JP7210780B2 - Austenitic stainless steel sheet and manufacturing method thereof - Google Patents

Austenitic stainless steel sheet and manufacturing method thereof Download PDF

Info

Publication number
JP7210780B2
JP7210780B2 JP2021571373A JP2021571373A JP7210780B2 JP 7210780 B2 JP7210780 B2 JP 7210780B2 JP 2021571373 A JP2021571373 A JP 2021571373A JP 2021571373 A JP2021571373 A JP 2021571373A JP 7210780 B2 JP7210780 B2 JP 7210780B2
Authority
JP
Japan
Prior art keywords
less
steel sheet
cold rolling
nitric acid
stainless steel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2021571373A
Other languages
Japanese (ja)
Other versions
JPWO2022049796A1 (en
Inventor
栄司 土屋
雄太 松村
遼介 小川
修平 蛭田
裕樹 太田
悠太 児玉
正太 廣瀬
愛 ダイアナ 内野
浩志 和田
邦彦 小久保
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TOKUSHU KINZOKU EXCEL CO Ltd
Original Assignee
TOKUSHU KINZOKU EXCEL CO Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TOKUSHU KINZOKU EXCEL CO Ltd filed Critical TOKUSHU KINZOKU EXCEL CO Ltd
Publication of JPWO2022049796A1 publication Critical patent/JPWO2022049796A1/ja
Application granted granted Critical
Publication of JP7210780B2 publication Critical patent/JP7210780B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/46Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for sheet metals
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C30/00Alloys containing less than 50% by weight of each constituent
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/58Ferrous alloys, e.g. steel alloys containing chromium with nickel with more than 1.5% by weight of manganese
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25FPROCESSES FOR THE ELECTROLYTIC REMOVAL OF MATERIALS FROM OBJECTS; APPARATUS THEREFOR
    • C25F1/00Electrolytic cleaning, degreasing, pickling or descaling
    • C25F1/02Pickling; Descaling
    • C25F1/04Pickling; Descaling in solution
    • C25F1/06Iron or steel

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Heat Treatment Of Sheet Steel (AREA)

Description

本発明は、自動車部品、電子機器類、バネ、その他工業部品用として好適なオーステナイト系ステンレス鋼板およびその製造方法に係り、耐食性、とくに耐孔食性の向上に関する。 TECHNICAL FIELD The present invention relates to an austenitic stainless steel sheet suitable for automobile parts, electronic equipment, springs and other industrial parts, and a method for producing the same, and relates to improvement in corrosion resistance, particularly pitting corrosion resistance.

フェライト系ステンレス鋼板の耐食性向上方法として、例えば、特許文献1に、「延性、耐摩耗性および耐銹性に優れた電気材料用フェライト系ステンレス鋼の製造方法」が記載されている。特許文献1に記載された技術では、仕上げ焼鈍後、10%以上の冷間圧延を施し、再加熱処理を行ったのち、例えば10%硝酸(20℃)中での硝酸電解を施して表面のスケールを除去することにより、耐食性を劣化させることなく、延性、耐摩耗性、および耐銹性に優れたフェライト系ステンレス鋼を製造できるとしている。 As a method for improving the corrosion resistance of a ferritic stainless steel sheet, for example, Patent Literature 1 describes a method for producing ferritic stainless steel for electrical materials having excellent ductility, wear resistance and rust resistance. In the technique described in Patent Document 1, after finish annealing, cold rolling of 10% or more is performed, reheating is performed, and then, for example, nitric acid electrolysis is performed in 10% nitric acid (20 ° C.) to improve the surface. By removing the scale, ferritic stainless steel with excellent ductility, wear resistance, and rust resistance can be produced without deteriorating corrosion resistance.

また、特許文献2には、「耐銹性に優れたフェライト系ステンレス鋼光輝焼鈍材の製造方法」が記載されている。特許文献2に記載された技術では、フェライト系ステンレス鋼板を焼鈍後、中性塩電解法および硝酸電解法を用いて脱スケールした後、冷間圧延を行い、さらに光輝焼鈍することにより、従来よりも、耐銹性に優れたフェライト系ステンレス鋼光輝焼鈍材が製造できるとしている。なお、硝酸電解法は、15%硝酸(50℃)中で交番電解した旨の記載がある。 In addition, Patent Document 2 describes a "method for producing a ferritic stainless steel brightly annealed material having excellent rust resistance". In the technique described in Patent Document 2, a ferritic stainless steel sheet is annealed, descaled using a neutral salt electrolysis method and a nitric acid electrolysis method, cold rolled, and then brightly annealed. It is also possible to produce ferritic stainless steel bright annealed materials with excellent rust resistance. The nitric acid electrolysis method is described as alternating electrolysis in 15% nitric acid (50°C).

また、特許文献3には、「耐食性の良好なステンレス鋼の製造方法」が記載されている。特許文献3に記載された技術では、Cr:11wt%以上35wt%以下を含有し、O:0.01wt%以下、S:0.01wt%以下に低減したステンレス鋼に対して、酸化剤を含む酸性水溶液を研磨液に用いて、機械研摩を行うことにより、耐食性が向上したステンレス鋼となるとしている。特許文献3に記載された技術では、機械研磨としてラッピング研磨、ベルト研磨を用いている。 In addition, Patent Document 3 describes a "method for producing stainless steel with good corrosion resistance". In the technique described in Patent Document 3, an acidic aqueous solution containing an oxidizing agent is applied to stainless steel containing Cr: 11 wt% or more and 35 wt% or less, O: 0.01 wt% or less, and S: 0.01 wt% or less. is used as a polishing liquid to perform mechanical polishing to obtain stainless steel with improved corrosion resistance. The technique described in Patent Document 3 uses lapping polishing and belt polishing as mechanical polishing.

一方、オーステナイト系ステンレス鋼板は通常、熱処理後に冷間圧延することで機械的性質を向上させており、ある程度の耐孔食性は有している。しかし、塩素イオンを含む環境下や隙間構造、高温高湿といった環境下では、孔食が発生しやすい。そのため、このような環境下では、CrやMoを増加した鋼種(SUS316L等)が使用されることが多い。しかし、このような鋼種は高価であり、コスト面から、全ての環境下で使用できるものではない。 On the other hand, austenitic stainless steel sheets are generally cold-rolled after heat treatment to improve mechanical properties and have a certain degree of pitting resistance. However, pitting corrosion is likely to occur in an environment containing chloride ions, in a crevice structure, or in an environment of high temperature and high humidity. Therefore, under such an environment, steel types with increased Cr and Mo (such as SUS316L) are often used. However, such steel grades are expensive and cannot be used in all environments from the standpoint of cost.

一般的に、オーステナイト系ステンレス鋼板の製造時には、内部応力除去、固溶化、その他機械的特性改善のために、熱処理が行われる。しかし、窒素と水素の混合ガス中又は水素ガス雰囲気中などの還元雰囲中で熱処理を行っても、完全には酸化を防ぐことができず、表層に酸化被膜ができることがあり、表層直下にCr欠乏層ができて、耐食性が劣化することがある。そのため、耐食性を回復するために、従来から、還元性雰囲気中での熱処理後に、酸性液中に浸漬する処理を行ったり、電解研磨して耐食性を回復させることが行われている。 In general, during the production of an austenitic stainless steel sheet, heat treatment is performed for internal stress relief, solutionization, and other improvements in mechanical properties. However, even if heat treatment is performed in a reducing atmosphere such as in a mixed gas of nitrogen and hydrogen or in a hydrogen gas atmosphere, oxidation cannot be completely prevented, and an oxide film may form on the surface layer. A Cr-deficient layer may form, degrading corrosion resistance. Therefore, in order to restore the corrosion resistance, conventionally, after heat treatment in a reducing atmosphere, a treatment of immersion in an acid solution or electropolishing is performed to restore the corrosion resistance.

特開平04-371518号公報Japanese Patent Application Laid-Open No. 04-371518 特開平11-50202号公報Japanese Patent Application Laid-Open No. 11-50202 特開平03-193885号公報Japanese Patent Application Laid-Open No. 03-193885

特許文献1及び特許文献2に記載された技術は、いずれもフェライト系ステンレス鋼板の耐食性向上に関するものであり、特許文献1及び特許文献2には、オーステナイト系ステンレス鋼板についての記載はない。 The techniques described in Patent Literature 1 and Patent Literature 2 are both related to improving the corrosion resistance of ferritic stainless steel sheets, and Patent Literatures 1 and 2 do not describe an austenitic stainless steel sheet.

また、特許文献3に記載された技術は、オーステナイト系ステンレス鋼板へも適用するとしているが、耐食性向上のために、酸性水溶液を用いてラッピング研摩等の機械研摩を行うことをその要件としている。オーステナイト系ステンレス鋼板では、表層の研摩時に機械的性質が変わる可能性があり、また表層の研摩により耐食性が劣化する懸念もある。さらに、表層の粗さを規定する製品に対しては、ラッピング研摩では対応できないという問題もある。 In addition, the technique described in Patent Document 3 is said to be applied to austenitic stainless steel sheets, but in order to improve corrosion resistance, it requires mechanical polishing such as lapping polishing using an acidic aqueous solution. In an austenitic stainless steel sheet, the mechanical properties may change when the surface layer is polished, and there is also concern that the corrosion resistance may deteriorate due to the surface layer polishing. Furthermore, there is also the problem that lapping and polishing cannot be applied to products that require surface roughness.

本発明は、かかる従来技術の問題に鑑みてなされたものであり、耐食性、とくに耐孔食性に優れたオーステナイト系ステンレス鋼板およびその製造方法を提供することを目的とする。 The present invention has been made in view of the problems of the prior art, and an object of the present invention is to provide an austenitic stainless steel sheet excellent in corrosion resistance, particularly pitting resistance, and a method for producing the same.

本発明者らは、上記した目的を達成するために、オーステナイト系ステンレス鋼板の耐孔食性に及ぼす各種要因について鋭意検討した。 In order to achieve the above object, the present inventors diligently studied various factors affecting the pitting corrosion resistance of austenitic stainless steel sheets.

その結果、熱延鋼板に冷間圧延を施して冷延鋼板とするに際し、1回又は複数回の冷間圧延を施して冷延鋼板を製造するに当たり、前記冷間圧延のうちの最終の冷間圧延の後に、あるいは前記冷間圧延のうちの最終以外の冷間圧延の後に、特定条件の熱処理を施したのちに、適正条件の希硝酸電解処理を施すことにより、鋼板表面の孔食発生電位が高くなり、従来対応できなかった環境下においても、耐孔食性が向上することを知見した。 As a result, when cold-rolling a hot-rolled steel sheet to produce a cold-rolled steel sheet, cold-rolling is performed once or multiple times to produce a cold-rolled steel sheet. After inter-rolling, or after cold-rolling other than the final one of the cold-rollings, heat treatment under specific conditions is performed, and then dilute nitric acid electrolytic treatment under appropriate conditions is performed to prevent the occurrence of pitting corrosion on the surface of the steel sheet. It was found that the pitting corrosion resistance is improved even in environments where the electric potential is increased and the conventional environment could not be handled.

まず、本発明の基礎となった実験結果について説明する。 First, the experimental results that form the basis of the present invention will be described.

