JP7470291B2 - Carbide-bonded polycrystalline diamond electrode material - Google Patents

Carbide-bonded polycrystalline diamond electrode material Download PDF

Info

Publication number
JP7470291B2
JP7470291B2 JP2020197489A JP2020197489A JP7470291B2 JP 7470291 B2 JP7470291 B2 JP 7470291B2 JP 2020197489 A JP2020197489 A JP 2020197489A JP 2020197489 A JP2020197489 A JP 2020197489A JP 7470291 B2 JP7470291 B2 JP 7470291B2
Authority
JP
Japan
Prior art keywords
diamond
particles
electrode material
diamond particles
aggregate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2020197489A
Other languages
Japanese (ja)
Other versions
JP2022085687A (en
JP2022085687A5 (en
Inventor
聡 藤野
宣博 五十嵐
洋基 藤川
良彰 石塚
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tomei Diamond Co Ltd
Original Assignee
Tomei Diamond Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tomei Diamond Co Ltd filed Critical Tomei Diamond Co Ltd
Priority to JP2020197489A priority Critical patent/JP7470291B2/en
Publication of JP2022085687A publication Critical patent/JP2022085687A/en
Publication of JP2022085687A5 publication Critical patent/JP2022085687A5/ja
Application granted granted Critical
Publication of JP7470291B2 publication Critical patent/JP7470291B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Description

本発明はダイヤモンド電極、特にオゾン水発生や様々な規模における汚染水の浄化を目的とした水処理設備用に適する導電性のダイヤモンドを用いた電極素材、並びにその製造方法に関する。 The present invention relates to diamond electrodes, in particular to electrode materials using conductive diamond suitable for use in water treatment facilities for generating ozone water and purifying polluted water on various scales, and to methods for manufacturing the same.

水処理に利用可能な導電性ダイヤモンド電極を得る方法として、シリコンまたはニオブ、タンタルなどの金属基板上に、CVD法によってボロンドープのダイヤモンド膜を形成する方式が広く用いられている。形成された膜の表面は必ずしも平坦でなく、むしろ凹凸のある方が有効表面積が大きく、電極として有利とされ、大きな表面積を得るために、予め基板材料表面にパターンを形成しておく方法も広く採用されている。 A widely used method for obtaining conductive diamond electrodes that can be used in water treatment is to form a boron-doped diamond film on a metal substrate such as silicon or niobium or tantalum using the CVD method. The surface of the film formed is not necessarily flat; rather, unevenness increases the effective surface area and is considered advantageous as an electrode, so a method of forming a pattern on the surface of the substrate material in advance to obtain a large surface area is also widely used.

CVD法によるボロンドープダイヤモンド(BDD)の形成は、高純度のダイヤモンドの形成が可能であり、また形成過程においてもボロンのドープ量を任意に変えることができるメリットを有している。しかし形成反応に長時間を要し、多量のガスを必要とすることから生産性は高くない。 The formation of boron-doped diamond (BDD) using the CVD method has the advantage that it is possible to form high-purity diamond, and the amount of boron doped during the formation process can be changed as desired. However, the formation reaction takes a long time and requires a large amount of gas, so productivity is not high.

ボロンドープダイヤモンドは高圧力・高温を用いた合成反応においても、出発原料中にボロン化合物を添加する方法を用いて砥粒の形で製造されている。高圧力・高温技術はダイヤモンドの粉末を焼結した硬質材料の多結晶ダイヤモンド(PCD)として、我が国においても1962年頃から切削工具素材、耐摩耗材料の製造に用いられている。(特許文献1) Boron-doped diamond is also produced in the form of abrasive grains by adding a boron compound to the starting material in a synthesis reaction using high pressure and high temperature. High pressure and high temperature technology has been used in Japan since around 1962 to produce cutting tool materials and wear-resistant materials, producing polycrystalline diamond (PCD), a hard material made by sintering diamond powder. (Patent Document 1)

工具素材、耐摩耗材料を目指した多結晶ダイヤモンドには、抜群の硬さに加えて靭性の付与も要求されることから、微粉原料を用いた緻密品が要求されている。このことから究極の多結晶ダイヤモンドとして、単結晶ダイヤモンドを超える高い硬度を持つバインダレスのナノ多結晶ダイヤモンドが開発されている。この多結晶は、結合材を含まないため耐熱性が高く、また構成粒子が数十nm と微細であることから、高強度でシャープな刃先の形成が可能になっている。(非特許文献1) Polycrystalline diamond, which is intended to be used as a tool material and wear-resistant material, is required to have not only outstanding hardness but also toughness, so there is a demand for dense products made from fine powder raw materials. For this reason, binderless nano-polycrystalline diamond, which has a hardness exceeding that of single-crystal diamond, has been developed as the ultimate polycrystalline diamond. This polycrystalline diamond has high heat resistance because it does not contain a binder, and the constituent particles are very fine, measuring several tens of nanometers, making it possible to form a high-strength, sharp cutting edge. (Non-Patent Document 1)

