JP7151352B2 - ウェーブフィンおよび熱交換器 - Google Patents

ウェーブフィンおよび熱交換器 Download PDF

Info

Publication number
JP7151352B2
JP7151352B2 JP2018190551A JP2018190551A JP7151352B2 JP 7151352 B2 JP7151352 B2 JP 7151352B2 JP 2018190551 A JP2018190551 A JP 2018190551A JP 2018190551 A JP2018190551 A JP 2018190551A JP 7151352 B2 JP7151352 B2 JP 7151352B2
Authority
JP
Japan
Prior art keywords
wave
heat
offset portion
flow
heat medium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2018190551A
Other languages
English (en)
Other versions
JP2020061425A (ja
Inventor
祐有紀 鈴木
亮平 冨田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
Denso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp filed Critical Denso Corp
Priority to JP2018190551A priority Critical patent/JP7151352B2/ja
Publication of JP2020061425A publication Critical patent/JP2020061425A/ja
Application granted granted Critical
Publication of JP7151352B2 publication Critical patent/JP7151352B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Cooling Or The Like Of Electrical Apparatus (AREA)
  • Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)

Description

本発明は、ウェーブフィンおよびそれを備える熱交換器に関するものである。
従来、熱媒体が流れる複数の流路管と、冷却対象物としての発熱部品とを交互に積層して構成された積層型の熱交換器が知られている。その熱交換器は、複数の流路管の内側に、熱媒体と発熱部品との熱伝達率を高めるためのウェーブフィンを備えている。
特許文献1に記載の熱交換器が備えるウェーブフィンは、上流側から下流側に亘り、オフセット構造を有するものである。オフセット構造とは、ウェーブフィンの厚み方向の一方に設けられる上壁と厚み方向の他方に配置される下壁とを接続する側壁の一部に開口部を形成し、さらに、その開口部を形成する側壁の一部をウェーブフィンの幅方向にずらして案内壁を形成した構造である。ウェーブフィンにオフセット構造を採用することにより、ウェーブフィンにより形成される複数の蛇行流路を流れる熱媒体の淀みが解消され、熱媒体と発熱部品との熱伝達率を高めることが可能である。
特開2016-205802号公報
しかしながら、ウェーブフィンをオフセット構造にすると、案内壁によって蛇行流路の振幅方向の距離が長くなり、また、開口部を通過する熱媒体の流れが乱れることで、熱媒体の圧力損失が大きくなるといった問題がある。
ところで、熱交換器が、流路管を流れる熱媒体と発熱部品との熱交換により発熱部品を冷却する場合、流路管を流れる熱媒体は、その流路管の上流側から下流側へ流れるに従い温度が次第に高くなる。そのため、熱交換器が備えるウェーブフィンは、流路管のうち熱媒体の温度が最も高くなる下流側の部位で、発熱部品を所定温度に冷却するための性能を満たすように性能設計が行われる。
これに対し、特許文献1に記載のウェーブフィンは、流路管の上流側から下流側に亘りオフセット構造を有しているので、流路管のうち上流側の部位の冷却性能が必要以上のものとなり、それに伴って、熱媒体の流れに不必要な圧力損失が発生してしまう。流路管を流れる熱媒体の圧力損失が増大すると、熱交換器の流路管に熱媒体を循環させるための循環ポンプの大型化などが必要となり、製造コストおよび運転コストが増加することが懸念される。
本発明は上記点に鑑みて、冷却対象物に対する冷却性能を満たしつつ、熱媒体の圧力損失を低減することの可能なウェーブフィン、およびそれを備える熱交換器を提供することを目的とする。
上記目的を達成するため、請求項1~3に係る発明は、
熱媒体が流れる複数の流路管(2)の内側に設けられ、流路管の長手方向に垂直な断面視が凹凸形状ウェーブフィン(6)において、
流路管の長手方向をX方向、流路管の厚み方向をZ方向、X方向に垂直で且つZ方向に垂直な流路管の幅方向をY方向とすると、
ウェーブフィンは、
Z方向の一方に設けられる上壁(61)とZ方向の他方に設けられる下壁(62)とを接続する側壁(63)の一部に設けられた開口部(68)と、その開口部を形成する側壁の一部がY方向にずれて熱媒体の流れを案内する案内壁(69)とを有し、流路管の厚み方向からの平面視が波形状のオフセット部(65)と、
開口部および案内壁を有しておらず、流路管の厚み方向からの平面視が波形状の非オフセット部(66)と、を備えており、
ウェーブフィンの諸元に関し、
Z方向に垂直な断面視における所定の波形状においてX方向に隣り合う頂点部同士の距離をウェーブピッチ(Wp)、
Z方向に垂直な断面視における所定の波形状とY方向に隣り合う別の波形状との間に形成される蛇行流路(64)の中心線(641)をX方向に垂直な仮想平面に投影したときのY方向の距離をウェーブ深さ(Wd)、
Z方向に垂直な断面視における所定の波形状のY方向の一方の頂点部とY方向の他方の頂点部とを結ぶ線と、X方向に沿う仮想線とのなす角度をウェーブ角(α)、
Z方向に垂直な断面視における所定の波形状の頂点部とY方向に隣り合う別の波形状の頂点部とがX方向から視て重なる距離をウェーブラップ(WL)とすると、
オフセット部と非オフセット部とは、ウェーブピッチ、ウェーブ深さ、ウェーブ角およびウェーブラップの少なくとも1つが異なっている。
さらに、請求項1に係る発明は、流路管の外側には、冷却対象物としての発熱部品が配置されており、発熱部品は複数の発熱部を有しており、非オフセット部は、複数の発熱部のうち熱媒体の流れの上流側に配置された発熱部に対応する領域の少なくとも一部を含んで配置され、オフセット部は、複数の発熱部のうち熱媒体の流れの下流側に配置された発熱部に対応する領域の少なくとも一部を含んで配置されている。
また、請求項2に係る発明は、流路管の外側には、冷却対象物としての発熱部品(3)が配置されており、オフセット部は、発熱部品が有する発熱部(32)に対応する位置の少なくとも一部に配置され、非オフセット部は、発熱部に対応しない位置の少なくとも一部に配置されている。
これによれば、ウェーブフィンは、熱伝達率が高く圧力損失の大きいオフセット部と、そのオフセット部よりも熱伝達率が低く圧力損失の小さい非オフセット部を備える。そのため、ウェーブフィンは、冷却対象物に対する冷却が必要な部位の熱伝達率をオフセット部により高めることで冷却対象物に対する冷却性能を満たしつつ、流路管を流れる熱媒体の圧力損失を非オフセット部により低減することができる。
