のうち、zcar、θrollおよびθpitchについては、車両情報30が表す車両速度とハンドル角度からは推定できないため、これらの値を0とする。こうして推定した自車両の移動量を積算することで、自車両の位置を推定することができる。また、以降の処理に必要となる撮像部カメラ座標系での移動量は、車両へのカメラの取り付け位置を基に計算した前述の式(2)に示した撮像部の回転量および並進量は、車両座標系とカメラ座標系間の変換行列が既知であるとし、この変換行列を用いて、自車両の回転量および並進量から座標変換により算出する。
ステップ206において、3次元画像特徴点計算部14は、ステップ202で行った画像特徴点の対応付け結果に基づいて、画像特徴点と推定済みの3次元画像特徴点との関連付けを行う。ここでは、ステップ201で抽出した画像特徴点の中に、過去に実行された後述のステップ207で既に3次元画像特徴点を推定済みの画像特徴点に対応付けられたものがある場合は、その3次元画像特徴点に当該画像特徴点を関連付ける。これにより、当該画像特徴点については、ステップ207で3次元画像特徴点の推定を行わずに、推定済みの3次元画像特徴点を当該画像特徴点の実空間上の3次元位置を表すものとして取り扱うようにする。この処理は、3次元画像特徴点毎の拘束条件を増やすことにつながり、後述するバンドル調整を利用した位置補正の精度を向上させる効果がある。
以上説明したステップ206の処理について、以下に図17の具体例を参照してさらに説明を行う。図17の例では、カメラ位置PAで取得した撮像画像上の画像特徴点(uPA,vPA)と、カメラ位置PBで取得した撮像画像上の画像特徴点(uPB,vPB)とが互いに対応付けされており、これらの画像特徴点から既に3次元画像特徴点(Xcp,Ycp,Zcp)が推定されているとする。ここで、3次元画像特徴点とは、画像特徴点の実空間上の位置のことを表している。この状態において、新たにカメラ位置PCで取得した撮像画像から画像特徴点(uPC,vPC)が抽出され、これと画像特徴点(uPA,vPA)または画像特徴点(uPB,vPB)とが対応付けられたと仮定する。このような場合、ステップ206では、画像特徴点(uPC,vPC)を3次元画像特徴点(Xcp,Ycp,Zcp)と関連付けることで、3次元画像特徴点(Xcp,Ycp,Zcp)が上記3つの画像特徴点から推定されたものとして扱うようにする。これにより、続くステップ207において画像特徴点(uPC,vPC)から3次元画像特徴点の計算を行わないようにする。なお、図17の例では三つの画像特徴点を一つの3次元画像特徴点(Xcp,Ycp,Zcp)に関連付ける様子を示したが、3次元画像特徴点に関連付けされる画像特徴点の数は特に制限しない。
ステップ207において、3次元画像特徴点計算部14は、ステップ205で推定した自車両の移動量に基づいて、ステップ202で対応付けした画像特徴点に対する3次元画像特徴点の推定を行う。ここでは、互いに対応付けられた画像特徴点の各撮像画像20上での位置と、各撮像画像20を撮像したときのカメラ位置とに基づいて、三角測量の要領により実空間上の位置を求めることで、3次元画像特徴点推定する。なお、ここで対象となる画像特徴点は、ステップ206で3次元画像特徴点に関連付けされていないものに限られる。
以上説明したステップ207の処理について、以下に図18の具体例を参照してさらに説明を行う。図18の例では、カメラ位置PAで取得した撮像画像上の画像特徴点(uPA,vPA)と、カメラ位置PCで取得した撮像画像上の画像特徴点(uPC,vPC)とが互いに対応付けされており、これらのカメラ位置および画像特徴点から、3次元画像特徴点(Xcp,Ycp,Zcp)を推定する様子を示している。なお、カメラ位置PCは、ステップ205で推定した自車両の移動量を座標変換することで算出されるカメラ座標上での撮像部の移動量ΔPcから求められる。
