JP7151984B2 - Solid solution nanoparticles, method for producing the same, and catalyst - Google Patents

Solid solution nanoparticles, method for producing the same, and catalyst Download PDF

Info

Publication number
JP7151984B2
JP7151984B2 JP2018021386A JP2018021386A JP7151984B2 JP 7151984 B2 JP7151984 B2 JP 7151984B2 JP 2018021386 A JP2018021386 A JP 2018021386A JP 2018021386 A JP2018021386 A JP 2018021386A JP 7151984 B2 JP7151984 B2 JP 7151984B2
Authority
JP
Japan
Prior art keywords
solid solution
catalyst
nanoparticles according
compound
mol
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2018021386A
Other languages
Japanese (ja)
Other versions
JP2018141232A (en
Inventor
宏 北川
康平 草田
冬霜 ▲呉▼
権 張
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyoto University
Original Assignee
Kyoto University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyoto University filed Critical Kyoto University
Publication of JP2018141232A publication Critical patent/JP2018141232A/en
Application granted granted Critical
Publication of JP7151984B2 publication Critical patent/JP7151984B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Description

本発明は、固溶体ナノ粒子及びその製造方法並びに触媒に関する。 TECHNICAL FIELD The present invention relates to solid solution nanoparticles, a method for producing the same, and a catalyst.

白金族元素は自動車排ガス処理、水素化などの高機能触媒、あるいはメッキなどに使用されているが、産出量が少なく高価である。このため、白金族元素の使用量を低減しうる技術が求められている。 Platinum group elements are used in automobile exhaust gas treatment, high-performance catalysts for hydrogenation, plating, etc., but they are expensive due to their low production volume. Therefore, there is a demand for a technique capable of reducing the amount of platinum group elements used.

例えば金(Au)とイリジウム(Ir)、ルテニウム(Ru)は固溶しないと考えられてきたため、これまでAuとIr又はRuを含む固溶体の構造および触媒活性について調べた例はない。 For example, gold (Au), iridium (Ir), and ruthenium (Ru) have been thought not to form a solid solution, so there has been no investigation of the structure and catalytic activity of a solid solution containing Au and Ir or Ru.

特許文献1は、金元素とイリジウム元素の少なくとも一部が互いに接触した状態でメソポーラスシリカの内部に担持された排ガス浄化用触媒を記載しているが、金とイリジウムは分離しているので、これら元素の相乗効果は期待できない。 Patent Document 1 describes an exhaust gas purifying catalyst in which at least part of a gold element and an iridium element are in contact with each other and supported inside mesoporous silica. A synergistic effect of the elements cannot be expected.

特許文献2は、PdとRuの2元合金を開示しているが、金を含む固溶体合金の開示はない。 Patent Document 2 discloses a binary alloy of Pd and Ru, but does not disclose a solid solution alloy containing gold.

非特許文献1は、電極還元をしてAuとIrの固溶体作製を試みているが、均一な合金はできていない。 Non-Patent Document 1 attempts to produce a solid solution of Au and Ir by electrode reduction, but a uniform alloy cannot be produced.

特許文献3は、Irと、Au, Rh, Pd, Mn, Cr, Co, Ni, Cu, FeおよびSnからなる群より選ばれる少なくとも1種以上の元素とを含む合金について記載しているが、実施例においてIrとAuを含む合金は製造されていない。 Patent Document 3 describes an alloy containing Ir and at least one element selected from the group consisting of Au, Rh, Pd, Mn, Cr, Co, Ni, Cu, Fe and Sn. No alloys containing Ir and Au were produced in the examples.

特許文献4は、Pt,Ir,Pd,Rh,Ru,Au,Agのうちの少なくとも二種以上の固溶体を記載しているが、実施例ではIrとPtの固溶体が記載されるのみであり、他の固溶体については製造されていない。 Patent Document 4 describes a solid solution of at least two of Pt, Ir, Pd, Rh, Ru, Au and Ag, but the examples only describe a solid solution of Ir and Pt, No other solid solutions have been produced.

特開2002-210369号公報JP-A-2002-210369 特許第5737699号Patent No. 5737699 特開2002-119862号公報JP-A-2002-119862 特開2006-198490号公報Japanese Patent Application Laid-Open No. 2006-198490

Sun Hwa Park et al., RSC Advances, 2016, 6, 3210-3212Sun Hwa Park et al., RSC Advances, 2016, 6, 3210-3212

本発明は、新規固溶体及びその製造方法並びに触媒を提供することを目的とする。 An object of the present invention is to provide a novel solid solution, a method for producing the same, and a catalyst.

