JP7131956B2 - Conductive bonding paste material and bonding method - Google Patents

Conductive bonding paste material and bonding method Download PDF

Info

Publication number
JP7131956B2
JP7131956B2 JP2018089846A JP2018089846A JP7131956B2 JP 7131956 B2 JP7131956 B2 JP 7131956B2 JP 2018089846 A JP2018089846 A JP 2018089846A JP 2018089846 A JP2018089846 A JP 2018089846A JP 7131956 B2 JP7131956 B2 JP 7131956B2
Authority
JP
Japan
Prior art keywords
bonding
conductive
paste material
metal powder
conductive metal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2018089846A
Other languages
Japanese (ja)
Other versions
JP2019197620A (en
Inventor
哲郎 古谷
美知夫 幸松
康平 藤原
宏司 近藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fukuda Metal Foil and Powder Co Ltd
Denso Corp
Original Assignee
Fukuda Metal Foil and Powder Co Ltd
Denso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fukuda Metal Foil and Powder Co Ltd, Denso Corp filed Critical Fukuda Metal Foil and Powder Co Ltd
Priority to JP2018089846A priority Critical patent/JP7131956B2/en
Publication of JP2019197620A publication Critical patent/JP2019197620A/en
Application granted granted Critical
Publication of JP7131956B2 publication Critical patent/JP7131956B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Powder Metallurgy (AREA)
  • Conductive Materials (AREA)

Description

本発明は電子部品を基板に実装する際に用いることができる導電性接合用ペースト材料に関する。詳しくは、該導電性接合用ペースト材料は、接合強度が高く、また、熱膨張率が低いため、熱膨張率の低い部材の接合に好適に使用することができ、パワー半導体等の高温環境下でも作動する電子部品の接合や、自動車等の温度変化の激しい環境下で作動する電子部品の接合に用いても、熱変形による熱応力が生じ難いから、接合部分に欠陥が生じ難くて接合強度を維持できるため接合信頼性が高く、しかも、低い温度で接合できる導電性にも優れた導電性接合用ペースト材料に関する。 TECHNICAL FIELD The present invention relates to a conductive bonding paste material that can be used when mounting an electronic component on a substrate. Specifically, since the conductive bonding paste material has a high bonding strength and a low coefficient of thermal expansion, it can be suitably used for bonding members with a low coefficient of thermal expansion, and can be used in high-temperature environments such as power semiconductors. However, even if it is used to join electronic parts that operate, or to join electronic parts that operate in an environment where the temperature changes rapidly, such as in automobiles, thermal stress due to thermal deformation is unlikely to occur, so defects are unlikely to occur in the joints and bonding strength The present invention relates to a conductive bonding paste material that has high bonding reliability because it can maintain the , and also has excellent conductivity that can be bonded at a low temperature.

従来、半導体デバイス等の電子部品を基板上に実装する際の接合には鉛はんだが用いられてきた。 BACKGROUND ART Conventionally, lead solder has been used for bonding when electronic components such as semiconductor devices are mounted on substrates.

鉛はんだは高い延性を有していることから、電子部品の熱膨張率と鉛はんだの熱膨張率との間に差があったとしても、熱変形による熱応力を鉛はんだが吸収するため接合強度は低下し難いという特長がある。 Since lead solder has high ductility, even if there is a difference between the thermal expansion coefficient of the electronic component and the thermal expansion coefficient of the lead solder, the lead solder absorbs the thermal stress due to thermal deformation, resulting in a stable joint. It has the advantage that the strength does not easily decrease.

また、一般的に鉛はんだは融点が低いため、接合のために温度を上げる必要がないから耐熱性の低い基板等にも使用できるという特長がある。 In addition, since lead solder generally has a low melting point, there is no need to raise the temperature for joining, so there is the advantage that it can be used for substrates with low heat resistance.

しかし、融点が低いと、高温環境下で電子部品を作動させる場合において接合強度を維持することが困難になるため、近年のパワー半導体デバイス等の高温環境下でも作動する電子部品の接合に使用すれば、接合強度を維持できず接合信頼性が低くなるという問題がある。 However, if the melting point is low, it becomes difficult to maintain bonding strength when operating electronic components in a high-temperature environment. Otherwise, there is a problem that the bonding strength cannot be maintained and the bonding reliability is lowered.

また、鉛を含有するため、取り扱いが困難であるという問題もある。 Moreover, since it contains lead, there is also a problem that it is difficult to handle.

このような鉛はんだによる接合の問題を解決すべく、金属ナノ粒子の高い結合性を利用し、高温環境下で電子部品を作動させた場合であっても接合強度を維持できる接合材料が開発されている。 In order to solve the problem of bonding with lead solder, a bonding material was developed that can maintain bonding strength even when electronic components are operated in a high-temperature environment by utilizing the high bonding properties of metal nanoparticles. ing.