ステップ208において、3次元画像特徴点計算部14は、ステップ207で推定した3次元画像特徴点のうち、信頼性が低いものを削除する。ここでは、推定した各3次元画像特徴点を元の撮像画像20のいずれかに再投影したときの当該撮像画像上での位置と、当該撮像画像20から抽出された元の画像特徴点との間の位置誤差(再投影誤差)を算出する。そして、算出した位置誤差に基づいて、位置誤差が大きいほどその3次元画像特徴点の信頼度が低いものとして各3次元画像特徴点の信頼度を判断し、信頼度が所定値以下の3次元画像特徴点を削除する。これにより、位置補正部15において後述する自己位置補正処理の際に行われるバンドル調整では、信頼性が低い3次元画像特徴点を除外して自車両の位置補正を行うようにする。
以上説明したステップ208の処理について、以下に図19の具体例を参照してさらに説明を行う。図19の例では、カメラ位置PA、PCでそれぞれ取得した撮像画像に3次元画像特徴点(Xcp,Ycp,Zcp)を再投影したときの各再投影点の位置と、これらの撮像画像における元の画像特徴点(uPA,vPA)、(uPC,vPC)との間の位置誤差(再投影誤差)から、3次元画像特徴点(Xcp,Ycp,Zcp)の信頼度を算出する様子を示している。なお、この3次元画像特徴点の信頼度は、カメラ位置PAでの撮像画像とカメラ位置PCでの撮像画像との両方から算出してもよいし、いずれか一方のみから算出してもよい。
図19における位置誤差(再投影誤差)Ereprojectionは、以下の式(13)により算出することができる。式(13)において、UpおよびVpは各撮像画像上での元の画像特徴点の位置を表し、Xcp、YcpおよびZcpは3次元画像特徴点の位置、すなわち画像特徴点の実空間上での位置を表している。また、fは撮像部に用いたカメラの焦点距離を表している。ステップ208では、この式(13)で求められた再投影誤差Ereprojectionが所定の閾値より大きいものを、信頼度の低い3次元画像特徴点として削除する。
Figure 0007212486000004
なお、本実施形態では、上記のように再投影誤差に基づいて信頼度の低い3次元画像特徴点を除去するようにしたが、他の方法を利用して信頼度の低い3次元画像特徴点を除去してもよい。例えば、十分な視差が得られていない画像特徴点同士から生成された3次元画像特徴点は、一般的に位置精度が低くなるため、これを信頼度の低い3次元画像特徴点として削除することができる。また、これ以外にも公知の方法が存在するため、それらの方法を利用しても構わない。
ステップ209では、上記の各処理で得られた画像情報を位置推定装置10において登録する。ここで登録される画像情報とは、ステップ201で抽出した画像特徴点や、ステップ202で行った画像特徴点の対応付け結果、ステップ203で行った歪み補正後の画像特徴点、ステップ206で行った画像特徴点と3次元画像特徴点との関連付け結果、ステップ207で推定した3次元画像特徴点のうちステップ208で除去されたものを除いた3次元画像特徴点の推定結果などである。ステップ209では、これらの情報を位置推定装置10が有するRAMやハードディスク等の記憶媒体に記憶させることで、後の処理において利用できるようにする。
ステップ210では、自己位置情報、すなわちステップ205で推定した移動量から求められた自車両の位置情報を位置推定装置10において登録する。ここで登録される自己位置情報とは、前述の式(1)、(2)により6自由度でそれぞれ表される自車両の位置および姿勢と撮像部の位置および姿勢である。このステップ210でもステップ209と同様に、自己位置情報をRAMやハードディスク等の記憶媒体に記憶させることで、後の処理において利用できるようにする。