さらに、オフセット部は、ウェーブピッチが小さい、ウェーブ深さが大きい、ウェーブ角が大きい、または、ウェーブラップが大きい諸元とすることで、熱伝達率をより高めることが可能である。一方、非オフセット部は、ウェーブピッチが大きい、ウェーブ深さが小さい、ウェーブ角が小さい、または、ウェーブラップが小さい諸元とすることで、熱媒体の圧力損失をより低減することが可能である。したがって、このウェーブフィンは、オフセット部と非オフセット部とが、ウェーブピッチ等に関して異なる諸元を有することで、冷却性能をより向上して冷却対象物に対する冷却性能を満たしつつ、流路管を流れる熱媒体の圧力損失をより低減することができる。
請求項に係る発明は、
積層型の熱交換器(1)において、
熱媒体が流れる複数の流路管(2)と、
複数の流路管同士の間に設けられる冷却対象物としての発熱部品(3)と、
流路管の内側に設けられる請求項1ないし7のいずれか1つに記載のウェーブフィン(6)と、を備え、
複数の流路管と複数の発熱部品とが交互に積層された状態で構成されている。
これによれば、ウェーブフィンが上記請求項1の構成を備えることで、熱交換器は冷却対象物に対する冷却性能を満たしつつ、流路管を流れる熱媒体の圧力損失を低減することができる。また、熱交換器の流路管の内側にウェーブフィンを設けることで、熱交換器の製造工程において、複数の流路管等に対し積層方向に荷重を印加する際、流路管が変形することを抑制することができる。また、熱交換器の流路管の内側にウェーブフィンを設けることで、流路管の内側を流れる熱媒体の圧力により流路管が膨らむことを防ぐことができる。
なお、各構成要素等に付された括弧付きの参照符号は、その構成要素等と後述する実施形態に記載の具体的な構成要素等との対応関係の一例を示すものである。
第1実施形態に係る熱交換器の外観図である。 図1のII部分において、熱交換器の冷却対象物の一例を説明するための説明図である。 熱交換器の冷却対象物の別の例を説明するための説明図である。 図1のIV―IV線の断面図である。 図4のV―V線の断面図であり、流路管とその内側に配置されたウェーブフィンを流路管の厚み方向から視た平面図である。 図5のVI部分において、ウェーブフィンの厚み方向の中間位置における断面図である。 ウェーブフィンのオフセット部の断面図である。 非オフセット部とオフセット部の諸元の一例を説明するための説明図である。 非オフセット部とオフセット部の諸元の一例を説明するための説明図である。 非オフセット部とオフセット部の諸元の一例を説明するための説明図である。 非オフセット部とオフセット部の諸元の一例を説明するための説明図である。 第2実施形態において、流路管とその内側に配置されたウェーブフィンを流路管の厚み方向から視た平面図である。 図12のXIII部分において、ウェーブフィンの厚み方向の中間位置における断面図である。 第3実施形態において、流路管とその内側に配置されたウェーブフィンを流路管の厚み方向から視た平面図である。 図14のXV部分において、ウェーブフィンの厚み方向の中間位置における断面図である。 第4実施形態において、流路管とその内側に配置されたウェーブフィンを流路管の厚み方向から視た平面図である。 図16のXVII部分において、ウェーブフィンの厚み方向の中間位置における断面図である。 第5実施形態において、流路管とその内側に配置されたウェーブフィンを流路管の厚み方向から視た平面図である。 図18のXIX部分において、ウェーブフィンの厚み方向の中間位置における断面図である。 第6実施形態において、流路管とその内側に配置されたウェーブフィンを流路管の厚み方向から視た平面図である。 図20のXXI部分において、ウェーブフィンの厚み方向の中間位置における断面図である。
以下、本発明の実施形態について図面を参照しつつ説明する。なお、以下の各実施形態相互において、互いに同一もしくは均等である部分には、同一符号を付し、その説明を省略する。
(第1実施形態)
第1実施形態について説明する。図1に示すように、本実施形態の熱交換器1は、複数の流路管2と、冷却対象物としての複数の発熱部品3が交互に積層された積層型熱交換器である。この熱交換器1は、複数の流路管2の内側を流れる熱媒体と、その複数の流路管2同士の間に設けられた複数の発熱部品3との熱交換により、その複数の発熱部品3を冷却する冷却器として用いられるものである。流路管2の内側を流れる熱媒体として、例えばエチレングリコールを主成分とした不凍液、または水などが用いられる。
なお、以下の説明において、流路管2の長手方向をX方向、流路管2の厚み方向をZ方向、X方向に垂直で且つZ方向に垂直な流路管2の幅方向をY方向ということとする。
図2および図3に示すように、複数の発熱部品3は、例えば、自動車の走行用モータに電力を供給するために直流電流を交流電流に変換する電力変換装置に用いられるパワーモジュールである。パワーモジュールは、パワーカードとも呼ばれるものであり、通電により発熱するIGBTまたはFETなどの半導体素子31と、その半導体素子31で発生した熱を放熱するための放熱板32などを樹脂モールドにより一体に構成したものである。なお、パワーモジュールが有する放熱板32は、発熱部品3が有する発熱部の一例に相当する。
図2では、発熱部品3のうち流路管2に接する一方の面において、X方向に並ぶ2個の放熱板32を有するものを例示している。なお、以下の説明では、2つの放熱板32のうち、熱媒体の流れの上流側に配置される放熱板32を第1放熱板321と呼び、熱媒体の流れの下流側に配置される放熱板32を第2放熱板322と呼ぶことがある。第1放熱板321は第1発熱部の一例に相当し、第2放熱板322は第2発熱部の一例に相当する。
図3では、発熱部品3のうち流路管2に接する一方の面において、1個の放熱板32を有するものを例示している。すなわち、発熱部品3は、1個または複数の発熱部を有している。
熱交換器1の構成について、図1、図4および図5を参照して説明する。なお、図4では、流路管2の外側に配置された発熱部品3を省略している。
熱交換器1は、複数の流路管2、入口パイプ4、出口パイプ5、および、流路管2の内側に設けられるウェーブフィン6などを備えている。熱交換器1が備える各部品は、例えばアルミニウムまたは銅など、高い熱伝導性を有する金属により形成されている。また、熱交換器1が備える各部品は、ろう付けなどにより接合されている。
図1に示すように、複数の流路管2は、入口側のタンク部21と出口側のタンク部22を介してZ方向に連結されている。なお、Z方向は、流路管2の厚み方向であると共に、複数の流路管2の積層方向である。入口側のタンク部21と出口側のタンク部22はそれぞれ、流路管2のうちX方向の一方の部位と他方の部位に設けられている。入口側のタンク部21と出口側のタンク部22は、流路管2と一体に形成されている。
複数の流路管2のうち、Z方向の最上部の流路管2には、入口パイプ4と出口パイプ5が接続されている。入口パイプ4から入口側のタンク部21を経由して複数の流路管2に熱媒体が供給される。複数の流路管2の内側の流路を流れた熱媒体は、出口側のタンク部22を経由して出口パイプ5から流出する。
図4に示すように、流路管2は、皿状に形成された2枚の外殻プレート23、24と、その2枚の外殻プレート23、24の間に設けられた板状の中間プレート25を有している。中間プレート25の外縁は、一方の外殻プレート23の外縁と他方の外殻プレート24の外縁との間に挟まれている。
