JP7128429B2 - semiconductor light emitting device - Google Patents

semiconductor light emitting device Download PDF

Info

Publication number
JP7128429B2
JP7128429B2 JP2021084521A JP2021084521A JP7128429B2 JP 7128429 B2 JP7128429 B2 JP 7128429B2 JP 2021084521 A JP2021084521 A JP 2021084521A JP 2021084521 A JP2021084521 A JP 2021084521A JP 7128429 B2 JP7128429 B2 JP 7128429B2
Authority
JP
Japan
Prior art keywords
electrode
semiconductor
light emitting
semiconductor layer
emitting device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2021084521A
Other languages
Japanese (ja)
Other versions
JP2021121034A (en
Inventor
雅彦 佐野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nichia Corp
Original Assignee
Nichia Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nichia Corp filed Critical Nichia Corp
Priority to JP2021084521A priority Critical patent/JP7128429B2/en
Publication of JP2021121034A publication Critical patent/JP2021121034A/en
Application granted granted Critical
Publication of JP7128429B2 publication Critical patent/JP7128429B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Led Devices (AREA)

Description

本発明は、半導体発光素子に関する。 The present invention relates to a semiconductor light emitting device.

窒化物半導体を用いた発光素子は、そのワイドバンドギャップ特性から、近紫外から赤色域で発光が得られるため、種々の研究が成されている。窒化物半導体発光素子の一般的な構造として、基板上に、n型窒化物半導体層、活性層、p型窒化物半導体層を積層した半導体積層構造において、p型窒化物半導体層のほぼ全面に電極が設けられた構造が挙げられる。 Light-emitting devices using nitride semiconductors can emit light in the near-ultraviolet to red region due to their wide bandgap characteristics, and various studies have been made on them. As a general structure of a nitride semiconductor light-emitting device, in a semiconductor laminated structure in which an n-type nitride semiconductor layer, an active layer, and a p-type nitride semiconductor layer are laminated on a substrate, almost the entire surface of the p-type nitride semiconductor layer A structure in which an electrode is provided is mentioned.

また、p型窒化物半導体層のほぼ全面に設けられた電極をITO等の金属酸化物からなる透光性電極とし、その透光性電極を介して光を出射するタイプの窒化物半導体発光素子もある。このITO等からなる透光性電極は、金属に比べると、抵抗率が高く、十分な電流拡散性を得るためには透光性電極を厚く形成する必要があるが、透光性電極を厚くすると透光性電極による光の吸収が大きくなるという懸念がある。このような問題を解決するために、特許文献1には、その透光性電極の電流拡散性を補うためにp型窒化物半導体層と透光性電極の間にさらに金属材料からなる電流拡散層を設けて透光性電極の厚さを薄くすることが開示されている。 In addition, a light-transmitting electrode made of a metal oxide such as ITO is used as an electrode provided on almost the entire surface of the p-type nitride semiconductor layer, and light is emitted through the light-transmitting electrode. There is also The light-transmitting electrode made of ITO or the like has higher resistivity than metal, and it is necessary to form the light-transmitting electrode thickly in order to obtain sufficient current diffusion. Then, there is a concern that light absorption by the translucent electrode increases. In order to solve such a problem, Patent Document 1 discloses a current diffusion layer made of a metal material between the p-type nitride semiconductor layer and the transparent electrode to compensate for the current diffusion of the transparent electrode. Layers are disclosed to reduce the thickness of the translucent electrode.

特開2006-156590号公報JP 2006-156590 A

しかしながら、ITO等の金属酸化物からなる透光性電極では光の吸収は少ないものの多少は存在する。そのため、半導体発光素子のさらなる高出力化が求められており、電極における光の吸収を抑制することが望まれる。 However, a light-transmitting electrode made of a metal oxide such as ITO absorbs little light, but still absorbs some light. Therefore, there is a demand for higher output of semiconductor light emitting devices, and it is desired to suppress the absorption of light in the electrodes.

そこで、本発明は、電極における光の吸収を抑制し、さらなる高出力化を実現できる半導体発光素子を提供することを目的とする。 SUMMARY OF THE INVENTION Accordingly, an object of the present invention is to provide a semiconductor light-emitting device capable of suppressing the absorption of light in the electrodes and achieving a higher output.