一般的な多結晶ダイヤモンドの製造では、焼結助剤としてコバルト系金属が主として用いられ、超高圧力下の高温状態における溶融金属の存在によって、ダイヤモンド粒子の再配列、溶解・析出機構による粒子間の結合、緻密化が進行すると理解されている。 In the general production of polycrystalline diamond, cobalt-based metals are primarily used as sintering aids, and it is understood that the presence of molten metal at high temperatures and under ultra-high pressure promotes rearrangement of diamond particles, bonding between particles through a dissolution and precipitation mechanism, and densification.

コバルト系の焼結助剤金属は、焼結後もダイヤモンド粒子間に残留し、焼結体の緻密性、靭性向上に寄与しているが、高温状態ではダイヤモンドの黒鉛化を促進する逆触媒になることから、高温に曝される用途向けには、粒子間に残留する金属を酸溶解処理によって除去し、ダイヤモンド粒子間の直接結合を維持しつつ、5~30容量%の空孔を持つ焼結体も提案されている。(特許文献2) Cobalt-based sintering aid metals remain between the diamond particles even after sintering, contributing to improved density and toughness of the sintered body, but at high temperatures they become an inverse catalyst that promotes graphitization of diamond. For applications exposed to high temperatures, a sintered body with 5 to 30% voids by volume has been proposed, in which the metal remaining between the particles is removed by acid dissolution treatment, while maintaining the direct bond between the diamond particles. (Patent Document 2)

一方耐熱性の高い焼結体として、結合材に炭化物を用いた多結晶ダイヤモンドも知られており、焼結反応の際に生じた遷移金属炭化物を結合材に用いる先行技術としては、以下の各例が公知である。いずれも切削工具などの素材として、緻密な焼結品の製作を目的としている。 On the other hand, polycrystalline diamond, which uses carbide as a binder, is also known as a highly heat-resistant sintered body, and the following examples are known as prior art that use transition metal carbides produced during the sintering reaction as a binder. All of these are intended to produce dense sintered products as materials for cutting tools, etc.

[1] ダイヤモンド粉体とチタン、ジルコニウム等の金属粉体とを混合し、ダイヤモンド安定領域の高温・高圧条件で金属を溶融し、ダイヤモンドとの反応によって生成した金属炭化物を介してダイヤモンド粉体を固結(焼結)する方法が示されており、焼結温度として最高1950℃の記載がある。(特許文献3) [1] This method involves mixing diamond powder with metal powders such as titanium and zirconium, melting the metal under high temperature and pressure conditions in the diamond stability range, and solidifying (sintering) the diamond powder through the metal carbide produced by the reaction with the diamond. A maximum sintering temperature of 1950°C is listed. (Patent Document 3)

[2] 耐熱性の高い焼結体としては、ホウ素を含有するダイヤモンド粉末を、アルカリ土類金属の炭酸塩を結合材に用いて1600℃以上の高温に曝した焼結体が知られており、耐熱性に加えて放電加工が可能な工具素材になることが示されている。(特許文献4) [2] A known example of a highly heat-resistant sintered body is a sintered body made by exposing boron-containing diamond powder to high temperatures of over 1600°C using an alkaline earth metal carbonate as a binder. It has been shown that this sintered body can be used as a tool material that is heat-resistant and can be used for electric discharge machining. (Patent Document 4)

特公昭39-20483号公報Patent Publication No. 39-20483 特開昭53-114589公報JP 53-114589 A 特開昭51-73512号公報Japanese Patent Publication No. 51-73512 特開2008-133172号公報JP 2008-133172 A

SEIテクニカルレビュー第165号、68-74(2004)SEI Technical Review No. 165, 68-74 (2004)

本発明は導電電極素材の製造において、加圧焼結技術を用いて予め合成された砥粒状の導電性ダイヤモンドを多孔質の一体化品とすることにより、導電電極素材の生産性を高め、併せて電極形状、特性の多様化を可能にすることを課題とする。 The objective of this invention is to increase the productivity of conductive electrode materials by forming a porous, integrated product from pre-synthesized abrasive conductive diamond using pressure sintering technology in the manufacture of conductive electrode materials, while also enabling diversification of electrode shapes and characteristics.

