JP2019197620A - Conductive bonding paste material and bonding method - Google Patents

Conductive bonding paste material and bonding method Download PDF

Info

Publication number
JP2019197620A
JP2019197620A JP2018089846A JP2018089846A JP2019197620A JP 2019197620 A JP2019197620 A JP 2019197620A JP 2018089846 A JP2018089846 A JP 2018089846A JP 2018089846 A JP2018089846 A JP 2018089846A JP 2019197620 A JP2019197620 A JP 2019197620A
Authority
JP
Japan
Prior art keywords
bonding
conductive
paste material
metal powder
conductive metal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2018089846A
Other languages
Japanese (ja)
Other versions
JP7131956B2 (en
Inventor
哲郎 古谷
Tetsuro Furuya
哲郎 古谷
美知夫 幸松
Michio Komatsu
美知夫 幸松
康平 藤原
Kohei Fujiwara
康平 藤原
近藤 宏司
Koji Kondo
宏司 近藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fukuda Metal Foil and Powder Co Ltd
Denso Corp
Original Assignee
Fukuda Metal Foil and Powder Co Ltd
Denso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fukuda Metal Foil and Powder Co Ltd, Denso Corp filed Critical Fukuda Metal Foil and Powder Co Ltd
Priority to JP2018089846A priority Critical patent/JP7131956B2/en
Publication of JP2019197620A publication Critical patent/JP2019197620A/en
Application granted granted Critical
Publication of JP7131956B2 publication Critical patent/JP7131956B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Powder Metallurgy (AREA)
  • Conductive Materials (AREA)

Abstract

To provide a conductive bonding paste material that has high bonding reliability and excellent conductivity capable of bonding even at a low temperature, can be suitably used in bonding a member having low thermal expansion coefficient because of a conductive bonding paste material having high bonding strength and low thermal expansion coefficient, and is difficult to generate a defect in the bonding part because even when used in bonding an electronic component operating under a high temperature such as a power semiconductor or an electronic component operating under an environment having a violent temperature change like vehicles, the thermal stress due to the thermal deformation is difficult to occur.SOLUTION: A conductive bonding paste material made of conductive metal powder and an organic solvent, the conductive metal powder being made of Ag, Sn and Mo, a content of (Ag+Sn) in 100 wt.% of the conductive metal powder being 45 to 85 wt.%, a content of Mo being 15 to 55 wt.%, the Ag and Sn having Ag/(Ag + Sn) of 50 to 65 by a weight ratio.SELECTED DRAWING: None

Description

本発明は電子部品を基板に実装する際に用いることができる導電性接合用ペースト材料に関する。詳しくは、該導電性接合用ペースト材料は、接合強度が高く、また、熱膨張率が低いため、熱膨張率の低い部材の接合に好適に使用することができ、パワー半導体等の高温環境下でも作動する電子部品の接合や、自動車等の温度変化の激しい環境下で作動する電子部品の接合に用いても、熱変形による熱応力が生じ難いから、接合部分に欠陥が生じ難くて接合強度を維持できるため接合信頼性が高く、しかも、低い温度で接合できる導電性にも優れた導電性接合用ペースト材料に関する。   The present invention relates to a conductive bonding paste material that can be used when an electronic component is mounted on a substrate. Specifically, the conductive bonding paste material has a high bonding strength and a low coefficient of thermal expansion. Therefore, the conductive bonding paste material can be suitably used for bonding a member having a low coefficient of thermal expansion. However, even if it is used for joining electronic components that operate, or for electronic components that operate in an environment where the temperature changes drastically, such as automobiles, thermal stress due to thermal deformation is unlikely to occur, so it is difficult for defects to occur in the joints and the joint strength It is related with the paste material for electroconductive joining which is high in joining reliability since it can be maintained, and has excellent conductivity that can be joined at a low temperature.

従来、半導体デバイス等の電子部品を基板上に実装する際の接合には鉛はんだが用いられてきた。   Conventionally, lead solder has been used for bonding when electronic components such as semiconductor devices are mounted on a substrate.

鉛はんだは高い延性を有していることから、電子部品の熱膨張率と鉛はんだの熱膨張率との間に差があったとしても、熱変形による熱応力を鉛はんだが吸収するため接合強度は低下し難いという特長がある。   Because lead solder has high ductility, even if there is a difference between the thermal expansion coefficient of electronic components and the thermal expansion coefficient of lead solder, the lead solder absorbs the thermal stress due to thermal deformation, so joining There is a feature that the strength is hardly lowered.

また、一般的に鉛はんだは融点が低いため、接合のために温度を上げる必要がないから耐熱性の低い基板等にも使用できるという特長がある。   In general, since lead solder has a low melting point, it is not necessary to raise the temperature for bonding, and thus it can be used for a substrate having low heat resistance.

しかし、融点が低いと、高温環境下で電子部品を作動させる場合において接合強度を維持することが困難になるため、近年のパワー半導体デバイス等の高温環境下でも作動する電子部品の接合に使用すれば、接合強度を維持できず接合信頼性が低くなるという問題がある。   However, when the melting point is low, it is difficult to maintain the bonding strength when the electronic component is operated in a high temperature environment. Therefore, it is used for bonding electronic components that operate in a high temperature environment such as power semiconductor devices in recent years. In this case, there is a problem that the bonding strength cannot be maintained and the bonding reliability is lowered.

