JPH01162786A - Method for pickling high strength austenitic stainless steel - Google Patents

Method for pickling high strength austenitic stainless steel

Info

Publication number
JPH01162786A
JPH01162786A JP32133687A JP32133687A JPH01162786A JP H01162786 A JPH01162786 A JP H01162786A JP 32133687 A JP32133687 A JP 32133687A JP 32133687 A JP32133687 A JP 32133687A JP H01162786 A JPH01162786 A JP H01162786A
Authority
JP
Japan
Prior art keywords
nitric
acid
treatment
descaling
immersion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP32133687A
Other languages
Japanese (ja)
Inventor
Masaaki Ishikawa
正明 石川
Takumi Ugi
工 宇城
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Steel Corp filed Critical Kawasaki Steel Corp
Priority to JP32133687A priority Critical patent/JPH01162786A/en
Publication of JPH01162786A publication Critical patent/JPH01162786A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23GCLEANING OR DE-GREASING OF METALLIC MATERIAL BY CHEMICAL METHODS OTHER THAN ELECTROLYSIS
    • C23G1/00Cleaning or pickling metallic material with solutions or molten salts
    • C23G1/02Cleaning or pickling metallic material with solutions or molten salts with acid solutions
    • C23G1/08Iron or steel
    • C23G1/086Iron or steel solutions containing HF

Abstract

PURPOSE:To facilitate the descaling of high strength austenitic stainless steel heat-treated at a low temp. after cold rolling and to prevent the occurrence of surface unevenness by electrolytically treating the steel with nitric acid and immersing the treated steel in fluoronitric acid having a specified compsn. CONSTITUTION:Austenitic stainless steel having increased strength by heat treatment at a low temp. of <=950 deg.C after cold rolling is electrolytically treated with nitric acid or sulfuric acid optionally after salt treatment or is electrolytically treated with a neutral salt and the treated steel is descaled by immersion in fluoronitric acid. An aq. soln. contg. 2.5-5.0wt.% HNO3 and 0.6-2.0wt.% HF is used as the fluoronitric acid. By effectively utilizing refining by heat treatment, the steel is easily descaled and the occurrence of surface unevenness is prevented.

Description

【発明の詳細な説明】 〈産業上の利用分野〉 本発明は冷間圧延後に低温域での熱処理を行い高強度化
をはかったオーステナイト系ステンレス鋼の酸洗方法に
関するものである。
DETAILED DESCRIPTION OF THE INVENTION <Industrial Application Field> The present invention relates to a pickling method for austenitic stainless steel, which is subjected to heat treatment in a low temperature range after cold rolling to increase its strength.

〈従来の技術〉 高強度オーステナイト系ステンレス鋼の製造法のひとつ
として加工硬化現象を利用する方法がよく用いられてい
る。この方法は熱延鋼帯を冷間圧延した後、約1000
〜1150℃の固溶化熱処理および脱スケール処理を行
った後に圧延率5〜30%程度の軽度の冷間圧延をほど
こして高強度を得る方法である。これは固溶化熱処理に
より完全に軟化した状態の材料を軽度の冷間圧延により
高強度化する方法であり、とくにsus 3oiaにつ
いて多用されている。以後この製造法を圧延gllf法
と呼ぶ。
<Prior Art> As one of the methods for manufacturing high-strength austenitic stainless steel, a method that utilizes work hardening phenomenon is often used. This method involves cold-rolling a hot-rolled steel strip and then
This is a method of obtaining high strength by performing solution heat treatment at ~1150°C and descaling treatment, and then applying mild cold rolling at a rolling reduction of about 5 to 30%. This is a method of increasing the strength of a material that has been completely softened by solution heat treatment by mild cold rolling, and is particularly frequently used for SUS 3OIA. Hereinafter, this manufacturing method will be referred to as the rolling gllf method.