しかし、金属ナノ粒子としてAgやCuを用いれば、高い導電性や接合強度は実現できるが、接合材料自体の熱膨張率が高くなるため、シリコンカーバイド半導体のような熱膨張率が低い電子部品を高温環境下で作動させたり、自動車のような高温と低温の温度変化の激しい環境下で作動させたりする場合に、電子部品と接合材料との熱膨張率の差により生じる熱応力によって、接合部分に欠陥が生じて接合強度が低下する虞があり、接合信頼性が低いという問題がある。 However, if Ag or Cu is used as metal nanoparticles, high conductivity and bonding strength can be achieved, but the thermal expansion coefficient of the bonding material itself is high, so electronic parts with low thermal expansion coefficients such as silicon carbide semiconductors are used. When operating in a high-temperature environment or in an environment where the temperature changes rapidly between high and low temperatures, such as in automobiles, the thermal stress caused by the difference in thermal expansion coefficient between the electronic component and the joining material can cause the joint to break down. There is a risk that a defect will occur in the joint and the joint strength will be reduced, resulting in a problem of low joint reliability.

加えて、金属ナノ粒子は反応性が高いため、保管や取り扱いが困難であり、また、高価であるといった問題もある。 In addition, since metal nanoparticles are highly reactive, they are difficult to store and handle, and are expensive.

そこで、優れた導電性や接合強度を実現できる金属粉末を含有する導電性接合材料であっても熱膨張率が低く、熱膨張率が低い電子部品等の接合に使用しても熱応力による欠陥が生じ難いため接合強度を維持できる導電性接合材料であって、簡便な方法で製造でき、また、低い温度で接合でき、耐熱性の低い基板等への接合にも使用できる導電性接合材料の開発が望まれている。 Therefore, even a conductive bonding material containing metal powder that can achieve excellent conductivity and bonding strength has a low coefficient of thermal expansion, and even if it is used for bonding electronic components with a low coefficient of thermal expansion, defects due to thermal stress will occur. It is a conductive bonding material that can maintain bonding strength because it is difficult to generate, can be manufactured by a simple method, can be bonded at a low temperature, and can be used for bonding to substrates with low heat resistance. Development is desired.

WO2016/121764WO2016/121764 特開2011-41955公報Japanese Unexamined Patent Application Publication No. 2011-41955

特許文献1には、金属ナノ粒子と導電性材料のミクロン粒子を含有する接合材料であって、該ミクロン粒子の導電性材料の線熱膨張係数が該金属ナノ粒子の金属の線熱膨張係数より小さい接合材料が開示されている。 Patent Document 1 discloses a bonding material containing metal nanoparticles and micron particles of a conductive material, wherein the linear thermal expansion coefficient of the conductive material of the micron particles is higher than the linear thermal expansion coefficient of the metal of the metal nanoparticles. A small joining material is disclosed.

特許文献1に開示される接合材料は、金属ナノ粒子由来の金属焼結体によって接合強度を確保するとともに、該金属ナノ粒子と該導電性ミクロン粒子の配合の割合を調整することで、接合する部材間の熱膨張率の差を緩和して、接合部位に熱応力による欠陥が生じ難くすることで、接合強度の低下を抑制しようとする接合材料である。 The bonding material disclosed in Patent Document 1 secures bonding strength with a metal sintered body derived from metal nanoparticles, and adjusts the blending ratio of the metal nanoparticles and the conductive microparticles to bond. It is a bonding material that suppresses a decrease in bonding strength by alleviating the difference in coefficient of thermal expansion between members and making it difficult for defects due to thermal stress to occur at bonding sites.

しかし、特許文献1に開示される接合材料は、導電性材料のミクロン粒子の他に反応性の高い金属ナノ粒子を含有させるため、取り扱いが困難であるとともに、接合しようとする部材間の熱膨張率の差によって、該金属ナノ粒子と該ミクロン粒子の割合を調整する必要があるから製造工程が複雑になるという問題がある。 However, the bonding material disclosed in Patent Document 1 contains highly reactive metal nanoparticles in addition to micron particles of a conductive material, and is difficult to handle. There is a problem that the manufacturing process is complicated because it is necessary to adjust the ratio of the metal nanoparticles and the micron particles due to the difference in ratio.

特許文献2には、金属ナノ粒子を用いて形成させた接合層を厚くすることで、接合層に生じた熱応力を解消する接合材料が開示されている。 Patent Literature 2 discloses a bonding material that eliminates thermal stress generated in the bonding layer by thickening the bonding layer formed using metal nanoparticles.

しかし、特許文献2に開示される接合材料は、導電性を上げるためにAgやCuの金属ナノ粒子を用いたときには、接合層自体の熱膨張率が高くなるため、熱膨張率の低い電子部品の接合に使用すると接合強度が低下する虞があるという問題がある。 However, in the bonding material disclosed in Patent Document 2, when Ag or Cu metal nanoparticles are used to increase the conductivity, the thermal expansion coefficient of the bonding layer itself increases, so the electronic component with a low thermal expansion coefficient There is a problem that the bonding strength may be lowered when used for bonding.