また、鉛を含有するため、取り扱いが困難であるという問題もある。   Moreover, since it contains lead, there is also a problem that it is difficult to handle.

このような鉛はんだによる接合の問題を解決すべく、金属ナノ粒子の高い結合性を利用し、高温環境下で電子部品を作動させた場合であっても接合強度を維持できる接合材料が開発されている。   In order to solve the problem of bonding with lead solder, a bonding material that can maintain bonding strength even when electronic components are operated in a high-temperature environment has been developed by utilizing the high bondability of metal nanoparticles. ing.

しかし、金属ナノ粒子としてAgやCuを用いれば、高い導電性や接合強度は実現できるが、接合材料自体の熱膨張率が高くなるため、シリコンカーバイド半導体のような熱膨張率が低い電子部品を高温環境下で作動させたり、自動車のような高温と低温の温度変化の激しい環境下で作動させたりする場合に、電子部品と接合材料との熱膨張率の差により生じる熱応力によって、接合部分に欠陥が生じて接合強度が低下する虞があり、接合信頼性が低いという問題がある。   However, if Ag or Cu is used as the metal nanoparticles, high electrical conductivity and bonding strength can be realized, but the thermal expansion coefficient of the bonding material itself is increased. Therefore, an electronic component having a low thermal expansion coefficient such as a silicon carbide semiconductor is required. When operating in a high-temperature environment or operating in an environment where the temperature changes between high and low temperatures, such as automobiles, the joint part is affected by the thermal stress generated by the difference in thermal expansion coefficient between the electronic component and the bonding material. There is a risk that the bonding strength may be reduced due to a defect, and the bonding reliability is low.

加えて、金属ナノ粒子は反応性が高いため、保管や取り扱いが困難であり、また、高価であるといった問題もある。   In addition, since metal nanoparticles have high reactivity, they are difficult to store and handle, and are also expensive.

そこで、優れた導電性や接合強度を実現できる金属粉末を含有する導電性接合材料であっても熱膨張率が低く、熱膨張率が低い電子部品等の接合に使用しても熱応力による欠陥が生じ難いため接合強度を維持できる導電性接合材料であって、簡便な方法で製造でき、また、低い温度で接合でき、耐熱性の低い基板等への接合にも使用できる導電性接合材料の開発が望まれている。   Therefore, even if it is a conductive bonding material containing metal powder that can realize excellent conductivity and bonding strength, the thermal expansion coefficient is low, even if it is used for bonding electronic parts etc. with low thermal expansion coefficient, defects due to thermal stress It is a conductive bonding material that can maintain the bonding strength because it is difficult to occur, and can be manufactured by a simple method, can be bonded at a low temperature, and can be used for bonding to a substrate having low heat resistance. Development is desired.

WO2016/121764WO2016 / 1211764 特開2011−41955公報JP 2011-41955 A

特許文献1には、金属ナノ粒子と導電性材料のミクロン粒子を含有する接合材料であって、該ミクロン粒子の導電性材料の線熱膨張係数が該金属ナノ粒子の金属の線熱膨張係数より小さい接合材料が開示されている。   Patent Document 1 discloses a bonding material containing metal nanoparticles and a micron particle of a conductive material, wherein the linear thermal expansion coefficient of the conductive material of the micron particle is greater than the linear thermal expansion coefficient of the metal of the metal nanoparticle. Small bonding materials are disclosed.

特許文献1に開示される接合材料は、金属ナノ粒子由来の金属焼結体によって接合強度を確保するとともに、該金属ナノ粒子と該導電性ミクロン粒子の配合の割合を調整することで、接合する部材間の熱膨張率の差を緩和して、接合部位に熱応力による欠陥が生じ難くすることで、接合強度の低下を抑制しようとする接合材料である。   The bonding material disclosed in Patent Document 1 is bonded by securing the bonding strength with a metal sintered body derived from metal nanoparticles and adjusting the blending ratio of the metal nanoparticles and the conductive micron particles. It is a bonding material that suppresses a decrease in bonding strength by alleviating the difference in coefficient of thermal expansion between members and making it difficult for defects due to thermal stress to occur at the bonding site.

しかし、特許文献1に開示される接合材料は、導電性材料のミクロン粒子の他に反応性の高い金属ナノ粒子を含有させるため、取り扱いが困難であるとともに、接合しようとする部材間の熱膨張率の差によって、該金属ナノ粒子と該ミクロン粒子の割合を調整する必要があるから製造工程が複雑になるという問題がある。   However, since the bonding material disclosed in Patent Document 1 contains highly reactive metal nanoparticles in addition to the micron particles of the conductive material, it is difficult to handle and the thermal expansion between the members to be bonded. There is a problem that the manufacturing process becomes complicated because it is necessary to adjust the ratio of the metal nanoparticles and the micron particles due to the difference in rate.