本発明は導電性ダイヤモンドの加圧焼結に際して、焼結促進剤として予めダイヤモンド粒子間に多量の遷移金属を介在させることによって、高温下におけるダイヤモンドと遷移金属との反応によって生じた遷移金属炭化物を介してダイヤモンド粒子を接合すると共に、粒子間隔の広い焼結体を作製し、続く後工程において粒子間に残留する金属を溶出させて多孔質焼結体を得ることを骨子としている。 The gist of the present invention is that when conducting sintering under pressure, a large amount of transition metal is placed between diamond particles as a sintering accelerator in advance, and the diamond particles are joined via the transition metal carbide produced by the reaction between diamond and the transition metal at high temperatures, and a sintered body with wide particle spacing is produced. In a subsequent process, the metal remaining between the particles is dissolved to obtain a porous sintered body.

本発明の主旨は、導電性合成ダイヤモンド粒子を粒子間に空隙を包含せしめて接合一体化させた、多孔質ダイヤモンド集合体で構成されるダイヤモンド電極素材であって、該ダイヤモンド集合体における隣接ダイヤモンド粒子同士がダイヤモンド粒子表面に形成された遷移金属炭化物を介した間接結合によって接合し、かつダイヤモンド集合体全体に対する容積比において20%を超える空隙を有し、さらに分布した空隙が相互に導通して外表面に開口し、水電解操作において、発生ガス及び周囲の水が通過する空間を提供する多結晶ダイヤモンド電極素材にある。
The gist of the present invention is a diamond electrode material composed of a porous diamond aggregate in which conductive synthetic diamond particles are bonded together with voids between them, wherein adjacent diamond particles in the diamond aggregate are indirectly bonded together via transition metal carbides formed on the surfaces of the diamond particles, and the diamond aggregate has voids that account for more than 20% of the volume of the entire diamond aggregate, and the distributed voids are interconnected and open to the outer surface, providing spaces through which generated gas and surrounding water can pass during water electrolysis .

前記の電極素材は以下の各段階を含む工程によって効果的に製造され、従ってこれらの工程もまた本発明の要旨の一面を構成する:
(1) 導電性のバルクダイヤモンド粒子間に遷移金属粉末を配置し、
(2) 全体を加圧加熱処理に供して、ダイヤモンド粒子に接している遷移金属を炭化物に変換すると共に該炭化物を介してダイヤモンド粒子間の接合を行い、
(3) ダイヤモンド粒子間に残留した遷移金属粉末を溶解除去することによって、粒子間に導通した空隙を形成する。
The electrode material is advantageously manufactured by a process which includes the steps of:
(1) Placing transition metal powder between conductive bulk diamond particles;
(2) subjecting the whole to a pressure and heat treatment to convert the transition metal in contact with the diamond particles into carbides and to bond the diamond particles together via the carbides;
(3) The transition metal powder remaining between the diamond particles is dissolved and removed to form conductive voids between the particles.

本発明によれば、高圧力・高温を用いた多結晶ダイヤモンドの製造において、試料の加熱時間は10~20分で十分であり、昇圧・降圧時間を加えても反応サイクルは30分程度であることから、CVD反応に比べて1/10以下の時間で導電電極素材の製造が可能となる。 According to the present invention, in the production of polycrystalline diamond using high pressure and high temperature, the heating time of the sample is sufficient at 10 to 20 minutes, and even if the time for increasing and decreasing the pressure is included, the reaction cycle is about 30 minutes, making it possible to produce conductive electrode materials in less than one-tenth the time required for CVD reactions.

本発明において使用する遷移金属はTi、Zr、Hf、Nb、Ta、Mo及びWが好適で、これらの金属種から選ばれる一種又は複数種を組成又は配合して利用することができる。これらの金属は炭素との化合性が強いため、両材を隣接配置して加熱することにより境界部に炭化物層が形成される。 The transition metals used in the present invention are preferably Ti, Zr, Hf, Nb, Ta, Mo and W, and one or more of these metals can be used in a composition or blend. These metals have a strong affinity with carbon, so a carbide layer is formed at the boundary between the two materials by placing them adjacent to each other and heating them.

本発明の電極素材において、ダイヤモンド粒子間に介在させる遷移金属としては、後工程の酸処理によって溶出させる見地からTi、Zrが適しており、価格の面からTiが最適である。 In the electrode material of the present invention, Ti and Zr are suitable as transition metals to be interposed between diamond particles from the viewpoint of dissolving them in the acid treatment in the subsequent process, and Ti is the most suitable from the viewpoint of cost.