本発明は、以下のAuとIr及び/又はRuを含む固溶体ナノ粒子及びその製造方法並びに触媒を提供するものである。
項1. 金(Au)とイリジウム(Ir)及び/又はルテニウム(Ru)が原子レベルで固溶している固溶体ナノ粒子。
項2. Auを5~95モル%、Ir及び/又はRuを95~5モル%含む、項1に記載の固溶体ナノ粒子。
項3. 表面保護剤で覆われている、項1又は2に記載の固溶体ナノ粒子。
項4. 担体に担持されている、項1又は2に記載の固溶体ナノ粒子。
項5. 粒子の平均粒径が1~30 nmである、項1~4のいずれか1項に記載の固溶体ナノ粒子。
項6. 項1~5のいずれか1項に記載の固溶体ナノ粒子からなる、触媒。
項7. 水添反応用触媒、水素酸化反応用触媒、酸素還元反応(ORR)用触媒、酸素発生反応(OER)用触媒、窒素酸化物(NOx)還元反応用触媒、一酸化炭素(CO)酸化反応用触媒、脱水素反応用触媒、VVOC又はVOC酸化反応用触媒、排ガス浄化用触媒、水電解反応用触媒又は水素燃料電池用触媒である、項6に記載の触媒。
項8. 酸素還元反応用触媒又は水電解反応用触媒である、項6又は7に記載の触媒。
項9. 還元剤を含む溶液に、イリジウム化合物及び/又はルテニウム化合物と金化合物を溶媒中に含む溶液を添加することを特徴とする、固溶体ナノ粒子の製造方法。
項10. イリジウム化合物及び/又はルテニウム化合物と金化合物を含む溶液の添加を噴霧、滴下又はポンプによる送液で行う、項9に記載の固溶体ナノ粒子の製造方法。
項11. 還元剤を含む溶液が表面保護剤又は担体を含み、この溶液にイリジウム化合物及び/又はルテニウム化合物と金化合物を含む溶液を添加することを特徴とする、項9又は10に記載の固溶体ナノ粒子の製造方法。
項12. 還元剤がアルキレングリコール類、グリセリン、ポリグリセリン、アルキレングリコールモノアルキルエーテル、アミン類、不飽和脂肪酸、不飽和炭化水素、金属水素化物からなる群から選ばれる少なくとも1種である、項9~11のいずれか1項に記載の固溶体ナノ粒子の製造方法。
項13. 表面保護剤がポリビニルピロリドン(PVP)、ポリエチレングリコール(PEG)、オレイルアミン又はオレイン酸である、項11に記載の固溶体ナノ粒子の製造方法。
項14. 溶媒が水、アルコール、ポリオール類、ポリエーテル類からなる群から選ばれる少なくとも1種である、項9に記載の固溶体ナノ粒子の製造方法。
The present invention provides the following solid solution nanoparticles containing Au and Ir and/or Ru, a method for producing the same, and a catalyst.
Section 1. Solid solution nanoparticles in which gold (Au) and iridium (Ir) and/or ruthenium (Ru) are dissolved at the atomic level.
Section 2. Item 2. The solid solution nanoparticles according to item 1, containing 5 to 95 mol% of Au and 95 to 5 mol% of Ir and/or Ru.
Item 3. Item 3. The solid solution nanoparticles according to Item 1 or 2, which are coated with a surface protective agent.
Section 4. Item 3. The solid solution nanoparticles according to Item 1 or 2, which are supported on a carrier.
Item 5. Item 5. The solid solution nanoparticles according to any one of Items 1 to 4, wherein the particles have an average particle size of 1 to 30 nm.
Item 6. A catalyst comprising the solid solution nanoparticles according to any one of Items 1 to 5.
Item 7. Hydrogenation reaction catalyst, hydrogen oxidation reaction catalyst, oxygen reduction reaction (ORR) catalyst, oxygen evolution reaction (OER) catalyst, nitrogen oxide (NOx) reduction reaction catalyst, carbon monoxide (CO) oxidation reaction catalyst 7. The catalyst according to item 6, which is a catalyst, a dehydrogenation catalyst, a VVOC or VOC oxidation reaction catalyst, an exhaust gas purification catalyst, a water electrolysis catalyst, or a hydrogen fuel cell catalyst.
Item 8. Item 8. The catalyst according to item 6 or 7, which is a catalyst for oxygen reduction reaction or a catalyst for water electrolysis reaction.
Item 9. A method for producing solid solution nanoparticles, which comprises adding a solution containing an iridium compound and/or a ruthenium compound and a gold compound in a solvent to a solution containing a reducing agent.
Item 10. Item 10. The method for producing solid solution nanoparticles according to Item 9, wherein the solution containing the iridium compound and/or the ruthenium compound and the gold compound is added by spraying, dropping, or feeding with a pump.
Item 11. Item 11. The solid solution nanoparticles according to item 9 or 10, wherein the solution containing a reducing agent contains a surface protective agent or a carrier, and a solution containing an iridium compound and/or a ruthenium compound and a gold compound is added to the solution. Production method.
Item 12. Items 9 to 11, wherein the reducing agent is at least one selected from the group consisting of alkylene glycols, glycerin, polyglycerin, alkylene glycol monoalkyl ethers, amines, unsaturated fatty acids, unsaturated hydrocarbons, and metal hydrides. A method for producing solid solution nanoparticles according to any one of claims 1 to 3.
Item 13. Item 12. The method for producing solid solution nanoparticles according to Item 11, wherein the surface protective agent is polyvinylpyrrolidone (PVP), polyethylene glycol (PEG), oleylamine or oleic acid.
Item 14. Item 10. The method for producing solid solution nanoparticles according to Item 9, wherein the solvent is at least one selected from the group consisting of water, alcohol, polyols, and polyethers.

本発明のナノ粒子は、AuとIr及び/又はRuが固溶体を形成しているため、従来のAuとIr及び/又はRuの複合触媒とは異なる電子状態を有し、これまでにはない性質を有することが期待できる。 Since the nanoparticles of the present invention form a solid solution of Au and Ir and/or Ru, they have different electronic states from conventional composite catalysts of Au and Ir and/or Ru, and have unprecedented properties. can be expected to have

周期表において、Ir、Pt、Auは順に並んでおり、全てfcc構造を有する。構造および電子数の観点から、IrとAuの1:1の固溶体はPtに類似した電子状態を有することが期待でき、類似した性質を発現する可能性がある。つまり、AuIr合金がPtが高い活性を示す燃料電池電極反応などにおいて、高い触媒活性を示すことが期待できる。 In the periodic table, Ir, Pt, and Au are arranged in order and all have the fcc structure. From the viewpoint of structure and number of electrons, a 1:1 solid solution of Ir and Au can be expected to have an electronic state similar to that of Pt, and may exhibit similar properties. In other words, the AuIr alloy can be expected to exhibit high catalytic activity in fuel cell electrode reactions in which Pt exhibits high activity.

従来存在しなかったAuとIr及び/又はRu固溶体を作製することで、新たな電子状態および反応場としての結晶表面を作ることが可能となり、Au、Ir、Ru単体および、非固溶触媒とは異なる触媒活性を有すると考えられる。 By creating a solid solution of Au and Ir and/or Ru, which did not exist before, it is possible to create a new electronic state and a crystal surface as a reaction field, Au, Ir, and Ru alone and non-solution catalysts. are thought to have different catalytic activities.

本発明の合金ナノ粒子は、自動車の排ガス用触媒、化学分野(モノマー合成、有害物の分解、脱臭など)、下記の(1)~(5)の触媒として有用であると期待される。
(1)CO酸化反応,H2酸化反応
(2)VVOC(超揮発性有機化合物;Very Volatile Organic Compounds、例えばメタン、エタン、プロパン、ブタンなど),VOC(揮発性有機化合物;Volatile Organic Compounds)の燃焼反応
(3)MCH(メチルシクロヘキサン)の脱水素反応
(4)水素化等の選択性の発現をターゲットにした反応
(5) 燃料電池系の反応(水電解反応や酸素還元反応など)
The alloy nanoparticles of the present invention are expected to be useful as exhaust gas catalysts for automobiles, chemical fields (monomer synthesis, decomposition of harmful substances, deodorization, etc.), and as catalysts for the following (1) to (5).
( 1 ) CO oxidation reaction, H2 oxidation reaction
(2) Combustion reaction of VVOCs (Very Volatile Organic Compounds, such as methane, ethane, propane, butane, etc.) and VOCs (Volatile Organic Compounds)
(3) Dehydrogenation reaction of MCH (methylcyclohexane)
(4) Reaction targeting the expression of selectivity such as hydrogenation
(5) Fuel cell system reaction (water electrolysis reaction, oxygen reduction reaction, etc.)