特許文献2には、金属ナノ粒子を用いて形成させた接合層を厚くすることで、接合層に生じた熱応力を解消する接合材料が開示されている。   Patent Document 2 discloses a bonding material that eliminates thermal stress generated in the bonding layer by thickening the bonding layer formed using metal nanoparticles.

しかし、特許文献2に開示される接合材料は、導電性を上げるためにAgやCuの金属ナノ粒子を用いたときには、接合層自体の熱膨張率が高くなるため、熱膨張率の低い電子部品の接合に使用すると接合強度が低下する虞があるという問題がある。   However, the bonding material disclosed in Patent Document 2 is an electronic component having a low coefficient of thermal expansion because the bonding layer itself has a high coefficient of thermal expansion when Ag or Cu metal nanoparticles are used to increase conductivity. When used for bonding, there is a problem that the bonding strength may decrease.

本発明者らは、前記諸問題点を解決することを技術的課題とし、試行錯誤的な数多くの試作・実験を重ねた結果、導電性金属粉末と有機溶剤とからなる導電性接合用ペースト材料であって、前記導電性金属粉末はAg、Sn及びMoとからなり、前記導電性金属粉末100重量%中の(Ag+Sn)の含有量が45〜85重量%、Moの含有量が15〜55重量%であり、前記AgとSnはAg/(Ag+Sn)が重量比で50〜65である導電性接合用ペースト材料であれば、接合強度が高くて熱膨張率が低い導電性接合用ペースト材料になるので、熱膨張率の低い電子部品に好適に使用することができ、また、パワー半導体デバイスのような高温環境下でも作動する電子部品や、自動車のような高温と低温の温度変化の激しい環境下で作動する電子部品の接合に使用しても、熱変形による熱応力が生じ難いから、接合部分に欠陥が生じ難く、接合強度が維持できる接合信頼性の高い導電性接合用ペースト材料になると共に、280℃という低い温度でも焼結するので、低い温度で接合できる導電性の高い導電性接合用ペースト材料が得られるという刮目すべき知見を得て、前記技術的課題を達成したものである。   The present inventors made it a technical subject to solve the above-mentioned problems, and as a result of many trial and error trial manufactures and experiments, a conductive bonding paste material composed of a conductive metal powder and an organic solvent. The conductive metal powder is composed of Ag, Sn, and Mo, and the content of (Ag + Sn) in the conductive metal powder 100% by weight is 45 to 85% by weight, and the content of Mo is 15 to 55. The conductive bonding paste material having high bonding strength and low coefficient of thermal expansion, as long as the Ag and Sn are conductive bonding paste materials in which Ag / (Ag + Sn) is 50 to 65 by weight. Therefore, it can be used favorably for electronic components with low thermal expansion coefficient, and electronic components that operate even in high temperature environments such as power semiconductor devices, and high and low temperature changes such as automobiles are severe. Made in the environment Even if it is used for joining electronic parts, it is difficult to generate thermal stress due to thermal deformation, so that it becomes difficult to produce defects in the joint part, and it becomes a conductive joining paste material with high joining reliability capable of maintaining the joining strength. Since the sintering is performed even at a low temperature of ° C., the above technical problem has been achieved by obtaining a remarkable knowledge that a conductive paste material with high conductivity that can be bonded at a low temperature can be obtained.

前記技術的課題は次のとおり、本発明によって解決できる。   The technical problem can be solved by the present invention as follows.

本発明は、導電性金属粉末と有機溶剤とからなる導電性接合用ペースト材料であって、前記導電性金属粉末はAg、Sn及びMoとからなり、前記導電性金属粉末100重量%中の(Ag+Sn)の含有量が45〜85重量%、Moの含有量が15〜55重量%であり、前記AgとSnはAg/(Ag+Sn)が重量比で50〜65である導電性接合用ペースト材料である。   The present invention is a conductive bonding paste material comprising a conductive metal powder and an organic solvent, wherein the conductive metal powder comprises Ag, Sn, and Mo, and is contained in 100% by weight of the conductive metal powder ( The content of Ag + Sn) is 45 to 85% by weight, the content of Mo is 15 to 55% by weight, and Ag and Sn are Ag / (Ag + Sn) in a weight ratio of 50 to 65 by weight ratio. It is.

また、本発明は、前記導電性金属粉末の平均粒径(d50)が1〜20μmである導電性接合用ペースト材料である。   Moreover, this invention is the paste material for electroconductive joining whose average particle diameter (d50) of the said electroconductive metal powder is 1-20 micrometers.

また、本発明は、前記有機溶剤は、沸点が180℃以上の多価アルコール、炭化水素、アルコールエステルを1以上含む有機溶剤である導電性接合用ペースト材料である。   Further, the present invention is the conductive bonding paste material, wherein the organic solvent is an organic solvent containing one or more polyhydric alcohols, hydrocarbons, and alcohol esters having a boiling point of 180 ° C. or higher.

また、本発明は、前記導電性金属粉末と前記有機溶剤との重量比が100:5〜20である導電性接合用ペースト材料である。   Moreover, this invention is a paste material for electroconductive joining whose weight ratio of the said electroconductive metal powder and the said organic solvent is 100: 5-20.

