JP7139895B2 - ステアリング制御装置 - Google Patents

ステアリング制御装置 Download PDF

Info

Publication number
JP7139895B2
JP7139895B2 JP2018208832A JP2018208832A JP7139895B2 JP 7139895 B2 JP7139895 B2 JP 7139895B2 JP 2018208832 A JP2018208832 A JP 2018208832A JP 2018208832 A JP2018208832 A JP 2018208832A JP 7139895 B2 JP7139895 B2 JP 7139895B2
Authority
JP
Japan
Prior art keywords
control
steering
assist
steering angle
torque
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2018208832A
Other languages
English (en)
Other versions
JP2020075564A (ja
Inventor
資章 片岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
Denso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp filed Critical Denso Corp
Priority to JP2018208832A priority Critical patent/JP7139895B2/ja
Publication of JP2020075564A publication Critical patent/JP2020075564A/ja
Application granted granted Critical
Publication of JP7139895B2 publication Critical patent/JP7139895B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Steering Control In Accordance With Driving Conditions (AREA)
  • Power Steering Mechanism (AREA)

Description

本発明は、ステアリング制御装置に関する。
従来、アシストトルクを発生させるアシスト制御、及び、自動操舵トルクを発生させるレーンキープ制御等の追従制御を実行するステアリング制御装置において、追従制御中にドライバによる介入動作が行われたとき、制御を切り替える技術が知られている。
例えば特許文献1に開示された制御装置は、アシスト指令を生成するアシスト制御演算部と、モータの実角度を目標角度に追従させるように追従指令を生成する目標追従制御演算部と、ドライバによる追従制御への介入を検出する介入検出部と、を備える。目標追従制御演算部は、介入検出部で検出される介入の程度が大きいほど、制御の応答性を低下させる。そして、アシスト指令と追従指令とを加算した駆動指令に基づいてモータが駆動される。
特開2015-33942号公報
特許文献1の技術において、アシスト指令と追従指令との単純加算では、舵角制御がアシスト制御の影響を受けて、目標舵角への追従性を向上させることは難しい。また、車速や操舵状態に応じてアシスト特性が変化すると、その影響を受けた舵角制御では所望の追従特性が得られないおそれがある。
本発明は、このような点に鑑みて創作されたものであり、その目的は、アシスト制御によるアシストトルク指令と、舵角制御による舵角制御トルク指令とを加算してモータを駆動する構成において、舵角制御における目標舵角への追従性を向上させるステアリング制御装置を提供することにある。
本発明は、ドライバのハンドル操作力を軽減するようにモータ(80)の出力によりアシストするステアリング制御装置であって、アシスト制御演算部(20、50)と、舵角制御演算部(30)と、モータ駆動制御部(65)と、制御調停部(40)とを備える。
アシスト制御演算部は、操舵トルク(Ts)に基づきアシストトルク指令(T2*)を演算する。舵角制御演算部は、車両運動を制御するための指令を演算する支援装置(16)から指令される目標操舵角(θ*)に操舵角(θ)を追従させるための舵角制御トルク指令(T1*)を演算する。
モータ駆動制御部は、アシストトルク指令と舵角制御トルク指令とを加算した最終アシストトルク指令(Ta*)に従ってモータを駆動制御する。制御調停部は、舵角制御演算部による舵角制御が実行されるとき、アシスト制御演算部によるアシスト制御において、操舵トルクに対するアシストトルク指令の応答特性を低下させる。
本発明では、舵角制御の作動中にアシスト制御の応答特性が低下することで安定余裕度が向上する。これにより、舵角制御のゲインを高く設定でき、目標操舵角への追従性が向上する。したがって、支援装置による支援機能の効果を最大限に発揮することができる。
また好ましくは、制御調停部は、舵角制御の実行度合が大きくなるほどアシスト制御の応答特性を低下させる。ドライバの介入操作に伴って舵角制御が縮退したとき、アシスト制御の応答性を復帰させることができるため、ドライバの操舵フィールが高く維持される。
電動パワーステアリングシステムの概略構成図。 本実施形態のステアリング制御装置の概念的な構成図。 一実施形態のEPS-ECUの全体構成を示すブロック図。 舵角制御演算部のブロック図。 図4の操舵角サーボ制御部のブロック図。 調停制限部のブロック図。 図6の(a)ドライバ介入係数マップ、(b)操舵トルクサーボ補正ゲインマップ。 基本実施形態のアシスト制御演算部のブロック図。 図8の目標操舵トルクマップ。 図8の操舵トルクサーボ制御部のブロック図。 基本実施形態のアシスト制御演算部での操舵トルクからアシストトルク指令までの伝達特性を示すボード線図。 (a)アシスト制御側の応答を変えない場合、(b)アシスト制御側の応答を変えず、舵角制御のゲインを調整した場合、(c)アシスト制御側の応答を補正ゲインK2により低下させた場合の操舵角追従性を比較するタイムチャート。 高周波ゲインを低下させることによる効果を説明するタイムチャート。 他の実施形態の(a)アシスト制御演算部のブロック図、(b)アシストトルクマップ。 図14(a)の位相補償演算部のブロック図。 他の実施形態のアシスト制御演算部での操舵トルクからアシストトルク指令までの伝達特性を示すボード線図。