実施例1~3で得られたAuIr固溶体ナノ粒子のXRDパターンと格子定数を示す。XRDより単純なAu、Irが混入していない均一な粒子が作製できていることが確認できた。LeBail法で格子定数を算出したところ、右図に示すように金属組成に対し線形的に格子定数が変化する、固溶体合金のVegard則に従っているため固溶体合金が作成できていることが確認できた。金属組成はXRF分析を行い算出した。Irが仕込み量より少ないのは一部が不純物として遠心分離で除去されているためと考えられる。4 shows XRD patterns and lattice constants of AuIr solid solution nanoparticles obtained in Examples 1 to 3. FIG. It was confirmed that uniform particles, which are simpler than XRD and do not contain Au and Ir, were produced. When the lattice constant was calculated by the LeBail method, it was confirmed that a solid solution alloy was created because the lattice constant varies linearly with the metal composition as shown in the figure on the right, which conforms to Vegard's law for solid solution alloys. The metal composition was calculated by XRF analysis. The reason why the amount of Ir is less than the charged amount is considered to be that part of it is removed as an impurity by centrifugation. 実施例1~3で得られたAuIr固溶体ナノ粒子のTEM像を示す。Irの割合が増えるほど、粒径は小さくなるが、全体の金属塩濃度を調整することで、粒径の制御は行える。1 shows TEM images of AuIr solid solution nanoparticles obtained in Examples 1 to 3. FIG. Although the particle size becomes smaller as the proportion of Ir increases, the particle size can be controlled by adjusting the total metal salt concentration. 実施例1で得られたAuIr固溶体ナノ粒子のHAADF-STEM像およびSTEM-EDXマップを示す。全粒子にAuとIrが粒子内に均一に分布していることから、固溶体を形成していることが確認された。1 shows an HAADF-STEM image and a STEM-EDX map of AuIr solid solution nanoparticles obtained in Example 1. FIG. Since Au and Ir are uniformly distributed in all particles, it was confirmed that a solid solution was formed. 実施例1で得られたAuIr固溶体ナノ粒子のSTEM-EDX線分析の結果を示す。全粒子にAuとIrが粒子全体にわたり均一に分布しており、固溶体を形成していることが確認された。1 shows the results of STEM-EDX ray analysis of AuIr solid solution nanoparticles obtained in Example 1. FIG. It was confirmed that Au and Ir were uniformly distributed over the entire grain and formed a solid solution. 実施例2で得られたAuIr固溶体ナノ粒子のSTEM-EDXマップ及び線分析の結果を示す。全粒子にAuとIrが粒子内に均一に分布していることから、固溶体を形成していることが確認された。2 shows the results of STEM-EDX maps and line analysis of AuIr solid solution nanoparticles obtained in Example 2. FIG. Since Au and Ir are uniformly distributed in all particles, it was confirmed that a solid solution was formed. 実施例1~3で得られたAuIr固溶体合金のORR(酸素還元反応)触媒活性(1.0M NaOH中)。Au0.5Ir0.5がIr、Auよりも活性が大幅に向上し、Ptに匹敵する値となる。ORR (oxygen reduction reaction) catalytic activity of the AuIr solid solution alloys obtained in Examples 1 to 3 (in 1.0 M NaOH). Au 0.5 Ir 0.5 has much higher activity than Ir and Au, and has a value comparable to that of Pt. 実施例1で得られたAuIr固溶体合金のOER(酸素発生反応)触媒活性(1.0M NaOH中)。Au0.5Ir0.5がIr、Ptよりも活性が大幅に向上した。OER (oxygen evolution reaction) catalytic activity of the AuIr solid solution alloy obtained in Example 1 (in 1.0 M NaOH). Au 0.5 Ir 0.5 showed much higher activity than Ir and Pt. 実施例4~8で得られたAuRu固溶体ナノ粒子のXRDパターンを示す。4 shows XRD patterns of AuRu solid solution nanoparticles obtained in Examples 4-8. 実施例4~8で得られたAuRu固溶体ナノ粒子の格子定数を示す。4 shows lattice constants of AuRu solid solution nanoparticles obtained in Examples 4-8. 実施例4~8で得られたAuRu固溶体ナノ粒子のTEM像を示す。1 shows TEM images of AuRu solid solution nanoparticles obtained in Examples 4 to 8. FIG. 実施例4~8で得られたAuRu固溶体ナノ粒子のSTEM-EDXマップ及び線分析の結果を示す。4 shows the results of STEM-EDX maps and line analysis of AuRu solid solution nanoparticles obtained in Examples 4-8. 実施例4~8で得られたAuRu固溶体ナノ粒子のOER(酸素発生反応)触媒活性(0.05 M H2SO4水溶液中)。OER (oxygen evolution reaction) catalytic activity of AuRu solid solution nanoparticles obtained in Examples 4-8 (in 0.05 MH 2 SO 4 aqueous solution).

本発明で得られる固溶体ナノ粒子は、金(Au)とイリジウム(Ir)及び/又はルテニウム(Ru)の固溶体ナノ粒子であり、好ましくはAuIr固溶体ナノ粒子及びAuRu固溶体ナノ粒子である。 The solid solution nanoparticles obtained in the present invention are solid solution nanoparticles of gold (Au) and iridium (Ir) and/or ruthenium (Ru), preferably AuIr solid solution nanoparticles and AuRu solid solution nanoparticles.

ここで、「AuとIr及び/又はRuの固溶体ナノ粒子」とは、ナノ粒子の中でAuとIr及び/又はRuが均一に存在し、各金属原子の分布に偏りがないことを意味する。 Here, “Au and Ir and / or Ru solid solution nanoparticles” means that Au and Ir and / or Ru are uniformly present in the nanoparticles and the distribution of each metal atom is not biased. .

本発明の1つの実施形態の固溶体ナノ粒子において、AuとIr及び/又はRuの割合は、Auを5~95モル%、Ir及び/又はRuを5~95モル%;好ましくはAuを10~90モル%、Ir及び/又はRuを10~90モル%;より好ましくはAuを20~80モル%、Ir及び/又はRuを80~20モル%含む。 In the solid solution nanoparticles of one embodiment of the present invention, the ratio of Au to Ir and/or Ru is 5 to 95 mol% Au and 5 to 95 mol% Ir and/or Ru; 90 mol % and 10-90 mol % of Ir and/or Ru; more preferably 20-80 mol % of Au and 80-20 mol % of Ir and/or Ru.

本発明の他の実施形態の固溶体ナノ粒子において、AuとIrの割合は、Auを5~95モル%、Irを5~95モル%;好ましくはAuを10~90モル%、Irを10~90モル%;より好ましくはAuを20~80モル%、Irを80~20モル%、さらに好ましくはAuを30~70モル%、Irを70~30モル%、特に好ましくはAuを40~60モル%、Irを60~40モル%、最も好ましくはAuを50モル%、Irを50モル%含む。好ましい範囲ではOER及びORRにおいて電流密度及び触媒活性が向上する。 In the solid solution nanoparticles of other embodiments of the present invention, the ratio of Au and Ir is 5-95 mol % Au and 5-95 mol % Ir; preferably 10-90 mol % Au and 10-90 mol % Ir 90 mol %; more preferably 20 to 80 mol % Au and 80 to 20 mol % Ir, more preferably 30 to 70 mol % Au and 70 to 30 mol % Ir, particularly preferably 40 to 60 mol % Au 60-40 mol % Ir, most preferably 50 mol % Au and 50 mol % Ir. In the preferred range, current density and catalytic activity are improved in OER and ORR.