また、本発明は、280℃以上で焼結させることを特徴とする前記導電性接合用ペースト材料を使用した接合方法である。   Moreover, this invention is a joining method using the said paste material for electroconductive joining characterized by sintering above 280 degreeC.

また、本発明は、前記導電性金属粉末と有機溶剤とを攪拌して製造することを特徴とする前記導電性接合用ペースト材料の製造方法である。   In addition, the present invention is a method for producing the conductive joining paste material, wherein the conductive metal powder and an organic solvent are produced by stirring.

本発明は、銀粉末(Ag)とスズ粉末(Sn)を45〜85重量%とモリブデン粉末(Mo)を15〜55重量%とで100重量%になる導電性金属粉末であって、前記銀粉末とスズ粉末はAg/(Ag+Sn)が重量比で50〜65である導電性金属粉末を含有するため、焼結によって電子部品を接合させた場合には、該導電性金属粉末の焼結体により高い接合強度と高い導電性が得られる。   The present invention is a conductive metal powder comprising 100% by weight of silver powder (Ag) and tin powder (Sn) in an amount of 45 to 85% by weight and molybdenum powder (Mo) in an amount of 15 to 55% by weight. Since the powder and the tin powder contain conductive metal powder having a weight ratio of Ag / (Ag + Sn) of 50 to 65, when an electronic component is joined by sintering, a sintered body of the conductive metal powder Thus, high bonding strength and high conductivity can be obtained.

また、本発明における導電性接合用ペースト材料は、線膨張係数(coefficient of thermal expansion 以下「CTE」と言う)が低いので、CTEが低い部材の接合にも好適に用いることができ、また、パワー半導体デバイスのように高温環境下でも作動する電子部品や、自動車のような高温と低温の温度変化の激しい環境下で作動する電子部品の接合に使用しても、熱膨張率の差を少なくすることができるから、熱変形による熱応力が抑制されるため接合部分に欠陥が生じ難く、接合強度が低下し難い。   In addition, since the conductive bonding paste material of the present invention has a low coefficient of thermal expansion (hereinafter referred to as “CTE”), it can be suitably used for bonding members having a low CTE. Reduces the difference in coefficient of thermal expansion even when used for joining electronic components that operate in high-temperature environments, such as semiconductor devices, and electronic components that operate in environments where the temperature changes between high and low temperatures, such as automobiles. Therefore, since the thermal stress due to thermal deformation is suppressed, it is difficult for defects to occur in the bonded portion and the bonding strength is unlikely to decrease.

また、導電性金属粉末として、平均粒径(d50)が1〜20μmの金属粉末を用いることができるから、保管や取り扱いも容易であり、また、導電性金属粉末を有機溶剤に攪拌するといった簡便な方法で製造できる。   Moreover, since a metal powder having an average particle diameter (d50) of 1 to 20 μm can be used as the conductive metal powder, it is easy to store and handle, and it is easy to stir the conductive metal powder in an organic solvent. Can be manufactured by simple methods.

また、280℃という低い温度でも焼結するから、耐熱性が低い電子部品と基板の接合にも使用することができる。   In addition, since sintering is performed at a temperature as low as 280 ° C., it can also be used for bonding an electronic component having low heat resistance to a substrate.

本発明における導電性金属粉末は銀粉末(Ag)、スズ粉末(Sn)と、銀及びスズよりもCTEが低いモリブデン粉末(Mo)からなる。   The conductive metal powder in the present invention comprises silver powder (Ag), tin powder (Sn), and molybdenum powder (Mo) having a CTE lower than that of silver and tin.

Ag及びSnは焼結の際にAg3Snを形成するため拡散し易くなって、銅基板に対しても固相拡散接合できるようになり高い接合強度を実現できると共に高い導電性も実現できる。   Ag and Sn are easily diffused because Ag3Sn is formed at the time of sintering, so that solid phase diffusion bonding can be performed on the copper substrate, and high bonding strength can be realized and high conductivity can also be realized.

また、Moを含有することにより、導電性接合用ペースト材料の熱膨張を抑制するから、CTEの低い導電性接合用ペースト材料になる。   Further, by containing Mo, the thermal expansion of the conductive bonding paste material is suppressed, so that the conductive bonding paste material has a low CTE.

導電性金属粉末100重量%におけるAg+Snの含有量は45〜85重量%であり、更に好ましいのは55〜75重量%、最も好ましいのは60〜70重量%である。   The Ag + Sn content in 100% by weight of the conductive metal powder is 45 to 85% by weight, more preferably 55 to 75% by weight, and most preferably 60 to 70% by weight.

Ag+Snの含有量が45重量%未満であると接合強度が低くなり、また、Ag+Snの含有量が85重量%を超えると、CTEが高くなり過ぎるため、高温環境下では熱変形して熱応力による欠陥が生じ易くなり、接合強度が低下する虞があるからである。   If the content of Ag + Sn is less than 45% by weight, the bonding strength becomes low, and if the content of Ag + Sn exceeds 85% by weight, the CTE becomes too high. This is because defects are likely to occur and the bonding strength may be reduced.