以下、ステアリング制御装置の一実施形態を図面に基づいて説明する。「ステアリング制御装置」としてのEPS-ECUは、車両の電動パワーステアリングシステムに適用される。このEPS-ECUは、ドライバの操舵トルクに応じてアシスト力を発生させるアシスト制御によりアシストトルク指令を演算するとともに、自動操舵に関わる目標操舵角に操舵角を追従させる舵角制御により舵角制御トルク指令を演算する。本実施形態では、支援装置からの指令を受けて実行する舵角制御の一例として、車両がレーンに沿って走行するように舵角を制御するレーンキープ制御を例示する。この場合、レーンキープ(車線維持)機能が支援機能に該当する。その他、駐車支援、自動運転等の支援機能に対しても同様の舵角制御が適用可能である。
[電動パワーステアリングシステムの構成]
図1に示すように、電動パワーステアリングシステム1は、モータ80の駆動トルクにより、ドライバによるハンドル91の操作をアシストするとともにレーンキープ制御等の舵角制御を実行するシステムである。ステアリングシャフト92の一端にはハンドル91が固定されており、ステアリングシャフト92の他端側にはインターミディエイトシャフト93が設けられている。ステアリングシャフト92とインターミディエイトシャフト93とは、トルクセンサ94のトーションバーにより接続されており、これらにより操舵軸95が構成される。トルクセンサ94は、トーションバーの捩れ角に基づいて操舵トルクTsを検出する。
インターミディエイトシャフト93のトルクセンサ94と反対側の端部には、ピニオンギア961及びラック962を含むギアボックス96が設けられている。ドライバがハンドル91を回すと、インターミディエイトシャフト93とともにピニオンギア961が回転し、ピニオンギア961の回転に伴って、ラック962が左右に移動する。ラック962の両端に設けられたタイロッド97は、ナックルアーム98を介してタイヤ99と接続されている。タイロッド97が左右に往復運動し、ナックルアーム98を引っ張ったり押したりすることで、タイヤ99の向きが変わる。
モータ80は、例えば3相交流ブラシレスモータであり、EPS-ECU15から出力された駆動電圧Vdに応じて、駆動トルクを出力する。3相交流モータの場合、駆動電圧Vdは、U相、V相、W相の各相電圧を意味する。モータ80の回転は、ウォームギア86及びウォームホイール87等により構成される減速機構85を経由して、インターミディエイトシャフト93に伝達される。また、ハンドル91の操舵や、路面からの反力によるインターミディエイトシャフト93の回転は、減速機構85を経由してモータ80に伝達される。
なお、図1に示す電動パワーステアリングシステム1は、モータ80の回転が操舵軸95に伝達されるコラムアシスト式であるが、本実施形態のEPS-ECU15は、ラックアシスト式の電動パワーステアリングシステム、或いは、ハンドルと操舵輪とが機械的に切り離されたステアバイワイヤシステムにも同様に適用可能である。また、他の実施形態では、モータとして、3相以外の多相交流モータや、ブラシ付DCモータが用いられてもよい。
ここで、ハンドル91からタイヤ99に至る、ハンドル91の操舵力が伝達される機構全体を「操舵系メカ100」という。EPS-ECU15は、モータ80が操舵系メカ100に出力する駆動トルクを制御することにより、操舵系メカ100が発生する操舵トルクTsを制御する。EPS-ECU15は、操舵系メカ100から操舵トルクTs及び操舵角θを取得する。また、EPS-ECU15は、車両の所定の部位に設けられた車速センサ11が検出した車速Vを取得する。
さらにEPS-ECU15は、「支援装置」としてのLKA(レーンキープアシスト)-ECU16から目標操舵角θ*を取得する。LKA-ECU16は、図示しない車載バッテリからの電力によって動作し、図示しない車載カメラによって撮像された車両前方の画像から、走行レーンや走行レーンにおける自車両の位置を検出し、その検出結果に基づいて目標コースを設定する。さらに、LKA-ECU16は、車速や舵角の検出値等に基づいて、目標コースに沿って走行するための目標操舵角θ*を設定し、EPS-ECU15に出力する。
EPS-ECU15は、図示しない車載バッテリからの電力によって動作し、取得した情報に基づいて、アシストトルク指令及び舵角制御トルク指令を演算する。EPS-ECU15は、演算したトルク指令の加算値に従って駆動電圧Vdをモータ80へ印加することにより、アシストトルク及び舵角制御トルクを発生させる。なお、EPS-ECU15における各種演算処理は、ROM等の実体的なメモリ装置に予め記憶されたプログラムをCPUで実行することによるソフトウェア処理であってもよいし、専用の電子回路によるハードウェア処理であってもよい。
[従来技術の課題、及び、本実施形態による課題解決の思想]
特許文献1(特開2015-33942号公報)の従来技術では、アシスト制御演算部が生成したアシスト指令と、目標追従制御部が生成した追従指令とを加算した駆動指令に基づいてモータが駆動される。また、追従制御の実行中にドライバの操舵による介入を介入検出部が検出したとき、追従制御の応答性を低下させ、アシスト制御の実行度合を増加させる。
しかし、アシスト指令と追従指令との単純加算では、舵角制御がアシスト制御の影響を受けて、目標舵角への追従性を向上させることは難しい。また、車速や操舵状態に応じてアシスト特性が変化すると、その影響を受けた舵角制御では所望の追従特性が得られないおそれがある。そこで本実施形態のステアリング制御装置は、アシスト制御によるアシストトルク指令と、舵角制御による舵角制御トルク指令とを加算してモータを駆動する構成において、舵角制御における目標舵角への追従性の向上を図る。
図2に、本実施形態のステアリング制御装置の概念的な構成図を示す。このステアリング制御装置は、ドライバの操舵トルクに応じてアシスト力を発生させるアシスト制御によりアシストトルク指令を演算するとともに、自動操舵に関わる目標操舵角に操舵角を追従させる舵角制御により舵角制御トルク指令を演算する。これら二つのトルク指令の加算値に従ってモータが駆動される。この構成において、舵角制御に応じて演算される応答調整パラメータに基づき、アシスト制御におけるアシストトルク指令の応答が調整される。
このステアリング制御装置の動作の概要は以下の通りである。
(a)レーンキープ、駐車支援、自動運転等の支援機能を有する支援装置からの舵角制御指令を受けて舵角制御を実行する。
(b)舵角制御を開始したことを示すフラグ、又は、舵角制御を徐々に強めていく係数をもとにアシスト制御の応答調整パラメータを演算する。
(c)アシスト制御は、応答調整パラメータを受けてその応答特性を低下させる。