図3のステップ430では、以上説明したような画像情報蓄積処理が実行される。
次に、図3のステップ450で実行される自己位置補正処理について、図5のフローチャートを参照して以下に説明する。
ステップ300において、位置補正部15は、図4のステップ209で登録された画像情報を読み込む。ここでは、撮像部によって順次撮像された複数の撮像画像20からそれぞれ抽出された画像特徴点や、画像特徴点の実空間上の3次元位置を表す3次元画像特徴点などの情報を、画像情報として読み込む。なお、前述のように画像特徴点は一つの3次元画像特徴点に対して二つ以上存在する。
ステップ310において、位置補正部15は、図4のステップ210で登録された自己位置情報を読み込む。ここでは、各3次元画像特徴点に対応する撮像部の位置および姿勢を自己位置情報として読み込む。
ステップ320において、位置補正部15は、ステップ300、310でそれぞれ読み込んだ情報を利用して、これまでに推定された自車両の位置を補正する自己位置補正処理を行う。ここでは、各3次元画像特徴点が表す画像特徴点の実空間上の3次元位置をいずれかの撮像画像20に再投影したときの当該撮像画像20上での各位置と、その撮像画像20から抽出された各画像特徴点との間の位置誤差を、互いに関連するもの同士で計算する。そして、位置誤差の合計が最小となるように各3次元画像特徴点と自車両位置の補正を繰り返し行い、最終的に得られたこれらの補正結果を自己位置補正処理の結果として出力する。
上記のような自己位置補正処理は、例えばバンドル調整という公知の手法を用いて実現できる。詳細な説明は省略するが、バンドル調整とは、多画像間で抽出された画像特徴点の対応関係から幾何学的なモデルのパラメータを推定する問題を解く際に利用されるものであり、非線形最適化問題を数値的に解く方法である。非線形最適化問題を解く上では、初期値と評価関数が重要であることが知られている。本実施形態では、複数の3次元画像特徴点を撮像画像20上に再投影した際の再投影誤差の合計値を評価関数として利用することで、ステップ320の自己位置補正処理を非線形最小二乗問題として扱っている。具体的には、以下の評価式(14)で計算される再投影誤差の合計値Esumが最小になるような撮像部の位置および姿勢を推定し、その推定結果から補正後の自車両の位置を計算することで、ステップ320の自己位置補正処理を行うこととしている。なお、ここで推定される撮像部の位置および姿勢は、前述のように6自由度で表されるものである。
Figure 0007212486000005
評価式(14)の初期値は、前回の処理までに求められた各3次元画像特徴点と各画像特徴点の位置であり、これらはステップ300で読み込んだ画像情報から設定される。また、本実施形態の位置推定装置10では、時間経過とともに6自由度で撮像部の位置および姿勢が変化し、撮像画像20が新たに取得されてそこから3次元画像特徴点が求められる。したがって、ステップ320の自己位置補正処理において最適化すべきパラメータの数は、3次元画像特徴点数×3+撮像画像数×6個となる。このため、自動駐車の開始時から取得した全ての画像情報と撮像部の位置および姿勢を利用して自己位置補正処理を行うのは、パラメータ数が際限なく増加するため現実的ではない。そこで本実施形態では、自己位置補正処理において利用する撮像画像20の数を制限し、これに対応する画像情報と撮像部の位置および姿勢を利用することが好ましい。例えば、直近の20画像分に相当する画像情報とこれに対応する各地点での撮像部の位置および姿勢を利用して、自己位置補正処理を行うことができる。