質量%で、Cr:10.5~23.2%、Ni:0~35.1%、Mo:0~7.00%、N:0.02~0.07%、C:0.01~0.10%、Si:0.34~0.67%、Mn:0.65~1.10%を含む組成の焼鈍・酸洗済みの熱延鋼板(板厚:2.5mm)に、3回の冷間圧延を施して、冷延鋼板(板厚:0.1mm)とした。冷延鋼板を製造するに当たり、最終の冷間圧延後、又は3回目の冷間圧延後に希硝酸電解を施す際の2回目の冷間圧延後に施した熱処理は、加熱温度:145~720℃で、20s~49hr保持する処理とし、上記以外の熱処理は850~1050℃、3~5min保持する処理とした。そして、得られた冷延鋼板にさらに、希硝酸電解処理を施したのち、表層を研磨せずに、JIS G 0577の規定に準拠して、各鋼板表面の孔食発生電位Vcを測定した。なお、孔食発生電位の測定では、試験溶液(塩化ナトリウム水溶液)の脱気は実施しなかった。照合電極はAg/AgCl(塩化銀)電極とした。また、一部の鋼板については希硝酸電解処理は実施しなかった。 % by mass, Cr: 10.5-23.2%, Ni: 0-35.1%, Mo: 0-7.00%, N: 0.02-0.07%, C: 0.01-0.10%, Si: 0.34-0.67%, Mn: 0.65- An annealed and pickled hot-rolled steel sheet (thickness: 2.5 mm) with a composition containing 1.10% was subjected to cold rolling three times to obtain a cold-rolled steel sheet (thickness: 0.1 mm). In manufacturing the cold-rolled steel sheet, the heat treatment applied after the final cold rolling or after the second cold rolling when dilute nitric acid electrolysis is applied after the third cold rolling is performed at a heating temperature of 145 to 720 ° C. , 20 seconds to 49 hours, and heat treatments other than the above were held at 850 to 1050° C. for 3 to 5 minutes. The obtained cold-rolled steel sheets were further subjected to dilute nitric acid electrolytic treatment, and then the pitting potential Vc of each steel sheet surface was measured in accordance with JIS G 0577 without polishing the surface layer. In the measurement of the pitting potential, the test solution (sodium chloride aqueous solution) was not degassed. Ag/AgCl (silver chloride) electrodes were used as reference electrodes. Also, some of the steel sheets were not subjected to dilute nitric acid electrolytic treatment.

希硝酸電解処理の条件は、硝酸濃度:3%の希硝酸水溶液(液温:60℃)中で、電流密度:±30mA/cm2で、陽極・陰極電解を合計で20s間、とした。得られた孔食発生電位Vcと、孔食指数X(=Cr+3.3Mo)との関係を図1に示す。The dilute nitric acid electrolytic treatment was performed in a diluted nitric acid aqueous solution (liquid temperature: 60°C) with a nitric acid concentration of 3%, current density: ±30 mA/cm 2 , and anodic and cathodic electrolysis for a total of 20 seconds. FIG. 1 shows the relationship between the obtained pitting initiation potential Vc and the pitting index X (=Cr+3.3Mo).

図1から、希硝酸電解処理を、冷間圧延後の熱処理と、組み合わせて施した場合(●印)は、希硝酸電解処理を施さず熱処理のみを施した場合(〇印)に比べて、孔食発生電位が高くなることがわかる。すなわち、希硝酸電解処理と熱処理とを組み合わせることが、耐孔食性の向上に有効であることになる。なお、孔食指数X(=Cr+3.3Mo)は、ステンレス鋼の孔食発生の難易度を表す指数である。孔食指数が高いほど耐孔食性が高くなる傾向を示す。 From FIG. 1, when dilute nitric acid electrolytic treatment is combined with heat treatment after cold rolling (● mark), compared to the case where only heat treatment is applied without dilute nitric acid electrolytic treatment (○ mark), It can be seen that the pitting initiation potential increases. That is, a combination of dilute nitric acid electrolytic treatment and heat treatment is effective in improving pitting corrosion resistance. The pitting index X (=Cr+3.3Mo) is an index representing the degree of difficulty of occurrence of pitting corrosion in stainless steel. The higher the pitting index, the higher the pitting resistance.

この実験結果から、希硝酸電解処理による孔食発生電位増加の閾値として、孔食指数X(=Cr+3.3Mo)との関係で、次式
A = 0.039X3-5.2X2+232X-2311
(ここで、X=Cr+3.3Mo)
を定義した。この式は、希硝酸電解前の孔食電位を上回りつつ、希硝酸電解後の孔食発生電位の数値をプロットした際、それらの点の下限より小さい境界近辺の値で作成された近似曲線である。なお、Moを含有しない場合には、当該元素は0%として、Xを算出するものとする。
From the results of this experiment, the following formula A = 0.039X 3 -5.2X 2 +232X - 2311 is obtained as the threshold for the increase in pitting potential due to dilute nitric acid electrolytic treatment in relation to the pitting index X (=Cr + 3.3Mo).
(Here, X=Cr+3.3Mo)
defined. This formula is an approximation curve created by plotting the values of the pitting potential after dilute nitric acid electrolysis while exceeding the pitting potential before dilute nitric acid electrolysis, and using the values near the boundary that are smaller than the lower limit of those points. be. When Mo is not contained, X is calculated assuming that the element is 0%.

そして、ステンレス鋼板表面の孔食発生電位Vcが、上記したA値を超えて高くなる場合を、耐孔食性が向上しているとした。なお、孔食指数が15.0未満である鋼板では、希硝酸電解処理と熱処理とを組み合わせても、上記したA値を超えて、孔食発生電位の増加は認められなかった。このため、Xの範囲を15.0~50.0に限定した。 The pitting corrosion resistance was considered to be improved when the pitting corrosion initiation potential Vc of the surface of the stainless steel plate exceeded the above-mentioned A value. It should be noted that in steel sheets having a pitting index of less than 15.0, even if dilute nitric acid electrolytic treatment and heat treatment were combined, no increase in pitting potential beyond the above-mentioned A value was observed. Therefore, the range of X is limited to 15.0-50.0.

このようなことから、熱延鋼板に、1回又は複数回の冷間圧延を施して冷延鋼板を製造するに当たり、前記冷間圧延のうちの最終の冷間圧延の後に、あるいは前記冷間圧延のうちの最終以外の冷間圧延の後に、特定条件の熱処理を施し、適正条件の希硝酸電解処理を施すことにより、鋼板表面の孔食発生電位が高くなり、従来対応できなかった環境下においても適用可能な、優れた耐孔食性を有するステンレス鋼板(ステンレス冷延鋼板)とすることができることを知見した。なお、希硝酸電解処理の前又は後に、冷間圧延を施しても問題はないことを知見している。 For this reason, when cold-rolling a hot-rolled steel sheet one or more times to produce a cold-rolled steel sheet, after the final cold rolling of the cold rolling, or After cold rolling other than the final rolling, heat treatment under specific conditions and dilute nitric acid electrolytic treatment under appropriate conditions increase the potential for pitting corrosion on the surface of the steel sheet, creating an environment that could not previously be handled. It was found that a stainless steel plate (stainless cold-rolled steel plate) having excellent pitting corrosion resistance, which can be applied even in It has been found that there is no problem even if cold rolling is performed before or after dilute nitric acid electrolytic treatment.

本発明は、かかる知見に基づき、さらに検討を加えて完成したものである。すなわち、本発明の要旨はつぎのとおりである。
[1]質量%で、
C:0.40%以下、 Si:1.00%以下、
Mn:2.00%以下、 P:0.045%以下、
S:0.030%以下、 Ni:3.5~36.0%、
Cr:15.00~30.00%、 Mo:0~7.0%、
N:0.25%以下
を含有し、かつCr、Moを次(2)式
X=Cr+3.3Mo……(2)
ここで、Cr、Mo:各元素の含有量(質量%)
で定義されるXが15.0~50.0を満足するように含み、残部Feおよび不可避的不純物からなる組成を有し、かつ表面の孔食発生電位Vcが、次(1)式
Vc > 0.039X3-5.2X2+232X-2311 ……(1)
を満足することを特徴とするオーステナイト系ステンレス鋼板。
[2]上記組成に加えてさらに、質量%で、Ti:0.01~1.00%、Nb:0.01~1.00%、Cu:0.01~3.00%、Al:0.0001~1.50%、Ca:0.001~0.01%、Mg:0.001~0.01%、V:0.01~1.00%、Co:0.01~0.5%、W:0.01~1.0%、B:0.001~0.01%%のうちから選ばれた1種または2種以上を含有する組成とすることを特徴とする[1]に記載のオーステナイト系ステンレス鋼板。
[3]鋼板の表面粗さがISO 25178の規定に準拠したSaで0.80μm以下であることを特徴とする[1]または[2]に記載のオーステナイト系ステンレス鋼板。
[4][1]または[2]に記載の組成を有する熱延鋼板に、1回又は複数回の冷間圧延を施して冷延鋼板を製造するに当たり、
前記冷間圧延のうちの最終の冷間圧延の後に、あるいは前記冷間圧延のうちの最終以外の冷間圧延の後に、150~600℃の範囲の温度で30s~10min保持する熱処理を施し、最終に、希硝酸電解処理を施すことを特徴とするオーステナイト系ステンレス鋼板の製造方法。
[5][1]または[2]に記載の組成を有する熱延鋼板に、1回又は複数回の冷間圧延を施して冷延鋼板を製造するに当たり、
前記冷間圧延のうちの最終の冷間圧延の後に、あるいは前記冷間圧延のうちの最終以外の冷間圧延の後に、150~700℃の範囲の温度で、15min~48hr保持する熱処理を施し、最終に、希硝酸電解処理を施すことを特徴とするオーステナイト系ステンレス鋼板の製造方法。
[6]前記希硝酸電解処理が、硝酸濃度:3~10%、温度:40~80℃の希硝酸水溶液中で、電流密度:±10~80mA/cm2で、陰極および陽極電解を合計で10~60s行う処理であることを特徴とする[4]または[5]に記載のオーステナイト系ステンレス鋼板の製造方法。
The present invention has been completed based on these findings and further studies. That is, the gist of the present invention is as follows.
[1] % by mass,
C: 0.40% or less Si: 1.00% or less
Mn: 2.00% or less, P: 0.045% or less,
S: 0.030% or less, Ni: 3.5-36.0%,
Cr: 15.00-30.00%, Mo: 0-7.0%,
N: Contains 0.25% or less, and Cr and Mo are expressed by the following (2) formula
X=Cr+3.3Mo……(2)
Where, Cr, Mo: content of each element (% by mass)
X defined in the following formula (1):
Vc > 0.039X3-5.2X2 + 232X-2311 ……(1)
An austenitic stainless steel sheet characterized by satisfying
[2] In addition to the above composition, in mass%, Ti: 0.01 to 1.00%, Nb: 0.01 to 1.00%, Cu: 0.01 to 3.00%, Al: 0.0001 to 1.50%, Ca: 0.001 to 0.01%, Mg : 0.001-0.01%, V: 0.01-1.00%, Co: 0.01-0.5%, W: 0.01-1.0%, B: 0.001-0.01% The austenitic stainless steel sheet according to [1], characterized in that
[3] The austenitic stainless steel sheet according to [1] or [2], characterized in that the surface roughness of the steel sheet is 0.80 μm or less in terms of Sa according to ISO 25178.
[4] In producing a cold-rolled steel sheet by subjecting the hot-rolled steel sheet having the composition described in [1] or [2] to cold rolling once or multiple times,
After the final cold rolling of the cold rolling or after the cold rolling other than the final cold rolling of the cold rolling, heat treatment is performed at a temperature in the range of 150 to 600 ° C. for 30 seconds to 10 minutes, Finally, a method for producing an austenitic stainless steel sheet, characterized in that dilute nitric acid electrolytic treatment is applied.
[5] In producing a cold-rolled steel sheet by subjecting the hot-rolled steel sheet having the composition described in [1] or [2] to cold rolling once or multiple times,
After the final cold rolling of the cold rolling or after the cold rolling other than the final cold rolling of the cold rolling, heat treatment is performed at a temperature in the range of 150 to 700 ° C. for 15 minutes to 48 hours. , Finally, a method for producing an austenitic stainless steel sheet, characterized in that dilute nitric acid electrolytic treatment is applied.
[6] The dilute nitric acid electrolysis is carried out in a dilute nitric acid aqueous solution with a nitric acid concentration of 3 to 10% and a temperature of 40 to 80°C, a current density of ±10 to 80 mA/cm 2 , and a total of cathodic and anodic electrolysis. The method for producing an austenitic stainless steel sheet according to [4] or [5], characterized in that the treatment is performed for 10 to 60 seconds.