(d)アシスト制御の特性としては、操舵トルク入力からアシストトルク出力までの周波数特性において、高周波域のゲイン(以下「高周波ゲイン」という)を下げる。DC領域付近の低周波域のゲイン(以下「低周波ゲイン」という)は極力維持する。
また、このステアリング制御装置の主な効果は以下の通りである。
(a)閉ループ系の安定余裕度が改善されることで、舵角制御のゲインを高く設定可能となり、目標舵角への追従性が向上する。
(b)ドライバ操舵に対してもアシスト特性としての低周波ゲインが確保されることで、ドライバの操作介入時に「重い」、「引っ掛かる」等の違和感を低減させやすくなる。
[EPS-ECUの構成及び作用効果]
次に、具体的なEPS-ECU15の全体構成を図3に示す。EPS-ECU15は、アシスト制御演算部20、舵角制御演算部30、制御調停部40、指令加算器60、及びモータ駆動制御部65等を備える。このEPS-ECU15は、舵角制御の作動状態に応じてアシスト制御の応答、特に高周波ゲインを可変することで、舵角制御の高い目標操舵角追従性を実現するとともに、ドライバによる操作介入時には良好な操舵感を得ることを目的とする。
アシスト制御演算部20は、操舵トルクTsに基づきアシストトルク指令T2*を演算する。詳しくは、アシスト制御演算部20は、操舵トルクTs及び車速Vに基づき、路面反力(或いは路面負荷)に応じた伝達感や、操舵状態に応じたフィールが実現されるようにアシストトルク指令T2*を演算する。ここで、アシストトルク指令T2*の符号は、トルクが印加される回転方向に応じて定義される。例えば左回転方向に印加されるトルクが正、右回転方向に印加されるトルクが負と定義される。アシスト制御演算部20の詳細な構成は、図8~図11を参照して後述する。
舵角制御演算部30は、LKA-ECU16から指令される目標操舵角θ*に操舵角θを追従させるための舵角制御トルク指令T1*を演算する。舵角制御トルク指令T1*の符号は、アシストトルク指令T2*と同様に定義される。また、目標操舵角θ*及び操舵角θについては、中立位置に対し左側の角度が正、中立位置に対し右側の角度が負と定義される。舵角制御トルク指令T1*は指令加算器60に出力され、アシストトルク指令T2*との加算値が算出される。舵角制御演算部30の詳細な構成は、図4、図5を参照して後述する。
制御調停部40は、舵角制御演算部30による舵角制御が実行されるとき、アシスト制御演算部20によるアシスト制御において、操舵トルクTsに対するアシストトルク指令T2の応答特性を低下させる
具体的に制御調停部40は、LKA-ECU16からの舵角制御を要求する作動指令として、舵角制御要求フラグFを取得する。そして制御調停部40は、舵角制御要求フラグF及び操舵トルクTsに基づいて、補正ゲインK1及び補正ゲインK2を演算する。舵角制御の実行を決定づける補正ゲインK1は、舵角制御演算部30に出力される。アシスト制御の応答特性を調整する「応答調整パラメータ」としての補正ゲインK2は、アシスト制御演算部20に出力される。
より詳しくは、制御調停部40は、舵角制御の実行度合が強くなるほどアシスト制御の応答特性を低下させる。また、制御調停部40は、アシスト制御の応答特性を低下させるにあたり、低周波域のゲインよりも高周波域のゲインをより低下させる。制御調停部40の詳細な構成は、図6、図7を参照して後述する。
指令加算器60は、アシストトルク指令T2*と舵角制御トルク指令T1*とを加算した最終アシストトルク指令Ta*を算出する。モータ駆動制御部65は、最終アシストトルク指令Ta*に従ってモータ80へ駆動電圧Vdを印加することでモータ80を駆動する。これによりモータ80は、最終アシストトルク指令Ta*に対応したアシストトルク及び舵角制御トルクを出力する。
続いて、舵角制御演算部30、制御調停部40、アシスト制御演算部20の順に、各部の詳細な構成を説明する。まず図4、図5を参照し、舵角制御演算部30の構成について説明する。本実施形態の舵角制御演算部30の構成は、特許文献1に開示されたものと基本的に同じである。図4に示すように、舵角制御演算部30は、操舵角偏差算出器33及び操舵角サーボ制御部34を有し、目標操舵角θ*及び操舵角θに基づいて舵角制御トルク指令T1*を演算する。
操舵角偏差算出器33は、LKA-ECU16から指令される目標操舵角θ*と、トルクセンサ94が検出した操舵角θとの操舵角偏差Δθ(=θ*-θ)を算出する。操舵角サーボ制御部34は、操舵角偏差Δθ及び補正ゲインK1に基づき、舵角制御トルク指令T1*を演算する。
図5に示すように、操舵角サーボ制御部34は、補正ゲインK1を乗算する補正ゲイン乗算器35、並びに、比例演算器361、積分演算器362、微分演算器363及び加算器364を含むPID演算器36を有する。図中のKp2、Ki2、Kd2はそれぞれ比例ゲイン、積分ゲイン、微分ゲインであり、sはラプラス演算子、τ2は時定数である。補正ゲインK1は、舵角制御の開始とともに0から1へと増加し、舵角制御の終了や舵角制御中のドライバのオーバーライド操作、すなわち操舵による介入に応じて1から0へと減少する。
舵角制御の開始時、0から1へと増加する補正ゲインK1が操舵角偏差Δθに乗算されることで、操舵角サーボのPIDゲインが0から設定された値に変化する。また、補正ゲインK1によってPID制御の出力が制限されることで、操舵角サーボ出力の制限値が0から設定された値に変化する。また、操舵角サーボ制御部34は、本来の舵角制御により操舵角偏差Δθをゼロにしようと機能する。
一方、舵角制御の終了時やドライバのオーバーライド操作時に1から0へと減少するK1によって、舵角制御は縮退し、舵角制御トルク指令T1*はゼロとなる。なお、PID制御の出力を制限する際に積分のワインドアップがないようにする演算については、特許文献1等で公知の技術である。
図6、図7を参照し、制御調停部40の構成について説明する。図6に示すように、制御調停部40は、漸増漸減処理部41、絶対値処理部42、ドライバ介入係数マップ43、フィルタ処理部44、Min選択部45、及び操舵トルクサーボ補正ゲインマップ46等を有する。制御調停部40は、舵角制御要求フラグF及び操舵トルクTsに基づいて、舵角制御の実行を決定づけるための補正ゲインK1、及び、アシスト制御の応答性を調整する補正ゲインK2を演算する。
漸増漸減処理部41は、「支援装置」であるLKA-ECU16から、EPS-ECU15に操舵が要求されたことを示す「舵角制御要求フラグF」を受ける。漸増漸減処理部41は、舵角制御要求フラグFがONであれば作動ゲインK1Sを1まで漸増させ、舵角制御要求フラグFがOFFであれば0まで漸減させる作動ゲインK1Sを演算する。舵角制御要求フラグFは、ON/OFFを示す二値に限らず、「舵角制御をフルに稼働させるための数値」から、「舵角制御を縮退させて舵角制御トルク指令T1*の出力を停止するための数値」まで連続的に変化する信号であってもよい。