また、バンドル調整で最適解を一意に求めるためには、3次元画像特徴点の一部または撮像部の位置および姿勢の一部を定数として固定する必要がある。このため本実施形態では、所定数の撮像画像20に対応する自車両の位置を固定した局所的なバンドル調整を行うことにより、3次元画像特徴点および自車両位置の補正を行うことが好ましい。例えば、画像10枚分に相当する自車両の位置を固定することで、これに対応する撮像部の位置および姿勢を定数として固定し、局所的なバンドル調整を行うことができる。ここで、3次元画像特徴点ではなく撮像部の位置および姿勢の一部を固定値としたのは、3次元画像特徴点の一部を固定した場合と比べて、推定される位置および姿勢の分散が小さくなることが経験的に知られているためである。さらに加えて、本実施形態ではデッドレコニングにより自車両の移動量を推定した結果から撮像部の位置および姿勢を推定しているため、撮像部の位置および姿勢の一部を固定値とすることで、スケールドリフトを解消することも可能である。
ステップ320の自己位置補正処理によって補正後の自車両の位置を計算できたら、ステップ330、340において、位置補正部15は、その計算結果と、当該計算結果が得られたときの3次元画像特徴点および撮像部の位置、姿勢とに基づいて、蓄積された画像情報と自己位置情報をそれぞれ更新する。
図3のステップ450では、以上説明したような自己位置補正処理が実行される。
以上説明した本発明の一実施形態によれば、以下の作用効果が得られる。
(1)位置推定装置10は、予め設定された経路に従って移動する移動体である自車両の位置を推定する。位置推定装置10は、画像情報計算部11と、移動量計算部12と、3次元画像特徴点計算部14と、位置補正部15と、経路再生成判定部16とを備える。画像情報計算部11は、自車両に搭載された撮像部によって順次撮像された複数の画像から画像特徴点をそれぞれ抽出し(ステップ201)、複数の画像間で画像特徴点同士を対応付ける(ステップ202)。移動量計算部12は、自車両の移動量を計算して自車両の位置を推定する(ステップ205)。3次元画像特徴点計算部14は、ステップ202での画像情報計算部11の処理による複数の画像間での画像特徴点同士の対応付け結果と、ステップ205で移動量計算部12により推定された自車両の位置とに基づいて、画像特徴点の実空間上の3次元位置を表す3次元画像特徴点を推定する(ステップ207)。位置補正部15は、3次元画像特徴点を複数の画像のいずれかに再投影したときの当該画像上での位置と、当該画像から抽出された画像特徴点との間の位置誤差を計算し、この位置誤差が低減するように、3次元画像特徴点および自車両の位置を補正する(ステップ320)。経路再生成判定部16は、位置補正部15により補正された自車両の位置と経路との比較を行い(ステップ460)、この比較の結果に基づいて経路を再生成するか否かを判定する(ステップ470)。このようにしたので、経路に従って自律移動する移動体である自車両の位置推定精度を向上させることができる。
(2)位置推定装置10は、経路上に予め設定された中継地点に自車両が到達したか否かを判定する経路上位置判定部13を備える。位置補正部15は、経路上位置判定部13により自車両が中継地点に到達したと判定されたとき(ステップ440:Yes)に、ステップ450の自己位置補正処理を実行して自車両の位置の補正を行う。このようにしたので、自車両が経路に従って自律移動しているときに、適切なタイミングで自車両の位置の補正を行うことができる。
(3)経路再生成判定部16は、ステップ460において、位置補正部15による補正後の自車両の位置および姿勢と、中継地点に対して予め設定された自車両の位置および姿勢との間の差分をそれぞれ計算する。ステップ470では、ステップ460で計算した各差分に基づいて駐車経路を再生成するか否かの判定を行う。このようにしたので、補正後の自車両の位置が適切ではなく、このままでは自動駐車に失敗する可能性が高い場合には、駐車経路を再生成して自動駐車を確実に成功させることができる。