一方、この調質圧延法に対し、製造工程の短縮と良好な
鋼板形状を得る製造法として特開昭60−43429号
の方法が提案されている。この方法は熱延鋼帯を製品厚
まで冷間圧延した後、750〜950℃の低温域の熱処
理を行って高強度を得る方法である。以後この方法を熱
処理調質法と呼ぶ。
On the other hand, in contrast to this temper rolling method, a method has been proposed in JP-A-60-43429 as a manufacturing method that shortens the manufacturing process and provides a good steel sheet shape. This method is a method in which a hot rolled steel strip is cold rolled to a product thickness and then heat treated at a low temperature range of 750 to 950°C to obtain high strength. Hereinafter, this method will be referred to as the heat treatment and refining method.

調質圧延法における固溶化熱処理および熱処理調質法に
おける低温域の熱処理は通常酸化性雰圀気で行われ表面
に酸化スケールが形成されるので、熱処理に引続いて脱
スケール処理が行われる。
Solution heat treatment in the temper rolling method and heat treatment in the low temperature range in the heat treatment temper method are usually performed in an oxidizing atmosphere and oxide scale is formed on the surface, so a descaling treatment is performed subsequent to the heat treatment.

オーステナイト系ステンレス冷延鋼板の脱スケール処理
は次に示す3種の方法で通常行われている。
Descaling treatment of cold-rolled austenitic stainless steel sheets is usually carried out by the following three methods.

■硝酸電解または硫酸電解→硝弗酸浸漬■ソルト処理→
硝酸電解または硫酸電解→硝弗酸浸漬 ■中性塩電解→硝弗゛酸浸漬 上記■〜■のプロセスにおいて、ソルト処理。
■Nitric acid electrolysis or sulfuric acid electrolysis → Nitrofluoric acid immersion ■Salt treatment →
Nitric acid electrolysis or sulfuric acid electrolysis → nitric-fluoric acid immersion ■ Neutral salt electrolysis → nitric-fluoric acid immersion In the process of ① to ① above, salt treatment.

硝酸電解、硫酸電解、中性塩電解はいずれも後続の硝弗
酸浸漬の負荷を軽減させるための前処理であり、脱スケ
ールの主体は硝弗酸浸漬によっている。
Nitric acid electrolysis, sulfuric acid electrolysis, and neutral salt electrolysis are all pretreatments to reduce the load of subsequent nitric-fluoric acid immersion, and descaling is mainly performed by nitric-fluoric acid immersion.

硝弗酸は硝酸と弗酸の混合水溶液であるが、オーステナ
イト系ステンレス鋼板の脱スケールに用いられる水溶液
の酸濃度は一般に硝酸濃度5%超えの5〜20−t%、
弗酸濃度0.5〜4wt%(以下単に%とする)である
Nitrofluoric acid is a mixed aqueous solution of nitric acid and hydrofluoric acid, and the acid concentration of the aqueous solution used for descaling austenitic stainless steel sheets is generally 5 to 20-t%, with a nitric acid concentration exceeding 5%,
The hydrofluoric acid concentration is 0.5 to 4 wt% (hereinafter simply referred to as %).

1000〜1150℃の固溶化熱処理後の脱スケールに
おいては前述の■〜■の脱スケールプロセスで迅速でか
つ表面仕上がり良好な脱スケールが可能であった。
In descaling after solution heat treatment at 1,000 to 1,150°C, rapid descaling with a good surface finish was possible using the descaling processes (1) to (4) described above.

ところが熱処理調質法の低温域熱処理後の脱スケールに
おいては従来条件の■〜■の脱スケールプロセスでは脱
スケールが困難となり、脱スケール処理時間が長くなり
、かつ仕上がり表面にむらが生じやすいという問題点が
生じていた。
However, in descaling after low-temperature heat treatment in the heat treatment and refining method, it is difficult to descale using the conventional descaling processes (1) to (3), the descaling process takes a long time, and the finished surface tends to be uneven. A dot had appeared.

〈発明が解決しようとする問題点〉 本発明の目的は数多くの利点を有する熱処理調質法の有
効活用をはかるため、低温域の熱処理後の脱スケールに
通した脱スケール条件を提案することである。
<Problems to be Solved by the Invention> The purpose of the present invention is to propose descaling conditions for descaling after heat treatment in a low temperature range, in order to effectively utilize the heat treatment refining method, which has many advantages. be.