絶対値処理部42は、入力された操舵トルクの絶対値|Ts|を出力する。ドライバ介入係数マップ43は、操舵トルクの絶対値|Ts|とドライバ介入ゲインK1Dとの関係を規定する。図7(a)に示すように、ドライバ介入係数マップは、特許文献1の図3に開示されたものと同様である。すなわち、|Ts|<AではK1D=1であり、|Ts|>BではK1D=0であり、A≦|Ts|≦Bの範囲では、|Ts|の増加に伴って、K1Dは1から0に単調減少する。フィルタ処理部44は、入力をローパスフィルタで処理し、ドライバ介入ゲインK1Dを出力する。
ドライバ介入ゲインK1Dは、ドライバのオーバーライド操作度合を判断するための値であり、操舵トルクの絶対値|Ts|が増大すると0に近づき、減少すると1に近づく。このとき、フィルタ処理によって、ドライバ介入ゲインK1Dが0に向かって小さくなるときは早く、1に向かって大きくなるときはゆっくりと変化させることで、ドライバが介入操作をやめて舵角制御に移行するときの操舵力の繋がりを良好にしている。
なお、ドライバの介入操作の検出手段として、操舵トルクTs以外のパラメータを用いてもよい。例えばハンドルに取り付けられた回転角センサとモータ角の差やその変化速度を用い、それらが大きいときドライバ介入係数マップに類するものでドライバ介入ゲインK1Dを絞ってもよい。
Min選択部45は、作動ゲインK1Sとドライバ介入ゲインK1Dとの小さい方の値を「補正ゲインK1」として選択する。補正ゲインK1によって舵角制御演算部30での舵角制御が補正されることにより、レーンキープ制御等の支援機能の開始/終了における舵角制御の滑らかな始動/終了ができる。また、ドライバの操作介入による舵角制御の縮退を、引っ掛かりなどの違和感なしに実行することができる。
アシスト制御の応答性を補正するための補正ゲインK2は、補正ゲインK1を引数とする操舵トルクサーボ補正ゲインマップ46により算出される。図7(b)に操舵トルクサーボ補正ゲインマップ46の例を示す。この例では、舵角制御が縮退しているK1=0のとき、補正ゲインK2を1とし、舵角制御が実質的にフル稼働しているK1=1のとき、補正ゲインK2を0.3とする。また、0<K1<1の範囲では線形補間により補正ゲインK2を求めるものとする。
これによって、舵角制御が作動しない場合はK2=1としてアシスト制御が最大性能を発揮し、舵角制御が作動した場合はK2=0.3に徐変してアシスト制御の応答性を下げる動作を実現する。特にドライバが介入操作をしたときは補正ゲインK1によって舵角制御が連続的に縮退するとともに、補正ゲインK2によってアシスト制御の応答は連続的に向上する。したがって、支援機能の性能とドライバ操作に対するアシスト性能とを両立しながら、かつドライバに違和感を与えないよう遷移させることが可能となる。
次に図8~図11を参照し、アシスト制御演算部20の構成、動作について説明する。図14等に示す「他の実施形態」のアシスト制御演算部50に対して、図8等に示すアシスト制御演算部20を「基本実施形態」と呼ぶ。基本実施形態のアシスト制御演算部20の構成、動作は、特開2013-52793号公報に開示されたものと基本的に同じである。図8に示すように、アシスト制御演算部20は、推定負荷演算部21、目標操舵トルク演算部22、トルク偏差算出器23、操舵トルクサーボ制御部24を含み、アシストトルク指令T2*を演算する。
推定負荷演算部21は、トルク加算器211及びローパスフィルタ(図中「LPF」)212を含み、推定負荷Txを演算する。トルク加算器211は、操舵トルクサーボ制御部24が演算したアシストトルク指令T2*と、トルクセンサ94から入力された操舵トルクTsとを加算する。ローパスフィルタ212は、操舵系メカ100の共振点付近から上の周波数成分を減衰させる。
目標操舵トルク演算部22は、推定負荷Tx及び車速Vに基づき目標操舵トルクTs*を演算する。詳しくは、目標操舵トルク演算部22は、符号処理部221、絶対値処理部222、目標操舵トルクマップ223及び乗算器224を含む。符号処理部221は、入力された推定負荷Txが正のとき1、負のとき(-1)、ゼロのとき0を出力する。絶対値処理部222は、入力された推定負荷の絶対値|Tx|を算出する。
目標操舵トルクマップ223は、推定負荷の絶対値|Tx|及び車速Vと目標操舵トルクの絶対値|Ts*|との関係を規定する。図9に示すように、目標操舵トルクの絶対値|Ts*|は、推定負荷の絶対値|Tx|が大きいほど大きく、車速Vが高速になるほど大きくなるように設定される。マップ上の動作点における接線の勾配Ktxは、原点に近いほど大きく、推定負荷の絶対値|Tx|が増加するに従って緩やかになる。乗算器224は、目標操舵トルクマップ223により算出された目標操舵トルクの絶対値|Ts*|に対し、符号処理部221から出力された値を乗算する。
トルク偏差算出器23は、トルクセンサ94で検出された操舵トルクTsと、目標操舵トルクTs*との差である操舵トルク偏差ΔTs(=Ts*-Ts)を算出する。操舵トルクサーボ制御部24は、操舵トルク偏差ΔTsが0になるように、つまり、操舵トルクTsを目標操舵トルクTs*に追従させるようにサーボ制御を実行し、アシストトルク指令T2*を演算する。また、「応答調整パラメータ」である補正ゲインK2が操舵トルクサーボ制御部24に入力される。
図10に示すように、操舵トルクサーボ制御部24は、補正ゲインK2を乗算する補正ゲイン乗算器25、並びに、比例演算器261、積分演算器262、微分演算器263及び加算器264を含むPID演算器26を有する。図中のKp1、Ki1、Kd1は、それぞれ比例ゲイン、積分ゲイン、微分ゲインであり、sはラプラス演算子、τ1は時定数である。なお、補正ゲインK2は、図示のように操舵トルク偏差ΔTsに乗算されるのでなく、PIDゲインに個別に乗算されてもよい。
なお、特開平9-221053号公報等には、アシスト制御の出力であるアシスト指令に0~1のゲインを単純に乗算する従来技術が開示されている。この従来技術では、オーバーライドで舵角制御がアシストを妨げる側に作用し、ドライバの操舵を阻害する。これに対し、本実施形態のアシスト制御演算部20は、アシストトルク指令T2*から推定負荷演算部21に入力されるフィードバック信号を持つことで、以下に説明する通り、低周波域のゲインはそのままで高周波域のゲインが抑えられたものとなる。