本発明者らは、前記諸問題点を解決することを技術的課題とし、試行錯誤的な数多くの試作・実験を重ねた結果、導電性金属粉末と有機溶剤とからなる導電性接合用ペースト材料であって、前記導電性金属粉末はAg、Sn及びMoとからなり、前記導電性金属粉末100重量%中の(Ag+Sn)の含有量が45~85重量%、Moの含有量が15~55重量%であり、前記AgとSnはAg/(Ag+Sn)が重量比で50~65である導電性接合用ペースト材料であれば、接合強度が高くて熱膨張率が低い導電性接合用ペースト材料になるので、熱膨張率の低い電子部品に好適に使用することができ、また、パワー半導体デバイスのような高温環境下でも作動する電子部品や、自動車のような高温と低温の温度変化の激しい環境下で作動する電子部品の接合に使用しても、熱変形による熱応力が生じ難いから、接合部分に欠陥が生じ難く、接合強度が維持できる接合信頼性の高い導電性接合用ペースト材料になると共に、280℃という低い温度でも焼結するので、低い温度で接合できる導電性の高い導電性接合用ペースト材料が得られるという刮目すべき知見を得て、前記技術的課題を達成したものである。 The inventors of the present invention have made it a technical task to solve the above-mentioned problems, and as a result of numerous trial and error trials and experiments, a conductive bonding paste material composed of a conductive metal powder and an organic solvent The conductive metal powder is composed of Ag, Sn and Mo, and the content of (Ag + Sn) in 100 wt% of the conductive metal powder is 45 to 85 wt%, and the content of Mo is 15 to 55 wt%. % by weight, and Ag/(Ag+Sn) is a conductive bonding paste material having a weight ratio of 50 to 65, and a conductive bonding paste material with high bonding strength and low coefficient of thermal expansion. Therefore, it can be suitably used for electronic parts with a low coefficient of thermal expansion, and can also be used for electronic parts that operate in high temperature environments such as power semiconductor devices, and for automobiles where the temperature changes rapidly between high and low temperatures. Even if it is used for bonding electronic parts that operate in an environment, thermal stress due to thermal deformation is less likely to occur, so it is difficult for defects to occur in the bonded part, and it is a conductive bonding paste material with high bonding reliability that can maintain bonding strength. In addition, since it is sintered at a low temperature of 280° C., it is possible to obtain a highly conductive bonding paste material that can be bonded at a low temperature. be.

前記技術的課題は次のとおり、本発明によって解決できる。 The above technical problems can be solved by the present invention as follows.

本発明は、導電性金属粉末と有機溶剤とからなる導電性接合用ペースト材料であって、前記導電性金属粉末はAg、Sn及びMoとからなり、前記導電性金属粉末100重量%中の(Ag+Sn)の含有量が45~85重量%、Moの含有量が15~55重量%であり、前記AgとSnはAg/(Ag+Sn)が重量比で50~65である導電性接合用ペースト材料である。 The present invention is a conductive bonding paste material comprising a conductive metal powder and an organic solvent, wherein the conductive metal powder comprises Ag, Sn and Mo, and in 100% by weight of the conductive metal powder ( Ag+Sn) content is 45 to 85% by weight, Mo content is 15 to 55% by weight, and the Ag/(Ag+Sn) weight ratio of Ag and Sn is 50 to 65. is.

また、本発明は、前記導電性金属粉末の平均粒径(d50)が1~20μmである導電性接合用ペースト材料である。 The present invention also provides a conductive bonding paste material, wherein the conductive metal powder has an average particle size (d50) of 1 to 20 μm.

また、本発明は、前記有機溶剤は、沸点が180℃以上の多価アルコール、炭化水素、アルコールエステルを1以上含む有機溶剤である導電性接合用ペースト材料である。 Further, the present invention is a paste material for conductive bonding, wherein the organic solvent is an organic solvent containing one or more polyhydric alcohols, hydrocarbons, and alcohol esters having a boiling point of 180° C. or higher.

また、本発明は、前記導電性金属粉末と前記有機溶剤との重量比が100:5~20である導電性接合用ペースト材料である。 Further, the present invention is a paste material for conductive bonding, wherein the weight ratio of the conductive metal powder and the organic solvent is 100:5-20.

また、本発明は、280℃以上で焼結させることを特徴とする前記導電性接合用ペースト材料を使用した接合方法である。 Further, the present invention is a bonding method using the conductive bonding paste material, characterized by sintering at 280° C. or higher.

また、本発明は、前記導電性金属粉末と有機溶剤とを攪拌して製造することを特徴とする前記導電性接合用ペースト材料の製造方法である。 Further, the present invention is a method for producing the conductive bonding paste material, characterized in that the conductive metal powder and an organic solvent are stirred to produce the paste material.