く問題点を解決するための手段〉 本発明は、冷間圧延後に950’C以下の低温域で熱処
理を施し高強度化したオーステナイト系ステンレス鋼を
、硝酸電解処理または硫酸電解処理後に、あるいはソル
ト処理の後の硝酸電解処理または硫酸電解処理後に、あ
るいは中性塩電解処理後に硝弗酸に浸漬して脱スケール
処理を行うに際し、前記浸漬用硝弗酸の液組成を+vo
、:  2.5〜5.Owt%、 IF:  0.6〜
2.Owt%の範囲の水溶液とすることを特徴とする高
強度オーステナイト系ステンレス鋼の酸洗方法である。
Means for Solving the Problems> The present invention provides austenitic stainless steel that has been heat-treated at a low temperature of 950'C or less after cold rolling to increase its strength, after nitric acid electrolytic treatment or sulfuric acid electrolytic treatment, or by salt treatment. When performing descaling treatment by immersion in nitric-fluoric acid after nitric acid electrolysis treatment or sulfuric acid electrolysis treatment after treatment, or after neutral salt electrolysis treatment, the liquid composition of the nitric-fluoric acid for immersion is +vo.
,: 2.5-5. Owt%, IF: 0.6~
2. This is a pickling method for high-strength austenitic stainless steel characterized by using an aqueous solution in the range of Owt%.

く作 用〉 本発明者らは前記目的達成のため、オーステナイト系ス
テンレス冷延鋼板に対し従来実施されている脱スケール
法の各プロセスにおける脱スケール作用と低温域熱処理
後の脱スケールが困難となる原因について調べ、以下の
ことを見出した。
In order to achieve the above-mentioned objective, the present inventors discovered that the descaling effect in each process of the descaling method conventionally carried out on austenitic stainless steel cold rolled steel sheets and the descaling after low-temperature heat treatment are difficult. We investigated the cause and found the following.

硝弗酸浸漬前に行われる、ソルト処理、硫酸電解、硝酸
電解、中性塩電解のいずれもがその主な作用は酸化スケ
ールを改質して、後続の硝弗酸浸漬において酸液が酸化
スケール直下の地鉄まで浸透しやす(させることである
The main effect of salt treatment, sulfuric acid electrolysis, nitric acid electrolysis, and neutral salt electrolysis performed before nitric-fluoric acid immersion is to modify the oxidized scale, so that the acid solution is oxidized during the subsequent nitric-fluoric acid immersion. It is easy to penetrate into the substructure directly below the scale.

この酸化スケールの改質作用は低温域熱処理で形成され
た酸化スケールに対しても、高温の固溶化熱処理で形成
された酸化スケールに対すると同等に有効に働いている
ことが判明した。
It has been found that this oxidized scale reforming effect works equally effectively on the oxidized scale formed by low-temperature heat treatment as it does for the oxidized scale formed by high-temperature solution heat treatment.

一方硝弗酸漫漬の作用は酸化スケール直下の地鉄表層部
に形成されている脱Cr層(Cr欠乏層ともいう)を溶
解することにより酸化スケールを除去することであり、
硝弗酸はこの脱CrJiを溶解するのに適した酸液とし
て利用されてきた。
On the other hand, the action of nitrofluoric acid pickling is to remove oxide scale by dissolving the Cr-depleted layer (also called Cr-deficient layer) that is formed on the surface layer of the steel directly below the oxide scale.
Nitrofluoric acid has been used as an acid solution suitable for dissolving this CrJi removal.

因みに、脱CrNはステンレス鋼が酸化するg (rが
Feよりも優先酸化するために酸化スケール直下の地鉄
のCr含有量が地鉄中心部のCr含有量よりも低くなる
ために形成されるものである。
Incidentally, de-CrN is formed when stainless steel oxidizes (g), which oxidizes more preferentially than Fe, so that the Cr content in the steel base immediately below the oxidation scale becomes lower than the Cr content in the center of the steel base. It is something.

高温で行われる固溶化熱処理の場合は酸化が十分に進み
、したがって脱CrFJの形成も十分に行われるため、
硝弗酸による溶解作用が有効に働き脱スケールがすみや
かに行われる。
In the case of solution heat treatment carried out at high temperatures, oxidation progresses sufficiently and therefore the formation of Cr-free FJ is also sufficiently carried out.
The dissolving action of nitric hydrofluoric acid works effectively and descaling is carried out quickly.