(4)3次元画像特徴点計算部14は、推定した3次元画像特徴点を複数の画像のいずれかに再投影したときの当該画像上での位置と、当該画像から抽出された画像特徴点との間の位置誤差に基づいて、3次元画像特徴点の信頼度を判定する(ステップ208)。この信頼度が低い3次元画像特徴点はステップ208で除去されるため、位置補正部15は、ステップ320では、3次元画像特徴点計算部14により信頼度が低いと判定された3次元画像特徴点を除外して、位置誤差の計算を行う。このようにしたので、位置補正部15が3次元画像特徴点および自車両の位置を補正する際には、位置誤差の計算を適切に行うことができる。
(5)画像情報計算部11は、ステップ202において複数の画像間で画像特徴点同士を対応付ける際に、複数の画像に含まれる二つの画像のうち一方の画像における一つの画像特徴点に対して、他方の画像における複数の画像特徴点を対応付けることが好ましい。このようにすれば、位置補正部15において、3次元画像特徴点および自車両の位置を精度良く補正することが可能となる。
(6)位置補正部15は、ステップ320において、複数の画像のうち所定数の画像に対応する自車両の位置を固定した局所的なバンドル調整を行うことにより、3次元画像特徴点および自車両の位置の補正を行うことが好ましい。このようにすれば、3次元画像特徴点および自車両の位置の補正結果としての最適解を一意に求めることが可能となる。
(7)3次元画像特徴点計算部14は、既に3次元画像特徴点を推定済みの画像特徴点と対応付けされた画像特徴点については、3次元画像特徴点の推定を行わずに、推定済みの3次元画像特徴点を当該画像特徴点の3次元位置とする(ステップ206)。このようにしたので、処理負荷を減らしつつ、位置補正部15が3次元画像特徴点および自車両の位置を補正する際の補正精度を向上させることができる。
(8)自車両が自律移動する経路は、指定された駐車位置までの駐車経路であることとしたので、位置推定装置10を用いて自動駐車を実現することができる。
(9)位置推定装置10は、駐車経路を生成して自車両を駐車位置まで自律移動させる自動駐車システム50と接続されている。ステップ470で経路再生成判定部16が駐車経路を再生成すると判定した場合、位置推定装置10は、駐車経路の再生成を自動駐車システム50に指示する。このようにしたので、必要に応じて駐車経路を再生成し、自動駐車を確実に成功させることができる。
以上、本発明の実施形態について述べたが、本発明は前述の実施形態に限定されるものでなく、特許請求の範囲に記載された範囲を逸脱しない範囲で種々の変更を行うことができる。例えば、上記の実施形態では自動駐車システム50と組み合わされて自動駐車を行う位置推定装置10について説明したが、他のシステムで用いられる位置推定装置においても本発明を適用可能である。また、前述した実施の形態は本発明を詳細に説明したものであり、必ずしも説明した全ての構成を備える必要はない。さらに、構成に他の実施形態の構成を加えることも可能である。加えて、構成の一部について、追加、削除、置き換えも可能である。
以上説明した実施形態や変形例はあくまで一例であり、発明の特徴が損なわれない限り、本発明はこれらの内容に限定されるものではない。また、上記では種々の実施形態や変形例を説明したが、本発明はこれらの内容に限定されるものではない。本発明の技術的思想の範囲内で考えられるその他の態様も本発明の範囲内に含まれる。
10 位置推定装置
11 画像情報計算部
12 移動量計算部
13 経路上位置判定部
14 3次元画像特徴点計算部
15 位置補正部
16 経路再生成判定部
20 撮像画像
30 車両情報
40 経路情報
50 自動駐車システム