本発明は、銀粉末(Ag)とスズ粉末(Sn)を45~85重量%とモリブデン粉末(Mo)を15~55重量%とで100重量%になる導電性金属粉末であって、前記銀粉末とスズ粉末はAg/(Ag+Sn)が重量比で50~65である導電性金属粉末を含有するため、焼結によって電子部品を接合させた場合には、該導電性金属粉末の焼結体により高い接合強度と高い導電性が得られる。 The present invention provides a conductive metal powder containing 45 to 85% by weight of silver powder (Ag), 45 to 85% by weight of tin powder (Sn), and 15 to 55% by weight of molybdenum powder (Mo) to make 100% by weight, wherein the silver Since the powder and the tin powder contain conductive metal powder with a weight ratio of Ag/(Ag+Sn) of 50 to 65, when electronic parts are joined by sintering, a sintered body of the conductive metal powder High bonding strength and high electrical conductivity can be obtained.

また、本発明における導電性接合用ペースト材料は、線膨張係数(coefficient of thermal expansion 以下「CTE」と言う)が低いので、CTEが低い部材の接合にも好適に用いることができ、また、パワー半導体デバイスのように高温環境下でも作動する電子部品や、自動車のような高温と低温の温度変化の激しい環境下で作動する電子部品の接合に使用しても、熱膨張率の差を少なくすることができるから、熱変形による熱応力が抑制されるため接合部分に欠陥が生じ難く、接合強度が低下し難い。 In addition, since the conductive bonding paste material of the present invention has a low coefficient of thermal expansion (hereinafter referred to as "CTE"), it can be suitably used for bonding members with a low CTE. Minimize the difference in thermal expansion coefficient even when used for bonding electronic parts that operate in high temperature environments such as semiconductor devices, and electronic parts that operate in environments with severe temperature changes between high and low temperatures such as automobiles. Since the thermal stress due to thermal deformation is suppressed, defects are less likely to occur in the joint portion and the joint strength is less likely to decrease.

また、導電性金属粉末として、平均粒径(d50)が1~20μmの金属粉末を用いることができるから、保管や取り扱いも容易であり、また、導電性金属粉末を有機溶剤に攪拌するといった簡便な方法で製造できる。 In addition, since a metal powder having an average particle size (d50) of 1 to 20 μm can be used as the conductive metal powder, storage and handling are easy, and the conductive metal powder is easily stirred in an organic solvent. method can be manufactured.

また、280℃という低い温度でも焼結するから、耐熱性が低い電子部品と基板の接合にも使用することができる。 In addition, since it can be sintered at a temperature as low as 280° C., it can also be used for bonding electronic parts with low heat resistance to substrates.

本発明における導電性金属粉末は銀粉末(Ag)、スズ粉末(Sn)と、銀及びスズよりもCTEが低いモリブデン粉末(Mo)からなる。 The conductive metal powders in the present invention consist of silver powder (Ag), tin powder (Sn), and molybdenum powder (Mo), which has a lower CTE than silver and tin.

Ag及びSnは焼結の際にAg3Snを形成するため拡散し易くなって、銅基板に対しても固相拡散接合できるようになり高い接合強度を実現できると共に高い導電性も実現できる。 Since Ag and Sn form Ag3Sn during sintering, they are easily diffused, and solid-phase diffusion bonding can be performed even with a copper substrate, realizing high bonding strength and high electrical conductivity.

また、Moを含有することにより、導電性接合用ペースト材料の熱膨張を抑制するから、CTEの低い導電性接合用ペースト材料になる。 Moreover, since the thermal expansion of the conductive bonding paste material is suppressed by containing Mo, the CTE of the conductive bonding paste material is low.

導電性金属粉末100重量%におけるAg+Snの含有量は45~85重量%であり、更に好ましいのは55~75重量%、最も好ましいのは60~70重量%である。 The content of Ag+Sn in 100% by weight of the conductive metal powder is 45-85% by weight, more preferably 55-75% by weight, and most preferably 60-70% by weight.

Ag+Snの含有量が45重量%未満であると接合強度が低くなり、また、Ag+Snの含有量が85重量%を超えると、CTEが高くなり過ぎるため、高温環境下では熱変形して熱応力による欠陥が生じ易くなり、接合強度が低下する虞があるからである。 If the content of Ag+Sn is less than 45% by weight, the bonding strength will be low, and if the content of Ag+Sn exceeds 85% by weight, the CTE will be too high. This is because defects are likely to occur, and there is a risk that the bonding strength will decrease.

また、Ag/(Ag+Sn)が重量比で50~65であることが好ましい。
Snが基材と固相拡散接合し易くなって、またSnが液相焼結することにより、接合強度及び導電性に資するからである。
Also, Ag/(Ag+Sn) is preferably 50 to 65 by weight.
This is because Sn facilitates solid-phase diffusion bonding with the base material, and Sn contributes to bonding strength and electrical conductivity by liquid-phase sintering.