さらに液相の共存によるダイヤモンド粒子の再配列、ならびに部分的な溶解・析出機構によるダイヤモンド粒子間の直接接合を促進する目的で、これらの遷移金属にコバルトまたはニッケルを添加することもできる。 Cobalt or nickel can also be added to these transition metals to promote rearrangement of diamond particles through the coexistence of a liquid phase, as well as direct bonding between diamond particles through a partial dissolution/precipitation mechanism.

本発明の電極素材の製造において、ダイヤモンド粒子は導電性付与物質としてホウ素を含 有する、いわゆるボロンドープダイヤモンドを使用するのが便利である。このようなダイ ヤモンドは特殊砥粒として市販されており入手が容易である。なお導電性ダイヤモンドとしては窒素、リンをドープした品種も知られており、ボロンドープダイヤと同様に使用することができる。 In the manufacture of the electrode material of the present invention, it is convenient to use diamond particles that contain boron as a conductive material, i.e., so-called boron-doped diamond. Such diamonds are commercially available as special abrasive grains and are easy to obtain. There are also known conductive diamond varieties that are doped with nitrogen and phosphorus, which can be used in the same way as boron-doped diamond.

導電電極素材を目的とした焼結体においては、形状を保ち続けるだけの強度があれば十分であり、ダイヤモンド粒子間に水やガスの通過する空間があり、水に接する面積の大きいことが要求される。このことから原料のダイヤモンド粒子にはメッシュサイズの粗い砥粒を用い、粒子間をその場で形成された遷移金属炭化物を介して接合した多孔質焼結体とすることが望ましい。 For sintered bodies intended as conductive electrode materials, it is sufficient if they are strong enough to maintain their shape, and they are required to have spaces between the diamond particles through which water and gas can pass, and a large surface area in contact with water. For this reason, it is desirable to use coarse mesh-sized abrasive grains as the raw diamond particles, and to create a porous sintered body in which the particles are bonded together via transition metal carbides formed in situ.

このため本発明においては原料のボロンドープダイヤモンド砥粒として400メッシュ(35μm)より粗いサイ ズが用いられるが、特に200メッシュ (75μm)以上とすることが好ましく、100メッシュ (150μm)よりも粗い砥粒を用いて大きな空孔を形成することがより好ましい。 For this reason, in the present invention, boron-doped diamond abrasive grains of a size coarser than 400 mesh (35 μm) are used as the raw material, but it is particularly preferable to use a size of 200 mesh (75 μm) or more, and it is even more preferable to use abrasive grains of a size coarser than 100 mesh (150 μm) to form large pores.

ダイヤモンド(炭素)と遷移金属との反応によって遷移金属炭化物を形成する現象は固相領域においても認められ、1000℃以上で明らかな反応の進行が認められる。従ってダイヤモンド粒子の接合に際して、遷移金属の融点を超える加熱温度を必ずしも必要としない。 The phenomenon of forming transition metal carbides by the reaction between diamond (carbon) and transition metals is observed even in the solid phase region, with the reaction clearly progressing at temperatures above 1000°C. Therefore, when joining diamond particles, it is not necessarily necessary to heat the material to a temperature that exceeds the melting point of the transition metal.

焼結反応はダイヤモンドが熱力学的に安定な高圧領域で実施するのが好ましいが、安定領域は必須要件ではなく、還元雰囲気を用い、反応時間を短くすることで、HIP、ホットプレス、放電プラズマ焼結などの技法も用いることができる。 The sintering reaction is preferably carried out in a high-pressure region where diamond is thermodynamically stable, but the stable region is not a requirement, and techniques such as HIP, hot pressing, and spark plasma sintering can also be used by using a reducing atmosphere and shortening the reaction time.

焼結ダイヤモンド層の平坦度を保つためには、充填ダイヤモンドの基板として遷移金属板やセラミックス板を用いると好都合である。例えば基板材料として遷移金属、特にTiやNbを用いた場合、ダイヤモンド粒子と基板との接点では両者の反応で生じた炭化物を介した化学結合によって強力な接合が形成される。即ちダイヤモンド粒子間は、例えばチタン粉とダイヤモンドとの反応で生じた炭化チタンによって固定され、ダイヤモンド粒子と基板との接点では加熱の際に両者の反応によってその場で形成された炭化物を介した化学結合による接合が形成される。 To maintain the flatness of the sintered diamond layer, it is advantageous to use a transition metal plate or a ceramic plate as the substrate for the filled diamond. For example, when a transition metal, especially Ti or Nb, is used as the substrate material, a strong bond is formed at the contact point between the diamond particles and the substrate by chemical bonding via the carbide formed by the reaction between the two. In other words, the diamond particles are fixed together by titanium carbide formed by the reaction between titanium powder and diamond, for example, and at the contact point between the diamond particles and the substrate, a bond is formed by chemical bonding via the carbide formed in situ by the reaction between the two when heated.