Claims (7)

  1. 予め設定された経路に従って移動する移動体の位置を推定する位置推定装置であって、
    前記移動体に搭載された撮像部によって所定地点から順次撮像された複数の画像から画像特徴点をそれぞれ抽出し、前記複数の画像間で前記画像特徴点同士を対応付ける画像情報計算部と、
    前記移動体の移動に関する情報に基づいて前記所定地点からの前記移動体の移動量を計算して前記移動体の位置を推定する移動量計算部と、
    前記複数の画像間での前記画像特徴点同士の対応付け結果と、前記移動量計算部により推定された前記移動体の位置とに基づいて、前記画像特徴点の実空間上の3次元位置を推定する3次元画像特徴点計算部と、
    前記移動量計算部推定た前記移動体の位置前記経路上に予め設定された地点に到達したか否かを判定する経路上位置判定部と、
    前記経路上位置判定部により前記地点に到達したと判定された場合、前記撮像部にて撮影された画像から推定した前記3次元位置を再投影したときの当該画像上での位置と、当該画像から抽出された前記画像特徴点との間の位置誤差を計算し、前記位置誤差が低減するように、前記移動体の位置および姿勢を補正する位置補正部と、
    前記位置補正部によ補正後の前記移動体の位置および姿勢、前記地点に対して予め設定された前記移動体の位置および姿勢との差分をそれぞれ計算し、計算した各差分の少なくとも一方が閾値以上であった場合に前記経路を再生成する判定する経路再生成判定部と、を備え
    前記地点は、前記経路上で前記移動体が前進から後退又は後退から前進に切り返す切り返し地点であり、前記経路は、指定された駐車位置までの駐車経路である位置推定装置。
  2. 請求項1に記載の位置推定装置において、
    前記地点は、所定の間隔で設定された地点である位置推定装置。
  3. 請求項1または請求項に記載の位置推定装置において、
    前記3次元画像特徴点計算部は、推定した前記3次元位置を前記複数の画像のいずれかに再投影したときの当該画像上での位置と、当該画像から抽出された前記画像特徴点との間の位置誤差に基づいて、前記3次元位置の信頼度を判定し、
    前記位置補正部は、前記3次元画像特徴点計算部により前記信頼度が低いと判定された前記3次元位置を除外して、前記位置誤差の計算を行う位置推定装置。
  4. 請求項1または請求項に記載の位置推定装置において、
    前記画像情報計算部は、前記複数の画像間で前記画像特徴点同士を対応付ける際に、前記複数の画像のうちの一つの画像における一つの前記画像特徴点に対して、他の画像における複数の前記画像特徴点を対応付ける位置推定装置。
  5. 請求項1または請求項に記載の位置推定装置において、
    前記位置補正部は、前記複数の画像のうち所定数の画像に対応する前記移動体の位置を固定した局所的なバンドル調整を行うことにより、前記3次元位置および前記移動体の位置の補正を行う位置推定装置。
  6. 請求項1または請求項に記載の位置推定装置において、
    前記3次元画像特徴点計算部は、既に前記3次元位置を推定済みの画像特徴点と対応付けされた画像特徴点については、前記3次元位置の推定を行わずに、推定済みの前記3次元位置を当該画像特徴点の3次元位置とする位置推定装置。
  7. 請求項に記載の位置推定装置において、
    前記駐車経路を生成して前記移動体を前記駐車位置まで自律移動させる自動駐車システムと接続されており、
    前記経路再生成判定部が前記駐車経路を再生成すると判定した場合、前記駐車経路の再生成を前記自動駐車システムに指示する位置推定装置。
JP2018180913A 2018-09-26 2018-09-26 位置推定装置 Active JP7212486B2 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2018180913A JP7212486B2 (ja) 2018-09-26 2018-09-26 位置推定装置
EP19864740.6A EP3859476A4 (en) 2018-09-26 2019-03-13 POSITION ESTIMATION DEVICE
PCT/JP2019/010421 WO2020066069A1 (ja) 2018-09-26 2019-03-13 位置推定装置
US17/280,830 US20220009552A1 (en) 2018-09-26 2019-03-13 Position estimation apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018180913A JP7212486B2 (ja) 2018-09-26 2018-09-26 位置推定装置