本発明の他の実施形態の固溶体ナノ粒子において、AuとRuの割合は、Auを5~90モル%、Ruを10~95モル%;好ましくはAuを5~70モル%、Ruを30~95モル%;より好ましくはAuを5~50モル%、Ruを50~95モル%;さらに好ましくはAuを5~30モル%、Ruを70~95モル%;特に好ましくはAuを10~30モル%、Ruを70~90モル%含む。好ましい範囲ではOERにおいて電流密度及び触媒活性が向上する。 In the solid solution nanoparticles of other embodiments of the present invention, the ratio of Au and Ru is 5-90 mol% Au and 10-95 mol% Ru; preferably 5-70 mol% Au and 30-30 mol% Ru. 95 mol%; more preferably 5 to 50 mol% Au and 50 to 95 mol% Ru; more preferably 5 to 30 mol% Au and 70 to 95 mol% Ru; particularly preferably 10 to 30 mol% Au mol %, containing 70 to 90 mol % Ru. A preferred range improves current density and catalytic activity in OER.

本発明のナノ粒子の平均粒径は、1~30 nm程度、好ましくは1~20 nm程度、より好ましくは1~15 nm程度、さらに好ましくは1~10 nm程度である。平均粒径が小さいと触媒性能が高くなるために好ましい。固溶体ナノ粒子の平均粒径は、TEMなどの顕微鏡写真により確認することができる。固溶体ナノ粒子の形状は特に限定されず、球状、楕円体状、ロッド状、柱状、リン片状など任意の形状であってよい。 The nanoparticles of the present invention have an average particle diameter of about 1 to 30 nm, preferably about 1 to 20 nm, more preferably about 1 to 15 nm, even more preferably about 1 to 10 nm. A small average particle size is preferable because it enhances the catalytic performance. The average particle size of the solid solution nanoparticles can be confirmed by micrographs such as TEM. The shape of the solid solution nanoparticles is not particularly limited, and may be any shape such as spherical, ellipsoidal, rod-like, columnar, and scale-like.

本発明の固溶体ナノ粒子は、還元剤を含む溶液にイリジウム化合物及び/又はルテニウム化合物と金化合物を溶媒中に含む溶液を添加することで調製することができる。イリジウム化合物及び/又はルテニウム化合物と金化合物を溶媒中に含む溶液を噴霧、滴下、或いはポンプによる送液などで少量ずつ添加することで反応混合物の温度を維持することができる。反応混合物に表面保護剤を含まない場合、固溶体ナノ粒子の凝集物が得られるが、表面保護剤の存在下で固溶体ナノ粒子を製造すると、固溶体ナノ粒子の凝集を抑制できる。表面保護剤は、還元剤を含む溶液に加えることが好ましい。また、担体の存在下で固溶体ナノ粒子を製造すると、固溶体ナノ粒子は担体に担持された状態で製造される。担体は、還元剤を含む溶液に加えてもよく、金属塩を含む溶液に加えてもよい。 The solid solution nanoparticles of the present invention can be prepared by adding a solution containing an iridium compound and/or a ruthenium compound and a gold compound in a solvent to a solution containing a reducing agent. The temperature of the reaction mixture can be maintained by adding a solution containing an iridium compound and/or a ruthenium compound and a gold compound in a solvent little by little by spraying, dropping, or pumping. When the reaction mixture does not contain a surface protective agent, aggregates of solid solution nanoparticles are obtained, but when solid solution nanoparticles are produced in the presence of a surface protective agent, aggregation of solid solution nanoparticles can be suppressed. The surface protective agent is preferably added to the solution containing the reducing agent. Moreover, when solid solution nanoparticles are produced in the presence of a carrier, the solid solution nanoparticles are produced while being supported by the carrier. The carrier may be added to the solution containing the reducing agent or to the solution containing the metal salt.

イリジウム化合物及び/又はルテニウム化合物と金化合物を溶解するための溶媒としては、水、アルコール(メタノール、エタノール、イソプロパノールなど)、ポリオール類(エチレングリコール、ジエチレングリコール、トリエチレングリコール、プロピレンングリコール、グリセリンなど)、ポリエーテル類(ポリエチレングリコールなど)などが使用でき、1種単独で又は2種以上を組み合わせて使用することができる。溶媒としては、水、アルコール又は含水アルコールが好ましい。 Solvents for dissolving the iridium compound and/or ruthenium compound and the gold compound include water, alcohols (methanol, ethanol, isopropanol, etc.), polyols (ethylene glycol, diethylene glycol, triethylene glycol, propylene glycol, glycerin, etc.). , polyethers (polyethylene glycol, etc.) and the like can be used, and they can be used singly or in combination of two or more. As the solvent, water, alcohol or hydroalcohol is preferred.

反応温度は室温から溶媒の沸点以下の温度が挙げられ、好ましくは60~250℃程度、より好ましくは100~240℃程度、さらに好ましくは160~230℃程度である。反応時間は、特に限定されないが、例えば1~24時間程度である。 The reaction temperature ranges from room temperature to the boiling point of the solvent, preferably about 60 to 250°C, more preferably about 100 to 240°C, even more preferably about 160 to 230°C. Although the reaction time is not particularly limited, it is, for example, about 1 to 24 hours.

Au化合物とIr化合物及び/又はRu化合物は、水溶性であることが好ましく、塩であることがより好ましい。好ましいAu化合物とIr化合物及び/又はRu化合物としては、硫酸塩、硝酸塩、酢酸塩などの有機酸塩、炭酸塩、ハロゲン化物(フッ化物、塩化物、臭化物、ヨウ化物)などが挙げられ、ハロゲン化物、酢酸塩等の有機酸塩、硝酸塩が好ましく使用できる。Auは、2価、3価、4価のいずれでもよい。Irは2価、3価、4価のいずれでもよい。Ruは1価、2価、3価、4価のいずれでもよい。Au化合物としては、例えばHAuCl4, HAuBr4, HAuI4, KAuCl4, KAuBr4, KAuI4, NaAuCl4, NaAuBr4, NaAuI4, AuCl3, AuBr3, AuI3, HAu(NO)4, KAu(NO3)4, KAu(CN)2, KAu(CN)4などが挙げられ、Ir化合物としては、例えば塩化イリジウム、イリジウムアセチルアセトナート、イリジウムシアン酸カリウム、イリジウム酸カリウムなどが挙げられ、Ru化合物としては、RuCl3, RuBr3などのハロゲン化ルテニウム、硝酸ルテニウム、K2Ru(NO)Cl5、[Ru(NH3)6]Cl2などが挙げられる。 The Au compound and the Ir compound and/or Ru compound are preferably water-soluble, more preferably salts. Preferred Au compounds, Ir compounds and/or Ru compounds include organic acid salts such as sulfates, nitrates and acetates, carbonates, halides (fluorides, chlorides, bromides and iodides). Organic acid salts such as organic compounds, acetates, and nitrates can be preferably used. Au may be divalent, trivalent, or tetravalent. Ir may be divalent, trivalent or tetravalent. Ru may be monovalent, divalent, trivalent or tetravalent. Examples of Au compounds include HAuCl4 , HAuBr4, HAuI4, KAuCl4, KAuBr4, KAuI4, NaAuCl4 , NaAuBr4 , NaAuI4 , AuCl3 , AuBr3 , AuI3 , HAu ( NO) 4 , KAu ( NO 3 ) 4 , KAu(CN) 2 , KAu(CN) 4 , etc. Examples of Ir compounds include iridium chloride, iridium acetylacetonate, potassium iridium cyanate, potassium iridate, etc. Ru compounds Examples thereof include ruthenium halides such as RuCl 3 and RuBr 3 , ruthenium nitrate, K 2 Ru(NO)Cl 5 and [Ru(NH 3 ) 6 ]Cl 2 .