遷移金属板を基板材料に用いると、電極面の平坦度が確保されるのに加えて、ダイヤモンド焼結層の補強板としても機能するので,ダイヤモンド層を単一層にまで薄く形成することも可能である。 When a transition metal plate is used as the substrate material, not only does it ensure the flatness of the electrode surface, it also functions as a reinforcing plate for the diamond sintered layer, making it possible to form the diamond layer as thin as a single layer.

焼結反応後にダイヤモンド粒子の隙間に残留した金属は、後工程の塩酸溶解処理によって除くことができる。この際に基板金属の表面からの溶解も生じるが、軽く焼結した遷移金属粉末に比べて溶解速度が遅いことから、板の形で残すことが可能であり、通電用の基板として利用可能である。 Any metal remaining in the gaps between the diamond particles after the sintering reaction can be removed by a subsequent hydrochloric acid dissolution process. During this process, some of the substrate metal dissolves from the surface, but since the dissolution rate is slower than that of lightly sintered transition metal powder, it can be left in the form of a plate, which can be used as a substrate for conducting electricity.

ニオブ、タンタルは殆ど塩酸に溶けないので、基板に最も適した材料と言える。また遷移金属板に代えてWC-Co系超硬合金も用いることができ、この場合さらに超硬合金中のコバルトを塩酸溶解処理の際にダイヤモンド粒子間の残留金属と一緒に溶解除去可能である。 Niobium and tantalum are almost insoluble in hydrochloric acid, making them the most suitable materials for the substrate. WC-Co-based cemented carbide can also be used instead of the transition metal plate, in which case the cobalt in the cemented carbide can be dissolved and removed together with the residual metal between the diamond particles during the hydrochloric acid dissolution process.

ダイヤモンド粒子間の残留金属の除去には、塩酸溶解に代えて電解抽出も用いることができる。この場合、焼結生成物を陽極とし、鉄陰極と組み合わせて希硫酸中で実施できる。大量処理には焼結生成物をまとめてチタンバスケットに入れて電解操作を行うのが有効である。 In place of hydrochloric acid dissolution, electrolytic extraction can also be used to remove residual metal between diamond particles. In this case, the sintered product is used as the anode in combination with an iron cathode in dilute sulfuric acid. For large-scale processing, it is effective to place the sintered product together in a titanium basket and perform the electrolytic operation.

セラミックス系の基板材料としてはマグネシアが好適である。マグネシアは熱伝導率が高く、2800℃という高融点に加えて塩酸に溶解することから、後工程の塩酸溶解処理によってダイヤモンドの粒子間の残留金属と共に除くことができ、ボロンドープダイヤモンドのみで構成された自立導電薄板を得ることができる。 Magnesia is a suitable ceramic substrate material. It has high thermal conductivity, a high melting point of 2800°C, and is soluble in hydrochloric acid. This means that it can be removed together with the residual metal between the diamond particles in a subsequent hydrochloric acid dissolution process, resulting in a self-supporting conductive thin plate made entirely of boron-doped diamond.

電極素材から所定の形状の電極を切り出すのに放電加工を用いる場合には、所定の形状 に切り出してから塩酸溶解処理を行うのが望ましい。 When using electric discharge machining to cut electrodes of a desired shape from electrode material, it is desirable to perform hydrochloric acid dissolution treatment after cutting into the desired shape.

本発明方法においてはダイヤモンド粒子間に残存する焼結助剤金属の溶解除去によって 、表面に導通した空隙の形成による電極材の多孔質化、作用表面積増大が達成される。この多孔質化構造によって作用表面積を大きくすることができ、ガス、水の移動が容易になるのに伴うガス発生効率の上昇、電流密度の低下による電極寿命の向上といった効果が得られる。 In the method of the present invention, the sintering aid metal remaining between the diamond particles is dissolved and removed, forming conductive voids on the surface, making the electrode material porous and increasing the active surface area. This porous structure makes it possible to increase the active surface area, which results in the effects of increasing the gas generation efficiency by facilitating the movement of gas and water, and improving the electrode life by reducing the current density.