Ag/(Ag+Sn)が重量比で50未満であると焼結阻害により接合強度及び導電性が低くなる虞があり、Ag/(Ag+Sn)が重量比で65を超えると接合強度が低下する虞がある。 If the Ag/(Ag+Sn) weight ratio is less than 50, the bonding strength and electrical conductivity may decrease due to sintering inhibition, and if the Ag/(Ag+Sn) weight ratio exceeds 65, the bonding strength may decrease. be.

導電性金属粉末100重量%におけるMoの含有量は15~55重量%が好ましく、より好ましくは、25~45重量%、最も好ましいのは30~40重量%である。 The Mo content in 100% by weight of the conductive metal powder is preferably 15-55% by weight, more preferably 25-45% by weight, and most preferably 30-40% by weight.

Moの含有量が15重量%未満であると導電性接合用ペースト材料のCTEが上がりすぎ、また、55重量%を超えると接合強度が低下する虞があるからである。 If the Mo content is less than 15% by weight, the CTE of the conductive bonding paste material may be excessively increased, and if it exceeds 55% by weight, the bonding strength may decrease.

なお、Moは、Ag、Sn、Au等でめっきしたものを用いてもよい。 Note that Mo may be plated with Ag, Sn, Au, or the like.

また、本発明には、Moと共に、又は、Moの代わりにCTEの低いW(タングステン)、Cr(クロム)、Au(金)等の金属、AIN(窒化アルミニウム)、Si(シリコン)等のセラミックスを含有させてもよい。 In the present invention, together with Mo or instead of Mo, metals with low CTE such as W (tungsten), Cr (chromium), Au (gold), AIN (aluminum nitride), ceramics such as Si (silicon) may be included.

導電性金属粉末は、いずれも脂肪酸等で前処理を施したものを用いてもよい。 Any of the conductive metal powders may be pretreated with fatty acid or the like.

導電性金属粉末の平均粒径(d50)は1~20μmが好ましい。 The average particle size (d50) of the conductive metal powder is preferably 1-20 μm.

平均粒径(d50)が1μm未満であると粘度が上がり過ぎてペースト化が困難になり、また、20μmを超えると印刷による塗布が困難になる虞があるからである。 If the average particle size (d50) is less than 1 μm, the viscosity will be too high, making it difficult to form a paste.

Ag、Sn及びMoの各金属粒子は粒子径が0.1~60μmの範囲の粒子であることが好ましい。 Each metal particle of Ag, Sn and Mo is preferably a particle having a particle diameter in the range of 0.1 to 60 μm.

各金属粒子の粒子径が0.1μm未満の粒子や60μmを超える粒子が多いと、粘度が上昇し、ペースト化が困難になったり、分散し難くなるため接合強度が低下したりする虞があるからである。 If there are many particles with a particle diameter of less than 0.1 μm or more than 60 μm in each metal particle, the viscosity increases, making it difficult to form a paste, or difficult to disperse, which may reduce the bonding strength. It is from.

本発明における有機溶剤は特に限定されないが、沸点が180℃以上の多価アルコール、炭化水素、アルコールエステルを1以上含有することが好ましい。 Although the organic solvent in the present invention is not particularly limited, it preferably contains one or more polyhydric alcohols, hydrocarbons, and alcohol esters having a boiling point of 180° C. or higher.

沸点が180℃以上であると、スクリーン印刷が好適に行えるが、180℃に満たないと、スクリーン印刷が困難になるからである。 If the boiling point is 180°C or higher, screen printing can be performed favorably, but if the boiling point is less than 180°C, screen printing becomes difficult.

本発明における有機溶剤として、テルピネオール、ブチルカルビトール、ブチルカルビトールアセテート、ジヒドロターピネオール、テキサノールを例示する。 Examples of organic solvents in the present invention include terpineol, butyl carbitol, butyl carbitol acetate, dihydroterpineol, and texanol.

本発明における導電性金属粉末と有機溶剤との割合は重量比で100:5~20であることが好ましい。 The weight ratio of the conductive metal powder to the organic solvent in the present invention is preferably 100:5-20.

導電性金属粉末100に対し、重量比で有機溶剤が5未満であると、ペースト化が困難になり、また、20を超えて含有すると気泡(ボイド)が発生して接合強度が低下する虞があるからである。 If the weight ratio of the organic solvent to the conductive metal powder is less than 5, it becomes difficult to form a paste. Because there is

本発明における導電性接合用ペースト材料は、導電性金属粉末に有機溶剤を添加し、自公転ミキサー等を用いて、300~2000rpm、30秒以上攪拌するという簡便な方法で製造することができる。 The conductive bonding paste material of the present invention can be produced by a simple method of adding an organic solvent to a conductive metal powder and stirring the mixture at 300 to 2000 rpm for 30 seconds or more using a rotating or revolving mixer.