本発明によれば、表面の孔食発生電位が高くなり、耐孔食性に優れたステンレス鋼板とすることができ、産業上格段の効果を奏する。また、本発明によれば、例えば、孔食指数の低い鋼板に関しては、従来では対応できなかったような腐食環境下においても適用可能となり、また、孔食指数の高い鋼板に関しては、孔食発生電位が1000mVを超え、ハステロイ等のニッケル基超合金並みの耐食性が得られるようになるという効果もある。なお、本発明によれば、オーステナイト系ステンレス鋼板に限らず、析出硬化系ステンレス鋼板やJIS G 4305に規定される二相ステンレス鋼板においても同様の効果を奏する。 ADVANTAGE OF THE INVENTION According to this invention, the surface pitting potential becomes high, and a stainless steel sheet having excellent pitting corrosion resistance can be obtained. In addition, according to the present invention, for example, steel sheets with a low pitting index can be applied even under corrosive environments that could not be dealt with in the past, and steel sheets with a high pitting index can be subjected to pitting corrosion. There is also the effect that the potential exceeds 1000 mV and corrosion resistance equivalent to nickel-based superalloys such as Hastelloy can be obtained. According to the present invention, not only the austenitic stainless steel sheet, but also the precipitation hardening stainless steel sheet and the duplex stainless steel sheet specified in JIS G 4305 exhibit similar effects.

孔食発生電位と孔食指数との関係を示すグラフである。4 is a graph showing the relationship between pitting initiation potential and pitting index.

本発明は、オーステナイト系ステンレス鋼板で、質量%で、
C:0.40%以下、 Si:1.00%以下、
Mn:2.00%以下、 P:0.045%以下、
S:0.030%以下、 Ni:3.5~36.0%、
Cr:15.00~30.00%、 Mo:0~7.0%、
N:0.25%以下
を含有し、かつCr、MoをX=Cr+3.3Moが15.0~50.0を満足するように含み、残部Feおよび不可避的不純物からなる組成を有する。以下、組成に係る質量%は、単に%で記す。
The present invention is an austenitic stainless steel sheet, in mass %,
C: 0.40% or less Si: 1.00% or less
Mn: 2.00% or less, P: 0.045% or less,
S: 0.030% or less, Ni: 3.5-36.0%,
Cr: 15.00-30.00%, Mo: 0-7.0%,
It contains N: 0.25% or less, contains Cr and Mo such that X=Cr+3.3Mo satisfies 15.0 to 50.0, and the balance is Fe and unavoidable impurities. Hereinafter, the mass % related to the composition is simply described as %.

まず、組成の限定理由について説明する。 First, the reasons for limiting the composition will be explained.

C:0.40%以下
Cは、少量の含有で、強度等の機械的特性や耐摩耗性を向上させる元素である。このような効果を得るためには、0.001%以上含有することが好ましい。一方、0.40%超えて含有すると、結晶粒界にCr炭化物が生成しやすくなり、粒界腐食の発生を招きやすい。さらに0.40%超えて含有すると、延性を低下させプレス加工性を阻害する。このため、Cは0.40%以下に限定した。なお、好ましくは0.01~0.20%である。
C: 0.40% or less
C is an element that improves mechanical properties such as strength and wear resistance even when contained in a small amount. In order to obtain such effects, it is preferable to contain 0.001% or more. On the other hand, when the Cr content exceeds 0.40%, Cr carbides tend to form at grain boundaries, and intergranular corrosion tends to occur. Furthermore, when the content exceeds 0.40%, ductility is lowered and press workability is impaired. Therefore, C is limited to 0.40% or less. Incidentally, it is preferably 0.01 to 0.20%.

Si:1.00%以下
Siは、溶鋼の脱酸剤として作用するとともに、弾性限や引張強さ等の強度増加に寄与する元素である。このような効果を得るためには、Siは0.10%以上含有することが好ましい。一方、1.00%を超えて含有すると、熱間圧延時に耳割れが発生し製品歩留りを低下させる。このため、Siは1.00%以下に限定した。
Si: 1.00% or less
Si is an element that acts as a deoxidizing agent for molten steel and contributes to an increase in strength such as elastic limit and tensile strength. In order to obtain such effects, the Si content is preferably 0.10% or more. On the other hand, if the content exceeds 1.00%, edge cracking occurs during hot rolling, reducing product yield. Therefore, Si is limited to 1.00% or less.

Mn:2.00%以下
Mnは、引張強さ等の強度増加や靭性向上に寄与するとともに、溶鋼の脱酸に有効に作用する元素である。このような効果を得るためには0.10%以上含有することが好ましい。一方、2.00%を超えて含有すると、鋼中にMnS等の介在物が増加し、加工性に悪影響を及ぼすため、Mnは2.00%以下に限定した。
Mn: 2.00% or less
Mn is an element that contributes to an increase in strength such as tensile strength and an improvement in toughness, and also effectively acts to deoxidize molten steel. In order to obtain such effects, the content is preferably 0.10% or more. On the other hand, when the Mn content exceeds 2.00%, inclusions such as MnS increase in the steel and adversely affect the workability, so Mn is limited to 2.00% or less.

P:0.045%以下、S:0.030%以下
P、Sは、鋼中に不可避的に存在し、機械的特性に悪影響を及ぼす元素である。このため、P、Sは、できるだけ低減することが望ましいが、Pは0.045%までの含有、Sは0.030%までの含有であれば、実用的に問題はなく、許容できる。このため、P:0.045%以下、S:0.030%以下にそれぞれ限定した。なお、好ましくはP:0.030%以下、S:0.010%以下である。
P: 0.045% or less, S: 0.030% or less
P and S are elements that inevitably exist in steel and adversely affect mechanical properties. Therefore, it is desirable to reduce P and S as much as possible, but there is practically no problem if the content of P is up to 0.045% and the content of S is up to 0.030%, and is acceptable. Therefore, P: 0.045% or less, S: 0.030% or less, respectively. P: 0.030% or less and S: 0.010% or less are preferable.

Ni:3.5~36.0%
Niは、耐食性の向上や、靱性、強度、耐熱性の向上にも寄与する元素である。このような効果を得るためには、3.5%以上の含有を必要とする。3.5%未満の含有では、室温での組織がフェライト相となる。一方、36.0%を超えて含有すると、加工性が低下し、また溶接性も低下する。このため、Niは3.5~36.0%の範囲に限定した。
Ni: 3.5-36.0%
Ni is an element that contributes to improving corrosion resistance, toughness, strength, and heat resistance. In order to obtain such an effect, the content of 3.5% or more is required. When the content is less than 3.5%, the structure at room temperature becomes a ferrite phase. On the other hand, when the content exceeds 36.0%, the workability is lowered and the weldability is also lowered. Therefore, Ni is limited to the range of 3.5-36.0%.

Cr:15.00~30.00%
Crは、Niとともに、耐食性の向上に寄与し、さらにNiとともに、室温での組織をオーステナイト相とする。このような効果を得るためには、Crは15.00%以上の含有を必要とする。一方、30.00%を超えて含有すると、延性が低下するとともに、材料コストの高騰を招く。このため、Crは15.00~30.00%の範囲に限定した。なお、好ましくは16.00~30.00%である。
Cr: 15.00-30.00%
Cr, together with Ni, contributes to the improvement of corrosion resistance, and together with Ni, changes the structure at room temperature to an austenite phase. In order to obtain such effects, the Cr content must be 15.00% or more. On the other hand, when the content exceeds 30.00%, the ductility is lowered and the material cost rises. Therefore, Cr is limited to the range of 15.00-30.00%. Incidentally, it is preferably 16.00 to 30.00%.

Mo:0~7.0%
Moは、耐孔食性の向上に寄与するとともに、機械的特性の向上にも寄与する元素であり0%を含み、必要に応じて含有できる。このような効果を得るために含有する場合は、0.001%以上含有することが好ましい。Moの含有量が0.001%未満では、機械的特性が若干低下する。一方、7.0%を超える含有は、σ相の析出を促進させ、熱処理時に靭性が低下する。また、多量の含有は材料コストの高騰を招く。このため、含有する場合には、Moは7.0%以下に限定した。なお、好ましくは0.5~3.0%である。
Mo: 0-7.0%
Mo is an element that contributes to improvement in pitting corrosion resistance and also to improvement in mechanical properties. When it is contained to obtain such effects, it is preferably contained in an amount of 0.001% or more. If the Mo content is less than 0.001%, the mechanical properties are slightly degraded. On the other hand, if the content exceeds 7.0%, the precipitation of the σ phase is promoted, and toughness is lowered during heat treatment. Moreover, a large amount of content causes a rise in material costs. Therefore, when Mo is contained, it is limited to 7.0% or less. Incidentally, it is preferably 0.5 to 3.0%.

N:0.25%以下
Nは、オーステナイト相を安定化させるとともに、侵入型に固溶して固溶強化により強度増加に寄与する元素である。このような効果を得るためには、0.01%以上含有することが好ましい。一方、0.25%を超えて含有すると、高温割れの助長、二次加工性の低下、粒界腐食の促進などの悪影響を及ぼす。そのため、Nは0.25%以下に限定した。なお、好ましくは0.20%以下、さらに好ましくは0.01~0.10%である。
N: 0.25% or less
N is an element that stabilizes the austenite phase and interstitially forms a solid solution to contribute to an increase in strength through solid solution strengthening. In order to obtain such effects, it is preferable to contain 0.01% or more. On the other hand, if the content exceeds 0.25%, adverse effects such as acceleration of hot cracking, deterioration of secondary workability, and acceleration of intergranular corrosion occur. Therefore, N is limited to 0.25% or less. The content is preferably 0.20% or less, more preferably 0.01-0.10%.

X:15.0~50.0
次(2)式
X=Cr+3.3Mo……(2)
ここで、Cr、Mo:各元素の含有量(質量%)
で定義される孔食指数Xが15.0未満であると、希硝酸電解処理と冷間圧延後の熱処理とを組み合わせても、孔食発生電位の増加が認められない。なお、Moを含有しない場合には、(2)式Xの算出において、Moは0%として扱うものとする。一方、Xが50.0を超えると、合金元素量が多くなりすぎて延性が低下するとともに、材料コストの高騰を招く。このため、上記したCr、Moを含有し、かつXは15.0~50.0の範囲に限定した。
X: 15.0 to 50.0
Equation (2): X=Cr+3.3Mo (2)
Where, Cr, Mo: content of each element (% by mass)
When the pitting corrosion index X defined by is less than 15.0, no increase in the pitting potential is observed even when the dilute nitric acid electrolytic treatment and the heat treatment after cold rolling are combined. In addition, when Mo is not contained, in calculation of (2) Formula X, Mo shall be treated as 0%. On the other hand, if X exceeds 50.0, the amount of alloying elements becomes too large, resulting in a decrease in ductility and an increase in material cost. For this reason, the above Cr and Mo are contained, and X is limited to the range of 15.0 to 50.0.

上記した成分が基本の成分であるが、本発明では、上記した基本の成分に加えてさらに、選択元素として、必要に応じて、Ti:0.01~1.00%、Nb:0.01~1.00%、Cu:0.01~3.00%、Al:0.0001~1.50%、Ca:0.001~0.01%、Mg:0.001~0.01%、V:0.01~1.00%、Co:0.01~0.5%、W:0.01~1.0%、B:0.001~0.01%のうちから選ばれた1種または2種以上を含有してもよい。 The above components are the basic components, but in the present invention, in addition to the above basic components, as optional elements, Ti: 0.01 to 1.00%, Nb: 0.01 to 1.00%, Cu: 0.01-3.00%, Al: 0.0001-1.50%, Ca: 0.001-0.01%, Mg: 0.001-0.01%, V: 0.01-1.00%, Co: 0.01-0.5%, W: 0.01-1.0%, B: 0.001 It may contain one or more selected from up to 0.01%.