以上の課題を解決するために、本発明の実施形態にかかる半導体発光素子は、
第1導電型の第1半導体層と、第2導電型の第2半導体層と、前記第1半導体層と前記第2半導体層の間に形成された発光領域と、前記第1半導体層に接続された第1電極と、前記第2半導体層に接続された第2電極とを含む半導体発光素子であって、
前記第2電極は、
透光性を有し、前記第2半導体層と接触する接続電極と、
透光性を有し、前記接続電極と接触する半導体層からなる半導体電極と、を有する。
In order to solve the above problems, a semiconductor light emitting device according to an embodiment of the present invention is
A first semiconductor layer of a first conductivity type, a second semiconductor layer of a second conductivity type, a light emitting region formed between the first semiconductor layer and the second semiconductor layer, and connected to the first semiconductor layer and a second electrode connected to the second semiconductor layer,
The second electrode is
a connection electrode that has translucency and is in contact with the second semiconductor layer;
and a semiconductor electrode made of a semiconductor layer that has translucency and is in contact with the connection electrode.

以上のように構成された本発明の実施形態によれば、半導体層からなる半導体電極を有しているので電極における光の吸収を抑制し、さらなる高出力化を実現できる半導体発光素子を提供することができる。 According to the embodiment of the present invention configured as described above, there is provided a semiconductor light-emitting device that has a semiconductor electrode made of a semiconductor layer, thereby suppressing light absorption in the electrode and realizing a further increase in output. be able to.

本発明に係る実施形態1の半導体発光素子の構成を示す断面図である。1 is a cross-sectional view showing the configuration of a semiconductor light emitting device according to Embodiment 1 of the present invention; FIG. 実施形態1の半導体発光素子の製造方法において、成長基板21の上に半導体電極23を成長させたときの断面図である。3 is a cross-sectional view when a semiconductor electrode 23 is grown on a growth substrate 21 in the manufacturing method of the semiconductor light emitting device of Embodiment 1. FIG. 実施形態1の半導体発光素子の製造方法において、半導体電極23の上面に接着層25を形成して、さらに支持基板27を接合したときの断面図である。FIG. 4 is a cross-sectional view when an adhesive layer 25 is formed on the upper surface of a semiconductor electrode 23 and a support substrate 27 is further bonded in the method for manufacturing a semiconductor light emitting device according to Embodiment 1; 実施形態1の半導体発光素子の製造方法において、支持基板27を接合した後に、成長基板21を除去し、成長基板21の除去により露出した半導体電極23の表面に第2オーミック電極29を形成したときの断面図である。When the growth substrate 21 is removed after the support substrate 27 is bonded in the manufacturing method of the semiconductor light emitting device of Embodiment 1, and the second ohmic electrode 29 is formed on the surface of the semiconductor electrode 23 exposed by removing the growth substrate 21. is a cross-sectional view of. 実施形態1の半導体発光素子の製造方法において、基板1の表面に、第1導電型半導体層3と発光層5と第2導電型半導体層7とを成長させたときの断面図である。3 is a cross-sectional view when a first conductivity type semiconductor layer 3, a light emitting layer 5, and a second conductivity type semiconductor layer 7 are grown on the surface of a substrate 1 in the method for manufacturing a semiconductor light emitting device according to Embodiment 1. FIG. 実施形態1の半導体発光素子の製造方法において、基板1の表面に、第1導電型半導体層3と発光層5と第2導電型半導体層7とを成長させた後、第2導電型半導体層7の上面に第1オーミック電極9を形成したときの断面図である。In the method for manufacturing a semiconductor light emitting device according to Embodiment 1, after growing the first conductivity type semiconductor layer 3, the light emitting layer 5, and the second conductivity type semiconductor layer 7 on the surface of the substrate 1, the second conductivity type semiconductor layer is grown. 7 is a sectional view when a first ohmic electrode 9 is formed on the upper surface of 7. FIG. 実施形態1の半導体発光素子の製造方法において、第2導電型半導体層7の上面に形成された第1オーミック電極9と、半導体電極23の表面に形成された第2オーミック電極29とを接合したときの断面図である。In the manufacturing method of the semiconductor light emitting device of Embodiment 1, the first ohmic electrode 9 formed on the upper surface of the second conductivity type semiconductor layer 7 and the second ohmic electrode 29 formed on the surface of the semiconductor electrode 23 are joined. It is a cross-sectional view of when. 実施形態1の半導体発光素子の製造方法において、接着層25及び支持基板27を除去したときの断面図である。3 is a cross-sectional view when the adhesive layer 25 and the support substrate 27 are removed in the method for manufacturing the semiconductor light emitting device of Embodiment 1. FIG. 本発明に係る変形例の半導体発光素子の構成を示す断面図である。FIG. 3 is a cross-sectional view showing the configuration of a semiconductor light emitting device according to a modified example of the present invention;