また、Ag/(Ag+Sn)が重量比で50〜65であることが好ましい。
Snが基材と固相拡散接合し易くなって、またSnが液相焼結することにより、接合強度及び導電性に資するからである。
Moreover, it is preferable that Ag / (Ag + Sn) is 50-65 by weight ratio.
This is because Sn is easily solid phase diffusion bonded to the substrate, and Sn contributes to bonding strength and conductivity by liquid phase sintering.

Ag/(Ag+Sn)が重量比で50未満であると焼結阻害により接合強度及び導電性が低くなる虞があり、Ag/(Ag+Sn)が重量比で65を超えると接合強度が低下する虞がある。   If Ag / (Ag + Sn) is less than 50 by weight, the bonding strength and conductivity may be lowered due to inhibition of sintering, and if Ag / (Ag + Sn) exceeds 65 by weight, the bonding strength may decrease. is there.

導電性金属粉末100重量%におけるMoの含有量は15〜55重量%が好ましく、より好ましくは、25〜45重量%、最も好ましいのは30〜40重量%である。   The Mo content in 100% by weight of the conductive metal powder is preferably 15 to 55% by weight, more preferably 25 to 45% by weight, and most preferably 30 to 40% by weight.

Moの含有量が15重量%未満であると導電性接合用ペースト材料のCTEが上がりすぎ、また、55重量%を超えると接合強度が低下する虞があるからである。   This is because if the Mo content is less than 15% by weight, the CTE of the conductive bonding paste material increases too much, and if it exceeds 55% by weight, the bonding strength may be lowered.

なお、Moは、Ag、Sn、Au等でめっきしたものを用いてもよい。   Note that Mo may be plated with Ag, Sn, Au, or the like.

また、本発明には、Moと共に、又は、Moの代わりにCTEの低いW(タングステン)、Cr(クロム)、Au(金)等の金属、AIN(窒化アルミニウム)、Si(シリコン)等のセラミックスを含有させてもよい。   Further, the present invention includes a metal such as W (tungsten), Cr (chromium), Au (gold), etc. having a low CTE together with Mo or ceramics such as AIN (aluminum nitride) and Si (silicon). May be included.

導電性金属粉末は、いずれも脂肪酸等で前処理を施したものを用いてもよい。   Any conductive metal powder that has been pretreated with a fatty acid or the like may be used.

導電性金属粉末の平均粒径(d50)は1〜20μmが好ましい。   The average particle size (d50) of the conductive metal powder is preferably 1 to 20 μm.

平均粒径(d50)が1μm未満であると粘度が上がり過ぎてペースト化が困難になり、また、20μmを超えると印刷による塗布が困難になる虞があるからである。   This is because if the average particle size (d50) is less than 1 μm, the viscosity increases so much that pasting becomes difficult, and if it exceeds 20 μm, application by printing may be difficult.

Ag、Sn及びMoの各金属粒子は粒子径が0.1〜60μmの範囲の粒子であることが好ましい。   Each metal particle of Ag, Sn, and Mo is preferably a particle having a particle diameter in the range of 0.1 to 60 μm.

各金属粒子の粒子径が0.1μm未満の粒子や60μmを超える粒子が多いと、粘度が上昇し、ペースト化が困難になったり、分散し難くなるため接合強度が低下したりする虞があるからである。   If the particle size of each metal particle is less than 0.1 μm or more than 60 μm, the viscosity increases, making it difficult to form a paste or difficult to disperse, which may reduce the bonding strength. Because.

本発明における有機溶剤は特に限定されないが、沸点が180℃以上の多価アルコール、炭化水素、アルコールエステルを1以上含有することが好ましい。   Although the organic solvent in this invention is not specifically limited, It is preferable to contain 1 or more of the polyhydric alcohol, hydrocarbon, and alcohol ester whose boiling point is 180 degreeC or more.

沸点が180℃以上であると、スクリーン印刷が好適に行えるが、180℃に満たないと、スクリーン印刷が困難になるからである。   When the boiling point is 180 ° C. or higher, screen printing can be suitably performed, but when the boiling point is less than 180 ° C., screen printing becomes difficult.

本発明における有機溶剤として、テルピネオール、ブチルカルビトール、ブチルカルビトールアセテート、ジヒドロターピネオール、テキサノールを例示する。   Examples of the organic solvent in the present invention include terpineol, butyl carbitol, butyl carbitol acetate, dihydroterpineol, and texanol.

本発明における導電性金属粉末と有機溶剤との割合は重量比で100:5〜20であることが好ましい。   The ratio of the conductive metal powder and the organic solvent in the present invention is preferably 100: 5 to 20 by weight.

導電性金属粉末100に対し、重量比で有機溶剤が5未満であると、ペースト化が困難になり、また、20を超えて含有すると気泡(ボイド)が発生して接合強度が低下する虞があるからである。   If the weight ratio of the organic solvent is less than 5 with respect to the conductive metal powder 100, pasting becomes difficult, and if it contains more than 20, bubbles (voids) may be generated and the bonding strength may be reduced. Because there is.