図11に、操舵トルクTsからアシストトルク指令T2*までの伝達特性を示す。破線は舵角制御が非作動中(K2=1)、すなわち、アシスト制御本来の操舵特性を発揮する設定状態での伝達特性を表す。実線は舵角制御が作動中(K2=0.3)、すなわち、舵角制御の目標追従性能が高い設定状態での伝達特性を表す。
操舵トルクTsに対するアシストトルク指令T2*の静的な倍率を「アシスト比α」と呼ぶ。推定負荷Txに応じて目標操舵トルクTs*を定め、その目標操舵トルクTs*に操舵トルクTsが追従するよう制御する目標追従型のアシスト制御の場合、アシスト比αは次式で与えられる。ここでKtxは、推定負荷Txから目標操舵トルクTs*を演算する目標操舵トルクマップ223(図9)の動作点の勾配である。
α=(1/Ktx)-1
ドライバがハンドル操作して車両が旋回するとき、推定負荷の絶対値|Tx|が増大するに連れて目標操舵トルクの絶対値|Ts*|を大きくすることでハンドル操作に応じた操舵トルクTsを発生させる。目標操舵トルクマップ223において、推定負荷の絶対値|Tx|の増加に対して勾配Ktxを徐々に緩やかにすることで、操舵フィールの良い操舵反力が生成される。また、中立位置付近ではマップの勾配Ktxを急にすることで、ハンドル切り出し初期に良好な手応えが生成される。
一連の動作としては、ハンドルを中立位置から操舵していくに従って、目標操舵トルクマップ223の勾配Ktxは1に近い値から0に近い値に減少し、アシスト比αは0に近い値から数倍ないし数十倍に増加する。このときトルクセンサ94で検出される操舵トルクTsに対するアシストトルク指令T2*の周波数特性が図11に示される。中立位置付近ではアシスト比αは0に近く、低周波域でのゲインは非常に小さく、高周波域では振動を引き起こさないよう微分特性を示す。そして、操舵に伴ってアシストが増えるとき、低周波域でのゲインが増した特性となる。
舵角制御が作動した場合、図11において破線から実線の特性に遷移させ、数Hzから上の周波数帯でのゲインを抑えたものになり、操舵系メカ100の共振振動をより抑えるアシスト特性となる。すなわち、安定余裕度がより高い制御に移行する。低周波域でのゲインは舵角制御が作動しない通常時と同じとなる。そのため、舵角制御が作動していてもドライバがハンドル操作をして操舵トルクTsが発生すれば、その操舵トルクTsに応じたアシストトルクを確実に発生させようとアシスト制御が動作する。
これにより本実施形態では、舵角制御が作動するとき、単にゲインでアシストトルクを絞ること等によって制限する場合に比べ、ドライバが操作したときに「重い」という違和感が少ないものとなる。またドライバの操作によってオーバーライドを検出して舵角制御を絞る際にも、絞られる過程でドライバが手で感じる重さ変化の違和感を低減することができる。
[舵角制御上の効果]
次に図12のタイムチャートを参照し、舵角制御の操舵角追従性における効果について説明する。図12(a)には、補正ゲインK2を用いずアシスト制御側の応答を変えない場合の操舵角追従性を示す。図12(b)には、図12(a)に対し舵角制御の追従性を上げるべく舵角制御のゲインを高く調整した場合の操舵角追従性を示す。なお厳密には、積分ゲインKiを高く(20→30)、微分ゲインKdを低く(0.1→0.05)調整している。図12(c)には、図12(b)と同様に舵角制御のゲインを調整し、且つ、アシスト制御側の応答を補正ゲインK2により0.3倍に低下させた場合の操舵角追従性を示す。各図においてアシスト比αが0、3、15、60の場合を示す。
図12(a)、(b)に示すように、アシスト制御側の応答を変えない場合は、目標操舵角への追従性を必要十分なまでに上げようとすると、高アシスト比ではオーバーシュート気味となる。アシスト比が高くなるのはドライバが操舵したときであり、オーバーライドと判断されて舵角制御は縮退させるので問題ないようにも思われる。しかし、そのような過渡期において舵角制御が振動的な特性になることが操舵感の悪化に繋がる。均一な応答を舵角制御で実現するにはアシスト制御側の制御状態や操舵の負荷ほか、各種操舵状態に応じたゲインスケジューリングを施す必要があり、演算規模の増大や適合の複雑さという問題に至る。
図12(c)に示すように、補正ゲインK2を用いてアシスト制御の応答を下げたことで舵角制御のゲインを上げることができ、目標操舵角への追従性を向上させることができる。これにより支援機能が実現しようとする性能を十分に発揮できるようになる。また、その応答特性はアシスト比αが変わっても概ね均一なものとなる。なお、その理由についての数学的証明は割愛するが、アシスト制御の応答が下がり舵角制御への干渉が低下することで、均一な特性となる。
[アシスト制御上の効果]
本実施形態では、舵角制御が作動するとき、アシスト制御側はその入力である操舵トルクTsから出力であるアシストトルクへの周波数応答として、DC領域での応答特性を極力維持しつつ高周波ゲインを低下させる。そのことによる効果について、図13のタイムチャートを参照して説明する。
図13には、舵角制御が0[deg]を指示しているとき、ドライバがハンドルを操作して20[deg]弱動かした後にセンターまで戻したときの実車での振る舞いを示す。破線は、アシスト制御に係数を乗じて全周波数帯でゲインを低下させた場合の動作であり、実線は、本実施形態の特徴である高周波ゲインを低下させた場合の動作である。図13の最上段には操舵トルクTs、2段目には操舵角θ、3段目には補正ゲインK1、4段目には補正ゲインK2、最下段にはアシストトルク及び舵角制御トルクを示す。
時刻taに操舵トルクTsが所定値以上になると、補正ゲインK1が1を下回り、舵角制御は縮退方向に向かう。一方、補正ゲインK2は上昇し、アシスト制御の応答特性は本来の状態になる方向に向かう。時刻tb以後にハンドルを戻すにあたって操舵トルクTsが下がると、逆に補正ゲインK1は1に向かい舵角制御の能力が高くなるとともに、補正ゲインK2は下降してアシスト制御の応答を抑える。
アシスト制御のゲインを全体に低下させる破線の挙動と、高周波域のゲインを低下させる実線の挙動とを比較すると、破線の挙動では補正ゲインK2で全体出力が抑えられる分、最下段図のアシストトルクが実線の挙動より低めになる。ここで、アシストトルクが低いからといって最上段図の操舵トルクTsが相応に大きくなるわけでない。それは、舵角制御にて0[deg]に維持しようとする逆向きの舵角制御トルクとの総和によって操舵トルクTsが決まるからである。
しかし、低周波でのアシストゲインがない分、システム全体としてはドライバ操作への反応や舵角制御の抑圧が遅れる過程で操舵トルクTsは高めに出たり、X部に示すように振れが生じやすくなったりする。言い換えると、高周波ゲインを低下させる場合は低周波ゲインが通常アシストと同等に残ることで、ドライバが介入操作したときの操舵力(操舵トルク)が滑らかとなり、介入を終了した場合でも自然な操舵力での舵角制御への復帰が可能となる。すなわち、オーバーライド時に重さ感や引っ掛かり感の点で違和感の少ない操舵感を実現することができる。