本実施形態は、半導体層は金属に代表される電極に比較して抵抗率は高いものの膜厚を大きくすることでシート抵抗を金属と同等にできる点に着目して、なされたものである。 This embodiment has been made by paying attention to the fact that the sheet resistance of the semiconductor layer can be made equal to that of metal by increasing the film thickness, although the semiconductor layer has higher resistivity than electrodes represented by metal.

1.理論的考察
電流を拡散させる電極としての機能を、抵抗率の点から従来のITOやAgとn型の窒化ガリウム(n-GaN)を比較すると、次の表1に示すようになる。

Figure 0007128429000001
1. Theoretical Consideration The following Table 1 shows the function as an electrode for diffusing current when comparing conventional ITO or Ag with n-type gallium nitride (n-GaN) in terms of resistivity.
Figure 0007128429000001

表1から明らかなように、n型の窒化ガリウム(n-GaN)の抵抗率は、Ag等の金属と比較すると1000倍以上大きく、ITO等の従来使用されている透明電極に比べても10倍以上大きい。しかしながら、電極層として用いるn-GaN層の膜厚を大きくすれば抵抗率を下げることができるため、Ag等の金属、ITO等の金属酸化物と同程度のシート抵抗が実現できる。例えば、透光性電極として使用するAg電極は、20Å程度の膜厚に形成して透光性を確保するとともに電流を拡散させているが、膜厚20ÅのAg電極と同等のシート抵抗は、6μmの厚さのn-GaN層により実現できる(後記する表3参照)。半導体発光素子の構成要素として、数μm~数十μmの厚さの窒化物半導体層を形成することには何ら問題はないことから、n-GaN層等の半導体層は十分電極として用いることが可能である。 As is clear from Table 1, the resistivity of n-type gallium nitride (n-GaN) is more than 1000 times higher than that of metals such as Ag, and 10 times higher than that of conventionally used transparent electrodes such as ITO. more than double. However, since the resistivity can be lowered by increasing the film thickness of the n-GaN layer used as the electrode layer, it is possible to achieve a sheet resistance comparable to that of metals such as Ag and metal oxides such as ITO. For example, an Ag electrode used as a translucent electrode is formed to a film thickness of about 20 Å to ensure translucency and diffuse current. This can be achieved with a 6 μm thick n-GaN layer (see Table 3 below). Since there is no problem in forming a nitride semiconductor layer having a thickness of several micrometers to several tens of micrometers as a component of a semiconductor light emitting device, a semiconductor layer such as an n-GaN layer can be sufficiently used as an electrode. It is possible.

また、半導体電極を透光性電極として利用することを意図して、光学定数の点から従来のITOやAgとn型の窒化ガリウム(n-GaN)を比較すると、次の表2に示すようになる。

Figure 0007128429000002
In addition, with the intention of using the semiconductor electrode as a light-transmitting electrode, comparison of conventional ITO or Ag with n-type gallium nitride (n-GaN) in terms of optical constants is as shown in Table 2 below. become.
Figure 0007128429000002