しかしながら低温域熱処理の場合は酸化が十分に進まず
、したがって脱CrNの形成が不十分となるため、硝弗
酸による溶解作用が有効に行われず、脱スケールが困難
となり、仕上がり表面にむらを住じやすくなると考えら
れる。
However, in the case of low-temperature heat treatment, oxidation does not proceed sufficiently and the formation of CrN removal is therefore insufficient, so the dissolving action of nitric-fluoric acid is not effective, making descaling difficult and causing unevenness on the finished surface. This is thought to make it easier to understand.

本発明者らは脱CrJiの形成が不十分な場合に酸化ス
ケール直下の地鉄表層部を溶解させるのに適した酸液の
条件を検討した結果、従来の領域とは異なった特定濃度
範囲の硝弗酸が通していることを見出した。またこの特
定濃度範囲の硝弗酸は通常行われる固溶化熱処理後の十
分に脱Cr層が形成されている場合には溶解力が劣り適
していないことも見出した。
The present inventors investigated the conditions for acid solution suitable for dissolving the surface layer of the steel directly under the oxide scale when the formation of CrJi removal is insufficient. It was discovered that nitric fluoric acid passed through it. It has also been found that nitric-fluoric acid in this specific concentration range is not suitable because of its poor dissolving power when a sufficient Cr-free layer is formed after the usual solution heat treatment.

次に硝弗酸の濃度範囲の限定理由を第1図に基づいて説
明する。
Next, the reason for limiting the concentration range of nitric hydrofluoric acid will be explained based on FIG.

!+No、fi度が5.0%を越える領域Bは従来使用
されている濃度範囲を含む領域であるが、脱Cr層の形
成が不十分な場合は酸化スケール直下の地鉄の熔解力が
弱いため脱スケールに長時間を要する。
! +No, region B where the fi degree exceeds 5.0% is a region that includes the conventionally used concentration range, but if the formation of the Cr-free layer is insufficient, the melting power of the base iron directly under the oxide scale is weak. Therefore, it takes a long time to descale.

)INO3濃度が2.5〜5%で、かつHF濃度が0.
6〜2.0の領域Aは本発明法の濃度範囲であり、脱C
r層の形成が不十分な場合に酸化スケール直下の地鉄を
迅速に溶解する作用があるため、脱スケールが短時間で
可能となり、また仕上がり表面も均一性にすぐれたもの
となる。
)INO3 concentration is 2.5-5% and HF concentration is 0.
Region A of 6 to 2.0 is the concentration range of the method of the present invention, and
When the r-layer is insufficiently formed, it has the effect of quickly dissolving the base iron directly under the oxide scale, so descaling can be done in a short time, and the finished surface also has excellent uniformity.

oNose4度fJ<2.5〜5%テアッテも、HF濃
度が0.6%以下の領域Cの場合は溶解力が低下するた
め脱スケールに長時間を要し、逆に1IFif1度が2
.0%を越える領域りの場合は溶解力が著しく強まり、
仕上がり表面が荒れて粗面となる。
oNose 4 degrees fJ < 2.5-5% Teatte also takes a long time to descale when the HF concentration is in region C below 0.6%, as the dissolving power decreases;
.. In the area exceeding 0%, the dissolving power becomes significantly stronger,
The finished surface becomes rough and rough.

1(j103濃度が2.5%以下の領域Eの場合は熔解
力が低下し脱スケールに長時間を要するようになる。
1 (j) In the case of region E where the concentration of 103 is 2.5% or less, the melting power decreases and descaling takes a long time.

硝弗酸の負荷を軽減するため硝弗酸浸漬前に従来実施さ
れているソルト処理、硝酸電解、硫酸電解、中性塩電解
などの前処理は本発明法においても有効に作用するので
必要であり、それら個々の処理条件は従来と同一の条件
が本発明法においても適用できる。
Pretreatments such as salt treatment, nitric acid electrolysis, sulfuric acid electrolysis, and neutral salt electrolysis, which are conventionally carried out before nitric-fluoric acid immersion in order to reduce the load of nitric-fluoric acid, are also effective in the method of the present invention and are therefore not necessary. The same processing conditions as in the conventional method can also be applied to the method of the present invention.