一方の外殻プレート23と中間プレート25との間に形成される一方の流路と、他方の外殻プレート24と中間プレート25との間の形成される他方の流路に、それぞれウェーブフィン6が設けられている。なお、本実施形態では、一方の流路に設けられるウェーブフィン6と他方の流路に設けられるウェーブフィン6とは同一の構成である。
図4に示すように、ウェーブフィン6は、流路管2のX方向に直交する断面視が凹凸形状である。ウェーブフィン6は、Z方向の一方に設けられる上壁61と、Z方向の他方に設けられる下壁62と、その上壁61と下壁62とを接続する側壁63を有している。
また、図5に示すように、ウェーブフィン6は、流路管2のZ方向から視た平面視も波形状である。すなわち、ウェーブフィン6は、上壁61と下壁62と側壁63がいずれもY方向に振幅する波形状に形成されている。これにより、ウェーブフィン6は、流路管2の内側の流路を複数の蛇行流路64に細分している。
ウェーブフィン6は、流路管2の内側を流れる熱媒体の伝熱面積を増加させて、熱媒体と発熱部品3との熱伝達率を高めることで、熱交換器1が発熱部品3を冷却する性能を向上する機能を備えている。
また、ウェーブフィン6は、流路管2の内側を流れる熱媒体の圧力により流路管2が膨らむことを防ぐ機能も備えている。
さらに、ウェーブフィン6は、熱交換器1の製造工程において、流路管2が変形することを抑制する機能も備えている。具体的には、熱交換器1の製造工程では、発熱部品3と同一の大きさの治具(不図示)と複数の流路管2とが交互に積層された状態で各部品が組み立てられた後、複数の流路管2と複数の治具に対してZ方向に荷重が印加され、その状態で加熱炉内で加熱される。これにより、熱交換器1を構成する各部品は、ろう付けにより接合される。その際、ウェーブフィン6は、流路管2のZ方向に対する剛性が高いので、複数の流路管2および複数の治具のZ方向に印加される荷重に対して流路管2をZ方向に支持し、流路管2が変形することを抑制することが可能である。
熱交換器1を構成する各部品がろう付けにより接合された後、複数の流路管2の間から治具が取り外され、そこに発熱部品3が設置される。これにより、複数の流路管2と、複数の発熱部品3とは、交互に積層されて密着した状態で構成される。
次に、第1実施形態のウェーブフィン6について、図5~図11を参照して詳細に説明する。
図5および図6に示すように、本実施形態のウェーブフィン6は、1枚のウェーブフィン6の中に、オフセット部65と非オフセット部66とを備えている。なお、ウェーブフィン6は、X方向の両端にそれぞれストレート部67を有している。
図5では、ウェーブフィン6に非オフセット部66が配置される領域の範囲を、両矢印NOFで示している。また、ウェーブフィン6にオフセット部65が配置される領域の範囲を、両矢印OFで示している。また、ウェーブフィン6にストレート部67が配置される領域の範囲を、両矢印STで示している。
図5では、両矢印OFで示した領域と、両矢印NOFで示した領域との境界Dは、1枚のウェーブフィン6の中間位置にあるが、これに限定するものではない。1枚のウェーブフィン6の中で非オフセット部66とオフセット部65の境界Dは、任意に設定することが可能であり、ウェーブフィン6の中間位置から下流側または上流側にずれた位置にあってもよい。なお、ウェーブフィン6はX方向の両端にそれぞれストレート部67を有しているが、このX方向の両端のストレート部67は廃止してもよい。
図6および図7に示すように、ウェーブフィン6のうち、オフセット部65は、側壁63の一部に設けられた開口部68と、その開口部68を形成する側壁63の一部がY方向にずれて熱媒体の流れを案内する案内壁69とを有している部位である。オフセット部65は、ウェーブフィン6により形成される複数の蛇行流路64を流れる熱媒体の淀みを解消し、熱媒体と発熱部品3との熱伝達率を高めることが可能である。
一方、ウェーブフィン6のうち、非オフセット部66は、開口部68と案内壁69とを有していない部位である。第1実施形態では、ウェーブフィン6のうち熱媒体の流れの下流側の部位にオフセット部65が配置されており、熱媒体の流れの上流側の部位に非オフセット部66が配置されている。
なお、ウェーブフィン6のうち熱媒体の流れの上流側の部位とは、流路管2の外側に複数の発熱部が配置されている場合、上流側に配置された発熱部に対応する領域の少なくとも一部を含んでいる。また、ウェーブフィン6のうち熱媒体の流れの下流側の部位とは、流路管2の外側に複数の発熱部が配置されている場合、下流側に配置された発熱部に対応する領域の少なくとも一部を含んでいる。
第1実施形態では、1枚のウェーブフィン6のうち熱媒体の流れの上流側の部位に非オフセット部66を配置することにより、その部位を流れる熱媒体の圧力損失を低減することができる。また、その熱媒体の流れの上流側の部位で熱媒体の温度上昇が抑制されるので、熱媒体の流れの下流側の部位で熱交換器1が発熱部品3を冷却する性能の低下を防ぐことができる。そして、1枚のウェーブフィン6のうち熱媒体の流れの下流側の部位にオフセット部65を配置することにより、熱媒体と発熱部品3との熱伝達率を高くし、冷却性能を向上することができる。
続いて、第1実施形態のウェーブフィン6について、さらに詳細に説明する。
ウェーブフィン6が備えるオフセット部65と非オフセット部66とは、ウェーブピッチWp、ウェーブ深さWd、ウェーブ角αおよびウェーブラップWLの少なくとも1つが異なっている。なお、以下の説明において、ウェーブピッチWp、ウェーブ深さWd、ウェーブ角αおよびウェーブラップWLのことを、「ウェーブフィン6の諸元」または、単に「諸元」という。また、以下の説明において、図6に示したようなウェーブフィン6のZ方向に垂直な断面視における波形状を、「ウェーブフィン6の波形状」という。
ウェーブフィン6の諸元に関し、ウェーブピッチWpとは、Z方向に垂直な断面視における所定の波形状においてX方向に隣り合う頂点部同士の距離である。
図8に示すように、オフセット部65のウェーブピッチWpを第1ウェーブピッチWp1、非オフセット部66のウェーブピッチWpを第2ウェーブピッチWp2とすると、Wp1<Wp2の関係を有する。
ウェーブ深さWdとは、Z方向に垂直な断面視における所定の波形状とY方向に隣り合う別の波形状との間に形成される蛇行流路64の中心線641をX方向に垂直な仮想平面に投影したときのY方向の距離である。なお、蛇行流路64の中心線641は、ウェーブフィンの厚み方向(すなわちZ方向)の中間位置におけるものである。
図9に示すように、オフセット部65のウェーブ深さWdを第1ウェーブ深さWd1、非オフセット部66のウェーブ深さWdを第2ウェーブ深さWd2とすると、Wd1>Wd2の関係を有する。
ウェーブラップWLとは、Z方向に垂直な断面視における所定の波形状の頂点部とY方向に隣り合う別の波形状の頂点部とがX方向から視て重なる距離である。
図10に示すように、オフセット部65のウェーブラップWLを第1ウェーブラップWL1、非オフセット部66のウェーブラップWLを第2ウェーブラップWL2とすると、WL1>WL2の関係を有する。
ウェーブ角αとは、Z方向に垂直な断面視における所定の波形状のY方向の一方の頂点部とY方向の他方の頂点部とを結ぶ線と、X方向に沿う仮想線とのなす角度である。
図11に示すように、オフセット部65のウェーブ角αを第1ウェーブ角α1、非オフセット部66のウェーブ角αを第2ウェーブ角α2とすると、α1>α2の関係を有する。