表2中、n及びkは、下記式(1)で表される複素屈折率Nにおける屈折率実数部及び屈折率虚数部である。ここで、複素屈折率Nは真空中での光の速度cと媒質中での光の速度vの比で定義される。
N=n-ik・・・(1)
ここで、iは虚数であり、言うまでもなくi=―1である。
また、屈折率実数部nは、通常単に屈折率と称され、屈折率虚数部kは光の吸収と関係する値であり、吸収係数αと次の式(2)で与えられる関係がある。
α=4πk/λ・・・(2)
ここで、αとは入射光の強度を1/eの強度に減ずる伝播距離の逆数であり、λは光の波長である。
また、吸収係数αである膜中を距離d進んだときの透過率Tは、次の式(3)で与えられる。
T=exp(-αd)・・・(3)
In Table 2, n and k are the refractive index real part and the refractive index imaginary part in the complex refractive index N represented by the following formula (1). Here, the complex refractive index N is defined as the ratio of the speed of light c in a vacuum and the speed of light v in a medium.
N=n−ik (1)
where i is an imaginary number and of course i 2 =−1.
Also, the real part n of the refractive index is usually simply referred to as the refractive index, and the imaginary part k of the refractive index is a value related to light absorption, and has a relationship with the absorption coefficient α given by the following equation (2).
α=4πk/λ (2)
Here, α is the reciprocal of the propagation distance that reduces the intensity of the incident light to 1/e, and λ is the wavelength of the light.
Also, the transmittance T when traveling a distance d in the film, which is the absorption coefficient α, is given by the following equation (3).
T=exp(-αd) (3)

以上のことから明らかなように、ITO等の従来使用されている透明電極に比べるとn型の窒化ガリウム(n-GaN)の光の吸収率は極めて小さく、多少n型の窒化ガリウム(n-GaN)層の膜厚を大きくしても十分小さい光吸収率の電極を実現できることが理解できる。 As is clear from the above, the light absorptance of n-type gallium nitride (n-GaN) is extremely small compared to conventionally used transparent electrodes such as ITO, and to some extent n-type gallium nitride (n- It can be understood that even if the film thickness of the GaN) layer is increased, an electrode with a sufficiently small light absorption rate can be realized.

そこで、同じシート抵抗になるように各膜厚を設定した場合における、シート抵抗率と、光の吸収を計算すると以下の表3に示すようになる。

Figure 0007128429000003
Therefore, the sheet resistivity and light absorption are calculated as shown in Table 3 below when each film thickness is set so as to have the same sheet resistance.
Figure 0007128429000003

表3から理解できるように、例えば、膜厚が約0.2μm(1930Å)のITO電極に用いる代わりに、n-GaNからなる膜厚が約6μm(60000Å)のn型窒化ガリウム半導体層を電極として用いることにより、ITO電極とほぼ同等のシート抵抗を有し、かつ光の吸収率の極めて小さい透光性電極を実現できることが理解できる。 As can be seen from Table 3, for example, instead of using an ITO electrode with a thickness of about 0.2 μm (1930 Å), an n-type gallium nitride semiconductor layer of n-GaN with a thickness of about 6 μm (60000 Å) was used as an electrode. , it is possible to realize a light-transmitting electrode having a sheet resistance substantially equal to that of the ITO electrode and an extremely low light absorption rate.

以上説明したように、n型の窒化ガリウム(n-GaN)等の半導体層は、その膜厚を所望の抵抗値が得られるように設定することにより、半導体電極として利用することが可能である。
また、ITO等の従来から使用されている透明電極のみを電極として用いるのではなく半導体電極を採用することにより、従来と同等の抵抗でかつ従来より光の吸収が極めて小さい透光性電極が実現できる。
本発明は、以上説明したような理論的な考察を経てなされたものである。
以下、本発明に係る実施形態の半導体発光素子について図面を参照しながら説明する。
As described above, a semiconductor layer such as n-type gallium nitride (n-GaN) can be used as a semiconductor electrode by setting the film thickness so as to obtain a desired resistance value. .
In addition, by adopting a semiconductor electrode instead of using only the conventionally used transparent electrode such as ITO as an electrode, a light-transmitting electrode with the same resistance as the conventional one and extremely small absorption of light than the conventional one can be realized. can.
The present invention has been made through the theoretical considerations described above.
DESCRIPTION OF THE PREFERRED EMBODIMENTS Hereinafter, semiconductor light emitting devices according to embodiments of the present invention will be described with reference to the drawings.