硝弗酸の液温は高い方が溶解力が強くなるが高くなりす
ぎるとHFの気化蒸発が激しくなるので室温〜70℃の
範囲が通用されるが、50〜60“Cが最適である。
The higher the liquid temperature of nitric-fluoric acid, the stronger the dissolving power will be, but if it becomes too high, the vaporization of HF will be intense, so a range of room temperature to 70°C is commonly used, but 50 to 60"C is optimal.

硝弗酸への浸漬時間は熱処理時間(主として板厚によっ
て決まる)および硝弗酸浸漬前の前処理の程度によって
異なるが、例えば板厚1.5mでソルト処理と硫酸電解
を行った場合は約1分間程度の硝弗酸浸漬で十分に脱ス
ケールが可能である。
The immersion time in nitric-fluoric acid varies depending on the heat treatment time (mainly determined by the board thickness) and the degree of pretreatment before immersion in nitric-fluoric acid, but for example, when salt treatment and sulfuric acid electrolysis are performed on a board with a thickness of 1.5 m, approximately Sufficient descaling is possible by immersion in nitrofluoric acid for about 1 minute.

硝弗酸浸漬により脱スケール処理は完了するが、脱スケ
ール後の地鉄表面の不動態化をより強固にするため硝弗
酸浸漬に引続いて硝酸浸漬あるいは硝酸電解を随時付加
してもよい。
Descaling treatment is completed by dipping in nitric-fluoric acid, but nitric acid dipping or nitric acid electrolysis may be added at any time following dipping in nitric-fluoric acid to further strengthen the passivation of the surface of the bare metal after descaling. .

〈実施例〉 実施例1 第1表に示す化学組成をもつ焼鈍および酸洗を行った板
厚4.0胴の熱延鋼帯を商用工程により板厚1.0調に
冷間圧延し、830℃,70秒の低温域熱処理を行い、
脱スケール実験用供試材とした。
<Examples> Example 1 A hot-rolled steel strip with a thickness of 4.0 that had been annealed and pickled and had the chemical composition shown in Table 1 was cold rolled to a thickness of 1.0 using a commercial process. Perform low-temperature heat treatment at 830°C for 70 seconds,
This was used as a sample material for descaling experiments.

供試材について、ソルト処理→硫酸電解→硝弗酸浸漬の
プロセスで脱スケール処理を行い、処理後の表面状況を
調べた。
The sample materials were descaled using a process of salt treatment, sulfuric acid electrolysis, and nitrofluoric acid immersion, and the surface condition after treatment was investigated.

ソルト処理は430’C,30秒浸漬、硫酸電解は濃度
5%、液温50℃1電流密度10A/dm”、  アノ
ード2秒カソード2秒の一定条件とし、硝弗酸浸漬条件
を変化させた。
The salt treatment was carried out at 430'C for 30 seconds, and the sulfuric acid electrolysis was carried out under the following conditions: concentration 5%, liquid temperature 50°C, current density 10 A/dm'', anode 2 seconds and cathode 2 seconds, and nitric hydrofluoric acid immersion conditions varied. .

得られた結果を第2表に示す。本発明の硝弗酸濃度範囲
にあるNα3.Nα4.Nα5は60秒以下の浸漬で良
好に脱スケールすることができた。一方、従来の硝弗酸
濃度範囲にある場合はNα2のように60秒の浸漬では
スケール残りが生じ、Nα1のように240秒の浸漬を
行うとスケールは除去されたが表面に色調むらを生じた
The results obtained are shown in Table 2. Nα3 within the nitrofluoric acid concentration range of the present invention. Nα4. Nα5 could be successfully descaled by immersion for 60 seconds or less. On the other hand, when the concentration is within the conventional nitrofluoric acid concentration range, 60 seconds of immersion like Nα2 leaves scale residue, while 240 seconds of immersion like Nα1 removes the scale but causes uneven color tone on the surface. Ta.