Ti:0.01~1.00%、Nb:0.01~1.00%、Cu:0.01~3.00%、Al:0.0001~1.50%、Ca:0.001~0.01%、Mg:0.001~0.01%、V:0.01~1.00%、Co:0.01~0.5%、W:0.01~1.0%、B:0.001~0.01%のうちから選ばれた1種または2種以上
Ti、Nb、Cu、Al、Ca、Mg、V、Co、W、Bはいずれも、鋼中に微細析出物として分散することにより、鋼板の強度上昇、耐食性向上に寄与する元素であり、また、Bは高温特性の改善に効果があり、必要に応じて選択して1種または2種以上を含有できる。このような効果を得るためには、Ti:0.01%以上、Nb:0.01%以上、Cu:0.01%以上、Al:0.0001%以上、Ca:0.001%以上、Mg:0.001%以上、V:0.01%以上、Co:0.01%以上、W:0.01%以上、B:0.001%以上をそれぞれ含有する必要がある。一方、Ti:1.00%、Nb:1.00%、Cu:3.00%、Al:1.50%、Ca:0.01%、Mg:0.01%、V:1.00%、Co:0.5%、W:1.0%、B:0.01%をそれぞれ超えて含有すると、析出物の生成量が多くなり、耐食性の低下や伸びの低下を招きやすくなる。このため、含有する場合には、Ti:0.01~1.00%、Nb:0.01~1.00%、Cu:0.01~3.00%、Al:0.0001~1.50%、Ca:0.001~0.01%、Mg:0.001~0.01%、V:0.01~1.00%、Co:0.01~0.5%、W:0.01~1.0%、B:0.001~0.01%の範囲にそれぞれ限定することが好ましい。
Ti: 0.01-1.00%, Nb: 0.01-1.00%, Cu: 0.01-3.00%, Al: 0.0001-1.50%, Ca: 0.001-0.01%, Mg: 0.001-0.01%, V: 0.01-1.00%, Co : 0.01-0.5%, W: 0.01-1.0%, B: 1 or 2 or more selected from 0.001-0.01%
Ti, Nb, Cu, Al, Ca, Mg, V, Co, W, and B are all elements that contribute to increasing the strength and corrosion resistance of steel sheets by dispersing them as fine precipitates in the steel. , and B are effective in improving high-temperature characteristics, and can be selected and contained in one or more. In order to obtain such effects, Ti: 0.01% or more, Nb: 0.01% or more, Cu: 0.01% or more, Al: 0.0001% or more, Ca: 0.001% or more, Mg: 0.001% or more, V: 0.01% Above, it is necessary to contain Co: 0.01% or more, W: 0.01% or more, and B: 0.001% or more. On the other hand, Ti: 1.00%, Nb: 1.00%, Cu: 3.00%, Al: 1.50%, Ca: 0.01%, Mg: 0.01%, V: 1.00%, Co: 0.5%, W: 1.0%, B: 0.01 %, the amount of precipitates formed increases, which tends to cause deterioration in corrosion resistance and elongation. Therefore, when contained, Ti: 0.01 to 1.00%, Nb: 0.01 to 1.00%, Cu: 0.01 to 3.00%, Al: 0.0001 to 1.50%, Ca: 0.001 to 0.01%, Mg: 0.001 to 0.01% , V: 0.01 to 1.00%, Co: 0.01 to 0.5%, W: 0.01 to 1.0%, and B: 0.001 to 0.01%.

上記した成分以外の残部は、Feおよび不可避的不純物からなる。 The balance other than the above components consists of Fe and unavoidable impurities.

なお、O(酸素)は、不可避的に含有され、鋼中では酸化物として存在し、延性、靭性等に悪影響を及ぼす。そのため、O(酸素)は、不純物としてできるだけ低減することが好ましいが、0.010%までは許容できる。なお、0.001%未満の過剰な低減は精錬コストを高騰させるため、O(酸素)は、0.001%以上とすることが好ましい。 O (oxygen) is inevitably contained, exists as an oxide in steel, and has an adverse effect on ductility, toughness, and the like. Therefore, it is preferable to reduce O (oxygen) as an impurity as much as possible, but up to 0.010% is acceptable. Note that an excessive reduction of less than 0.001% raises the refining cost, so O (oxygen) is preferably 0.001% or more.

本発明オーステナイト系ステンレス鋼板は、上記した組成を有し、かつ次(1)式
Vc > 0.039X3-5.2X2+232X-2311 ……(1)
ここで、X=Cr+3.3Mo……(2)
X:15.0~50.0、
Cr、Mo:各元素の含有量(質量%)
を満足する表面の孔食発生電位Vcを有する。測定された鋼板表面の孔食発生電位Vcが低く、(1)式を満足しない場合には、所望の耐孔食性を確保できなくなる。なお、鋼板表面の孔食発生電位Vcは、表層を研磨しないサンプルを用いて、JIS G 0577の規定に準拠して測定した値を用いるものとする。なお、孔食発生電位の測定に際しては、試験溶液(塩化ナトリウム水溶液)の脱気は施さないものとする。また、照合電極はAg/AgCl(塩化銀)電極とする。
The austenitic stainless steel sheet of the present invention has the above-described composition and has the following formula (1)
Vc > 0.039X3-5.2X2 + 232X-2311 ……(1)
Here, X=Cr+3.3Mo (2)
X: 15.0 to 50.0,
Cr, Mo: Content of each element (% by mass)
has a surface pitting initiation potential Vc that satisfies If the measured pitting corrosion initiation potential Vc of the surface of the steel sheet is low and does not satisfy the formula (1), the desired pitting corrosion resistance cannot be ensured. The pitting potential Vc of the surface of the steel sheet is a value measured according to JIS G 0577 using a sample whose surface layer is not polished. When measuring the pitting potential, the test solution (sodium chloride aqueous solution) shall not be degassed. The reference electrode is Ag/AgCl (silver chloride) electrode.

つぎに、本発明のオーステナイト系ステンレス鋼板の好ましい製造方法について説明する。 Next, a preferred method for producing the austenitic stainless steel sheet of the present invention will be described.

本発明では、上記した組成を有し、焼鈍および酸洗済みの熱延鋼板に、1回又は複数回の冷間圧延を施して、所定板厚の冷延鋼板とする。その際、本発明では、複数回の冷間圧延のうちの最終の冷間圧延の後に、あるいは複数回の冷間圧延のうちの最終以外の冷間圧延の後に、熱処理を施す。 In the present invention, the annealed and pickled hot-rolled steel sheet having the composition described above is cold-rolled once or multiple times to obtain a cold-rolled steel sheet having a predetermined thickness. At that time, in the present invention, the heat treatment is performed after the final cold rolling out of the multiple cold rollings or after the cold rolling other than the final cold rolling out of the multiple cold rollings.

上記した熱処理としては、機械的特性の回復及び向上を目的として、150~600℃の範囲の温度で30s~10min保持する熱処理(以下、熱処理Aともいう)とすることが好ましい。熱処理温度が、150℃未満では機械的特性の回復が不十分であり、一方、600℃超えでは窒化層やCr欠乏層の成長が大きく、それらをその後の電解処理で除去するためには、電解処理液の酸濃度を高め、電気量を高める必要がある。そのような電解処理を行うと、表面肌が大きく変化する。このため、熱処理Aでは、上記した温度範囲での保持時間は30s~10minの範囲に限定することが好ましい。 For the purpose of recovering and improving the mechanical properties, the heat treatment described above is preferably a heat treatment (hereinafter also referred to as heat treatment A) in which the temperature is kept in the range of 150 to 600° C. for 30 seconds to 10 minutes. If the heat treatment temperature is less than 150°C, the recovery of the mechanical properties is insufficient. It is necessary to increase the acid concentration of the processing liquid and increase the amount of electricity. When such electrolytic treatment is performed, the surface texture changes greatly. Therefore, in the heat treatment A, it is preferable to limit the holding time in the above temperature range to the range of 30 seconds to 10 minutes.

また、上記した熱処理に代えて、再結晶又は逆変態を目的として、150~700℃の範囲の温度で15min~48hr保持する熱処理(以下、熱処理Bともいう)としてもよい。熱処理温度が、150℃未満では再結晶が不十分であり、一方、700℃超えでは、Cr欠乏層が大きく成長するため、その後に希硝酸電解処理を施しても、所望の孔食発生電位を確保できない。このため、熱処理温度は150~700℃の範囲の温度に限定することが好ましい。また、上記した温度範囲での保持時間が、15min未満では再結晶が不十分であり、一方、48hrを超えて長くなると、Cr欠乏層が大きく成長する。このため、熱処理Bでは、上記した温度範囲での保持時間は15min~48hrの範囲に限定することが好ましい。 Further, instead of the heat treatment described above, a heat treatment (hereinafter also referred to as heat treatment B) may be performed at a temperature in the range of 150 to 700° C. for 15 minutes to 48 hours for the purpose of recrystallization or reverse transformation. If the heat treatment temperature is less than 150°C, recrystallization is insufficient, while if it exceeds 700°C, a Cr-depleted layer grows large. cannot be guaranteed. Therefore, it is preferable to limit the heat treatment temperature to a temperature in the range of 150 to 700°C. Further, if the holding time in the above temperature range is less than 15 minutes, recrystallization is insufficient. Therefore, in the heat treatment B, it is preferable to limit the holding time in the above temperature range to the range of 15 minutes to 48 hours.

なお、本発明では焼鈍雰囲気に特に限定はなく、大気雰囲気以外にも、例えば不活性ガス雰囲気や、燃焼ガス・酸素等を含む雰囲気中で行ってもよい。また、焼鈍は、水素を含有する還元性雰囲気下における光輝焼鈍(BA焼鈍と呼称される場合もある)を行ってもよい。 In the present invention, the annealing atmosphere is not particularly limited, and the annealing may be performed in an atmosphere other than the air atmosphere, such as an inert gas atmosphere or an atmosphere containing combustion gas, oxygen, or the like. The annealing may be bright annealing (also called BA annealing) in a reducing atmosphere containing hydrogen.

本発明では、上記した熱処理を施したのち、工程の最終として、希硝酸電解処理を施す。 In the present invention, after the above-described heat treatment, electrolytic treatment with dilute nitric acid is performed as the final step.

希硝酸電解処理としては、硝酸濃度:3~10%、温度:40~80℃の希硝酸水溶液中で、電流密度:±10~80mA/cm2で、陰極・陽極電解を合計で10~60s行う処理とすることが好ましい。As dilute nitric acid electrolysis, nitric acid concentration: 3-10%, temperature: 40-80°C, current density: ±10-80mA/cm 2 in dilute nitric acid aqueous solution, cathodic and anodic electrolysis for 10-60s in total. It is preferable to set it as the process to carry out.

硝酸濃度が3%未満では、希硝酸電解処理の効果が不足し、一方、10%を超えると、鋼板表層の溶解が著しくなり、板厚精度の低下を招く。このため、希硝酸水溶液の硝酸濃度は3~10%に限定した。なお、同じ電流密度や同じ電解時間の場合、硝酸濃度が3~10%の範囲では、溶解量の変化は少なく、また表面粗さの変化もほとんどないが、硝酸濃度の増加に伴い表層に形成される不動態被膜が強固になり、孔食電位が上昇する。 If the nitric acid concentration is less than 3%, the effect of dilute nitric acid electrolytic treatment is insufficient, while if it exceeds 10%, the surface layer of the steel sheet is significantly dissolved, resulting in a decrease in thickness accuracy. For this reason, the nitric acid concentration of the dilute nitric acid aqueous solution was limited to 3 to 10%. At the same current density and the same electrolysis time, when the nitric acid concentration is in the range of 3 to 10%, there is little change in the dissolution amount and almost no change in surface roughness, but as the nitric acid concentration increases, it forms on the surface layer. The applied passivation film becomes stronger and the pitting potential increases.