本発明における導電性接合用ペースト材料のCTEは、10~20ppmであることが好ましい。 The CTE of the paste material for conductive bonding in the present invention is preferably 10 to 20 ppm.

CTEが低い電子部品を高温環境下や、高温と低温の温度変化の激しい環境下で作動させても接合強度が維持できるからである。 This is because the bonding strength can be maintained even when an electronic component with a low CTE is operated in a high-temperature environment or in an environment where the temperature changes drastically between high and low temperatures.

本発明における導電性接合用ペースト材料は接合する部材の一方又は両方に塗布、印刷又はディスペンス塗布し、Air雰囲気、280℃以上で5~30分間焼結することで接合できる。 The conductive bonding paste material of the present invention can be bonded by applying, printing or dispensing to one or both of the members to be bonded and sintering them in an air atmosphere at 280° C. or higher for 5 to 30 minutes.

焼結の温度は280℃以上であればよいが、280~480℃の範囲であることが好ましい。
480℃を超えるとAg3Snが融解して拡散し難くなる虞があるからである。
The sintering temperature may be 280°C or higher, preferably in the range of 280 to 480°C.
This is because if the temperature exceeds 480° C., Ag3Sn may melt and become difficult to diffuse.

なお、本発明における導電性接合用ペースト材料は、導電性が高く、熱膨張率が低いので、電子部品を基板に接合する以外にも、熱電素子の形成、配線(回路)形成、電極形成にも好適に使用できる。 In addition, since the conductive bonding paste material in the present invention has high conductivity and a low thermal expansion coefficient, it can be used for forming thermoelectric elements, wiring (circuits), and electrodes in addition to bonding electronic parts to substrates. can also be preferably used.

本発明の実施例及び比較例を以下に示すが、本発明はこれに限定されない。 Examples and comparative examples of the present invention are shown below, but the present invention is not limited thereto.

表1及び表2記載の通りAg、Sn及びMoを配合した導電性金属粉末100gにテルピネオールを6g添加し、自公転ミキサー(株式会社シンキー製)にて、2000rpm、2分間攪拌して実施例及び比較例の各導電性接合用ペースト材料を得た。 As shown in Tables 1 and 2, 6 g of terpineol was added to 100 g of conductive metal powder containing Ag, Sn and Mo, and stirred at 2000 rpm for 2 minutes in a rotation mixer (manufactured by Thinky Co., Ltd.). Each paste material for conductive bonding of the comparative example was obtained.

(平均粒径)
各導電性金属粉末の50%平均粒径(d50)はレーザー回折式粒子径分布測定装置SALD-3100(株式会社島津製作所製)を用いて測定した。
(Average particle size)
The 50% average particle size (d50) of each conductive metal powder was measured using a laser diffraction particle size distribution analyzer SALD-3100 (manufactured by Shimadzu Corporation).

(CTE)
<試験片の作成>
実施例及び比較例の導電性接合用ペースト材料を200meshのスクリーンを用いて印刷成型した。その後、真空熱プレス機 KVHC-II(北川精機株式会社製)によって、3.2MPaで、実施例13以外は320℃、15分間処理し、実施例13は280℃、15分間処理した後、約4mm×30mm×0.1mmのサイズの試験片を作製した。
(CTE)
<Preparation of test piece>
The conductive bonding paste materials of Examples and Comparative Examples were printed and molded using a 200-mesh screen. After that, with a vacuum heat press machine KVHC-II (manufactured by Kitagawa Seiki Co., Ltd.), at 3.2 MPa, all except Example 13 were treated at 320 ° C. for 15 minutes, and Example 13 was treated at 280 ° C. for 15 minutes. A test piece with a size of 4 mm x 30 mm x 0.1 mm was produced.

<CTEの測定>
TMA装置(TMA/SS120/セイコーインスツルメンツ株式会社製)を用い、測定温度-40~300℃(昇温5℃/min)、分銅加重1gf(引張モード)、Ar雰囲気にて線膨張係数(CTE/10-6[1/℃])を測定した。
<Measurement of CTE>
Using a TMA device (TMA/SS120/manufactured by Seiko Instruments Inc.), measurement temperature -40 to 300 ° C. (heating 5 ° C./min), weight load 1 gf (tensile mode), linear expansion coefficient (CTE/ 10 −6 [1/° C.]) was measured.

CTEが20ppm以下であると○、20ppmを超えると×として評価した。 When the CTE was 20 ppm or less, it was evaluated as ◯, and when it exceeded 20 ppm, it was evaluated as x.

(接合強度)
接合強度はダイシェア強度を測定した。
(bonding strength)
Bonding strength was measured by die shear strength.