実施例2 第1表に示す化学組成をもつ焼鈍および酸洗を行った板
厚4.0mm0熱延鋼帯を商用工程により板厚1.5鵬
に冷間圧延し、900℃,120秒の低温域熱処理を行
い、脱スケール実験用供試材とした。
Example 2 A hot-rolled steel strip with a thickness of 4.0 mm that had been annealed and pickled and had the chemical composition shown in Table 1 was cold rolled to a thickness of 1.5 mm by a commercial process, and then rolled at 900°C for 120 seconds. It was subjected to low temperature heat treatment and used as a sample material for descaling experiments.

供試材について、中性塩電解→硝弗酸浸漬のプロセスで
脱スケール処理を行い、処理後の表面状況を調べた。
The sample materials were descaled using a process of neutral salt electrolysis and nitric fluoride immersion, and the surface condition after treatment was investigated.

中性塩電解は溶液濃度20%Na25On+ 液温85
℃1電流密度6A/dm”、  カソード15秒アノー
ド15秒の一定条件とし、硝弗酸浸漬条件を変化させた
For neutral salt electrolysis, the solution concentration is 20% Na25On+ and the liquid temperature is 85%.
℃ 1 current density 6 A/dm'', cathode 15 seconds anode 15 seconds, and nitric-fluoric acid immersion conditions were varied.

得られた結果を第3表に示す。硝弗酸濃度が本発明範囲
内にあるNα8.Nα9は40秒以下の浸漬で良好に脱
スケールしている。一方、従来の硝弗酸濃度範囲にある
場合はNα7のように40秒の浸漬ではスケール残りが
生じ、Nα1のように120秒の浸漬を行わないと良好
に脱スケールすることができなかった。
The results obtained are shown in Table 3. Nα8. whose nitric hydrofluoric acid concentration is within the range of the present invention. Nα9 was successfully descaled by immersion for 40 seconds or less. On the other hand, when the concentration of nitric hydrofluoric acid is within the conventional nitric-fluoric acid concentration range, scale remains after 40 seconds of immersion as in Nα7, and good descaling could not be achieved unless immersed for 120 seconds as in Nα1.

実施例3 第1表に示す化学組成をもつ焼鈍および酸洗を行った板
厚4.0鴫の熱延鋼帯を商用工程により板厚1.0Mに
冷間圧延し、1100℃160秒の固溶化熱処理を行い
、脱スケール実験用供試材とした。
Example 3 A hot-rolled steel strip with a thickness of 4.0 mm that had been annealed and pickled and had the chemical composition shown in Table 1 was cold rolled to a thickness of 1.0 M using a commercial process, and then rolled at 1100°C for 160 seconds. It was subjected to solution heat treatment and used as a sample material for descaling experiments.

供試材についてソルト処理→硫酸電解→硝弗酸浸漬のプ
ロセスで脱スケール処理を行い、処理後の表面状況を調
べた。
The sample materials were descaled using the process of salt treatment, sulfuric acid electrolysis, and nitric-fluoric acid immersion, and the surface condition after treatment was investigated.

ソルト処理および硫酸電解は実施例1と同一とし、硝弗
酸浸漬条件を変化させた。
The salt treatment and sulfuric acid electrolysis were the same as in Example 1, but the nitric-fluoric acid immersion conditions were changed.

得られた結果を第4表に示す。The results obtained are shown in Table 4.

従来の硝弗酸濃度範囲にあるNo、 10は20秒の浸
漬で良好に脱スケールすることができた。しかしながら
本発明の硝弗酸濃度範囲としたNo、11の例は20秒
の浸漬でスケール残りを生した。すなわち1000℃以
上で行われる固溶化熱処理後の脱スケールには適さない
ことが判る。
No. 10, which is in the conventional nitric-fluoric acid concentration range, could be successfully descaled by immersion for 20 seconds. However, in Example No. 11, which had a nitric-fluoric acid concentration range of the present invention, scale remained after 20 seconds of immersion. That is, it is found that it is not suitable for descaling after solution heat treatment performed at 1000° C. or higher.

また実施例1の脱スケール実験用供試材に、前処理酸洗
条件を、次のように種々変えHNO34%。
In addition, the pretreatment pickling conditions for the sample material for the descaling experiment of Example 1 were varied as follows, and HNO was 34%.