Publications (2)

Publication Number Publication Date
JP2020052687A JP2020052687A (ja) 2020-04-02
JP7212486B2 true JP7212486B2 (ja) 2023-01-25

Family

ID=69951292

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018180913A Active JP7212486B2 (ja) 2018-09-26 2018-09-26 位置推定装置

Country Status (4)

Country Link
US (1) US20220009552A1 (ja)
EP (1) EP3859476A4 (ja)
JP (1) JP7212486B2 (ja)
WO (1) WO2020066069A1 (ja)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7230769B2 (ja) * 2019-10-11 2023-03-01 トヨタ自動車株式会社 駐車支援装置
JP7160014B2 (ja) * 2019-10-11 2022-10-25 トヨタ自動車株式会社 駐車支援装置
JP7456857B2 (ja) * 2020-06-08 2024-03-27 フォルシアクラリオン・エレクトロニクス株式会社 自己位置推定装置
JP2022059958A (ja) * 2020-10-02 2022-04-14 フォルシアクラリオン・エレクトロニクス株式会社 ナビゲーション装置
JP2023097021A (ja) * 2021-12-27 2023-07-07 本田技研工業株式会社 制御装置、及び移動体
US20230278593A1 (en) * 2022-03-01 2023-09-07 Mitsubishi Electric Research Laboratories, Inc. System and Method for Parking an Autonomous Ego-Vehicle in a Dynamic Environment of a Parking Area
CN115959122B (zh) * 2023-03-10 2023-06-02 杭州枕石智能科技有限公司 泊车场景下车辆定位方法、装置、电子设备及存储介质

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014142241A (ja) 2013-01-23 2014-08-07 Denso Corp 3次元位置推定装置、車両制御装置、および3次元位置推定方法
JP2015153321A (ja) 2014-02-18 2015-08-24 日本放送協会 画像処理装置、画像処理方法及びプログラム
WO2016208484A1 (ja) 2015-06-26 2016-12-29 ソニー株式会社 発光装置、表示装置および照明装置
JP2017111606A (ja) 2015-12-16 2017-06-22 カシオ計算機株式会社 自律移動装置、自律移動方法及びプログラム

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7774158B2 (en) * 2002-12-17 2010-08-10 Evolution Robotics, Inc. Systems and methods for landmark generation for visual simultaneous localization and mapping
JP4919036B2 (ja) * 2007-01-30 2012-04-18 アイシン精機株式会社 移動物体認識装置
JP5380994B2 (ja) * 2008-10-10 2014-01-08 日産自動車株式会社 駐車支援装置及び駐車支援方法
US9926008B2 (en) * 2011-04-19 2018-03-27 Ford Global Technologies, Llc Trailer backup assist system with waypoint selection
KR102016551B1 (ko) * 2014-01-24 2019-09-02 한화디펜스 주식회사 위치 추정 장치 및 방법
US10600202B2 (en) * 2015-06-23 2020-03-24 Sony Corporation Information processing device and method, and program
JP6514624B2 (ja) * 2015-11-02 2019-05-15 クラリオン株式会社 障害物検知装置
JP6649191B2 (ja) * 2016-06-29 2020-02-19 クラリオン株式会社 車載処理装置
US10268201B2 (en) * 2017-02-28 2019-04-23 Mitsubishi Electric Research Laboratories, Inc. Vehicle automated parking system and method
JP6834685B2 (ja) * 2017-03-29 2021-02-24 アイシン精機株式会社 車両誘導装置、方法及びプログラム
JP6632564B2 (ja) 2017-04-12 2020-01-22 日本電信電話株式会社 違法コンテンツ探索装置、違法コンテンツ探索方法、及びプログラム
KR102275310B1 (ko) * 2017-04-20 2021-07-12 현대자동차주식회사 자동차 주변의 장애물 검출 방법
KR102466727B1 (ko) * 2017-07-07 2022-11-16 닛산 지도우샤 가부시키가이샤 주차 지원 방법 및 주차 제어 장치
JP6926976B2 (ja) * 2017-11-15 2021-08-25 株式会社アイシン 駐車支援装置及びコンピュータプログラム
US10949996B2 (en) * 2018-01-16 2021-03-16 Aisin Seiki Kabushiki Kaisha Self-position estimation apparatus