<試験片の作成>
実施例及び比較例の導電性接合用ペースト材料を200meshのスクリーンを用いて厚さ2mm、長さ10mmの正方形の銅板上に長さ1.5mmの正方形を印刷し、真空熱プレス機 KVHC-II(北川精機株式会社製)にて、5.0MPaで、実施例13以外は320℃、15分間処理し、実施例13は280℃、15分間処理して試験片を作製した。
<Preparation of test piece>
The conductive bonding paste materials of Examples and Comparative Examples were printed on a square copper plate with a thickness of 2 mm and a length of 10 mm using a 200 mesh screen, and a square with a length of 1.5 mm was printed, and a vacuum heat press KVHC-II (manufactured by Kitagawa Seiki Co., Ltd.) at 5.0 MPa, except for Example 13, it was treated at 320° C. for 15 minutes, and Example 13 was treated at 280° C. for 15 minutes to prepare a test piece.

<ダイシェア強度の測定>
ダイシェア試験機(Dageシリーズ4000/デイジ社製)とロードセル(DS100KG)を用い、試験速度100μm/sec、室温にてダイシェア強度を測定した。
<Measurement of die shear strength>
The die shear strength was measured at room temperature at a test speed of 100 μm/sec using a die shear tester (Dage series 4000/manufactured by Dage) and a load cell (DS100KG).

ダイシェア強度が200MPa以上であれば○、200MPaに満たないものを×として評価した。 When the die shear strength was 200 MPa or more, it was evaluated as ◯, and when it was less than 200 MPa, it was evaluated as x.

(電気接続)
テスター(HIOKI製ミリオームハイテスタ)で導通が得られるかどうかを確認し、電気接続が得られたものを○、得られなかったものを×として評価した。
(electrical connection)
A tester (Milliohm High Tester manufactured by Hioki) was used to confirm whether or not electrical connection could be obtained.

結果を表1及び表2に示す。 The results are shown in Tables 1 and 2.

Figure 0007131956000001
Figure 0007131956000001

Figure 0007131956000002
Figure 0007131956000002

表1及び表2より、本発明における導電性接合用ペースト材料は接合強度が高く、また、CTEが低く、しかも、280℃や320℃という低い温度でも接合できる導電性に優れた導電性接合用ペースト材料であることが証明された。 From Tables 1 and 2, the conductive bonding paste material of the present invention has a high bonding strength, a low CTE, and an excellent conductivity that can be bonded even at a temperature as low as 280 ° C. or 320 ° C. For conductive bonding. It proved to be a paste material.

本発明における導電性接合用ペースト材料は、導電性金属粉末としてAg、Sn及びMoを含有するので、導電性及び接合強度が高く、熱膨張率が低い導電性接合用ペースト材料であるから、熱膨張率の低い電子部品等の部材の接合に好適に使用することができる。
また、熱膨張率が低いので、高温環境下や、高温と低温の温度変化の激しい環境下において作動する電子部品の接合に用いても、熱変形による熱応力が生じ難く、接合部分に欠陥が生じ難いため、接合強度が低下し難く、接合信頼性の高い導電性接合用ペースト材料である。
加えて、280℃という低い温度でも焼結するので、耐熱性の低い電子部品と基板の接合にも使用することができる。
したがって、本発明は産業上の利用可能性の高い発明であると言える。
Since the conductive bonding paste material in the present invention contains Ag, Sn and Mo as conductive metal powders, it has high conductivity and bonding strength, and has a low coefficient of thermal expansion. It can be suitably used for joining members such as electronic parts having a low coefficient of expansion.
In addition, since it has a low coefficient of thermal expansion, even if it is used in the bonding of electronic components that operate in high-temperature environments or in environments where there are drastic temperature changes between high and low temperatures, thermal stress due to thermal deformation is less likely to occur, resulting in defects in the bonded area. Since it is difficult to form, the bonding strength is unlikely to decrease, and the conductive bonding paste material has high bonding reliability.
In addition, since it can be sintered at a temperature as low as 280° C., it can also be used for bonding electronic components with low heat resistance to substrates.
Therefore, it can be said that the present invention has high industrial applicability.

Claims (6)