Au化合物とIr化合物及び/又はRu化合物の溶媒溶液中の濃度としては、各々0.01~1000mmol/L程度、好ましくは0.05~100 mmol/L 程度、より好ましくは0.1~50 mmol/L程度である。Au化合物とIr化合物及び/又はRu化合物の濃度が濃すぎるとAuとIr及び/又はRuの原子レベルで均一性が低下する可能性がある。 The concentrations of the Au compound and the Ir compound and/or Ru compound in the solvent solution are each about 0.01 to 1000 mmol/L, preferably about 0.05 to 100 mmol/L, more preferably about 0.1 to 50 mmol/L. If the concentrations of the Au compound and the Ir compound and/or the Ru compound are too high, the atomic level uniformity of Au and Ir and/or Ru may decrease.

還元剤としては、エチレングリコール、プロピレングリコール、ジエチレングリコール、トリエチレングリコール、テトラエチレングリコール等のグリコール類、グリセリン、ジグリセリン、トリグリセリン、デカグリセリンなどのポリグリセリン、トリメチロールプロパン、ペンタエリスリトール、エチレングリコールモノメチルエーテル、エチレングリコールモノエチルエーテル、ジエチレングリコールモノメチルエーテル、ジエチレングリコールモノエチルエーテルなどのアルキレングリコールモノアルキルエーテル、ブチルアミン、ドデシルアミン、オレイルアミンなどのアミン類、オレイン酸、リノール酸、リノレン酸などの不飽和脂肪酸、ドデセン、テトラデセン、オクタデセンなどの不飽和炭化水素、NaBH4、LiBH4、NaCNBH3、LiAlH4などが使用できる。 Examples of reducing agents include glycols such as ethylene glycol, propylene glycol, diethylene glycol, triethylene glycol, and tetraethylene glycol, polyglycerols such as glycerin, diglycerin, triglycerin, and decaglycerin, trimethylolpropane, pentaerythritol, and ethylene glycol monomethyl. Ethers, alkylene glycol monoalkyl ethers such as ethylene glycol monoethyl ether, diethylene glycol monomethyl ether and diethylene glycol monoethyl ether, amines such as butylamine, dodecylamine and oleylamine, unsaturated fatty acids such as oleic acid, linoleic acid and linolenic acid, dodecene , tetradecene, octadecene and other unsaturated hydrocarbons, NaBH4, LiBH4 , NaCNBH3 , LiAlH4 and the like can be used.

表面保護剤としては、ポリビニルピロリドン(PVP)、ポリエチレングリコール(PEG)などのポリマー類、オレイルアミンなどのアミン類、オレイン酸などのカルボン酸類が使用できる。 As surface protective agents, polymers such as polyvinylpyrrolidone (PVP) and polyethylene glycol (PEG), amines such as oleylamine, and carboxylic acids such as oleic acid can be used.

担体としては、アルミナ、シリカ、セリア、ジルコニア、チタニア或いはこれらを1種又は2種以上含む複合酸化物または活性炭やカーボンナノチューブなど炭素材が挙げられる。表面保護剤の配合量は、AuとIr及び/又はRuの固溶体ナノ粒子の凝集を抑制できる量であれば特に限定されないが、例えばAu化合物とIr化合物及び/又はRu化合物の合計1モルに対し、0.1モル~100モル程度使用すればよい。担体の配合量は、特に限定されないが、例えばAu化合物とIr化合物及び/又はRu化合物の合計1mmolに対し200 mg~40 g程度使用すればよい。 Examples of the carrier include carbon materials such as alumina, silica, ceria, zirconia, titania, composite oxides containing one or more of these, activated carbon, and carbon nanotubes. The amount of the surface protective agent is not particularly limited as long as it is an amount that can suppress the aggregation of solid solution nanoparticles of Au and Ir and/or Ru. , about 0.1 mol to 100 mol may be used. The amount of the carrier to be blended is not particularly limited, but for example, about 200 mg to 40 g may be used per 1 mmol of the total of the Au compound and the Ir compound and/or Ru compound.

反応混合物に表面保護剤が含まれていると、固溶体ナノ粒子の成長が抑制され、反応液に分散したAuIr固溶体ナノ粒子が得られる。 When the reaction mixture contains a surface protective agent, the growth of solid solution nanoparticles is suppressed, and AuIr solid solution nanoparticles dispersed in the reaction solution are obtained.

反応混合物に担体が含まれていると、固溶体ナノ粒子は担体に担持された状態で得られる。 When a carrier is included in the reaction mixture, solid solution nanoparticles are obtained in a state supported by the carrier.

以下、本発明を実施例に基づきより詳細に説明するが、本発明がこれら実施例に限定されないことはいうまでもない。
実施例1~3
エチレングリコール(還元剤) 300ml及び6.0mmol PVP(保護剤)の混合液を190℃で加熱撹拌し、この溶液に表1に示すモル数の塩化イリジウム(IV)と塩化金(III)をイオン交換水40mlに溶かした溶液を噴霧し、190℃で5分間維持した後放冷し、生じた沈殿物を遠心分離により分離した。分離した固溶状態のAuIr固溶体ナノ粒子について、XRDパターン(図1)、TEM画像(図2)、STEM-EDXマップ(図3)、実施例1のナノ粒子の線分析(図4)、実施例2のナノ粒子のSTEM-EDXマップ及び線分析(図5)を測定した。
EXAMPLES The present invention will be described in more detail below based on examples, but it goes without saying that the present invention is not limited to these examples.
Examples 1-3
A mixed solution of 300 ml of ethylene glycol (reducing agent) and 6.0 mmol of PVP (protective agent) was heated and stirred at 190°C. A solution dissolved in 40 ml of water was sprayed, maintained at 190° C. for 5 minutes, then allowed to cool, and the resulting precipitate was separated by centrifugation. XRD pattern (Fig. 1), TEM image (Fig. 2), STEM-EDX map (Fig. 3), line analysis of the nanoparticles of Example 1 (Fig. 4), for the separated AuIr solid solution nanoparticles A STEM-EDX map and line analysis (FIG. 5) of the nanoparticles of Example 2 were measured.