なお、上述したように、オフセット部65と非オフセット部66とは、Wp1<Wp2、Wd1>Wd2、WL1>WL2、α1>α2の関係のうち、少なくとも1つの要件を満たしていればよく、全ての要件を満たしていなくてもよい。すなわち、オフセット部65は非オフセット部66に対し、ウェーブピッチWpが小さい、ウェーブ深さWdが大きい、ウェーブ角αが大きい、またはウェーブラップWLが大きいことの、少なくとも1つの要件を満たしていればよい。
以上説明した第1実施形態のウェーブフィン6および熱交換器1は、次の作用効果を奏する。
(1)第1実施形態のウェーブフィン6は、熱伝達率が高く圧力損失の大きいオフセット部65と、そのオフセット部65よりも熱伝達率が低く圧力損失の小さい非オフセット部66を備える。そのため、ウェーブフィン6は、冷却対象物に対する冷却が必要な部位の熱伝達率をオフセット部65により高めることで冷却対象物に対する冷却性能を満たしつつ、流路管2を流れる熱媒体の圧力損失を非オフセット部66により低減することができる。
さらに、第1実施形態のウェーブフィン6が備えるオフセット部65と非オフセット部66とは、ウェーブピッチWp、ウェーブ深さWd、ウェーブ角αおよびウェーブラップWLの少なくとも1つが異なっている。これにより、オフセット部65は、ウェーブピッチWpが小さい、ウェーブ深さWdが大きい、ウェーブ角αが大きい、または、ウェーブラップWLが大きい諸元とすることで、熱伝達率をより高めることが可能である。一方、非オフセット部66は、ウェーブピッチWpが大きい、ウェーブ深さWdが小さい、ウェーブ角αが小さい、または、ウェーブラップWLが小さい諸元とすることで、熱媒体の圧力損失をより低減することが可能である。したがって、このウェーブフィン6は、オフセット部65と非オフセット部66とが、ウェーブピッチ等に関して異なる諸元を有することで、冷却性能をより向上して発熱部品3に対する冷却性能を満たしつつ、流路管2を流れる熱媒体の圧力損失をより低減することができる。
また、このウェーブフィン6は、1枚のウェーブフィン6の中にオフセット部65と非オフセット部66を備えることで、性能設計の自由度を高めると共に、部品点数の増加を防ぎ、製造コストを低減することができる。
そして、このウェーブフィン6を備える熱交換器1は、発熱部品3に対する冷却性能を満たしつつ、流路管2を流れる熱媒体の圧力損失を低減することができる。また、熱交換器1の流路管2の内側にウェーブフィン6を設けることで、熱交換器1の製造工程において、複数の流路管2および複数の治具に対しZ方向に荷重を印加する際、流路管2が変形することを抑制することができる。さらに、熱交換器1の流路管2の内側にウェーブフィン6を設けることで、流路管2の内側を流れる熱媒体の圧力により流路管2が膨らむことを防ぐことができる。
(2)第1実施形態では、オフセット部65の第1ウェーブピッチWp1と、非オフセット部66の第2ウェーブピッチWp2は、Wp1<Wp2の関係を有する。
これにより、非オフセット部66では、ウェーブフィン6の壁面への熱媒体の衝突や、流れ方向の変更回数が少なくなるので、熱媒体の圧力損失をより低減することができる。一方、オフセット部65では、ウェーブフィン6の壁面への熱媒体の衝突や、流れ方向の変更回数が多くなるので、熱伝達率をより高めることができる。
(3)或いは、第1実施形態では、オフセット部65の第1ウェーブ深さWd1と、非オフセット部66の第2ウェーブ深さWd2は、Wd1>Wd2の関係を有する。
これにより、非オフセット部66では、ウェーブフィン6の壁面への熱媒体の衝突が少なくなると共に、実質的な流路長さが短くなるので、熱媒体の圧力損失をより低減することができる。一方、オフセット部65では、ウェーブフィン6の壁面への熱媒体の衝突が多くなると共に、実質的な流路長さが長くなるので、熱伝達率をより高めることができる。
(4)或いは、第1実施形態では、オフセット部65の第1ウェーブラップWL1と、非オフセット部66の第2ウェーブラップWL2は、WL1>WL2の関係を有する。
これにより、非オフセット部66では、ウェーブフィン6の壁面への熱媒体の衝突が少なくなるので、熱媒体の圧力損失をより低減することができる。一方、オフセット部65では、ウェーブフィン6の壁面への熱媒体の衝突が多くなるので、熱伝達率をより高めることができる。
(5)或いは、第1実施形態では、オフセット部65の第1ウェーブ角α1と、非オフセット部66の第2ウェーブ角α2は、α1>α2の関係を有する。
これにより、非オフセット部66では、ウェーブフィン6の壁面への熱媒体の衝突が少なくなるので、熱媒体の圧力損失を低減することができる。一方、オフセット部65では、ウェーブフィン6の壁面への熱媒体の衝突が多くなるので、熱伝達率を高めることができる。
(6)第1実施形態では、非オフセット部66は、ウェーブフィン6のうち熱媒体の流れの上流側の部位に配置され、オフセット部65は、熱媒体の流れの下流側の部位に配置されている。
これにより、1枚のウェーブフィン6のうち熱媒体の流れの上流側の部位で熱媒体の温度上昇が抑制されるので、熱媒体の流れの下流側の部位で熱交換器1が発熱部品3を冷却する性能の低下を防ぐことができる。そして、熱媒体の流れの上流側の部位では、熱媒体の圧力損失を低減することができる。
(第2~第6実施形態)
第2~第6実施形態は、第1実施形態に対してウェーブフィン6の構成を変更したものであり、その他については第1実施形態と同様であるため、第1実施形態と異なる部分についてのみ説明する。
(第2実施形態)
第2実施形態について、図12および図13を参照して説明する。図12では、流路管2の外側に配置される発熱部品3が有する第1放熱板321の外縁の位置を破線P1で示し、第2放熱板322の外縁の位置を破線P2で示している。
第2実施形態のウェーブフィン6も、1枚のウェーブフィン6の中に、オフセット部65と非オフセット部66とを備えている。図12でも、ウェーブフィン6の中でオフセット部65が配置された領域の範囲を、両矢印OFで示している。また、ウェーブフィン6の中で非オフセット部66が配置された領域の範囲を、両矢印NOFで示している。
第2実施形態では、1枚のウェーブフィン6のうち発熱部品3が有する放熱板32に対応する部位にオフセット部65が配置され、それ以外の部位に非オフセット部66が配置されている。なお、図12では、両矢印OFで示した領域と、両矢印NOFで示した領域との境界は、発熱部品3が有する放熱板32の外縁の位置にあるが、これに限定するものではない。1枚のウェーブフィン6の中で非オフセット部66とオフセット部65の境界は、任意に設定することが可能であり、発熱部品3が有する放熱板32の外縁の位置から下流側または上流側にずれた位置にあってもよい。すなわち、オフセット部65は、発熱部品3が有する発熱部に対応する位置の少なくとも一部に配置されていればよく、非オフセット部66は、発熱部品3が有する発熱部に対応しない位置の少なくとも一部に配置されていればよい。
さらに、第2実施形態でも、第1実施形態と同様に、オフセット部65と非オフセット部66とは、Wp1<Wp2、Wd1>Wd2、WL1>WL2、α1>α2の関係のうち、少なくとも1つの要件を満たしている。すなわち、オフセット部65は非オフセット部66に対し、ウェーブピッチWpが小さい、ウェーブ深さWdが大きい、ウェーブ角αが大きい、またはウェーブラップWLが大きいことの、少なくとも1つの要件を満たしている。
以上説明した第2実施形態のウェーブフィン6は、発熱部品3が有する発熱部に対応する位置の少なくとも一部にオフセット部65を配置することで、その部位の熱伝達率が高くなり、発熱部品3に対する熱交換器1の冷却性能を満たすことができる。また、このウェーブフィン6は、発熱部品3が有する発熱部に対応しない位置の少なくとも一部に非オフセット部66を配置することで、流路管2を流れる熱媒体の圧力損失を低減することができる。