[本実施形態の効果のまとめ]
(1)本実施形態では、制御調停部40は、舵角制御が実行されるとき、アシスト制御において、操舵トルクTsに対するアシストトルク指令T2*の応答特性を低下させる。舵角制御の作動中にアシスト制御の応答特性が低下することで安定余裕度が向上する。これにより、舵角制御のゲインを高く設定でき、目標操舵角θ*への追従性が向上する。したがって、LKA-ECU16等の支援装置による支援機能の効果を最大限に発揮することができる。
(2)ライバの介入操作に伴って舵角制御が縮退したとき、アシスト制御の応答性を復帰させることができるため、ドライバの操舵フィールが高く維持される。
(3)制御調停部40は、舵角制御要求フラグF及び操舵トルクTsに基づいて、アシスト制御の応答特性を調整する応答調整パラメータK2を演算し、アシスト制御演算部20に出力する。これにより、アシスト制御の応答特性を低下させる構成を具体的に実現することができる。
(4)制御調停部40は、舵角制御の実行度合が大きくなるほどアシスト制御の応答特性を低下させる。これにより、舵角制御の実行度合に応じて、アシスト制御の応答特性を適切に調整することができる。
(5)制御調停部40は、アシスト制御の応答特性を低下させるにあたり、低周波域のゲインよりも高周波域のゲインをより低下させる。これにより、舵角制御の作動中もドライバ操舵に対してアシスト制御の低周波ゲインは確保されるため、ドライバの介入操作時に、「重い」、「引っ掛かる」等の違和感を抑えることができる。
なお、アシスト制御全体のゲインを低下させて安定性を確保する比較例では、背反である操舵(オーバーライド)時の重さについて、オーバーライドを検出し、例えばオーバーライド判定閾値や操舵トルク感応マップにより、舵角制御の縮退量や応答特性のゲインを微調整している。このような微調整に対し、本実施形態では、適合定数を感性に合うよう調整するための有効な範囲を広く確保することができる。
(その他の実施形態)
(1)上述した基本実施形態のアシスト制御演算部20とは異なる構成のアシスト制御演算部50について、図14~図16を参照して説明する。図14(a)に示すように、アシスト制御演算部50は、アシストトルク指令一時値演算部52、及び位相補償演算部55を有する。アシストトルク指令一時値演算部52は、操舵トルクTs及び車速Vに基づき、アシストトルク指令一時値T2*_tempを演算し、位相補償演算部55に出力する。位相補償演算部55は、アシストトルク指令一時値T2*_temp、及び、「応答調整パラメータ」である補正ゲインK2に基づいてアシストトルク指令T2*を演算する。
アシストトルク指令一時値演算部52は、符号処理部521、絶対値処理部522、アシストトルクマップ523及び乗算器524を含む。符号処理部521は、入力された操舵トルクTsが正のとき1、負のとき(-1)、ゼロのとき0を出力する。絶対値処理部522は、入力された操舵トルクの絶対値|Ts|を出力する。
アシストトルクマップ523は、操舵トルクの絶対値|Ts|及び車速Vとアシストトルク指令一時値の絶対値|T2*_temp|との関係を規定する。図14(b)に示すように、アシストトルク指令一時値の絶対値|T2*_temp|は、操舵トルクの絶対値|Ts|が大きいほど大きく、車速Vが高速になるほど小さくなるように設定される。マップ上の動作点における接線の勾配αは、原点に近いほど小さく、操舵トルクの絶対値|Ts|が増加するに従って急になる。乗算器524は、アシストトルクマップ523により算出されたアシストトルク指令一時値の絶対値|T2*_temp|に対し、符号処理部521から出力された値を乗算する。
図15に示すように、位相補償演算部55は、遅れ補償器551及び進み補償器552を含む。遅れ補償器551において定数K3及びτ3は設計値であり、K3は1より小さいことで一次遅れの特性を示す。進み補償器552において定数K4及びτ4は設計値であり、K4は1より大きいことで一次進みの特性を示す。図15ではラプラス演算子sを用いた式が示されるが、マイコンでの演算は、離散変換した式に基づいて行われる。
図16に、操舵トルクTsからアシストトルク指令T2*までの伝達特性を示す。基本実施形態の図11と同様に、破線は舵角制御が非作動中(K2=1)、すなわち、アシスト制御本来の操舵特性を発揮する設定状態での伝達特性を表す。実線は舵角制御が作動中(K2=0.3)、すなわち、舵角制御の目標追従性能が高い設定状態での伝達特性を表す。遅れ補償器551で補正ゲインK2(0<K2<1)がK3に乗算されることで、実線の特性では破線の特性に比べて高周波域におけるゲインが低減する。また、周波数が高くなるにつれてゲインが増大する特性は、進み補償器552による一次進みの特性に該当する。
操舵トルクTsに対するアシストトルク指令T2*の静的な倍率を「アシスト比α」と呼ぶ。アシストトルクマップ523上の動作点での勾配がこれに該当し、ハンドルを中立から操舵していくに従ってマップの勾配αは、0に近い値から、数倍ないし数十倍に増加する。このときトルクセンサで検出される操舵トルクTsに対するアシストトルク指令T2*の周波数特性が図16に示される。なお、操舵をしていない中立位置付近ではアシスト比αが0に近いため、図16のボード線図には現れていない。
舵角制御が作動した場合、補正ゲインK2を1から例えば0.3に変えることで図16において破線の特性から実線の特性に遷移する。図11と同様に、実線の特性は、低周波でのゲインを変えることなく数Hz以上の周波数帯でのゲインを抑えたものになる。すなわち、舵角制御を作動させるときにアシスト制御の安定余裕度を向上させるため、舵角制御側としてはより高応答の設定が可能となる。また、舵角制御が非作動であるときや縮退しているときは、アシスト制御は本来の高応答な制御により良好な操舵フィールを維持することができる。
(2)制御調停部40の構成でも説明した通り、ドライバによる操舵が行われたことを検知する手段として、操舵トルクTsに限らず、操舵に伴って変化する操舵角θ、操舵速度(回転角速度)、最終アシストトルク指令Ta*等のパラメータを用いてもよい。
以上、本発明は、上記実施形態になんら限定されるものではなく、その趣旨を逸脱しない範囲において種々の形態で実施可能である。
15・・・EPS-ECU(ステアリング制御装置)
16・・・LKA-ECU(支援装置)
20・・・アシスト制御演算部
30・・・舵角制御演算部
40・・・制御調停部
65・・・モータ駆動制御部
80・・・モータ