本発明における導電性接合用ペースト材料は、導電性金属粉末に有機溶剤を添加し、自公転ミキサー等を用いて、300〜2000rpm、30秒以上攪拌するという簡便な方法で製造することができる。   The paste material for conductive bonding in the present invention can be produced by a simple method in which an organic solvent is added to conductive metal powder and stirred for 30 seconds or more at 300 to 2000 rpm using a self-revolving mixer or the like.

本発明における導電性接合用ペースト材料のCTEは、10〜20ppmであることが好ましい。   The CTE of the conductive bonding paste material in the present invention is preferably 10 to 20 ppm.

CTEが低い電子部品を高温環境下や、高温と低温の温度変化の激しい環境下で作動させても接合強度が維持できるからである。   This is because the bonding strength can be maintained even when an electronic component having a low CTE is operated in a high temperature environment or in an environment where the temperature changes between high and low temperatures.

本発明における導電性接合用ペースト材料は接合する部材の一方又は両方に塗布、印刷又はディスペンス塗布し、Air雰囲気、280℃以上で5〜30分間焼結することで接合できる。   The paste material for conductive bonding in the present invention can be bonded by applying, printing or dispensing to one or both of the members to be bonded, and sintering in an air atmosphere at 280 ° C. or higher for 5 to 30 minutes.

焼結の温度は280℃以上であればよいが、280〜480℃の範囲であることが好ましい。
480℃を超えるとAg3Snが融解して拡散し難くなる虞があるからである。
Although the sintering temperature should just be 280 degreeC or more, it is preferable that it is the range of 280-480 degreeC.
This is because if it exceeds 480 ° C., Ag3Sn may melt and become difficult to diffuse.

なお、本発明における導電性接合用ペースト材料は、導電性が高く、熱膨張率が低いので、電子部品を基板に接合する以外にも、熱電素子の形成、配線(回路)形成、電極形成にも好適に使用できる。   The conductive bonding paste material according to the present invention is highly conductive and has a low coefficient of thermal expansion. Therefore, in addition to bonding an electronic component to a substrate, it can be used for formation of thermoelectric elements, wiring (circuit) formation, and electrode formation. Can also be suitably used.

本発明の実施例及び比較例を以下に示すが、本発明はこれに限定されない。   Examples and Comparative Examples of the present invention are shown below, but the present invention is not limited thereto.

表1及び表2記載の通りAg、Sn及びMoを配合した導電性金属粉末100gにテルピネオールを6g添加し、自公転ミキサー(株式会社シンキー製)にて、2000rpm、2分間攪拌して実施例及び比較例の各導電性接合用ペースト材料を得た。   As shown in Tables 1 and 2, 6 g of terpineol was added to 100 g of conductive metal powder containing Ag, Sn, and Mo, and the mixture was stirred at 2000 rpm for 2 minutes with a self-revolving mixer (manufactured by Sinky Corporation). Each paste material for conductive bonding of the comparative example was obtained.

(平均粒径)
各導電性金属粉末の50%平均粒径(d50)はレーザー回折式粒子径分布測定装置SALD−3100(株式会社島津製作所製)を用いて測定した。
(Average particle size)
The 50% average particle size (d50) of each conductive metal powder was measured using a laser diffraction particle size distribution analyzer SALD-3100 (manufactured by Shimadzu Corporation).

(CTE)
<試験片の作成>
実施例及び比較例の導電性接合用ペースト材料を200meshのスクリーンを用いて印刷成型した。その後、真空熱プレス機 KVHC−II(北川精機株式会社製)によって、3.2MPaで、実施例13以外は320℃、15分間処理し、実施例13は280℃、15分間処理した後、約4mm×30mm×0.1mmのサイズの試験片を作製した。
(CTE)
<Creation of specimen>
The conductive bonding paste materials of Examples and Comparative Examples were printed using a 200 mesh screen. Thereafter, it was treated with a vacuum heat press KVHC-II (manufactured by Kitagawa Seiki Co., Ltd.) at 3.2 MPa, except for Example 13, at 320 ° C. for 15 minutes, and after Example 13 was treated at 280 ° C. for 15 minutes, A test piece having a size of 4 mm × 30 mm × 0.1 mm was produced.

<CTEの測定>
TMA装置(TMA/SS120/セイコーインスツルメンツ株式会社製)を用い、測定温度−40〜300℃(昇温5℃/min)、分銅加重1gf(引張モード)、Ar雰囲気にて線膨張係数(CTE/10−6[1/℃])を測定した。
<Measurement of CTE>
Using a TMA apparatus (TMA / SS120 / manufactured by Seiko Instruments Inc.), measurement temperature −40 to 300 ° C. (temperature increase 5 ° C./min), weight weight 1 gf (tensile mode), and linear expansion coefficient (CTE / 10 −6 [1 / ° C.]).

CTEが20ppm以下であると○、20ppmを超えると×として評価した。   When CTE was 20 ppm or less, it was evaluated as ○, and when it exceeded 20 ppm, it was evaluated as x.

(接合強度)
接合強度はダイシェア強度を測定した。
(Joint strength)
Bond strength was measured by die shear strength.