Figure 0007151984000001
Figure 0007151984000001

実施例1~3で得られたAuIr固溶体ナノ粒子のAuとIrの比率はXRF(蛍光X線)により測定した。結果を下記に記載する。
実施例1 Au : Ir = 0.22:0.78 以降Au0.2Ir0.8と表記
実施例2 Au : Ir = 0.51:0.49 以降Au0.5Ir0.5と表記
実施例3 Au : Ir = 0.70:0.30 以降Au0.7Ir0.3と表記
The ratio of Au to Ir in the AuIr solid solution nanoparticles obtained in Examples 1 to 3 was measured by XRF (X-ray fluorescence). Results are described below.
Example 1 Au: Ir = 0.22:0.78 and later described as Au 0.2 Ir 0.8 Example 2 Au: Ir = 0.51: 0.49 and later described as Au 0.5 Ir 0.5 Example 3 Au: Ir = 0.70:0.30 and later described as Au 0.7 Ir 0.3 labels

試験例1
[電極の製造]
実施例1~3のAuIr固溶体ナノ粒子をカーボン粒子に担持したAuIr固溶体電極(AuIr/C:金属量20wt%)を製造した。
[ORR触媒活性]
電流測定装置:ポテンシオスタット(BAS社製 ALS760E)
測定方法:実施例1~3のAuIr固溶体ナノ粒子をカーボン粒子に担持した回転リングディスク電極をカソードとし、3電極式セル(対極:白金線、参照極:水銀-酸化水銀電極(Hg/HgO)、電解液:1.0MのNaOH、25℃、アルゴン飽和)を用いて、0.5Vから1.1V(vs.RHE)まで5mV/sにて電位Eを掃引したときの電流値Iを測定し、ORR触媒活性を評価した。比較のためにAuIr固溶体ナノ粒子に代えてIrナノ粒子、Auナノ粒子、Ptナノ粒子を用いて同様にカソードを作製し、ORR触媒活性を評価した。結果を図6に示す。
[OER触媒活性]
電流測定装置:ポテンシオスタット(BAS社製 ALS760E)
測定方法:実施例2のAu0.5Ir0.5固溶体ナノ粒子をカーボンに担持した回転リングディスク電極をアノードとし、3電極式セル(対極:白金線、参照極:水銀-酸化水銀電極(Hg/HgO)、電解液:1.0MのNaOH、25℃、窒素飽和)を用いて、1Vから2.0V(vs.RHE)まで5mV/sにて電位Eを掃引したときの電流値Iを測定した。比較のために電極材料をAu0.5Ir0.5固溶体ナノ粒子に代えてIrナノ粒子、Auナノ粒子、Ptナノ粒子を用いて同様にOER触媒活性を測定した。結果を図7に示す。
Test example 1
[Manufacturing of electrodes]
An AuIr solid solution electrode (AuIr/C: metal content 20 wt%) in which the AuIr solid solution nanoparticles of Examples 1 to 3 were supported on carbon particles was produced.
[ORR catalytic activity]
Current measuring device: Potentiostat (ALS760E manufactured by BAS)
Measurement method: A rotating ring disk electrode in which the AuIr solid solution nanoparticles of Examples 1 to 3 are supported on carbon particles is used as a cathode, and a three-electrode cell (counter electrode: platinum wire, reference electrode: mercury-mercury oxide electrode (Hg/HgO) , Electrolyte solution: 1.0 M NaOH, 25 ° C., argon saturation), the current value I is measured when the potential E is swept from 0.5 V to 1.1 V (vs. RHE) at 5 mV / s. and evaluated the ORR catalytic activity. For comparison, Ir nanoparticles, Au nanoparticles, and Pt nanoparticles were used instead of the AuIr solid solution nanoparticles to prepare cathodes in the same manner, and the ORR catalytic activity was evaluated. The results are shown in FIG.
[OER catalytic activity]
Current measuring device: Potentiostat (ALS760E manufactured by BAS)
Measurement method: A rotating ring disk electrode in which the Au 0.5 Ir 0.5 solid solution nanoparticles of Example 2 are supported on carbon is used as an anode, and a three-electrode cell (counter electrode: platinum wire, reference electrode: mercury-mercury oxide electrode (Hg/HgO) , electrolyte solution: 1.0 M NaOH, 25° C., nitrogen saturation) was used to measure the current value I when the potential E was swept from 1 V to 2.0 V (vs. RHE) at 5 mV/s. For comparison, the OER catalytic activity was similarly measured using Ir nanoparticles, Au nanoparticles, and Pt nanoparticles instead of Au 0.5 Ir 0.5 solid solution nanoparticles as electrode materials. The results are shown in FIG.

実施例4~8
100mlのエチレングリコール(還元剤)と4 mmolのPVP(表面保護剤、K30)の溶液を195℃に加熱し、そこに表2に示すモル数のHAuBr4とK2RuCl5(NO)をジエチレングリコール10mlに溶かした溶液をポンプで1.5ml/minで加え、10分間維持した。反応液を遠心分離してAuRu固溶体ナノ粒子を得た。得られたAuRu固溶体ナノ粒子について、XRDパターンを図8に示し、LeBail法で格子定数を算出した結果を図9,表3に示し、TEM画像を図10に示し、STEM-EDXマップを図11に示す。格子定数が金属組成に対し線形的に格子定数が変化する固溶体合金のVegard則に従っていること、またEDXマップよりAuとRuの両元素が粒子内に均一に分布しているため固溶体合金が作製できていることが確認できた。
Examples 4-8
A solution of 100 ml of ethylene glycol (reducing agent) and 4 mmol of PVP (surface protective agent, K30) was heated to 195°C, and the molar numbers of HAuBr4 and K2RuCl5 (NO) shown in Table 2 were added thereto in diethylene glycol. A 10 ml solution was pumped in at 1.5 ml/min and held for 10 minutes. The reaction solution was centrifuged to obtain AuRu solid solution nanoparticles. Fig. 8 shows the XRD pattern of the obtained AuRu solid solution nanoparticles, Fig. 9 and Table 3 show the results of lattice constant calculation by the LeBail method, Fig. 10 shows the TEM image, and Fig. 11 shows the STEM-EDX map. shown in The lattice constant follows the Vegard's law of solid solution alloys, in which the lattice constant changes linearly with the metal composition, and the EDX map shows that both the Au and Ru elements are uniformly distributed in the particles, making it possible to fabricate a solid solution alloy. It was confirmed that