Claims (4)

  1. ドライバのハンドル操作力を軽減するようにモータ(80)の出力によりアシストするステアリング制御装置であって、
    操舵トルク(Ts)に基づきアシストトルク指令(T2)を演算するアシスト制御演算部(20、50)と、
    車両運動を制御するための指令を演算する支援装置(16)から指令される目標操舵角(θ)に操舵角(θ)を追従させるための舵角制御トルク指令(T1)を演算する舵角制御演算部(30)と、
    前記アシストトルク指令と前記舵角制御トルク指令とを加算した最終アシストトルク指令(Ta)に従って前記モータを駆動制御するモータ駆動制御部(65)と、
    前記舵角制御演算部による舵角制御が実行されるとき、前記アシスト制御演算部によるアシスト制御において、操舵トルクに対するアシストトルク指令の応答特性を低下させる制御調停部(40)と、
    を備えるステアリング制御装置。
  2. 前記制御調停部は、前記支援装置からの舵角制御を要求する作動指令(F)、及び操舵トルクに基づいて、アシスト制御の応答特性を調整する応答調整パラメータ(K2)を演算し、前記アシスト制御演算部に出力する請求項に記載のステアリング制御装置。
  3. 前記制御調停部は、舵角制御の実行度合が大きくなるほどアシスト制御の応答特性を低下させる請求項1または2に記載のステアリング制御装置。
  4. 前記制御調停部は、アシスト制御の応答特性を低下させるにあたり、低周波域のゲインよりも高周波域のゲインをより低下させる請求項1~のいずれか一項に記載のステアリング制御装置。
JP2018208832A 2018-11-06 2018-11-06 ステアリング制御装置 Active JP7139895B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018208832A JP7139895B2 (ja) 2018-11-06 2018-11-06 ステアリング制御装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018208832A JP7139895B2 (ja) 2018-11-06 2018-11-06 ステアリング制御装置