HF 1.0%で60℃の硝弗酸水溶液に60秒浸漬処
理したときの結果を第5表に示す。
Table 5 shows the results of immersion treatment in a 60° C. nitric-fluoric acid aqueous solution containing 1.0% HF for 60 seconds.

硫酸電解処理条件 濃度7%、液温50℃8電流密度10A/dm2゜アノ
ード5秒カソード5秒 硝酸電解処理条件 濃度10%、液温60℃2電流密度10A/dm”。
Sulfuric acid electrolytic treatment conditions: concentration 7%, liquid temperature 50°C, current density 10 A/dm2°, anode 5 seconds, cathode 5 seconds, nitric acid electrolytic treatment conditions concentration 10%, liquid temperature 60°C, current density 10 A/dm".

アノード15秒カソード15秒 ソルト処理および硝酸電解処理条件 ソルト処理条件 温度430℃1浸漬時間30秒 硝酸電解処理条件 濃度10%、 fi/M60℃2電流密度1〇八/dm
”。
Anode 15 seconds Cathode 15 seconds Salt treatment and nitric acid electrolysis treatment conditions Salt treatment conditions Temperature 430℃ 1 Immersion time 30 seconds Nitric acid electrolysis treatment conditions Concentration 10%, fi/M 60℃ 2 Current density 108/dm
”.

アノード5秒カソード5秒 第4表 〈発明の効果〉 本発明により熱処理v4質法による高強度オーステナイ
ト系ステンレス鋼板の製造のネックとなっていた脱スケ
ールの困難さおよび表面むらの発生という問題点が解決
し、圧延調質法にくらべ多くの利点を有する熱処理調質
法を有効に活用することができるようになった。
Anode: 5 seconds Cathode: 5 seconds Table 4 <Effects of the Invention> The present invention solves the problems of difficulty in descaling and occurrence of surface unevenness, which were bottlenecks in the production of high-strength austenitic stainless steel sheets using the heat treatment V4 quality method. It has now become possible to effectively utilize the heat treatment heat treatment method, which has many advantages over the rolling heat treatment method.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は硝弗酸の濃度領域を示したものであり、斜線部
で示した領域Aが本発明の範囲である。 特許出願人   川崎製鉄株式会社 第1図 HF社(%)
FIG. 1 shows the concentration range of nitric-fluoric acid, and the shaded area A is the range of the present invention. Patent applicant Kawasaki Steel Corporation Figure 1 HF Company (%)

Claims (1)

【特許請求の範囲】[Claims] 冷間圧延後に950℃以下の低温域で熱処理を施し高強
度化したオーステナイト系ステンレス鋼を、硝酸電解処
理または硫酸電解処理後に、あるいはソルト処理の後の
硝酸電解処理または硫酸電解処理後に、あるいは中性塩
電解処理後に、硝弗酸に浸漬して脱スケール処理を行う
に際し、前記浸漬用硝弗酸の液組成をHNO_3:2.
5〜5.0wt%、HF:0.6〜2.0wt%の範囲
の水溶液とすることを特徴とする高強度オーステナイト
系ステンレス鋼の酸洗方法。
Austenitic stainless steel, which has been heat treated at a low temperature of 950°C or less after cold rolling to increase its strength, is processed after nitric acid electrolysis treatment or sulfuric acid electrolysis treatment, after nitric acid electrolysis treatment or sulfuric acid electrolysis treatment after salt treatment, or after nitric acid electrolysis treatment or sulfuric acid electrolysis treatment after salt treatment. After the electrolytic salt electrolysis treatment, when descaling is performed by immersion in nitric-fluoric acid, the liquid composition of the nitric-fluoric acid for dipping is HNO_3:2.
A method for pickling high-strength austenitic stainless steel, characterized by using an aqueous solution in the range of 5 to 5.0 wt% and HF: 0.6 to 2.0 wt%.
JP32133687A 1987-12-21 1987-12-21 Method for pickling high strength austenitic stainless steel Pending JPH01162786A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP32133687A JPH01162786A (en) 1987-12-21 1987-12-21 Method for pickling high strength austenitic stainless steel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP32133687A JPH01162786A (en) 1987-12-21 1987-12-21 Method for pickling high strength austenitic stainless steel