実施形態1.
本発明に係る実施形態1の半導体発光素子は、n型の窒化物半導体からなる半導体電極を備え、半導体電極を介して光が出射される半導体発光素子である。
具体的には、実施形態1の半導体発光素子は、図1に示すように、
例えば、サファイアからなる基板1と、
例えば、n型窒化物半導体からなり、基板1上に設けられた第1導電型半導体層3と、
例えば、Inを含む窒化物半導体からなり、第1導電型半導体層3の上に設けられた発光層5と、
例えば、p型窒化物半導体からなり、発光層5の上に設けられた第2導電型半導体層7と、
第1導電型半導体層3に接続された第1電極(第1パッド電極)41と第2導電型半導体層7に接続された第2電極43と、を有する。
さらに、第2電極43は、
例えば、ITOからなり、第2導電型半導体層7の上面のほぼ全面に設けられた接続電極11と、
例えば、n型GaNからなる半導体電極23と、
半導体電極23の上面に一部に設けられた第2パッド電極33と、を備える。
実施形態1での接続電極11は、第1オーミック電極9と第2オーミック電極29の接合体により構成されている。
Embodiment 1.
A semiconductor light emitting device according to Embodiment 1 of the present invention is a semiconductor light emitting device that includes a semiconductor electrode made of an n-type nitride semiconductor and emits light through the semiconductor electrode.
Specifically, as shown in FIG. 1, the semiconductor light emitting device of Embodiment 1 has
For example, a substrate 1 made of sapphire,
For example, a first conductivity type semiconductor layer 3 made of an n-type nitride semiconductor and provided on a substrate 1;
For example, a light emitting layer 5 made of a nitride semiconductor containing In and provided on the first conductivity type semiconductor layer 3;
For example, a second conductivity type semiconductor layer 7 made of a p-type nitride semiconductor and provided on the light emitting layer 5;
It has a first electrode (first pad electrode) 41 connected to the first conductivity type semiconductor layer 3 and a second electrode 43 connected to the second conductivity type semiconductor layer 7 .
Furthermore, the second electrode 43 is
A connection electrode 11 made of, for example, ITO and provided on substantially the entire upper surface of the second conductivity type semiconductor layer 7;
For example, a semiconductor electrode 23 made of n-type GaN,
and a second pad electrode 33 partially provided on the upper surface of the semiconductor electrode 23 .
The connection electrode 11 in the first embodiment is composed of a joined body of the first ohmic electrode 9 and the second ohmic electrode 29 .

実施形態1の各構成要素に用いることができる具体的な材料を以下に例示する。
第1導電型半導体層3:n-GaN、
発光層5:InGaN,InAlGaN、
第2導電型半導体層7:p-GaN、
第1オーミック電極9:ITO,Ag,Ti,Niの少なくとも1つ
第2オーミック電極29:ITO,Ag,Ti,Alの少なくとも1つ
半導体電極23:n-GaN,n-AlGaNの少なくとも1つ
第1パッド電極41及び第2パッド電極33:Ti/Al/Ti/Pt/Au(TiとAlとTiとPtとAuの積層体)
Specific materials that can be used for each component of Embodiment 1 are exemplified below.
First conductivity type semiconductor layer 3: n-GaN,
Light-emitting layer 5: InGaN, InAlGaN,
Second conductivity type semiconductor layer 7: p-GaN,
First ohmic electrode 9: At least one of ITO, Ag, Ti and Ni Second ohmic electrode 29: At least one of ITO, Ag, Ti and Al Semiconductor electrode 23: At least one of n-GaN and n-AlGaN 1 pad electrode 41 and second pad electrode 33: Ti/Al/Ti/Pt/Au (Laminate of Ti, Al, Ti, Pt, and Au)