さらに、第2実施形態のウェーブフィン6も、第1実施形態と同じく、オフセット部65と非オフセット部66とが、ウェーブピッチWp等に関して異なる諸元を有している。これにより、ウェーブフィン6は、冷却性能をより向上して発熱部品3に対する冷却性能を満たしつつ、流路管2を流れる熱媒体の圧力損失をより低減することができる。
(第3実施形態)
第3実施形態について、図14および図15を参照して説明する。図14でも、流路管2の外側に配置される発熱部品3が有する第1放熱板321の外縁の位置を破線P1で示し、第2放熱板322の外縁の位置を破線P2で示している。
第3実施形態のウェーブフィン6は、1枚のウェーブフィン6の中に、オフセット部65と非オフセット部66とストレート部67を備えている。図14では、ウェーブフィン6の中でストレート部67が配置された領域の範囲を、両矢印STで示している。ストレート部67は、Z方向からの平面視が直線状に形成された部位であり、上流側に配置された第1放熱板321と下流側に配置された第2放熱板322との間の部位に対応する位置に配置されている。なお、第1、第2実施形態と同様に、ウェーブフィン6は、X方向の両端にもストレート部67を有しているが、このX方向の両端のストレート部67は廃止してもよい。
図12では、両矢印OFで示した領域と、両矢印STで示した領域との境界は、発熱部品3が有する放熱板32の外縁の位置にあるが、これに限定するものではない。1枚のウェーブフィン6の中でオフセット部65とストレート部67の境界は、任意に設定することが可能であり、発熱部品3が有する放熱板32の外縁の位置から下流側または上流側にずれた位置にあってもよい。
以上説明した第3実施形態のウェーブフィン6は、第1放熱板321と第2放熱板322との間の部位に対応する位置にストレート部67を配置することで、発熱部品3に対する熱交換器1の冷却性能を低下させることなく、流路管2を流れる熱媒体の圧力損失をより低減することができる。
(第4実施形態)
第4実施形態について、図16および図17を参照して説明する。図16でも、流路管2の外側に配置される発熱部品3が有する第1放熱板321の外縁の位置を破線P1で示し、第2放熱板322の外縁の位置を破線P2で示している。
第4実施形態のウェーブフィン6も、1枚のウェーブフィン6の中に、オフセット部65と非オフセット部66とストレート部67を備えている。
第4実施形態では、非オフセット部66は、ウェーブフィン6のうち第1放熱板321に対応する部位とその上流側に配置されている。また、非オフセット部66は、ウェーブフィン6のうち第2放熱板322よりも下流側に配置されている。ストレート部67は、ウェーブフィン6のうち第1放熱板321と第2放熱板322との間の部位に対応する位置に配置されている。オフセット部65は、ウェーブフィン6のうち第2放熱板322に対応する位置に配置されている。
なお、図16では、オフセット部65と非オフセット部66とストレート部67それぞれの境界は、発熱部品3が有する放熱板32の外縁の位置にあるが、これに限定するものではない。その境界は、任意に設定することが可能であり、発熱部品3が有する放熱板32の外縁の位置から下流側または上流側にずれた位置にあってもよい。
以上説明した第4実施形態は、上述した第1~第3実施形態と同様の作用効果を奏することができる。
(第5実施形態)
第5実施形態について、図18および図19を参照して説明する。図18でも、流路管2の外側に配置される発熱部品3が有する第1放熱板321の外縁の位置を破線P1で示し、第2放熱板322の外縁の位置を破線P2で示している。さらに、図18では、その発熱部品3が有する半導体素子31の外縁の位置を破線SD1、SD2で示している。なお、以下の説明では、発熱部品3が有する2つの半導体素子31のうち、熱媒体の流れの上流側に配置されるものを第1素子311と呼び、熱媒体の流れの下流側に配置されるものを第2素子312と呼ぶことがある。
第5実施形態のウェーブフィン6も、1枚のウェーブフィン6の中に、オフセット部65と非オフセット部66とストレート部67を備えている。
第5実施形態では、オフセット部65は、ウェーブフィン6のうち第1素子311に対応する部位と第2素子312に対応する部位に配置されている。ストレート部67は、ウェーブフィン6のうち第1放熱板321と第2放熱板322との間の部位に対応する位置に配置されている。非オフセット部66は、ウェーブフィン6のうち第1素子311よりも上流側、第1素子311より下流側でストレート部67より上流側、ストレート部67より下流側で第2素子312より上流側、および、第2素子312よりも下流側に配置されている。
なお、図12では、オフセット部65と非オフセット部66とストレート部67それぞれの境界は、発熱部品3が有する放熱板32の外縁の位置または半導体素子31の外縁の位置にあるが、これに限定するものではない。その境界は、任意に設定することが可能であり、発熱部品3が有する放熱板32の外縁の位置または半導体素子31の外縁の位置から下流側または上流側にずれた位置にあってもよい。
以上説明した第5実施形態は、上述した第1~第4実施形態と同様の作用効果を奏することができる。
(第6実施形態)
第6実施形態について、図20および図21を参照して説明する。第6実施形態は、第1実施形態の変形例である。
第6実施形態のウェーブフィン6は、第1実施形態と同様に、ウェーブフィン6のうち熱媒体の流れの上流側の部位に非オフセット部66が配置され、熱媒体の流れの下流側の部位にオフセット部65が配置されている。ただし、第6実施形態のオフセット部は、第1実施形態のオフセット部65に対して、開口部68と案内壁69の向きが上流側と下流側で逆向きに配置されている。このように、オフセット部65は、開口部68と案内壁69の向きを上流側と下流側で逆向きに配置しても、非オフセット部66に比べて、熱媒体と発熱部品3との熱伝達率を高めることが可能である。
なお、第6実施形態で示したオフセット部65の向きは、第2~第5実施形態のオフセット部65にも適用することができる。
(他の実施形態)
本発明は上記した実施形態に限定されるものではなく、特許請求の範囲に記載した範囲内において適宜変更が可能である。また、上記各実施形態は、互いに無関係なものではなく、組み合わせが明らかに不可な場合を除き、適宜組み合わせが可能である。また、上記各実施形態において、実施形態を構成する要素は、特に必須であると明示した場合および原理的に明らかに必須であると考えられる場合等を除き、必ずしも必須のものではないことは言うまでもない。また、上記各実施形態において、実施形態の構成要素の個数、数値、量、範囲等の数値が言及されている場合、特に必須であると明示した場合および原理的に明らかに特定の数に限定される場合等を除き、その特定の数に限定されるものではない。また、上記各実施形態において、構成要素等の形状、位置関係等に言及するときは、特に明示した場合および原理的に特定の形状、位置関係等に限定される場合等を除き、その形状、位置関係等に限定されるものではない。
(1)上記各実施形態では、熱交換器1の冷却対象物となる発熱部品3として、パワーモジュールを例示したが、これに限らない。他の実施形態では、熱交換器1の冷却対象物となる発熱部品3は、パワーモジュール以外の電子部品またはその他の物体であってもよい。また、発熱部品3が有する発熱部は、半導体素子31や放熱板32に限らず、発熱する部位であればよい。すなわち、熱交換器1は、パワーモジュール以外の電子部品またはその他の物体の冷却に用いることが可能である。