前記ダイヤモンド粒子層中に占める空隙の比率はダイヤモンド粒子に混合する焼結助剤の量によって調整可能であるが、空隙のダイヤモンド粒子層に対する相対量(気孔率)は少なくともダイヤモンド粒子層全容積の5%以上とするのが好ましく、20%以上とするのがより好ましい。

The proportion of voids in the diamond particle layer can be adjusted by the amount of sintering aid mixed with the diamond particles , but the relative amount of voids in the diamond particle layer (porosity) is preferably at least 5% of the total volume of the diamond particle layer, and more preferably 20% or more.

次に本発明を実施例によって説明する。なお以下の各例において、カプセルはニオブ薄板製で、厚さ0.15mm、外径63mmのものを用いた。 Next, the present invention will be explained using examples. In each of the following examples, a capsule made of thin niobium plate with a thickness of 0.15 mm and an outer diameter of 63 mm was used.

Nbカプセルに、次の充填順序で反応材料を充填して、厚さ約5mmの加圧・加熱試料を製作した。
充填順序(底部から上方へ)
Ti基板 厚さ0.5mm
ボロンドープダイヤモンド(BDD) #80/100(180μm)15gとTi粉(45μm以下) 10gとの混合粉末
Nb薄板(厚さ0.15mm)
The reaction materials were filled into a Nb capsule in the following order to prepare a pressurized and heated sample having a thickness of approximately 5 mm.
Filling order (bottom to top)
Ti substrate, thickness 0.5mm
Mixture of 15g of boron-doped diamond (BDD) #80/100 (180μm) and 10g of Ti powder (45μm or less) Nb thin plate (thickness 0.15mm)

このカプセルを10段重ねて反応室内に充填し、5.5GPa、1350℃の加圧・加熱条件に10分間保持した。
反応生成物はショットブラストにより、周囲のニオブ板を除去し、約2mm厚さのダイヤモンド焼結層が接合したチタン板を回収した。
Ten of these capsules were stacked in layers and packed into a reaction chamber, which was then maintained under pressure and heating conditions of 5.5 GPa and 1350° C. for 10 minutes.
The reaction product was shot blasted to remove the surrounding niobium plate, and the titanium plate bonded with a sintered diamond layer approximately 2 mm thick was recovered.

次いで6Nの熱塩酸を用いてダイヤモンド粒子間に残留し、軽く焼結しているチタン粉末を溶解除去した。
顕微鏡観察により、ダイヤモンド粒子が接合して網目構造の組織を呈していることが認められ、焼結物はX線回折により、ダイヤモンドと炭化チタンとで構成されていることが確かめられた。
Next, the titanium powder remaining between the diamond particles and lightly sintered was dissolved and removed using 6N hot hydrochloric acid.
Microscopic observation revealed that the diamond particles were bonded together to form a network structure, and X-ray diffraction confirmed that the sintered product was composed of diamond and titanium carbide.

ダイヤモンド粒子間、ならびにダイヤモンド粒子層とチタン基板との結合は共に強固で、ショットブラスト加工においても、研削加工においても剥がれを生じなかった。
容積と質量との測定から、ダイヤモンド層の空隙率は約30%と推定した。
The bonds between the diamond particles and between the diamond particle layer and the titanium substrate were both strong, and no peeling occurred during shot blasting or grinding.
From volume and mass measurements, the porosity of the diamond layer was estimated to be about 30%.

基板として厚さ0.5mmのニオブ板を用いた。ボロンドープダイヤモンド#200/230 (約75μm) 20gとTi粉(45μm以下)10gとの混合粉末を充填し、厚さ0.15mmのニオブ板を蓋に用いた。
焼結条件は6GPa、1400℃とし、この圧力温度条件を10分間保持した。
A 0.5 mm thick niobium plate was used as the substrate. A mixture of 20 g of boron-doped diamond #200/230 (approximately 75 μm) and 10 g of Ti powder (45 μm or less) was filled, and a 0.15 mm thick niobium plate was used as the lid.
The sintering conditions were 6 GPa and 1400° C., and these pressure and temperature conditions were maintained for 10 minutes.

回収された焼結品のダイヤモンド層の厚さは2.3mmであった。後処理の塩酸溶解においてニオブ板の寸法変化は認められなかったことから、空隙率の測定精度は高く、22%と見積もられた。 The thickness of the diamond layer on the recovered sintered product was 2.3 mm. Since no dimensional change was observed in the niobium plate during post-processing, when it was dissolved in hydrochloric acid, the measurement accuracy of the porosity was high and it was estimated to be 22%.