また、希硝酸水溶液の温度が、40℃未満では本発明における熱処理条件と希硝酸電解の組み合わせでは、希硝酸電解の効果が不足し、一方、80℃を超えると、鋼板表層の溶解が著しくなる。このため、希硝酸水溶液の温度は40~80℃の範囲に限定した。また、電流密度が、10mA/cm2未満では希硝酸電解の効果が不足し、一方、80mA/cm2を超えて大きくなると、表層の溶解が大きくなりすぎる。このため、電流密度は10~80mA/cm2の範囲に限定した。また、電解時間が合計で10s未満では希硝酸電解の効果が不足し、一方、60sを超えて長くなると溶解量が大きくなりすぎる。このため、電解時間は陰極・陽極電解の合計で10~60sの範囲に限定した。なお、希硝酸電解処理では、表層の除去という観点からは、陰極電解、陽極電解の順番を入れ替えてもよく、また、陰極電解と陽極電解とを繰り返し行っても、効果は同じである。When the temperature of the dilute nitric acid aqueous solution is less than 40°C, the combination of the heat treatment conditions and dilute nitric acid electrolysis in the present invention lacks the effect of dilute nitric acid electrolysis. . For this reason, the temperature of the diluted nitric acid aqueous solution was limited to the range of 40 to 80°C. If the current density is less than 10 mA/cm 2 , the dilute nitric acid electrolysis effect is insufficient, while if it exceeds 80 mA/cm 2 , the dissolution of the surface layer becomes too large. For this reason, the current density was limited to the range of 10-80 mA/cm 2 . If the electrolysis time is less than 10 seconds in total, the effect of dilute nitric acid electrolysis is insufficient, while if it exceeds 60 seconds, the amount of dissolution becomes too large. For this reason, the total electrolysis time for cathodic and anodic electrolysis was limited to a range of 10 to 60 s. In the dilute nitric acid electrolytic treatment, the order of cathodic electrolysis and anodic electrolysis may be changed from the viewpoint of removing the surface layer, and the effect is the same even if cathodic electrolysis and anodic electrolysis are repeated.

また、上記した希硝酸電解処理であれば、光沢感のある表面肌を得ることができる。その場合、面粗さSaは0.80μm以下である。面粗さSaが0.80μmを超えて粗くなると、光沢感のある表面肌とすることができない。本発明では面粗さをSaで0.80μm以下とする。なお、面粗さはISO 25178の規定に準拠して測定された算術平均高さSaを用いるものとする。 Further, with the dilute nitric acid electrolytic treatment described above, a glossy surface can be obtained. In that case, the surface roughness Sa is 0.80 μm or less. If the surface roughness Sa exceeds 0.80 μm, it is impossible to obtain a glossy surface. In the present invention, the surface roughness Sa is 0.80 μm or less. For the surface roughness, the arithmetic mean height Sa measured according to ISO 25178 shall be used.

面粗さは、光沢感の指標として製品にとって重要であるが、耐食性にも強く影響する。面粗さがSaで0.80μmを超えると、耐食性が不安定となりやすい。なお、耐食性の安定化という点からは、面粗さをSaで0.40μm以下とすることが好ましい。より好ましくはSaで0.35μm以下、さらに好ましくはSaで0.30μm以下である。また、とくに安定した耐食性が必要とされる場合には、面粗さは、Saで0.25μm以下とすることが有効であり、好ましくはSaで0.20μm以下、さらに好ましくはSaで0.15μm以下である。 Surface roughness is important for products as an index of glossiness, but it also strongly affects corrosion resistance. If the surface roughness Sa exceeds 0.80 μm, the corrosion resistance tends to be unstable. From the viewpoint of stabilizing the corrosion resistance, it is preferable to set the surface roughness Sa to 0.40 μm or less. Sa is more preferably 0.35 µm or less, and more preferably Sa is 0.30 µm or less. When particularly stable corrosion resistance is required, it is effective to set the surface roughness to Sa of 0.25 μm or less, preferably Sa of 0.20 μm or less, more preferably Sa of 0.15 μm or less. be.

上記した熱処理を施したのち、工程の最終として、希硝酸電解処理を施すことにより、図1にも一例を示すように、希硝酸電解処理前(〇印)に比べて、希硝酸電解処理後の孔食発生電位Vc(●印)が向上し、耐孔食性がさらに向上する。 After the above-described heat treatment, by applying a dilute nitric acid electrolytic treatment as the final step, as shown in FIG. , the pitting potential Vc (marked with ●) is improved, and the pitting corrosion resistance is further improved.

これは以下のような現象が起きているためであると考えられる。 It is considered that this is because the following phenomenon occurs.

冷延鋼板に熱処理を施すと、Crが鋼板表面に向かって拡散し、一部は表面からガス成分として炉内に蒸発するが、鋼板表面に近づくにしたがい濃度が高くなり、Cr濃化層が形成される。一方、最表層には、熱処理中に窒化層や酸化層(被膜)が形成される。これらの層が、希硝酸電解処理により除去されることにより、Cr濃化層が現われ、耐孔食性が向上する。 When cold-rolled steel sheets are heat-treated, Cr diffuses toward the steel sheet surface and part of it evaporates from the surface into the furnace as a gas component. It is formed. On the other hand, a nitride layer and an oxide layer (coating) are formed on the outermost layer during the heat treatment. By removing these layers by dilute nitric acid electrolytic treatment, a Cr-enriched layer appears and the pitting resistance is improved.

Crは、O(酸素)やNといったガス成分との親和力が強い。そのため、Crは熱処理中に、雰囲気ガスと接触している表面近傍に濃化すると考えられる。濃化したCrは、雰囲気から侵入したO、N、Cと、あるいは鋼中に存在するO、N、Cと、結びつき、Cr析出物を形成することが考えられる。Cr析出物が形成されると、母相中に固溶したCr量(固溶Cr量)が減少する。Crによる耐食性の向上は固溶Cr量に由来するため、固溶Cr量の減少は、鋼板自体の耐食性の低下を招くと考えられる。また、Cr析出物が形成されると、表層にCrが拡散してくるため、その内側にCr欠乏層が生成する。 Cr has a strong affinity with gas components such as O (oxygen) and N. Therefore, it is considered that Cr is concentrated in the vicinity of the surface in contact with the ambient gas during heat treatment. It is conceivable that the concentrated Cr combines with O, N, and C entering from the atmosphere or with O, N, and C present in the steel to form Cr precipitates. When Cr precipitates are formed, the amount of Cr dissolved in the matrix (the amount of dissolved Cr) decreases. Since the improvement in corrosion resistance due to Cr is derived from the amount of dissolved Cr, it is considered that a decrease in the amount of dissolved Cr causes a decrease in the corrosion resistance of the steel sheet itself. Further, when Cr precipitates are formed, Cr diffuses into the surface layer, and a Cr depleted layer is formed inside.

例えば、950℃超に加熱する通常の焼鈍(熱処理)では、上記したCr欠乏層の厚さが厚くなり、鋼板表面近傍の耐食性を低下させることがある。一方、950℃以下の低温での焼鈍(熱処理)では、950℃超に加熱する通常の焼鈍(熱処理)に比べて、Crの欠乏量は少なく、耐食性が損なわれることは少ないものと考えられる。むしろ、表面近傍におけるC欠乏層の形成により、析出が生じた最表面の内側では、Cr炭化物などの析出が抑制され、有効Cr量(固溶Cr量)が増加することが考えられる。そして、最表層に生成したCr析出物を含む層を、希硝酸電解処理で除去すると、その内側に存在するCr析出物が少なく、有効Cr量(固溶Cr量)が増加した耐食性に優れる部分が露出し、鋼板表面の耐食性が向上するものと、考えられる。とくに、本発明におけるような700℃以下(150℃以上)の低温での焼鈍(熱処理)では、700℃超えの高温域における場合に比べて、Cr欠乏層の厚さがさらに薄くなり、Cr欠乏量も少なく、またCr炭化物の析出もより少なくなるため、有効Cr量がさらに増加するものと、考えられる。そのため、組成範囲が同じ鋼板で比較すると、150℃以上700℃以下の温度範囲で熱処理を施された鋼板の方が、700℃超えの温度範囲で熱処理を施された鋼板に比べ、希硝酸電解処理後の孔食発生電位がより高くなり、耐孔食性が顕著に向上すると考えられる。 For example, in ordinary annealing (heat treatment) in which the steel is heated to over 950°C, the thickness of the Cr-deficient layer described above increases, and the corrosion resistance near the surface of the steel sheet may be reduced. On the other hand, in annealing (heat treatment) at a low temperature of 950°C or less, compared to ordinary annealing (heat treatment) in which the steel is heated to over 950°C, the amount of Cr deficiency is small, and corrosion resistance is thought to be less impaired. Rather, it is thought that the formation of a C-depleted layer near the surface suppresses the precipitation of Cr carbides and the like inside the outermost surface where precipitation occurs, increasing the effective Cr content (solid-solution Cr content). Then, when the layer containing Cr precipitates generated on the outermost layer is removed by dilute nitric acid electrolytic treatment, there are few Cr precipitates existing inside it, and the effective amount of Cr (amount of solid solution Cr) is increased, resulting in a portion with excellent corrosion resistance. is exposed, and the corrosion resistance of the steel sheet surface is considered to be improved. In particular, in annealing (heat treatment) at a low temperature of 700 ° C. or lower (150 ° C. or higher) as in the present invention, the thickness of the Cr depleted layer becomes thinner than in the case of a high temperature range exceeding 700 ° C. It is considered that the amount of effective Cr is further increased because the amount of Cr is small and precipitation of Cr carbides is less. Therefore, when steel sheets with the same composition range are compared, steel sheets that have been heat treated in the temperature range of 150°C to 700°C are more susceptible to dilute nitric acid electrolysis than steel sheets that have been heat treated in the temperature range of over 700°C. It is thought that the pitting corrosion initiation potential after the treatment is higher, and the pitting corrosion resistance is significantly improved.

Crは、鋼板最表層ではCr酸化層を形成し、表面近傍では、CrがO(酸素)、Cなどと結びつき、微細なCr酸化物やCr炭化物等として表面直下の鋼板側に析出する。Cr析出物が析出することにより、その部分での有効Cr量(固溶Cr量)が減少し、耐食性が低下する。また、Cr炭化物が形成された部分の近傍では、C濃度が減少したC欠乏層が形成されることが考えられる。 Cr forms a Cr oxide layer on the outermost layer of the steel sheet, and in the vicinity of the surface, Cr combines with O (oxygen), C, etc., and precipitates on the steel sheet side just below the surface as fine Cr oxides and Cr carbides. Precipitation of Cr precipitates reduces the effective amount of Cr (the amount of solid-solution Cr) in that portion, resulting in deterioration of corrosion resistance. In addition, it is conceivable that a C-depleted layer with a reduced C concentration is formed in the vicinity of the portion where the Cr carbide is formed.

例えば、950℃超に加熱する通常の焼鈍(熱処理)では、上記した鋼板最表層の脱炭や、Cr酸化層の形成、さらに表面近傍におけるCr析出物の生成が著しくなる。脱炭等によるCの減少は、有効Cr量を増加させるという観点からは、耐食性向上に有利に作用するとも考えられるが、Cr酸化層の形成に伴う脱Cr層の形成や、表面近傍におけるCr析出物の生成は、表面近傍における有効Cr量を減少させ、耐食性を低下させる。 For example, in ordinary annealing (heat treatment) in which the steel sheet is heated to over 950°C, the decarburization of the outermost layer of the steel sheet, the formation of a Cr oxide layer, and the formation of Cr precipitates in the vicinity of the surface become significant. From the viewpoint of increasing the effective amount of Cr, the reduction of C due to decarburization, etc. is thought to act favorably in improving corrosion resistance. Formation of precipitates reduces the effective amount of Cr in the vicinity of the surface and lowers the corrosion resistance.