Publications (1)

Publication Number Publication Date
JPH01162786A true JPH01162786A (en) 1989-06-27

Family

ID=18131452

Family Applications (1)

Application Number Title Priority Date Filing Date
JP32133687A Pending JPH01162786A (en) 1987-12-21 1987-12-21 Method for pickling high strength austenitic stainless steel

Country Status (1)

Country Link
JP (1) JPH01162786A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2060641A1 (en) * 2006-08-23 2009-05-20 Nkktubes Austenite-base stainless steel pipe, for boiler, having excellent high-temperature steam oxidation resistance
JP2015523469A (en) * 2012-07-31 2015-08-13 ポスコ High speed pickling process for producing austenitic stainless cold rolled steel sheet
KR102255102B1 (en) * 2019-12-05 2021-05-24 주식회사 포스코 Manufacturing method of austenitic stainless steel with improved surface quality
JPWO2022049796A1 (en) * 2020-09-01 2022-03-10
JP2022041426A (en) * 2020-09-01 2022-03-11 株式会社特殊金属エクセル Austenitic stainless steel sheet, and method for producing the same

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2060641A1 (en) * 2006-08-23 2009-05-20 Nkktubes Austenite-base stainless steel pipe, for boiler, having excellent high-temperature steam oxidation resistance
JP5108771B2 (en) * 2006-08-23 2012-12-26 エヌケーケーシームレス鋼管株式会社 Austenitic stainless steel pipe for boilers with excellent high-temperature steam oxidation resistance
EP2060641A4 (en) * 2006-08-23 2013-03-20 Nkktubes Austenite-base stainless steel pipe, for boiler, having excellent high-temperature steam oxidation resistance
JP2015523469A (en) * 2012-07-31 2015-08-13 ポスコ High speed pickling process for producing austenitic stainless cold rolled steel sheet
KR102255102B1 (en) * 2019-12-05 2021-05-24 주식회사 포스코 Manufacturing method of austenitic stainless steel with improved surface quality
JPWO2022049796A1 (en) * 2020-09-01 2022-03-10
WO2022049796A1 (en) * 2020-09-01 2022-03-10 株式会社特殊金属エクセル Austenitic stainless steel sheet and method for producing same
JP2022041426A (en) * 2020-09-01 2022-03-11 株式会社特殊金属エクセル Austenitic stainless steel sheet, and method for producing the same

Similar Documents

Publication Publication Date Title
US5759307A (en) Method of producing a cold-rolled strip in one pass
US2115005A (en) Electrochemical treatment of metal
US5490908A (en) Annealing and descaling method for stainless steel
JPS5996300A (en) Control of oxidated scale formation and method of descaling metal products
KR100876218B1 (en) Surface finish method after descaling stainless steel
JPH01162786A (en) Method for pickling high strength austenitic stainless steel
KR20100073407A (en) Method for pickling low chrome ferritic stainless steel
RU2085616C1 (en) Process for pickling of high-grade steel
JP4348464B2 (en) How to process metal products
JPH0474899A (en) Production of cold rolled ferritic stainless steel strip having excellent corrosion resistance
JPH11279781A (en) Production of austenitic stailness steel plate not having pattern on surface
JPH0565594B2 (en)
JP2640565B2 (en) Continuous production equipment for stainless steel sheets
JP2517353B2 (en) Descaling method for stainless steel strip
JPS6345480B2 (en)
JPH0390600A (en) Production of cold-rolled cr-containing steel sheet excellent in corrosion resistance and appearance
JP4132973B2 (en) Manufacturing method of stainless steel plate with smooth surface
JPH05247700A (en) Electrolytic descaling method for stainless annealed steel strip
JPS63111189A (en) Method for descaling cold-rolled band stainless steel
JPH0665765A (en) High speed pickling treatment method of stainless steel strip
JPS5920752B2 (en) Pickling method for austenitic stainless steel sheet
KR950004239B1 (en) Electrolytic cleaning method of austenite cold roled annealing stainless sted sheets
JPS6261672B2 (en)
JPH05331699A (en) Method for descaling from ferritic stainless annealed steel strip
JPS62146300A (en) Method for degreasing cold rolled stainless steel strip