基板として厚さ2.5mmのWC-8%Co超硬合金板を用いた。充填混合粉末として、ボロンドープダイヤモンド#200/230 (約75μm) 30g、Ti粉(45μm以下) 7g、Co粉(約2μm) 3gの混合粉を用いた。焼結条件は5.5GPa、1300℃とし、10分間保持した。 A 2.5 mm thick WC-8%Co cemented carbide plate was used as the substrate. A mixture of 30 g of boron-doped diamond #200/230 (approximately 75 μm), 7 g of Ti powder (45 μm or less), and 3 g of Co powder (approximately 2 μm) was used as the filling mixture powder. The sintering conditions were 5.5 GPa and 1300°C, and the temperature was maintained for 10 minutes.

焼結品のダイヤモンド層の厚さは約3mmであった。研削加工によって超硬合金の厚さを0.5mm以下とした後、塩酸中煮沸によりダイヤモンド粒子間の金属成分を溶解除去した。ダイヤモンド層中の空隙率は約15%と見積もられた。 The thickness of the diamond layer of the sintered product was approximately 3 mm. After grinding to reduce the thickness of the cemented carbide to less than 0.5 mm, the metal components between the diamond particles were dissolved and removed by boiling in hydrochloric acid. The porosity in the diamond layer was estimated to be approximately 15%.

厚さ5mmのマグネシア板上に、ボロンドープダイヤモンド#270/325 (約50μm) 50gを、実施例3と同じチタン-コバルト混合粉と組み合わせて充填した。焼結条件は5.5GPa、1300℃とし、10分間保持した。焼結品はショットブラストでカプセル材のニオブ薄板を除いた後、熱塩酸溶解によりダイヤモンド粒子間の残留金属と共にマグネシアも除き、厚さ約5mmで空隙率約10%のボロンドープダイヤモンド自立薄板を得た。 50 g of boron-doped diamond #270/325 (approximately 50 μm) was packed onto a 5 mm thick magnesia plate in combination with the same titanium-cobalt mixed powder as in Example 3. The sintering conditions were 5.5 GPa, 1300°C, and the temperature was maintained for 10 minutes. The sintered product was shot blasted to remove the niobium thin plate capsule material, and then dissolved in hot hydrochloric acid to remove the magnesia along with the residual metal between the diamond particles, resulting in a free-standing boron-doped diamond thin plate with a thickness of approximately 5 mm and a porosity of approximately 10%.

Claims (4)

導電性合成ダイヤモンド粒子を粒子間に空隙を包含せしめて接合一体化させた、多孔質ダイヤモンド集合体で構成される電極素材であって、該ダイヤモンド集合体における隣接ダイヤモンド粒子同士がダイヤモンド粒子表面に形成された遷移金属炭化物を介した間接結合によって接合し、かつダイヤモンド集合体全体に対する容積比において20%を超える空隙を有し、さらに分布した空隙が相互に導通して外表面に開口し、水電解操作において、発生ガス及び周囲の水が通過する空間を提供する多結晶ダイヤモンド電極素材 This is a polycrystalline diamond electrode material comprising a porous diamond aggregate in which conductive synthetic diamond particles are bonded together with voids between them, wherein adjacent diamond particles in the diamond aggregate are indirectly bonded together via transition metal carbides formed on the surfaces of the diamond particles, and the diamond aggregate has voids that account for more than 20% of the volume of the entire diamond aggregate, and the distributed voids are interconnected and open to the outer surface, providing spaces through which generated gas and surrounding water can pass during water electrolysis . 前記導電性合成ダイヤモンドがボロンドープダイヤモンド(BDD)である、請求項1に記載の多結晶ダイヤモンド電極素材 The polycrystalline diamond electrode material of claim 1, wherein the conductive synthetic diamond is boron-doped diamond (BDD) . 前記ダイヤモンド粒子同士がダイヤモンド粒子表面に形成された遷移金属炭化物を介した間接結合によって相互に接合し、かつ集合体が全体として遷移金属の補強材上に化学結合によって固定されている、請求項1に記載の多結晶ダイヤモンド電極素材。 The polycrystalline diamond electrode material described in claim 1, wherein the diamond particles are indirectly bonded to each other via transition metal carbides formed on the surfaces of the diamond particles, and the aggregate as a whole is fixed to the transition metal reinforcing material by chemical bonds. 水処理電解槽で使用される、請求項1に記載の多結晶ダイヤモンド電極素材 The polycrystalline diamond electrode material according to claim 1, for use in a water treatment electrolytic cell .
JP2020197489A 2020-11-27 2020-11-27 Carbide-bonded polycrystalline diamond electrode material Active JP7470291B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020197489A JP7470291B2 (en) 2020-11-27 2020-11-27 Carbide-bonded polycrystalline diamond electrode material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2020197489A JP7470291B2 (en) 2020-11-27 2020-11-27 Carbide-bonded polycrystalline diamond electrode material