一方、950℃以下の低温での熱処理においては、速度は遅いが、同様の現象が生じていると考えられる。しかし、低温での熱処理であるため、Crの拡散速度は遅く、また、Cr酸化物の生成は少なく、脱Cr層の形成による耐食性低下の影響は少ないと考えられる。一方、表面近傍でのCr炭化物の生成により、その近傍での母相中のC濃度は減少する。しかし、Cの拡散速度が十分に速くないため、それを補うのに必要なCの拡散供給が間に合わず、Cが減少したCの欠乏層(C欠乏層)が形成されることが考えられる。C欠乏層の形成により、その部分の有効Cr量が増加する。最表層に形成したCr析出物を含む層を希硝酸電解処理により除去すれば、耐食性が向上したC欠乏層が表面に露出し、結果として鋼板の耐食性が向上すると考えられる。 On the other hand, in heat treatment at a low temperature of 950°C or less, the same phenomenon is thought to occur, albeit at a slower rate. However, since the heat treatment is carried out at a low temperature, the diffusion rate of Cr is slow, and the formation of Cr oxides is small. On the other hand, due to the formation of Cr carbide near the surface, the C concentration in the matrix near the surface decreases. However, since the diffusion rate of C is not fast enough, it is thought that the diffusion and supply of C to make up for it cannot keep up, and a C-depleted layer (C-depleted layer) with a reduced amount of C is formed. Formation of the C-depleted layer increases the effective Cr content in that portion. If the layer containing Cr precipitates formed on the outermost layer is removed by dilute nitric acid electrolytic treatment, a C-deficient layer with improved corrosion resistance is exposed on the surface, and as a result, the corrosion resistance of the steel sheet is considered to be improved.

とくに、本発明におけるような700℃以下(150℃以上)の低温での焼鈍(熱処理)では、700℃超えの高温域における場合に比べて、Crの拡散速度がさらに遅くなり、Cr酸化物の生成がより少なくなるため、脱Cr層形成による耐孔食性(耐食性)の低下が少なくなると考えられる。さらに、700℃以下(150℃以上)の低温での焼鈍(熱処理)では、700℃超えの高温域における場合に比べて、Cの拡散も遅くなることが考えられ、C欠乏層の形成が少なくなり、その分、有効Cr量が増加すると考えられる。そのため、700℃以下(150℃以上)の低温での熱処理を施した場合には、700℃超えの高温域での熱処理を施した場合に比べて、希硝酸電解処理後の孔食発生電位が高くなり、耐食性向上効果が大きくなると考えられる。 In particular, in annealing (heat treatment) at a low temperature of 700°C or lower (150°C or higher) as in the present invention, the diffusion rate of Cr becomes even slower than in the case of a high temperature range of over 700°C, and Cr oxides are formed. It is thought that the decrease in pitting corrosion resistance (corrosion resistance) due to the formation of the Cr-free layer is less because the amount of Cr is less. Furthermore, in annealing (heat treatment) at a low temperature of 700°C or lower (150°C or higher), the diffusion of C is considered to be slower than in the case of a high temperature range of over 700°C, and the formation of a C depleted layer is small. It is considered that the amount of effective Cr increases accordingly. Therefore, when heat treatment is performed at a low temperature of 700°C or lower (150°C or higher), the pitting potential after dilute nitric acid electrolytic treatment is higher than when heat treatment is performed at a high temperature range of over 700°C. It is thought that this increases the corrosion resistance improvement effect.

上記したように、表面近傍に存在するCは、表面近傍に存在するCrと結びつき、Cr炭化物として析出するため、表面近傍ではC量が減少し、それに伴い有効Cr量が増加する。雰囲気中のガス成分との反応に伴う蒸発は、C量の低い鋼板に比べて、C量の高い鋼板で多くなると考えられる。このため、C量の高い鋼板の方が、熱処理によるC量減少に伴う有効Cr量の変化(増加)が大きくなる。このようなことから、本発明では、熱処理後の希硝酸電解処理による耐食性改善効果が高C鋼板で著しくなるものと考えられる。 As described above, C present in the vicinity of the surface combines with Cr present in the vicinity of the surface and precipitates as Cr carbides, so the amount of C decreases in the vicinity of the surface and accordingly the amount of effective Cr increases. Evaporation due to reaction with gas components in the atmosphere is considered to be greater in steel sheets with a high C content than in steel sheets with a low C content. Therefore, the change (increase) in the effective Cr content due to the decrease in the C content due to heat treatment is greater in steel sheets with a higher C content. For this reason, it is considered that, in the present invention, the effect of improving the corrosion resistance of the high-C steel sheet by dilute nitric acid electrolytic treatment after heat treatment is remarkable.

また、Moも、Crと同様に、固溶状態となることで鋼板の耐食性(耐孔食性)向上に寄与する。すなわち、有効Mo量(固溶Mo量)が多くなることで、鋼板の耐食性(耐孔食性)が改善される。また、Moも、Crと同様にCと結合しやすいため、熱処理中に、表面近傍で鋼中Cのガス化が生じると、C減少が生じ、表面近傍での有効Mo量が増加することになる。この有効Mo量の増加は、Mo含有量が多いほど多くなることから、Mo含有量の多い鋼板ほど耐孔食性の向上効果が大きくなるものと考えられる。 Mo also contributes to the improvement of the corrosion resistance (pitting resistance) of the steel sheet by being in a solid solution state, like Cr. That is, the corrosion resistance (pitting corrosion resistance) of the steel sheet is improved by increasing the effective Mo amount (solid solution Mo amount). In addition, since Mo, like Cr, easily bonds with C, if C in the steel gasifies near the surface during heat treatment, C decreases and the effective Mo content near the surface increases. Become. Since the increase in the effective Mo amount increases as the Mo content increases, it is considered that the higher the Mo content of the steel sheet, the greater the effect of improving the pitting corrosion resistance.

なお、Moが、3.0~7.0%の範囲では、Moの増加による効果が徐々に少なくなるため、3.0%超えるMo含有範囲では、3.0%以下のMo含有範囲に比べて、単位Mo量当たりの耐孔食性改善効果が少なくなる。 In the Mo content range of 3.0 to 7.0%, the effect of increasing Mo gradually decreases. The effect of improving pitting corrosion resistance is reduced.

以上から、本発明におけるような700℃以下(150℃以上)の低温での熱処理では、700℃超えの高温域における場合に比べて、Cr欠乏層が少なくなり、有効Cr量も増加するため700℃以下の低温での熱処理を施した、とくに3.0%までのMo含有鋼板では、希硝酸電解後の孔食発生電位が700℃超えの高温域での熱処理を施した場合に比べ高くなるものと考えられる。 From the above, in the heat treatment at a low temperature of 700 ° C. or lower (150 ° C. or higher) as in the present invention, compared to the case of a high temperature range of over 700 ° C., the Cr depleted layer is reduced and the effective Cr content is increased. In steel sheets with a Mo content of up to 3.0%, which are heat-treated at a low temperature of ℃ or below, the pitting potential after dilute nitric acid electrolysis is higher than that when heat-treated at a high temperature of over 700℃. Conceivable.

なお、上記した希硝酸電解処理を行ったのち、酸素を富化した大気雰囲気中で、150℃以下の後熱処理を行うことにより、耐食性に優れる健全な不動態被膜が形成され、耐食性、耐孔食性を向上させることができる。また、硝酸溶液への浸漬により、不動態被膜の生成を促進させることができる。不動態被膜の生成・成長を促進させる目的で酸化性の酸への浸漬を行うことも有効である。 After the dilute nitric acid electrolytic treatment described above, a post-heat treatment of 150°C or less in an oxygen-enriched air atmosphere forms a sound passive film with excellent corrosion resistance. It can improve palatability. Also, immersion in a nitric acid solution can promote the formation of a passive film. Immersion in an oxidizing acid is also effective for the purpose of promoting the generation and growth of the passive film.

なお、健全な不動態被膜の形成には、母相の耐食性を向上させておくこと、具体的には、炭化物の析出を抑制し、耐食性に有効に働くCr量を高めること、熱処理時に形成される粗い酸化被膜およびその直下に形成される可能性がある脱クロム層を除去すること、さらに不動態被膜が形成される素地となる金属表面が平滑であること、などが有効である。 In order to form a sound passive film, it is necessary to improve the corrosion resistance of the matrix. It is effective to remove the rough oxide film and the dechromium layer that may be formed directly under it, and that the metal surface on which the passivation film is formed be smooth.

なお、熱処理後に、できた酸化層やCr欠乏層を含んだ表層の除去においては、上記した希硝酸電解処理以外にも、例えば、アルカリを用いた電解処理をはじめ、スパッタリングや機械的研磨等を用いた、あらゆる工業的な表層除去方法を適用することも可能である。また、電解処理において、電解液は希硝酸に限定されるものでもなく、非酸化性の硫酸、塩酸等を用いた処理としてもよい。 In addition, in removing the surface layer containing the oxidized layer and the Cr-depleted layer formed after the heat treatment, in addition to the dilute nitric acid electrolytic treatment described above, for example, electrolytic treatment using alkali, sputtering, mechanical polishing, etc. It is also possible to apply any industrial surface removal method used. Further, in the electrolytic treatment, the electrolytic solution is not limited to dilute nitric acid, and treatment using non-oxidizing sulfuric acid, hydrochloric acid, or the like may be used.

以下、実施例に基づき、さらに本発明について説明する。 The present invention will be further described below based on examples.

(実施例1)
表1に示す組成を有する焼鈍・酸洗済みの熱延鋼板(板厚:2.5mm)に、3回の冷間圧延を施して、板厚:0.1mmの冷延鋼板とした。なお、最終の冷間圧延後、表2に示す機械的特性の回復及び向上を主たる目的とする熱処理Aを施した。なお、最終以外の冷間圧延の後に、それぞれ表2に示す熱処理(軟化を目的とした熱処理)を施した。一部の鋼板では、最終の冷間圧延後には熱処理を施さず、最終以外の冷間圧延の後に表2に示す熱処理(機械的特性の回復及び向上を目的とする熱処理)を施した。
(Example 1)
An annealed and pickled hot-rolled steel sheet (thickness: 2.5 mm) having the composition shown in Table 1 was subjected to cold rolling three times to obtain a cold-rolled steel sheet having a thickness of 0.1 mm. After the final cold rolling, the heat treatment A shown in Table 2 was performed for the main purpose of recovering and improving the mechanical properties. After the cold rolling other than the final cold rolling, the heat treatment shown in Table 2 (heat treatment for softening) was performed. Some of the steel sheets were not subjected to heat treatment after the final cold rolling, but were subjected to the heat treatment shown in Table 2 (heat treatment for recovery and improvement of mechanical properties) after cold rolling other than the final cold rolling.