導電性金属粉末と有機溶剤とからなる導電性接合用ペースト材料であって、
前記導電性金属粉末はAg、Sn及びMoとからなり、前記導電性金属粉末100重量%中の(Ag+Sn)の含有量が45~85重量%、Moの含有量が15~55重量%であり、前記AgとSnはAg/(Ag+Sn)が重量比で50~65である導電性接合用ペースト材料。
A conductive bonding paste material comprising a conductive metal powder and an organic solvent,
The conductive metal powder is composed of Ag, Sn and Mo, and the content of (Ag+Sn) is 45 to 85 wt% and the content of Mo is 15 to 55 wt% in 100 wt% of the conductive metal powder. , Ag and Sn are paste materials for conductive bonding, wherein Ag/(Ag+Sn) is 50 to 65 by weight.
前記導電性金属粉末の平均粒径(d50)が1~20μmである請求項1記載の導電性接合用ペースト材料。 The conductive bonding paste material according to claim 1, wherein the conductive metal powder has an average particle size (d50) of 1 to 20 µm. 前記有機溶剤は、沸点が180℃以上の多価アルコール、炭化水素、アルコールエステルを1以上含む有機溶剤である請求項1又は2記載の導電性接合用ペースト材料。 3. The paste material for conductive bonding according to claim 1, wherein the organic solvent is an organic solvent containing one or more polyhydric alcohols, hydrocarbons and alcohol esters having a boiling point of 180[deg.] C. or higher. 前記導電性金属粉末と前記有機溶剤との重量比が100:5~20である請求項1乃至3いずれか記載の導電性接合用ペースト材料。 4. The paste material for conductive bonding according to claim 1, wherein the weight ratio of said conductive metal powder and said organic solvent is 100:5-20. 280℃以上で焼結させることを特徴とする請求項1乃至4いずれか記載の導電性接合用ペースト材料を使用した接合方法。 A bonding method using the conductive bonding paste material according to any one of claims 1 to 4, characterized in that sintering is performed at 280°C or higher. 前記導電性金属粉末と有機溶剤とを攪拌して製造することを特徴とする請求項1乃至5いずれか記載の導電性接合用ペースト材料の製造方法。 6. The method for producing a conductive bonding paste material according to claim 1, wherein said conductive metal powder and an organic solvent are stirred to produce said paste material.
JP2018089846A 2018-05-08 2018-05-08 Conductive bonding paste material and bonding method Active JP7131956B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018089846A JP7131956B2 (en) 2018-05-08 2018-05-08 Conductive bonding paste material and bonding method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018089846A JP7131956B2 (en) 2018-05-08 2018-05-08 Conductive bonding paste material and bonding method

Publications (2)

Publication Number Publication Date
JP2019197620A JP2019197620A (en) 2019-11-14
JP7131956B2 true JP7131956B2 (en) 2022-09-06

Family

ID=68538456

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018089846A Active JP7131956B2 (en) 2018-05-08 2018-05-08 Conductive bonding paste material and bonding method

Country Status (1)

Country Link
JP (1) JP7131956B2 (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003234016A (en) 2002-02-06 2003-08-22 Denso Corp Conductive compound

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0347901A (en) * 1989-07-14 1991-02-28 Showa Denko Kk Material for adhesion

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003234016A (en) 2002-02-06 2003-08-22 Denso Corp Conductive compound

Also Published As

Publication number Publication date
JP2019197620A (en) 2019-11-14

Similar Documents

Publication Publication Date Title
KR101732444B1 (en) Methods for attachment and devices produced using the methods
KR102270959B1 (en) Metal sintering film compositions
JP2007527102A (en) Nanoscale metal pastes for interconnection and methods of use
KR101671062B1 (en) Lead-free solder composition and manufacturing method of lead-free solder composition
TWI711670B (en) High performance, thermally conductive surface mount (die attach) adhesives
JP2015004105A (en) Bonding material and bonding method using the same
JP2015536385A (en) Sintered powder
KR20160003787A (en) Metal nanoparticle dispersion, process for producing metal nanoparticle dispersion, and bonding method
US20220068518A1 (en) Method of manufacturing an electronic device and conductive paste for the same
JP6032110B2 (en) Metal nanoparticle material, bonding material containing the same, and semiconductor device using the same
JP6460578B2 (en) Bonding material, bonding method using the same, bonding material paste, and semiconductor device
Liu et al. Microstructural evolution, fracture behavior and bonding mechanisms study of copper sintering on bare DBC substrate for SiC power electronics packaging
KR102040278B1 (en) Lead-free solder composition and manufacturing method of the same, bonding method using lead-free solder composition
CN108780784B (en) Metal member with Ag-based layer, insulated circuit board with Ag-based layer, semiconductor device, insulated circuit board with heat sink, and method for manufacturing metal member with Ag-based layer
JP2014077101A (en) Adhesive composition using phosphorus-containing copper alloy particles and semiconductor device using the same
WO2017150096A1 (en) Semiconductor device
JP4624222B2 (en) Conductive part forming particles
KR102040280B1 (en) Lead-free solder composition and manufacturing method of the same, bonding method using lead-free solder composition
JP7131956B2 (en) Conductive bonding paste material and bonding method
JP2019070174A (en) Bonding paste and semiconductor device using same
JP6831416B2 (en) Joining material and joining method
JP6677231B2 (en) Method for joining electronic components and method for manufacturing joined body
CN111033703A (en) Mounting structure and nanoparticle mounting material
WO2016170906A1 (en) Au-Sn-Ag BASED SOLDER PASTE, AND ELECTRONIC COMPONENT JOINED OR SEALED BY USING Au-Sn-Ag BASED SOLDER PASTE
CN111415903B (en) Interconnection method based on reactive paste

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210412

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20220323

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220405

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220823

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220825

R150 Certificate of patent or registration of utility model

Ref document number: 7131956

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150