Publications (3)

Publication Number Publication Date
JP2022085687A JP2022085687A (en) 2022-06-08
JP2022085687A5 JP2022085687A5 (en) 2022-12-13
JP7470291B2 true JP7470291B2 (en) 2024-04-18

Family

ID=81892401

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020197489A Active JP7470291B2 (en) 2020-11-27 2020-11-27 Carbide-bonded polycrystalline diamond electrode material

Country Status (1)

Country Link
JP (1) JP7470291B2 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005325417A (en) 2004-05-14 2005-11-24 Sumitomo Electric Ind Ltd Diamond electrode and production method therefor
JP2008133172A (en) 2006-10-31 2008-06-12 Mitsubishi Materials Corp Boron-doped diamond sinter and process for producing the same
JP2012126605A (en) 2010-12-15 2012-07-05 Sumitomo Electric Hardmetal Corp Diamond sintered compact
JP2019006662A (en) 2017-06-28 2019-01-17 博 石塚 Diamond-based composite material using boron-based binder, production method therefor, and tool constituent using the same

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005325417A (en) 2004-05-14 2005-11-24 Sumitomo Electric Ind Ltd Diamond electrode and production method therefor
JP2008133172A (en) 2006-10-31 2008-06-12 Mitsubishi Materials Corp Boron-doped diamond sinter and process for producing the same
JP2012126605A (en) 2010-12-15 2012-07-05 Sumitomo Electric Hardmetal Corp Diamond sintered compact
JP2019006662A (en) 2017-06-28 2019-01-17 博 石塚 Diamond-based composite material using boron-based binder, production method therefor, and tool constituent using the same

Also Published As

Publication number Publication date
JP2022085687A (en) 2022-06-08

Similar Documents

Publication Publication Date Title
Ding et al. Fabrication and performance of porous metal-bonded CBN grinding wheels using alumina bubble particles as pore-forming agents
US6616725B2 (en) Self-grown monopoly compact grit
KR20050072753A (en) Method for producing a sintered, supported polycrystalline diamond compact
WO2010006064A2 (en) Pulsed electrical field assisted or spark plasma sintered polycrystalline ultra hard material and thermally stable ultra hard material cutting elements and compacts and methods of forming the same
EP1013379A1 (en) Diamond-containing stratified composite material and method of manufacturing the same
JP2018532673A (en) Diamond composites produced by lithography
JP2019006662A (en) Diamond-based composite material using boron-based binder, production method therefor, and tool constituent using the same
JP5613970B2 (en) Method for synthesizing cubic boron nitride and method for producing sintered cubic boron nitride
JP2012066979A (en) High-hardness, electrically conductive polycrystalline diamond and method for producing the same
CN109385523A (en) Grade powder and sintered hard carbide composition
CN106587088A (en) Novel ternary osmium-ruthenium-boron compound hard material and preparation method thereof
US20170081247A1 (en) Superhard pcd constructions and methods of making same
JP7470291B2 (en) Carbide-bonded polycrystalline diamond electrode material
CN110524442A (en) A kind of porous diamond multicrystal abrasive material and preparation method thereof
CN108408727A (en) A kind of synthesis of easily stripped ceramic material MAX phases and stripping means
JP3550587B2 (en) Method for manufacturing fine diamond sintered body
JP4984159B2 (en) Method for producing fine grain titanium silicon carbide ceramics
JP6654210B2 (en) How to make a mold for sintering
JP7441441B2 (en) Sintered diamond electrode material
US20130318883A1 (en) Cutting tools made from stress free cbn composite material and method of production
JP2012087042A (en) Titanium diboride-based sintered compact, and method for producing the same
JP7470294B2 (en) Sintered diamond thermal diffusion material and its manufacturing method
RU2184644C2 (en) Diamond-containing laminate composition material and method for making such material
JPH0437650A (en) Fracture resisting diamond and processing of diamond-combined article
JPH1179839A (en) Tungsten carbide-based cemented carbide material and its production

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20221203

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20221203

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20230824

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230919

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20231114

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20240113

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20240319

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20240320

R150 Certificate of patent or registration of utility model

Ref document number: 7470291

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150