Publications (2)

Publication Number Publication Date
JP2020075564A JP2020075564A (ja) 2020-05-21
JP7139895B2 true JP7139895B2 (ja) 2022-09-21

Family

ID=70724844

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018208832A Active JP7139895B2 (ja) 2018-11-06 2018-11-06 ステアリング制御装置

Country Status (1)

Country Link
JP (1) JP7139895B2 (ja)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005067368A (ja) 2003-08-22 2005-03-17 Fuji Heavy Ind Ltd ステアリング制御装置
JP2012236472A (ja) 2011-05-11 2012-12-06 Toyota Motor Corp 電動パワーステアリング装置
JP2015020604A (ja) 2013-07-19 2015-02-02 株式会社デンソー モータ制御装置
JP2015033942A (ja) 2013-08-09 2015-02-19 株式会社デンソー モータ制御装置
JP2016210225A (ja) 2015-04-30 2016-12-15 株式会社デンソー 電動パワーステアリング制御装置
WO2017203595A1 (ja) 2016-05-24 2017-11-30 三菱電機株式会社 電動パワーステアリング装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005067368A (ja) 2003-08-22 2005-03-17 Fuji Heavy Ind Ltd ステアリング制御装置
JP2012236472A (ja) 2011-05-11 2012-12-06 Toyota Motor Corp 電動パワーステアリング装置
JP2015020604A (ja) 2013-07-19 2015-02-02 株式会社デンソー モータ制御装置
JP2015033942A (ja) 2013-08-09 2015-02-19 株式会社デンソー モータ制御装置
JP2016210225A (ja) 2015-04-30 2016-12-15 株式会社デンソー 電動パワーステアリング制御装置
WO2017203595A1 (ja) 2016-05-24 2017-11-30 三菱電機株式会社 電動パワーステアリング装置

Also Published As

Publication number Publication date
JP2020075564A (ja) 2020-05-21

Similar Documents

Publication Publication Date Title
US9637166B2 (en) Electric power steering apparatus
EP2937266B1 (en) Electric power steering device
US9796410B2 (en) Motor controller
JP6213033B2 (ja) モータ制御装置
JP5382229B1 (ja) 電動パワーステアリング装置
KR101156899B1 (ko) 조타 제어 장치
US10035538B2 (en) Electric power steering system with motor controller
US9586619B1 (en) Motor controller
JP6107158B2 (ja) 電動パワーステアリング装置
JP7056518B2 (ja) ステアリング制御装置
CN111315637B (zh) 电动助力转向装置
JP6790452B2 (ja) ステアリング制御装置
WO2020158350A1 (ja) 車両の操舵に用いられるアクチュエータ制御装置
JP6220688B2 (ja) 電動パワーステアリング装置
JP6519281B2 (ja) 電動パワーステアリング装置
JP7322461B2 (ja) 操舵制御装置
JP7139895B2 (ja) ステアリング制御装置
JP4581651B2 (ja) 車両用操舵装置
JP4715314B2 (ja) 車両用操舵装置
US12024241B2 (en) Steering control device
JP5532294B2 (ja) モータ制御装置および車両用操舵装置
JP7235022B2 (ja) ステアリング制御装置
JP7159795B2 (ja) 電動パワーステアリング装置
WO2023127587A1 (ja) ステアリング制御装置
JP7155887B2 (ja) 電動パワーステアリング装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210413

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20220525

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220607

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220617

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220809

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220822

R151 Written notification of patent or utility model registration

Ref document number: 7139895

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151