そして、得られた冷延鋼板にさらに、希硝酸電解処理を施したのち、研磨しないサンプルを用いて、JIS G 0577の規定に準拠して、各鋼板表面の孔食発生電位Vcを測定した。なお、孔食発生電位の測定では、試験溶液(塩化ナトリウム水溶液)の脱気は実施しなかった。照合電極はAg/AgCl(塩化銀)電極とした。また、一部の鋼板については希硝酸電解処理は実施しなかった。希硝酸電解処理の条件は、硝酸濃度:3%の希硝酸水溶液(液温:60℃)中で、電流密度:±30mA/cm2で、陽極・陰極電解を合計で20s間、とした。電解は、鋼板側がアノード、カソードになるような順番で行った。また、希硝酸電解処理後の鋼板について、ISO 25178の規定に準拠して、算術平均高さSaを測定した。測定視野は、1.0μm×1.0μm、測定間隔は25μmとした。The obtained cold-rolled steel sheets were further subjected to dilute nitric acid electrolytic treatment, and then using unpolished samples, the pitting potential Vc of each steel sheet surface was measured in accordance with JIS G 0577. In the measurement of the pitting potential, the test solution (sodium chloride aqueous solution) was not degassed. Ag/AgCl (silver chloride) electrodes were used as reference electrodes. Also, some of the steel sheets were not subjected to dilute nitric acid electrolytic treatment. The dilute nitric acid electrolytic treatment was performed in a diluted nitric acid aqueous solution (liquid temperature: 60°C) with a nitric acid concentration of 3%, current density: ±30 mA/cm 2 , and anodic and cathodic electrolysis for a total of 20 seconds. Electrolysis was performed in the order that the steel plate side was the anode and the cathode. In addition, the arithmetic mean height Sa of the steel sheet after dilute nitric acid electrolytic treatment was measured according to ISO 25178. The field of view for measurement was 1.0 μm×1.0 μm, and the measurement interval was 25 μm.

得られた結果を表2に示す。 Table 2 shows the results obtained.

Figure 0007210780000001
Figure 0007210780000001

Figure 0007210780000002
Figure 0007210780000002

本発明例はいずれも、孔食発生電位Vcが(1)式を満足し、高い孔食発生電位を有するステンレス鋼板となっており、優れた耐孔食性を有することが推察される。一方、本発明を外れる比較例は、孔食発生電位Vcが(1)式を満足せず、耐孔食性が低いことが推察される。なお、鋼板No.A5、No.A6とNo.A7、No.A8とは、等しい孔食指数Xを有するが、孔食発生電位Vcは、C含有量の多い鋼板No.A7、No.A8の方が高い値を示している。また、孔食指数Xが本発明の範囲を外れる鋼板No.A18、No.A19は、孔食発生電位Vcが0以下となり、耐孔食性が要求される使途には適用できない。
(実施例2)
表1に示す組成を有する焼鈍・酸洗済みの熱延鋼板(板厚:2.5mm)に、3回の冷間圧延を施して、実施例1と同様に、板厚:0.1mmの冷延鋼板とした。なお、最終の冷間圧延後で、表3に示す、再結晶又は逆変態を目的とする熱処理Bを施し、最終以外の冷間圧延の後に、それぞれ表3に示す軟化を目的とした熱処理を施した。一部の鋼板では、最終の冷間圧延後には熱処理を施さず、最終以外の冷間圧延の後に表3に示す熱処理(再結晶又は逆変態を目的とする熱処理)を施した。
All the examples of the present invention have a pitting corrosion initiation potential Vc that satisfies the formula (1) and are stainless steel sheets having a high pitting corrosion initiation potential, and are presumed to have excellent pitting corrosion resistance. On the other hand, the pitting initiation potential Vc of the comparative example outside the present invention does not satisfy the formula (1), and it is presumed that the pitting corrosion resistance is low. Steel sheets No. A5 and No. A6 and No. A7 and No. A8 have the same pitting corrosion index X, but the pitting corrosion initiation potential Vc is the same as steel sheets No. A7 and No. A8, which have a large C content. shows a higher value. Further, steel sheets No. A18 and No. A19, in which the pitting index X is outside the range of the present invention, have a pitting initiation potential Vc of 0 or less and cannot be applied to uses requiring pitting resistance.
(Example 2)
An annealed and pickled hot-rolled steel sheet (thickness: 2.5 mm) having the composition shown in Table 1 was cold-rolled three times to obtain a cold-rolled steel sheet having a thickness of 0.1 mm in the same manner as in Example 1. Steel plate. After the final cold rolling, heat treatment B for recrystallization or reverse transformation shown in Table 3 is performed, and after cold rolling other than the final cold rolling, heat treatment for softening shown in Table 3 is performed. provided. Some of the steel sheets were not subjected to heat treatment after the final cold rolling, but were subjected to heat treatment (heat treatment for recrystallization or reverse transformation) shown in Table 3 after cold rolling other than the final cold rolling.

そして、得られた冷延鋼板にさらに、希硝酸電解処理を施したのち、研磨しないサンプルを用いて、実施例1と同様に、各鋼板表面の孔食発生電位Vcを測定した。なお、孔食発生電位の測定では、実施例1と同様に、試験溶液(塩化ナトリウム水溶液)の脱気は実施しなかった。また、一部の鋼板については希硝酸電解処理は実施しなかった。希硝酸電解処理の条件は、実施例1と同様とした。得られた結果を表3に示す。 Then, the obtained cold-rolled steel sheets were further subjected to dilute nitric acid electrolytic treatment, and then the pitting initiation potential Vc of each steel sheet surface was measured in the same manner as in Example 1 using non-polished samples. In the measurement of the pitting potential, as in Example 1, the test solution (sodium chloride aqueous solution) was not degassed. Also, some of the steel sheets were not subjected to dilute nitric acid electrolytic treatment. The conditions for the dilute nitric acid electrolytic treatment were the same as in Example 1. Table 3 shows the results obtained.

Figure 0007210780000003
Figure 0007210780000003

本発明例はいずれも、孔食発生電位Vcが(1)式を満足し、高い孔食発生電位を有するステンレス鋼板となっており、優れた耐孔食性を有することが推察される。一方、本発明を外れる比較例は、孔食発生電位Vcが(1)式を満足せず、耐孔食性が低いことが推察される。なお、鋼板No.B5、No.B6とNo.B7、No.B8とは、等しい孔食指数Xを有するが、孔食発生電位Vcは、C含有量の多い鋼板No.B7、No.B8の方が高い値を示している。また、孔食指数Xが本発明の範囲を外れる鋼板No.B18、No.B19は、孔食発生電位Vcが0以下となり、耐孔食性用が要求される使途には適用できない。
(実施例3)
表1に示す鋼No.Dの組成を有する熱延鋼板(板厚:2.5mm)に、表4に示す条件の2回の冷間圧延を施して、冷延鋼板(板厚:0.1mm)とした。1回目と2回目の冷間圧延の間に、軟化を目的とした熱処理(1050℃×5min、1000℃×2min)を施した。最終の冷間圧延後、機械的特性の回復を目的とした熱処理A(500℃×2min)を施し、さらに表4に示す条件で希硝酸電解処理を施した。
All the examples of the present invention have a pitting corrosion initiation potential Vc that satisfies the formula (1) and are stainless steel sheets having a high pitting corrosion initiation potential, and are presumed to have excellent pitting corrosion resistance. On the other hand, the pitting initiation potential Vc of the comparative example outside the present invention does not satisfy the formula (1), and it is presumed that the pitting corrosion resistance is low. Steel sheets No.B5 and No.B6 and No.B7 and No.B8 have the same pitting corrosion index X, but the pitting corrosion initiation potential Vc is the same as steel sheets No.B7 and No.B8 with a large C content. shows a higher value. Further, steel sheets No. B18 and No. B19, in which the pitting index X is outside the range of the present invention, have a pitting initiation potential Vc of 0 or less and cannot be applied to applications requiring pitting corrosion resistance.
(Example 3)
A hot-rolled steel sheet (thickness: 2.5 mm) having the composition of Steel No. D shown in Table 1 was cold-rolled twice under the conditions shown in Table 4 to obtain a cold-rolled steel sheet (thickness: 0.1 mm). and Heat treatment (1050°C x 5 min, 1000°C x 2 min) for the purpose of softening was performed between the first and second cold rolling. After the final cold rolling, heat treatment A (500° C.×2 min) was performed for the purpose of recovering mechanical properties, and dilute nitric acid electrolytic treatment was performed under the conditions shown in Table 4.

そして、実施例1と同様に、各鋼板表面の孔食発生電位Vcを測定した。また、鋼板表面の粗さをISO 25178の規定に準拠して、面粗さ(算術平均高さ)Saを測定した。 Then, in the same manner as in Example 1, the pitting potential Vc of each steel plate surface was measured. In addition, the surface roughness (arithmetic mean height) Sa of the steel plate surface was measured according to ISO 25178.

得られた結果を表4に示す。 Table 4 shows the results obtained.

Figure 0007210780000004
Figure 0007210780000004

本発明例はいずれも、孔食発生電位Vcが(1)式を満足し、高い孔食発生電位を有するステンレス鋼板となっており、優れた耐孔食性を有することが推察される。また、本発明例はいずれも、面粗さSaが0.80μm以下と優れた表面性状を呈している。一方、孔食発生電位Vcが(1)式を満足せず、本発明を外れる比較例は、耐孔食性が低いことが推察される。また、希硝酸電解処理条件が本発明範囲を低く外れる比較例は、孔食発生電位Vcが(1)式を満足せず、耐孔食性が低いことが推察される。一方、希硝酸電解処理条件が本発明範囲を高く外れる比較例では、孔食発生電位Vcは(1)式を満たすが、面粗さ(算術平均高さ)Saが0.80μmを超えて荒れた表面となっている。なお、希硝酸電解処理の温度が本発明範囲で高く外れる比較例は、孔食発生電位Vcが(1)式を満足していない。また、面粗さSaが0.40μm以下の本発明例は、孔食電位Vcが安定して1000mV以上となっている。 All the examples of the present invention have a pitting corrosion initiation potential Vc that satisfies the formula (1) and are stainless steel sheets having a high pitting corrosion initiation potential, and are presumed to have excellent pitting corrosion resistance. In addition, all the examples of the present invention exhibit excellent surface properties with a surface roughness Sa of 0.80 μm or less. On the other hand, it is presumed that the comparative examples, in which the pitting initiation potential Vc does not satisfy the formula (1) and are out of the scope of the present invention, have low pitting corrosion resistance. In addition, in the comparative examples in which the dilute nitric acid electrolytic treatment conditions are lower than the range of the present invention, the pitting potential Vc does not satisfy the formula (1), and it is presumed that the pitting corrosion resistance is low. On the other hand, in the comparative example in which the dilute nitric acid electrolytic treatment conditions are highly outside the range of the present invention, the pitting potential Vc satisfies the formula (1), but the surface roughness (arithmetic mean height) Sa exceeds 0.80 μm and becomes rough. surface. In the comparative examples in which the temperature of the dilute nitric acid electrolytic treatment is higher than the range of the present invention, the pitting potential Vc does not satisfy the formula (1). In addition, the pitting potential Vc of the present invention examples having a surface roughness Sa of 0.40 μm or less is stably 1000 mV or more.