<試験片の作成>
実施例及び比較例の導電性接合用ペースト材料を200meshのスクリーンを用いて厚さ2mm、長さ10mmの正方形の銅板上に長さ1.5mmの正方形を印刷し、真空熱プレス機 KVHC−II(北川精機株式会社製)にて、5.0MPaで、実施例13以外は320℃、15分間処理し、実施例13は280℃、15分間処理して試験片を作製した。
<Creation of specimen>
The square paste of 1.5 mm in length was printed on the square copper plate of 2 mm in thickness and 10 mm in length using the 200 mesh screen for the paste material for electroconductive joining of an Example and a comparative example, and vacuum heat press machine KVHC-II (Made by Kitagawa Seiki Co., Ltd.) 5.0 MPa and treated at 320 ° C. for 15 minutes except for Example 13, and Example 13 was treated at 280 ° C. for 15 minutes to produce a test piece.

<ダイシェア強度の測定>
ダイシェア試験機(Dageシリーズ4000/デイジ社製)とロードセル(DS100KG)を用い、試験速度100μm/sec、室温にてダイシェア強度を測定した。
<Measurement of die shear strength>
Using a die shear tester (Dage series 4000 / manufactured by Daisy) and a load cell (DS100KG), the die shear strength was measured at a test speed of 100 μm / sec at room temperature.

ダイシェア強度が200MPa以上であれば○、200MPaに満たないものを×として評価した。   When the die shear strength was 200 MPa or more, it was evaluated as “good”, and the case where the die shear strength was less than 200 MPa was evaluated as “x”.

(電気接続)
テスター(HIOKI製ミリオームハイテスタ)で導通が得られるかどうかを確認し、電気接続が得られたものを○、得られなかったものを×として評価した。
(Electrical connection)
Whether or not continuity was obtained was confirmed with a tester (HIROKI milliohm high tester), the case where electrical connection was obtained was evaluated as ◯, and the case where electrical connection was not obtained was evaluated as ×.

結果を表1及び表2に示す。   The results are shown in Tables 1 and 2.

Figure 2019197620
Figure 2019197620

Figure 2019197620
Figure 2019197620

表1及び表2より、本発明における導電性接合用ペースト材料は接合強度が高く、また、CTEが低く、しかも、280℃や320℃という低い温度でも接合できる導電性に優れた導電性接合用ペースト材料であることが証明された。   From Tables 1 and 2, the conductive bonding paste material of the present invention has high bonding strength, low CTE, and excellent conductivity for bonding at low temperatures of 280 ° C. and 320 ° C. Proven to be a paste material.

本発明における導電性接合用ペースト材料は、導電性金属粉末としてAg、Sn及びMoを含有するので、導電性及び接合強度が高く、熱膨張率が低い導電性接合用ペースト材料であるから、熱膨張率の低い電子部品等の部材の接合に好適に使用することができる。
また、熱膨張率が低いので、高温環境下や、高温と低温の温度変化の激しい環境下において作動する電子部品の接合に用いても、熱変形による熱応力が生じ難く、接合部分に欠陥が生じ難いため、接合強度が低下し難く、接合信頼性の高い導電性接合用ペースト材料である。
加えて、280℃という低い温度でも焼結するので、耐熱性の低い電子部品と基板の接合にも使用することができる。
したがって、本発明は産業上の利用可能性の高い発明であると言える。
Since the conductive bonding paste material in the present invention contains Ag, Sn, and Mo as the conductive metal powder, the conductive bonding paste material has high conductivity and high bonding strength and low coefficient of thermal expansion. It can be suitably used for joining members such as electronic components having a low expansion coefficient.
In addition, since the coefficient of thermal expansion is low, thermal stress due to thermal deformation is unlikely to occur even when used for joining electronic components that operate in high-temperature environments or environments where the temperature changes between high and low temperatures. Since it does not easily occur, the bonding strength is not easily lowered, and the conductive bonding paste material has high bonding reliability.
In addition, since sintering is performed even at a temperature as low as 280 ° C., it can be used for bonding an electronic component having low heat resistance to a substrate.
Therefore, it can be said that the present invention has high industrial applicability.

Claims (6)