Figure 0007151984000002
Figure 0007151984000002

Figure 0007151984000003
Figure 0007151984000003

試験例2
[電極の製造]
実施例4~8のAuRu固溶体ナノ粒子、Auナノ粒子、Ruナノ粒子をカーボン粒子に担持したAuRu固溶体電極(AuRu/C:金属量20wt%)、Au電極(Au/C:金属量20wt%)、Ru電極(Ru/C:金属量20wt%)を製造した。
[OER触媒活性]
電流測定装置:ポテンシオスタット(BAS社製 ALS760E)
測定方法:Auナノ粒子、Ruナノ粒子、実施例4~8のAuRu固溶体ナノ粒子をカーボンに担持した回転リングディスク電極をアノードとし、3電極式セル(対極:白金線、参照極:銀-塩化銀電極(Ag/AgCl)、電解液:0.05MのH2SO4、25℃、窒素飽和)を用いて、1Vから2.0V(vs.RHE)まで5mV/sにて電位Eを掃引したときの電流値Iを測定した。結果を図12に示す。
Test example 2
[Manufacturing of electrodes]
AuRu solid solution nanoparticles of Examples 4 to 8, Au nanoparticles, AuRu solid solution electrodes in which Ru nanoparticles are supported on carbon particles (AuRu/C: metal content 20wt%), Au electrodes (Au/C: metal content 20wt%) , Ru electrodes (Ru/C: metal content 20 wt%) were manufactured.
[OER catalytic activity]
Current measuring device: Potentiostat (ALS760E manufactured by BAS)
Measurement method: A rotating ring disk electrode in which Au nanoparticles, Ru nanoparticles, and AuRu solid solution nanoparticles of Examples 4 to 8 are supported on carbon is used as an anode, and a three-electrode cell (counter electrode: platinum wire, reference electrode: silver-chloride A silver electrode (Ag/AgCl), electrolyte: 0.05 M H2SO4 , 25 °C, nitrogen saturated) was used to sweep potential E from 1 V to 2.0 V (vs. RHE) at 5 mV/s. The current value I at that time was measured. The results are shown in FIG.

Ruは約1.5V以降、触媒の溶出に伴う活性の低下が観測されるが、AuRu固溶体合金の場合はAu10%でも顕著な活性の低下はない(図12a)。また、Au10%、Au30%ではRuに比べ電流密度も高く、活性の向上が確認できる(図12a、12b)。 After about 1.5 V, the activity of Ru is observed to decrease as the catalyst dissolves, but in the case of the AuRu solid solution alloy, there is no significant decrease in activity even at 10% Au (Fig. 12a). In addition, 10% Au and 30% Au have higher current densities than Ru, and an improvement in activity can be confirmed (Figs. 12a and 12b).

Claims (14)

金(Au)とイリジウム(Ir)及び/又はルテニウム(Ru)が原子レベルで固溶しており、Au及びIrが原子レベルで固溶している場合には、AuとIrの割合は、Auが20モル%以上、Irが80モル%以下である、固溶体ナノ粒子。 When gold (Au) and iridium (Ir) and/or ruthenium (Ru) are in solid solution at the atomic level , and Au and Ir are in solid solution at the atomic level, the ratio of Au and Ir is Au is 20 mol% or more and Ir is 80 mol% or less . Auを20~95モル%、Ir及び/又はRuを80~5モル%含む、請求項1に記載の固溶体ナノ粒子。 Solid solution nanoparticles according to claim 1, containing 20 to 95 mol% of Au and 80 to 5 mol% of Ir and/or Ru. 表面保護剤で覆われている、請求項1又は2に記載の固溶体ナノ粒子。 3. Solid solution nanoparticles according to claim 1 or 2, coated with a surface protective agent. 担体に担持されている、請求項1又は2に記載の固溶体ナノ粒子。 3. The solid solution nanoparticles according to claim 1 or 2, which are supported on a carrier. 粒子の平均粒径が1~30 nmである、請求項1~4のいずれか1項に記載の固溶体ナノ粒子。 Solid solution nanoparticles according to any one of claims 1 to 4, wherein the particles have an average particle size of 1 to 30 nm. 請求項1~5のいずれか1項に記載の固溶体ナノ粒子からなる、触媒。 A catalyst comprising the solid solution nanoparticles according to any one of claims 1 to 5. 水添反応用触媒、水素酸化反応用触媒、酸素還元反応(ORR)用触媒、酸素発生反応(OER)用触媒、窒素酸化物(NOx)還元反応用触媒、一酸化炭素(CO)酸化反応用触媒、脱水素反応用触媒、VVOC又はVOC酸化反応用触媒、排ガス浄化用触媒、水電解反応用触媒又は水素燃料電池用触媒である、請求項6に記載の触媒。 Hydrogenation reaction catalyst, hydrogen oxidation reaction catalyst, oxygen reduction reaction (ORR) catalyst, oxygen evolution reaction (OER) catalyst, nitrogen oxide (NOx) reduction reaction catalyst, carbon monoxide (CO) oxidation reaction catalyst 7. The catalyst according to claim 6, which is a catalyst, a dehydrogenation catalyst, a VVOC or VOC oxidation reaction catalyst, an exhaust gas purification catalyst, a water electrolysis catalyst, or a hydrogen fuel cell catalyst. 酸素還元反応用触媒又は水電解反応用触媒である、請求項6又は7に記載の触媒。 8. The catalyst according to claim 6, which is a catalyst for oxygen reduction reaction or a catalyst for water electrolysis reaction. 請求項1~5のいずれか1項に記載の固溶体ナノ粒子の製造方法であって、還元剤を含む溶液に、イリジウム化合物及び/又はルテニウム化合物と金化合物を溶媒中に含む溶液を添加することを特徴とする、固溶体ナノ粒子の製造方法。 The method for producing solid solution nanoparticles according to any one of claims 1 to 5, wherein a solution containing an iridium compound and/or a ruthenium compound and a gold compound in a solvent is added to a solution containing a reducing agent. A method for producing solid solution nanoparticles, characterized by: イリジウム化合物及び/又はルテニウム化合物と金化合物を含む溶液の添加を噴霧、滴下又はポンプによる送液で行う、請求項9に記載の固溶体ナノ粒子の製造方法。 10. The method for producing solid solution nanoparticles according to claim 9, wherein the solution containing the iridium compound and/or the ruthenium compound and the gold compound is added by spraying, dropping, or feeding with a pump. 還元剤を含む溶液が表面保護剤又は担体を含み、この溶液にイリジウム化合物及び/又はルテニウム化合物と金化合物を含む溶液を添加することを特徴とする、請求項9又は10に記載の固溶体ナノ粒子の製造方法。 Solid solution nanoparticles according to claim 9 or 10, characterized in that the solution containing a reducing agent contains a surface protective agent or carrier, and a solution containing an iridium compound and/or a ruthenium compound and a gold compound is added to this solution. manufacturing method. 還元剤がアルキレングリコール類、グリセリン、ポリグリセリン、アルキレングリコールモノアルキルエーテル、アミン類、不飽和脂肪酸、不飽和炭化水素、金属水素化物からなる群から選ばれる少なくとも1種である、請求項9~11のいずれか1項に記載の固溶体ナノ粒子の製造方法。 Claims 9 to 11, wherein the reducing agent is at least one selected from the group consisting of alkylene glycols, glycerin, polyglycerin, alkylene glycol monoalkyl ethers, amines, unsaturated fatty acids, unsaturated hydrocarbons and metal hydrides. A method for producing solid solution nanoparticles according to any one of the above. 表面保護剤がポリビニルピロリドン(PVP)、ポリエチレングリコール(PEG)、オレイルアミン又はオレイン酸である、請求項11に記載の固溶体ナノ粒子の製造方法。 12. The method for producing solid solution nanoparticles according to claim 11, wherein the surface protective agent is polyvinylpyrrolidone (PVP), polyethylene glycol (PEG), oleylamine or oleic acid. 溶媒が水、アルコール、ポリオール類、ポリエーテル類からなる群から選ばれる少なくとも1種である、請求項9に記載の固溶体ナノ粒子の製造方法。 10. The method for producing solid solution nanoparticles according to claim 9, wherein the solvent is at least one selected from the group consisting of water, alcohols, polyols, and polyethers.
JP2018021386A 2017-02-27 2018-02-08 Solid solution nanoparticles, method for producing the same, and catalyst Active JP7151984B2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017034833 2017-02-27
JP2017034833 2017-02-27