(2)上記各実施形態では、熱交換器1は、流路管2同士の間に1個の発熱部品3を配置したが、これに限らない。他の実施形態では、熱交換器1は、流路管2同士の間に複数の発熱部品3を配置してもよい。この場合、複数の発熱部品3はそれぞれ、1個または複数の発熱部を有する構成としてもよい。
(まとめ)
上述の実施形態の一部または全部で示された第1の観点によれば、ウェーブフィンは、熱媒体が流れる流路管の内側に設けられ、流路管の長手方向に直交する断面視が凹凸形状であると共に、流路管の厚み方向から視た平面視も波形状である。ここで、流路管の長手方向をX方向、流路管の厚み方向をZ方向、X方向に垂直で且つZ方向に垂直な流路管の幅方向をY方向とする。ウェーブフィンは、オフセット部と非オフセット部とを備えている。オフセット部は、Z方向の一方に設けられる上壁とZ方向の他方に設けられる下壁とを接続する側壁の一部に設けられた開口部と、その開口部を形成する側壁の一部がY方向にずれて熱媒体の流れを案内する案内壁とを有する。非オフセット部は、開口部および案内壁を有していない。そのウェーブフィンの諸元に関し、Z方向に垂直な断面視における所定の波形状においてX方向に隣り合う頂点部同士の距離をウェーブピッチとする。Z方向に垂直な断面視における所定の波形状とY方向に隣り合う別の波形状との間に形成される蛇行流路の中心線をX方向に垂直な仮想平面に投影したときのY方向の距離をウェーブ深さとする。Z方向に垂直な断面視における所定の波形状のY方向の一方の頂点部とY方向の他方の頂点部とを結ぶ線と、X方向に沿う仮想線とのなす角度をウェーブ角とする。Z方向に垂直な断面視における所定の波形状の頂点部とY方向に隣り合う別の波形状の頂点部とがX方向から視て重なる距離をウェーブラップとする。この場合、オフセット部と非オフセット部とは、ウェーブピッチ、ウェーブ深さ、ウェーブ角およびウェーブラップの少なくとも1つが異なっている。
第2の観点によれば、オフセット部のウェーブピッチを第1ウェーブピッチWp1、非オフセット部のウェーブピッチを第2ウェーブピッチWp2とすると、Wp1<Wp2である。
これによれば、オフセット部の第1ウェーブピッチを非オフセット部の第2ウェーブピッチより小さくすることで、オフセット部の熱伝達率をより高め、非オフセット部を流れる熱媒体の圧力損失をより低減することが可能である。
第3の観点によれば、オフセット部のウェーブ深さを第1ウェーブ深さWd1、非オフセット部のウェーブ深さを第2ウェーブ深さWd2とすると、Wd1>Wd2である。
これによれば、オフセット部の第1ウェーブ深さを非オフセット部の第2ウェーブ深さより大きくすることで、オフセット部の熱伝達率をより高め、非オフセット部を流れる熱媒体の圧力損失をより低減することが可能である。
第4の観点によれば、オフセット部のウェーブラップを第1ウェーブラップWL1、非オフセット部のウェーブラップを第2ウェーブラップWL2とすると、WL1>WL2である。
これによれば、オフセット部の第1ウェーブラップを非オフセット部の第2ウェーブラップより大きくすることで、オフセット部の熱伝達率をより高め、非オフセット部を流れる熱媒体の圧力損失をより低減することが可能である。
第5の観点によれば、オフセット部のウェーブ角を第1ウェーブ角α1、非オフセット部のウェーブ角を第2ウェーブ角α2とすると、α1>α2である。
これによれば、オフセット部の第1ウェーブ角を非オフセット部の第2ウェーブ角より大きくすることで、オフセット部の熱伝達率をより高め、非オフセット部を流れる熱媒体の圧力損失をより低減することが可能である。
ところで、流路管の外側に配置した発熱部品と流路管を流れる熱媒体との熱交換により発熱部品を冷却する場合、流路管を流れる熱媒体は、その流路管を上流側から下流側へ流れるに従い温度が次第に高くなる。そのため、仮に、ウェーブフィンを上流側から下流側に亘り同一の諸元で形成すると、熱交換器が発熱部品を冷却する性能は、流路管の上流側の部位に比べて下流側の部位で低下する。
そこで、第6の観点では、熱媒体の流れの上流側の部位に熱媒体の圧力損失が小さい非オフセット部を配置し、熱媒体の流れの下流側の部位に熱伝達率の高い非オフセット部を配置している。これにより、熱媒体の流れの上流側の部位で熱媒体の温度上昇が抑制されるので、熱媒体の流れの下流側の部位で熱交換器が発熱部品を冷却する性能の低下を防ぐことができる。そして、熱媒体の流れの上流側の部位を流れる熱媒体の圧力損失を低減することができる。
なお、本明細書において、熱媒体の流れの上流側の部位とは、流路管の外側に複数の発熱部が配置されている場合、上流側に配置された発熱部に対応する領域の少なくとも一部を含んでいる。また、熱媒体の流れの下流側の部位とは、流路管の外側に複数の発熱部が配置されている場合、下流側に配置された発熱部に対応する領域の少なくとも一部を含んでいる。
第7の観点によれば、流路管の外側には、冷却対象物としての発熱部品が配置されている。オフセット部は、発熱部品が有する発熱部に対応する位置の少なくとも一部に配置されている。一方、非オフセット部は、発熱部品が有する発熱部に対応しない位置の少なくとも一部に配置されている。
これによれば、ウェーブフィンは、発熱部品が有する発熱部に対応する位置の少なくとも一部にオフセット部を配置することで、その部位の熱伝達率が高くなり、発熱部品に対する熱交換器の冷却性能を満たすことができる。また、ウェーブフィンは、発熱部品が有する発熱部に対応しない位置の少なくとも一部に非オフセット部を配置することで、流路管を流れる熱媒体の圧力損失を低減することができる。
第8の観点によれば、発熱部品は、流路管の内側を流れる熱媒体の流れの上流側に配置される第1発熱部と、熱媒体の流れの下流側に配置される第2発熱部とを有するものである。ウェーブフィンは、第1発熱部と第2発熱部との間の部位に対応する位置に、Z方向からの平面視が直線状に形成されたストレート部を備えている。
これによれば、ウェーブフィンは、第1発熱部と第2発熱部との間の部位に対応する位置にストレート部を配置することで、発熱部品に対する熱交換器の冷却性能を低下させることなく、流路管を流れる熱媒体の圧力損失をより低減することができる。
第9の観点によれば、積層型の熱交換器は、複数の流路管と、冷却対象物としての発熱部品と、上記第1ないし第8のいずれか1つの観点に記載のウェーブフィンを備える。複数の流路管は、熱媒体が流れる。発熱部品は、複数の流路管同士の間に設けられる。ウェーブフィンは、流路管の内側に設けられる。そして、熱交換器は、複数の流路管と複数の発熱部品とが交互に積層された状態で構成されている。
これによれば、ウェーブフィンが上記第1ないし第8のいずれか1つの観点に記載の構成を備えることで、熱交換器は冷却対象物に対する冷却性能を満たしつつ、流路管を流れる熱媒体の圧力損失を低減することができる。また、熱交換器の流路管の内側にウェーブフィンを設けることで、熱交換器の製造工程において、複数の流路管等に対しZ方向に荷重を印加する際、流路管が変形することを抑制することができる。また、熱交換器の流路管の内側にウェーブフィンを設けることで、流路管の内側を流れる熱媒体の圧力により流路管が膨らむことを防ぐことができる。
2 流路管
6 ウェーブフィン
65 オフセット部
66 非オフセット部
68 開口部
69 案内壁
Wp ウェーブピッチ
Wd ウェーブ深さ
α ウェーブ角
WL ウェーブラップ