導電性金属粉末と有機溶剤とからなる導電性接合用ペースト材料であって、
前記導電性金属粉末はAg、Sn及びMoとからなり、前記導電性金属粉末100重量%中の(Ag+Sn)の含有量が45〜85重量%、Moの含有量が15〜55重量%であり、前記AgとSnはAg/(Ag+Sn)が重量比で50〜65である導電性接合用ペースト材料。
A conductive bonding paste material comprising a conductive metal powder and an organic solvent,
The conductive metal powder is composed of Ag, Sn, and Mo, and the content of (Ag + Sn) in the conductive metal powder 100% by weight is 45 to 85% by weight, and the content of Mo is 15 to 55% by weight. The Ag and Sn are paste materials for conductive bonding in which Ag / (Ag + Sn) is 50 to 65 in a weight ratio.
前記導電性金属粉末の平均粒径(d50)が1〜20μmである請求項1記載の導電性接合用ペースト材料。 The conductive bonding paste material according to claim 1, wherein the conductive metal powder has an average particle size (d50) of 1 to 20 μm. 前記有機溶剤は、沸点が180℃以上の多価アルコール、炭化水素、アルコールエステルを1以上含む有機溶剤である請求項1又は2記載の導電性接合用ペースト材料。 The conductive bonding paste material according to claim 1 or 2, wherein the organic solvent is an organic solvent containing one or more polyhydric alcohols, hydrocarbons, and alcohol esters having a boiling point of 180 ° C or higher. 前記導電性金属粉末と前記有機溶剤との重量比が100:5〜20である請求項1乃至3いずれか記載の導電性接合用ペースト材料。 The conductive bonding paste material according to any one of claims 1 to 3, wherein a weight ratio of the conductive metal powder to the organic solvent is 100: 5 to 20. 280℃以上で焼結させることを特徴とする請求項1乃至4いずれか記載の導電性接合用ペースト材料を使用した接合方法。 The bonding method using the conductive bonding paste material according to claim 1, wherein sintering is performed at 280 ° C. or higher. 前記導電性金属粉末と有機溶剤とを攪拌して製造することを特徴とする請求項1乃至5いずれか記載の導電性接合用ペースト材料の製造方法。 The method for producing a conductive joining paste material according to any one of claims 1 to 5, wherein the conductive metal powder and an organic solvent are stirred.
JP2018089846A 2018-05-08 2018-05-08 Conductive bonding paste material and bonding method Active JP7131956B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018089846A JP7131956B2 (en) 2018-05-08 2018-05-08 Conductive bonding paste material and bonding method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018089846A JP7131956B2 (en) 2018-05-08 2018-05-08 Conductive bonding paste material and bonding method

Publications (2)

Publication Number Publication Date
JP2019197620A true JP2019197620A (en) 2019-11-14
JP7131956B2 JP7131956B2 (en) 2022-09-06

Family

ID=68538456

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018089846A Active JP7131956B2 (en) 2018-05-08 2018-05-08 Conductive bonding paste material and bonding method

Country Status (1)

Country Link
JP (1) JP7131956B2 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0347901A (en) * 1989-07-14 1991-02-28 Showa Denko Kk Material for adhesion
JP2003234016A (en) * 2002-02-06 2003-08-22 Denso Corp Conductive compound

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0347901A (en) * 1989-07-14 1991-02-28 Showa Denko Kk Material for adhesion
JP2003234016A (en) * 2002-02-06 2003-08-22 Denso Corp Conductive compound

Also Published As

Publication number Publication date
JP7131956B2 (en) 2022-09-06

Similar Documents

Publication Publication Date Title
JP6842500B2 (en) Lead-free solder paste and its manufacturing method
JP5166261B2 (en) Conductive filler
JP2007527102A (en) Nanoscale metal pastes for interconnection and methods of use
JP2015004105A (en) Bonding material and bonding method using the same
JP2013039580A (en) Heat bonding material, heat bonding sheet body and heat bonding molding body
JP2015004122A (en) Metal nanoparticle paste, bonding material containing the metal nanoparticle paste, and semiconductor device using the bonding material
JP6313761B2 (en) Silver sinterable composition containing flux or reducing agent for metal bonding
JP2016525495A (en) Sintered paste with silver oxide coated on precious and non-precious metal surfaces that are difficult to sinter
KR20160003787A (en) Metal nanoparticle dispersion, process for producing metal nanoparticle dispersion, and bonding method
KR102248760B1 (en) Bonding composition and bonding method using the same
JP6460578B2 (en) Bonding material, bonding method using the same, bonding material paste, and semiconductor device
JP2018079480A (en) Bi-In-Sn TYPE SOLDER ALLOY FOR LOW TEMPERATURE, ELECTRONIC PART IMPLEMENTATION SUBSTRATE USING THE ALLOY, AND APPARATUS MOUNTING THE IMPLEMENTATION SUBSTRATE
TWI779049B (en) Metallic adhesive compositions having good work lives and thermal conductivity, methods of making same and uses thereof
JP6032110B2 (en) Metal nanoparticle material, bonding material containing the same, and semiconductor device using the same
Zhang et al. Mechanical property and reliability of bimodal nano-silver paste with Ag-coated SiC particles
JP4624222B2 (en) Conductive part forming particles
JP2008080392A (en) Joining body and joining method
JP2019197620A (en) Conductive bonding paste material and bonding method
JP2011251330A (en) High-temperature lead-free solder paste
JP2011251332A (en) HIGH-TEMPERATURE Pb-FREE SOLDER PASTE USING Al POWDER
WO2021039874A1 (en) Low temperature sinterable bonding paste and bonded structure
JP4662483B2 (en) Conductive filler and medium temperature solder material
JP2007260695A (en) Joining material, joining method, and joined body
JP2020164895A (en) Joint material and joining method
TW201706421A (en) Au-Sn-Ag based solder paste, and electronic component joined or sealed by using Au-Sn-Ag based solder paste

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210412

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20220323

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220405

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220823

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220825

R150 Certificate of patent or registration of utility model

Ref document number: 7131956

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150