Publications (2)

Publication Number Publication Date
JP2018141232A JP2018141232A (en) 2018-09-13
JP7151984B2 true JP7151984B2 (en) 2022-10-12

Family

ID=63527585

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018021386A Active JP7151984B2 (en) 2017-02-27 2018-02-08 Solid solution nanoparticles, method for producing the same, and catalyst

Country Status (1)

Country Link
JP (1) JP7151984B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4176992A1 (en) * 2020-07-06 2023-05-10 Kyoto University Alloy, aggregate of alloy nanoparticles, and catalyst
WO2022009871A1 (en) * 2020-07-06 2022-01-13 国立大学法人京都大学 Alloy, aggregate of alloy nanoparticles, and catalyst
CN114526974B (en) * 2022-03-15 2022-09-20 贵研检测科技(云南)有限公司 Method for dissolving insoluble noble metal sample

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001205086A (en) 2000-01-26 2001-07-31 Ishifuku Metal Ind Co Ltd Method for manufacturing platinum/ruthenium alloy- bearing catalyst
JP2002102679A (en) 2000-09-29 2002-04-09 Toyota Motor Corp Composite metal colloid and its production method
JP2015139722A (en) 2014-01-27 2015-08-03 トヨタ自動車株式会社 Manufacturing method of exhaust gas purification catalyst

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5702838A (en) * 1995-08-18 1997-12-30 Matsushita Electric Industrial Co., Ltd. Fuel cell device equipped with catalyst material for removing carbon monoxide and method for removing carbon monoxide
KR101454877B1 (en) * 2012-11-06 2014-11-04 한국과학기술원 Bifunctional catalysts using bimetallic material for cathode of Li-air battery

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001205086A (en) 2000-01-26 2001-07-31 Ishifuku Metal Ind Co Ltd Method for manufacturing platinum/ruthenium alloy- bearing catalyst
JP2002102679A (en) 2000-09-29 2002-04-09 Toyota Motor Corp Composite metal colloid and its production method
JP2015139722A (en) 2014-01-27 2015-08-03 トヨタ自動車株式会社 Manufacturing method of exhaust gas purification catalyst

Also Published As

Publication number Publication date
JP2018141232A (en) 2018-09-13

Similar Documents

Publication Publication Date Title
WO2021020377A1 (en) Alloy nanoparticles, aggregate of alloy nanoparticles, catalyst, and method for producing alloy nanoparticles
Lu et al. One-pot synthesis of interconnected Pt 95 Co 5 nanowires with enhanced electrocatalytic performance for methanol oxidation reaction
Cai et al. PdTex/C nanocatalysts with high catalytic activity for ethanol electro-oxidation in alkaline medium
Zhu et al. Facile synthesis of trimetallic AuPtPd alloy nanowires and their catalysis for ethanol electrooxidation
Velazquez-Hernandez et al. Electrochemical valorization of crude glycerol in alkaline medium for energy conversion using Pd, Au and PdAu nanomaterials
JP7151984B2 (en) Solid solution nanoparticles, method for producing the same, and catalyst
Cermenek et al. Novel highly active carbon supported ternary PdNiBi nanoparticles as anode catalyst for the alkaline direct ethanol fuel cell
US20160141630A1 (en) Method for forming noble metal nanoparticles on a support
JP7157456B2 (en) PdRu Solid Solution Nanoparticles, Manufacturing Method and Catalyst Therefor, Method for Controlling Crystal Structure of PtRu Solid Solution Nanoparticles, and AuRu Solid Solution Nanoparticles and Manufacturing Method Therefor
Wang et al. Bimetallic PdAu alloyed nanowires: Rapid synthesis via oriented attachment growth and their high electrocatalytic activity for methanol oxidation reaction
Wang et al. Direct synthesis of bimetallic PtCo mesoporous nanospheres as efficient bifunctional electrocatalysts for both oxygen reduction reaction and methanol oxidation reaction
Hong et al. Scalable synthesis of Cu-based ultrathin nanowire networks and their electrocatalytic properties
KR102457845B1 (en) Single Atomic Platinum Catalysts and Their Uses
EP2749352B1 (en) Exhaust gas purification catalyst, and method for producing same
JP2007123195A (en) Method of manufacturing catalyst
Kute et al. A review on the synthesis and applications of sustainable copper-based nanomaterials
Song et al. Simple polyol synthesis of porous coral-like palladium–silver alloy nanostructures with enhanced electrocatalytic activity for glycerol oxidation reaction
Wang et al. In situ assembly of ultrafine AuPd nanowires as efficient electrocatalysts for ethanol electroxidation
Li et al. PtNiCu nanowires with advantageous lattice-plane boundary for enhanced ethanol electrooxidation
Cai et al. Facile synthesis of PdSbx/C nanocatalyst with high performance for ethanol electro-oxidation in alkaline medium
Palma et al. Comparative study of catalyst effect on ethanol electrooxidation in alkaline medium: Pt-and Pd-based catalysts containing Sn and Ru
Pinheiro et al. Pd-Pt nanoparticles combined with ceria nanorods for application in oxygen reduction reactions in alkaline direct ethanol fuel cell cathodes
Huang et al. A simple wet-chemical strategy for facile fabrication of hierarchical PdAu nanodentrites as excellent electrocatalyst for oxygen reduction reaction
Piasentin et al. Electro-oxidation of Ethanol on PtPdSn/C-Sb2O5. SnO2 electrocatalysts prepared by borohydride reduction
Wang et al. Amorphous NiCo2O4 decorated Pd/C as electrocatalysts for boosting ethanol oxidation reaction in alkaline media

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210114

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20210915

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20211005

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20211126

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220125

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220405

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20220601

TRDD Decision of grant or rejection written
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20220803

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220823

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220921

R150 Certificate of patent or registration of utility model

Ref document number: 7151984

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150