Claims (8)

  1. 熱媒体が流れる複数の流路管(2)の内側に設けられ、前記流路管の長手方向に垂直な断面視が凹凸形状ウェーブフィン(6)において、
    前記流路管の長手方向をX方向、前記流路管の厚み方向をZ方向、X方向に垂直で且つZ方向に垂直な前記流路管の幅方向をY方向とすると、
    前記ウェーブフィンは、
    Z方向の一方に設けられる上壁(61)とZ方向の他方に設けられる下壁(62)とを接続する側壁(63)の一部に設けられた開口部(68)と、前記開口部を形成する前記側壁の一部がY方向にずれて熱媒体の流れを案内する案内壁(69)とを有し、前記流路管の厚み方向からの平面視が波形状のオフセット部(65)と、
    前記開口部および前記案内壁を有しておらず、前記流路管の厚み方向からの平面視が波形状の非オフセット部(66)と、を備えており、
    前記ウェーブフィンの諸元に関し、
    Z方向に垂直な断面視における所定の波形状においてX方向に隣り合う頂点部同士の距離をウェーブピッチ(Wp)、
    Z方向に垂直な断面視における所定の波形状とY方向に隣り合う別の波形状との間に形成される蛇行流路(64)の中心線(641)をX方向に垂直な仮想平面に投影したときのY方向の距離をウェーブ深さ(Wd)、
    Z方向に垂直な断面視における所定の波形状のY方向の一方の頂点部とY方向の他方の頂点部とを結ぶ線と、X方向に沿う仮想線とのなす角度をウェーブ角(α)、
    Z方向に垂直な断面視における所定の波形状の頂点部とY方向に隣り合う別の波形状の頂点部とがX方向から視て重なる距離をウェーブラップ(WL)とすると、
    前記オフセット部と前記非オフセット部とは、ウェーブピッチ、ウェーブ深さ、ウェーブ角およびウェーブラップの少なくとも1つが異なっており、
    前記流路管の外側には、冷却対象物としての発熱部品が配置されており、前記発熱部品は複数の発熱部を有しており、
    前記非オフセット部は、複数の前記発熱部のうち熱媒体の流れの上流側に配置された前記発熱部に対応する領域の少なくとも一部を含んで配置され、
    前記オフセット部は、複数の前記発熱部のうち熱媒体の流れの下流側に配置された前記発熱部に対応する領域の少なくとも一部を含んで配置されている、ウェーブフィン。
  2. 熱媒体が流れる複数の流路管(2)の内側に設けられ、前記流路管の長手方向に垂直な断面視が凹凸形状ウェーブフィン(6)において、
    前記流路管の長手方向をX方向、前記流路管の厚み方向をZ方向、X方向に垂直で且つZ方向に垂直な前記流路管の幅方向をY方向とすると、
    前記ウェーブフィンは、
    Z方向の一方に設けられる上壁(61)とZ方向の他方に設けられる下壁(62)とを接続する側壁(63)の一部に設けられた開口部(68)と、前記開口部を形成する前記側壁の一部がY方向にずれて熱媒体の流れを案内する案内壁(69)とを有し、前記流路管の厚み方向からの平面視が波形状のオフセット部(65)と、
    前記開口部および前記案内壁を有しておらず、前記流路管の厚み方向からの平面視が波形状の非オフセット部(66)と、を備えており、
    前記ウェーブフィンの諸元に関し、
    Z方向に垂直な断面視における所定の波形状においてX方向に隣り合う頂点部同士の距離をウェーブピッチ(Wp)、
    Z方向に垂直な断面視における所定の波形状とY方向に隣り合う別の波形状との間に形成される蛇行流路(64)の中心線(641)をX方向に垂直な仮想平面に投影したときのY方向の距離をウェーブ深さ(Wd)、
    Z方向に垂直な断面視における所定の波形状のY方向の一方の頂点部とY方向の他方の頂点部とを結ぶ線と、X方向に沿う仮想線とのなす角度をウェーブ角(α)、
    Z方向に垂直な断面視における所定の波形状の頂点部とY方向に隣り合う別の波形状の頂点部とがX方向から視て重なる距離をウェーブラップ(WL)とすると、
    前記オフセット部と前記非オフセット部とは、ウェーブピッチ、ウェーブ深さ、ウェーブ角およびウェーブラップの少なくとも1つが異なっており、
    前記流路管の外側には、冷却対象物としての発熱部品(3)が配置されており、
    前記オフセット部は、前記発熱部品が有する発熱部(32)に対応する位置の少なくとも一部に配置され、
    前記非オフセット部は、前記発熱部に対応しない位置の少なくとも一部に配置されている、ウェーブフィン。
  3. 前記オフセット部のウェーブピッチを第1ウェーブピッチWp1、前記非オフセット部のウェーブピッチを第2ウェーブピッチWp2とすると、Wp1<Wp2である、請求項1または2に記載のウェーブフィン。
  4. 前記オフセット部のウェーブ深さを第1ウェーブ深さWd1、前記非オフセット部のウェーブ深さを第2ウェーブ深さWd2とすると、Wd1>Wd2である、請求項1ないし3のいずれか1つに記載のウェーブフィン。
  5. 前記オフセット部のウェーブラップを第1ウェーブラップWL1、前記非オフセット部のウェーブラップを第2ウェーブラップWL2とすると、WL1>WL2である、請求項1ないしのいずれか1つに記載のウェーブフィン。
  6. 前記オフセット部のウェーブ角を第1ウェーブ角α1、前記非オフセット部のウェーブ角を第2ウェーブ角α2とすると、α1>α2である、請求項1ないしのいずれか1つに記載のウェーブフィン。
  7. 前記発熱部品は、前記発熱部として、前記流路管の内側を流れる熱媒体の流れの上流側に配置される第1発熱部(321)と、熱媒体の流れの下流側に配置される第2発熱部(322)とを有するものであり、
    前記ウェーブフィンは、前記第1発熱部と前記第2発熱部との間の部位に対応する位置に、Z方向からの平面視が直線状に形成されたストレート部(67)を備えている、請求項1ないし6のいずれか1つに記載のウェーブフィン。
  8. 積層型の熱交換器(1)において、
    熱媒体が流れる複数の前記流路管(2)と、
    複数の前記流路管同士の間に設けられる冷却対象物としての前記発熱部品(3)と、
    前記流路管の内側に設けられる請求項1ないしのいずれか1つに記載の前記ウェーブフィン(6)と、を備え、
    複数の前記流路管と複数の前記発熱部品とが交互に積層された状態で構成されている熱交換器。
JP2018190551A 2018-10-08 2018-10-08 ウェーブフィンおよび熱交換器 Active JP7151352B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018190551A JP7151352B2 (ja) 2018-10-08 2018-10-08 ウェーブフィンおよび熱交換器