Claims (5)

質量%で、
C:0.40%以下、 Si:1.00%以下、
Mn:2.00%以下、 P:0.045%以下、
S:0.030%以下、 Ni:3.5~36.0%、
Cr:15.00~30.00%、 Mo:0~7.0%、
N:0.25%以下
を含有し、かつCr、Moを下記(2)式で定義されるXが15.0~50.0を満足するように含み、残部Feおよび不可避的不純物からなる組成を有する熱延鋼板に、1回又は複数回の冷間圧延を施して冷延鋼板を製造するに当たり、
前記冷間圧延のうちの最終の冷間圧延の後に、あるいは前記冷間圧延のうちの最終以外の冷間圧延の後に、150~600℃の範囲の温度で30s~10min保持する熱処理を施し、最終に、希硝酸電解処理を施し、
JIS G 0577の規定に準じて測定した表面の孔食発生電位Vc(mV)が、下記(1)式を満足するオーステナイト系ステンレス鋼板とすることを特徴とするオーステナイト系ステンレス鋼板の製造方法。

Vc > 0.039X 3 -5.2X 2 +232X-2311 ……(1)
ここで、X=Cr+3.3Mo ……………(2)
Cr、Mo:各元素の含有量(質量%)
in % by mass,
C: 0.40% or less Si: 1.00% or less
Mn: 2.00% or less, P: 0.045% or less,
S: 0.030% or less, Ni: 3.5-36.0%,
Cr: 15.00-30.00%, Mo: 0-7.0%,
N: 0.25% or less
and contains Cr and Mo such that X defined by the following formula (2) satisfies 15.0 to 50.0, and the balance is Fe and unavoidable impurities . In manufacturing a cold-rolled steel sheet by performing cold rolling twice,
After the final cold rolling of the cold rolling or after the cold rolling other than the final cold rolling of the cold rolling, heat treatment is performed at a temperature in the range of 150 to 600 ° C. for 30 seconds to 10 minutes, Finally, dilute nitric acid electrolytic treatment is applied,
A method for producing an austenitic stainless steel sheet, characterized in that the surface pitting potential Vc (mV) measured in accordance with JIS G 0577 satisfies the following formula (1) .
Record
Vc > 0.039X3-5.2X2 + 232X - 2311 ……(1)
Here, X = Cr + 3.3 Mo (2)
Cr, Mo: Content of each element (% by mass)
質量%で、
C:0.40%以下、 Si:1.00%以下、
Mn:2.00%以下、 P:0.045%以下、
S:0.030%以下、 Ni:3.5~36.0%、
Cr:15.00~30.00%、 Mo:0~7.0%、
N:0.25%以下
を含有し、かつCr、Moを下記(2)式で定義されるXが15.0~50.0を満足するように含み、残部Feおよび不可避的不純物からなる組成を有する熱延鋼板に、1回又は複数回の冷間圧延を施して冷延鋼板を製造するに当たり、
前記冷間圧延のうちの最終の冷間圧延の後に、あるいは前記冷間圧延のうちの最終以外の冷間圧延の後に、150~700℃の範囲の温度で15min~48hr保持する熱処理を施し、最終に、希硝酸電解処理を施し、
JIS G 0577の規定に準じて測定した表面の孔食発生電位Vc(mV)が、下記(1)式を満足するオーステナイト系ステンレス鋼板とすることを特徴とするオーステナイト系ステンレス鋼板の製造方法。

Vc > 0.039X 3 -5.2X 2 +232X-2311 ……(1)
ここで、X=Cr+3.3Mo ……………(2)
Cr、Mo:各元素の含有量(質量%)
in % by mass,
C: 0.40% or less Si: 1.00% or less
Mn: 2.00% or less, P: 0.045% or less,
S: 0.030% or less, Ni: 3.5-36.0%,
Cr: 15.00-30.00%, Mo: 0-7.0%,
N: 0.25% or less
and contains Cr and Mo such that X defined by the following formula (2) satisfies 15.0 to 50.0, and the balance is Fe and unavoidable impurities . In manufacturing a cold-rolled steel sheet by performing cold rolling twice,
After the final cold rolling of the cold rolling or after the cold rolling other than the final cold rolling of the cold rolling, heat treatment is performed at a temperature in the range of 150 to 700 ° C. for 15 minutes to 48 hours, Finally, dilute nitric acid electrolytic treatment is applied,
A method for producing an austenitic stainless steel sheet, characterized in that the surface pitting potential Vc (mV) measured in accordance with JIS G 0577 satisfies the following formula (1) .
Record
Vc > 0.039X3-5.2X2 + 232X - 2311 ……(1)
Here, X = Cr + 3.3 Mo (2)
Cr, Mo: Content of each element (% by mass)
前記希硝酸電解処理が、硝酸濃度:3~10%、温度:40~80℃の希硝酸水溶液中で、電流密度:±10~80mA/cm2で、陰極および陽極電解を合計で10~60s行う処理であることを特徴とする請求項またはに記載のオーステナイト系ステンレス鋼板の製造方法。 The dilute nitric acid electrolysis is carried out in a dilute nitric acid aqueous solution with a nitric acid concentration of 3 to 10% and a temperature of 40 to 80°C, with a current density of ±10 to 80 mA/cm 2 and cathodic and anodic electrolysis for a total of 10 to 60 s. 3. The method for producing an austenitic stainless steel sheet according to claim 1 , wherein the treatment is performed. 前記組成に加えてさらに、質量%で、Ti:0.01~1.00%、Nb:0.01~1.00%、Cu:0.01~3.00%、Al:0.0001~1.50%、Ca:0.001~0.01%、Mg:0.001~0.01%、V:0.01~1.00%、Co:0.01~0.5%、W:0.01~1.0%、B:0.001~0.01%のうちから選ばれた1種または2種以上を含有する組成とすることを特徴とする請求項1または2に記載のオーステナイト系ステンレス鋼板の製造方法。In addition to the above composition, in mass%, Ti: 0.01 to 1.00%, Nb: 0.01 to 1.00%, Cu: 0.01 to 3.00%, Al: 0.0001 to 1.50%, Ca: 0.001 to 0.01%, Mg: 0.001 to 0.01%, V: 0.01 to 1.00%, Co: 0.01 to 0.5%, W: 0.01 to 1.0%, B: 0.001 to 0.01% The method for producing an austenitic stainless steel sheet according to claim 1 or 2. 前記オーステナイト系ステンレス鋼板の表面粗さがISO 25178の規定に準拠したSaで0.80μm以下であることを特徴とする請求項1ないし4のいずれかに記載のオーステナイト系ステンレス鋼板の製造方法
5. The method for producing an austenitic stainless steel sheet according to claim 1, wherein the austenitic stainless steel sheet has a surface roughness Sa of 0.80 μm or less according to ISO 25178 .
JP2021571373A 2020-09-01 2021-01-08 Austenitic stainless steel sheet and manufacturing method thereof Active JP7210780B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2020146613 2020-09-01
JP2020146613 2020-09-01
PCT/JP2021/000471 WO2022049796A1 (en) 2020-09-01 2021-01-08 Austenitic stainless steel sheet and method for producing same

Publications (2)

Publication Number Publication Date
JPWO2022049796A1 JPWO2022049796A1 (en) 2022-03-10
JP7210780B2 true JP7210780B2 (en) 2023-01-23

Family

ID=80490829

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2021571373A Active JP7210780B2 (en) 2020-09-01 2021-01-08 Austenitic stainless steel sheet and manufacturing method thereof

Country Status (4)

Country Link
JP (1) JP7210780B2 (en)
CN (1) CN114901851B (en)
TW (1) TWI763436B (en)
WO (1) WO2022049796A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001330038A (en) 2000-03-17 2001-11-30 Nsk Ltd Rolling supporting device
JP2005023396A (en) 2003-07-04 2005-01-27 Sumitomo Metal Ind Ltd Austenitic stainless steel sheet and its production method
WO2009150885A1 (en) 2008-06-09 2009-12-17 東京ステンレス研磨興業株式会社 Stainless steel and surface treatment method for stainless steel
JP2016188417A (en) 2015-03-30 2016-11-04 新日鐵住金ステンレス株式会社 Austenite stainless steel and manufacturing method thereof

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4099966A (en) * 1976-12-02 1978-07-11 Allegheny Ludlum Industries, Inc. Austenitic stainless steel
JPS5877555A (en) * 1981-11-04 1983-05-10 Nippon Yakin Kogyo Co Ltd Austenitic stainless steel with superior pitting corrosion resistance and weather resistance
JPH01162786A (en) * 1987-12-21 1989-06-27 Kawasaki Steel Corp Method for pickling high strength austenitic stainless steel
JPH0474900A (en) * 1990-07-17 1992-03-10 Kawasaki Steel Corp Method for coating surface of stainless steel with oxide
JPH04120248A (en) * 1990-09-11 1992-04-21 Nippon Steel Corp Stainless steel for antenna
JPH0770730A (en) * 1993-09-06 1995-03-14 Hitachi Metals Ltd Pitting corrosion resistant stainless steel
JPH06271933A (en) * 1993-03-17 1994-09-27 Nippon Steel Corp Production of mo-containing austenitic stainless steel excellent in nitric acid resistance
JPH07278786A (en) * 1994-04-08 1995-10-24 Nisshin Steel Co Ltd Ceramic coated stainless steel sheet excellent in designing property and corrosion resistance
CN106687622B (en) * 2014-09-10 2019-05-03 新日铁住金株式会社 It is not easy the austenite stainless steel steel plate of diffusion bonding
CN106319391A (en) * 2015-06-24 2017-01-11 宝钢不锈钢有限公司 Acid rain corrosion-resistant austenitic stainless steel and manufacturing method thereof
JP6547011B1 (en) * 2018-01-12 2019-07-17 日鉄ステンレス株式会社 Austenitic stainless steel and method of manufacturing the same
CN108642409A (en) * 2018-05-08 2018-10-12 江苏理工学院 A kind of corrosion-resistant super austenitic stainless steel and its manufacturing process
JP6560427B1 (en) * 2018-11-29 2019-08-14 株式会社特殊金属エクセル Stainless steel strip or stainless steel foil and method for producing the same

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001330038A (en) 2000-03-17 2001-11-30 Nsk Ltd Rolling supporting device
JP2005023396A (en) 2003-07-04 2005-01-27 Sumitomo Metal Ind Ltd Austenitic stainless steel sheet and its production method
WO2009150885A1 (en) 2008-06-09 2009-12-17 東京ステンレス研磨興業株式会社 Stainless steel and surface treatment method for stainless steel
JP2016188417A (en) 2015-03-30 2016-11-04 新日鐵住金ステンレス株式会社 Austenite stainless steel and manufacturing method thereof

Also Published As

Publication number Publication date
JPWO2022049796A1 (en) 2022-03-10
WO2022049796A1 (en) 2022-03-10
TWI763436B (en) 2022-05-01
CN114901851A (en) 2022-08-12
CN114901851B (en) 2023-08-11
TW202210642A (en) 2022-03-16

Similar Documents

Publication Publication Date Title
KR100733016B1 (en) FERRITIC STAINLESS STEEL PLATE WITH Ti AND METHOD FOR PRODUCTION THEREOF
US11326224B2 (en) Stainless steel sheet and method of manufacturing the same, separator for solid polymer fuel cell, solid polymer fuel cell, and solid polymer fuel cell battery
JP6792951B2 (en) Duplex stainless steel for ozone-containing water
JP5962541B2 (en) Manufacturing method of high-strength steel sheet
JP5907320B1 (en) Material for stainless cold-rolled steel sheet and manufacturing method thereof
WO2015125422A1 (en) High-strength steel plate and method for producing high-strength steel plate
CN111148854B (en) Austenitic stainless steel and method for producing same
JP7210516B2 (en) Manufacturing method of austenitic stainless steel sheet
JP7427669B2 (en) Ferritic stainless steel with improved corrosion resistance and its manufacturing method
JP5962540B2 (en) Manufacturing method of high-strength steel sheet
JP3247244B2 (en) Fe-Cr-Ni alloy with excellent corrosion resistance and workability
JP7210780B2 (en) Austenitic stainless steel sheet and manufacturing method thereof
JP5794284B2 (en) Manufacturing method of high-strength steel sheet
WO2011089730A1 (en) Stainless steel for current-carrying member having low electrical contact resistance, and process for production thereof
JP2022064692A (en) Austenitic stainless steel and method for producing austenitic stainless steel
JP2000073192A (en) Production of ferritic stainless steel sheet
US20130108945A1 (en) Stainless steel for conductive members with low contact electric resistance and method for producing the same
JP7458902B2 (en) Ferritic Stainless Steel
JP5962542B2 (en) Manufacturing method of high-strength steel sheet
JP5962543B2 (en) Manufacturing method of high-strength steel sheet
KR101290421B1 (en) The annealing-pickling method for cold rolled stainless steel
JPH0453956B2 (en)
EP4130322A1 (en) Austenitic stainless steel
JPH05112832A (en) Manufacture of low yield ratio-high tensile strength-hot rolled steel sheet excellent in corrosion resistance

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20211207

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20221108

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20221209

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230110

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230111

R150 Certificate of patent or registration of utility model

Ref document number: 7210780

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150