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014142241A (ja) 2013-01-23 2014-08-07 Denso Corp 3次元位置推定装置、車両制御装置、および3次元位置推定方法
JP2015153321A (ja) 2014-02-18 2015-08-24 日本放送協会 画像処理装置、画像処理方法及びプログラム
WO2016208484A1 (ja) 2015-06-26 2016-12-29 ソニー株式会社 発光装置、表示装置および照明装置
JP2017111606A (ja) 2015-12-16 2017-06-22 カシオ計算機株式会社 自律移動装置、自律移動方法及びプログラム

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
青木 孝文 ほか,静止画オンライン三次元計測システムの開発,三次元画像センシングの新展開―リアルタイム・高精度に向けた要素技術から産業応用まで,東京: 株式会社 エヌ・ティー・エス,2015年,第2編第4章第1節, p. 125-137,特に3.2.3「バンドル調整によるカメラパラメータの最適化」

Also Published As

Publication number Publication date
EP3859476A1 (en) 2021-08-04
EP3859476A4 (en) 2022-07-13
WO2020066069A1 (ja) 2020-04-02
JP2020052687A (ja) 2020-04-02
US20220009552A1 (en) 2022-01-13

Similar Documents

Publication Publication Date Title
JP7212486B2 (ja) 位置推定装置
US10242576B2 (en) Obstacle detection device
JP6110256B2 (ja) 対象物推定装置および対象物推定方法
US11393123B2 (en) Information processing device, control method therefor, non-transitory computer-readable storage medium, and driving control system
US10007998B2 (en) Image processor, apparatus, and control system for correction of stereo images
KR101776621B1 (ko) 에지 기반 재조정을 이용하여 이동 로봇의 위치를 인식하기 위한 장치 및 그 방법
EP2757527B1 (en) System and method for distorted camera image correction
JP6165745B2 (ja) 車載搭載型のコンピュータ・ベース視覚システムの校正方法
US20170259830A1 (en) Moving amount derivation apparatus
US11814056B2 (en) Travel amount estimation apparatus
JP7270499B2 (ja) 異常検出装置、異常検出方法、姿勢推定装置、および、移動体制御システム
JP7445415B2 (ja) 姿勢推定装置、異常検出装置、補正装置、および、姿勢推定方法
JP7456857B2 (ja) 自己位置推定装置
KR101956312B1 (ko) Rgb-d 카메라 포즈 추정의 정확도 향상을 위한 깊이 맵 필터링 및 다중-레벨 예측자-수정자 방법
JP7303064B2 (ja) 画像処理装置、および、画像処理方法
JP6184447B2 (ja) 推定装置及び推定プログラム
JP6747176B2 (ja) 画像処理装置、撮影装置、プログラム、機器制御システム及び機器
JP2019212203A (ja) 3dモデル作成システム
JP7223587B2 (ja) 物体運動推定方法及び物体運動推定装置
JP2022138037A (ja) 情報処理装置、情報処理方法およびプログラム
JP7236352B2 (ja) 姿勢推定装置、および、姿勢推定方法
CN115128655B (zh) 自动驾驶车辆的定位方法和装置、电子设备和存储介质
Winkens et al. Optical truck tracking for autonomous platooning
JP7508288B2 (ja) 情報処理装置、情報処理装置の制御方法なおよびプログラム
WO2024009377A1 (ja) 情報処理装置、自己位置推定方法、及び非一時的なコンピュータ可読媒体

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210726

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220222

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220422

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20220726

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20221013

C60 Trial request (containing other claim documents, opposition documents)

Free format text: JAPANESE INTERMEDIATE CODE: C60

Effective date: 20221013

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20221031

C21 Notice of transfer of a case for reconsideration by examiners before appeal proceedings

Free format text: JAPANESE INTERMEDIATE CODE: C21

Effective date: 20221101

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20221220

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230113

R150 Certificate of patent or registration of utility model

Ref document number: 7212486

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150