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018190551A JP7151352B2 (ja) 2018-10-08 2018-10-08 ウェーブフィンおよび熱交換器

Publications (2)

Publication Number Publication Date
JP2020061425A JP2020061425A (ja) 2020-04-16
JP7151352B2 true JP7151352B2 (ja) 2022-10-12

Family

ID=70220227

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018190551A Active JP7151352B2 (ja) 2018-10-08 2018-10-08 ウェーブフィンおよび熱交換器

Country Status (1)

Country Link
JP (1) JP7151352B2 (ja)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010040757A (ja) 2008-08-05 2010-02-18 Denso Corp 電子部品冷却器
JP2016205802A (ja) 2015-04-17 2016-12-08 株式会社デンソー 熱交換器

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010040757A (ja) 2008-08-05 2010-02-18 Denso Corp 電子部品冷却器
JP2016205802A (ja) 2015-04-17 2016-12-08 株式会社デンソー 熱交換器

Also Published As

Publication number Publication date
JP2020061425A (ja) 2020-04-16

Similar Documents

Publication Publication Date Title
JP6512266B2 (ja) 半導体装置
US9472489B2 (en) Heat exchanger
JP5157681B2 (ja) 積層型冷却器
JP6735664B2 (ja) 液冷式冷却装置用放熱器およびその製造方法
WO2018055923A1 (ja) 冷却装置
JP6546521B2 (ja) 液冷式冷却装置
JP4941398B2 (ja) 積層型冷却器
JP2009266937A (ja) 積層型冷却器
WO2019176620A1 (ja) 冷却器、電力変換装置ユニット及び冷却システム
JP7151352B2 (ja) ウェーブフィンおよび熱交換器
JP2009141183A (ja) 積層型冷却器
JP5114324B2 (ja) 半導体装置
JP2020035830A (ja) ウェーブフィンおよび熱交換器
JP5071181B2 (ja) 熱交換器
JP5145996B2 (ja) 冷却器及びこれを用いた電力変換装置
JP6563161B1 (ja) 冷却器、電力変換装置ユニット及び冷却システム
JP4415712B2 (ja) 熱交換器
JP2010010195A (ja) 自動車用電子部品の冷却装置
JP2012222277A (ja) 熱交換器
JP2011247432A (ja) 積層型熱交換器
JP7000777B2 (ja) 熱交換器
JP4585881B2 (ja) 素子冷却用ヒートシンク
JP7294126B2 (ja) 冷却器
CN219248454U (zh) 液冷散热装置
US20220373274A1 (en) Heat dissipation member

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210825

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20220616

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220621

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220720

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220830

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220912

R151 Written notification of patent or utility model registration

Ref document number: 7151352

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151