ここで、第1オーミック電極9として例示した、ITO,Ag,Ti,Niは、第2導電型半導体層7を例えば、p-GaN等のp型窒化物半導体層により形成したときに、p型窒化物半導体層と、例えばオーミック接触等により低い接触抵抗で接続することが可能である。
また、第2オーミック電極29として例示した、ITO,Ag,Ti,Alは、半導体電極23を例えば、n-GaN又はn-AlGaN等のn型窒化物半導体層により形成したときに、n型窒化物半導体層と、例えばオーミック接触等により低い接触抵抗で接続することが可能である。
Here, ITO, Ag, Ti, and Ni exemplified as the first ohmic electrode 9 are p-type when the second conductivity type semiconductor layer 7 is formed of, for example, a p-type nitride semiconductor layer such as p-GaN. It is possible to connect with the nitride semiconductor layer with low contact resistance by, for example, ohmic contact.
Further, ITO, Ag, Ti, and Al exemplified as the second ohmic electrode 29 are n-type nitriding when the semiconductor electrode 23 is formed of an n-type nitride semiconductor layer such as n-GaN or n-AlGaN. It is possible to connect with a semiconductor layer with low contact resistance by, for example, ohmic contact.

第1オーミック電極9及び第2オーミック電極29の膜厚は、各オーミック電極を構成する材料により異なる。例えば、第1オーミック電極9又は第2オーミック電極としてAg、Ti、Ni等の金属により構成される場合は、0.1nm以上0.8nm以下、好ましくは0.1nm以上0.4nm以下、より好ましくは0.1nm以上0.2nm以下とすることができる。また、第1オーミック電極9又は第2オーミック電極29としてITO等の金属酸化物を用いる場合は、1nm以上100nm以下、好ましくは1nm以上50nm以下、より好ましくは1nm以上30nm以下とすることができる。一定以上の膜厚とすることでオーミックコンタクト性を確保することができ、一定以下の膜厚とすることで第1オーミック電極9における光の吸収を抑制することができる。第1オーミック電極9と第2オーミック電極29の膜厚は同じにすることもできるが、好ましくは第2オーミック電極29に比較して第1オーミック電極9が厚くなるように構成する。一般的に、p型窒化物半導体層は表面に凸部が多く存在するため第1オーミック電極9の表面が平坦になりにくいところ、第1オーミック電極9を厚く形成することで第1オーミック電極9の表面を平坦にできる。 The film thicknesses of the first ohmic electrode 9 and the second ohmic electrode 29 differ depending on the material forming each ohmic electrode. For example, when the first ohmic electrode 9 or the second ohmic electrode is made of a metal such as Ag, Ti, or Ni, the can be 0.1 nm or more and 0.2 nm or less. When metal oxide such as ITO is used as the first ohmic electrode 9 or the second ohmic electrode 29, the thickness can be 1 nm or more and 100 nm or less, preferably 1 nm or more and 50 nm or less, more preferably 1 nm or more and 30 nm or less. By setting the film thickness to a certain value or more, ohmic contact can be ensured, and by setting the film thickness to a certain value or less, absorption of light in the first ohmic electrode 9 can be suppressed. The first ohmic electrode 9 and the second ohmic electrode 29 may have the same film thickness, but preferably the first ohmic electrode 9 is thicker than the second ohmic electrode 29 . In general, since the p-type nitride semiconductor layer has many protrusions on the surface, the surface of the first ohmic electrode 9 is difficult to flatten. surface can be flattened.

以上のように構成された実施形態1の半導体発光素子において、接続電極11は、例えば、ITO等の金属酸化物又はAg等の金属からなり、第2導電型半導体層7と半導体電極23とを接合するとともに、第2導電型半導体層7と半導体電極23との間の良好な導通を確保する電極である。すなわち、第2導電型半導体層7と半導体電極23とを直接接合すると、例えば、PN接合等が形成される等、良好な導通が確保できない。そこで、本実施形態では、第2導電型半導体層7と半導体電極23の両方に例えばオーミック接触する接続電極11を設けて第2導電型半導体層7と半導体電極23との間の良好な導通を確保している。さらに、実施形態1の半導体発光素子では、半導体電極23の透光性を利用して半導体電極23を介して光を出射するので、接続電極11を例えば、ITO等の透光性電極部材により構成する。 In the semiconductor light emitting device of Embodiment 1 configured as described above, the connection electrode 11 is made of, for example, a metal oxide such as ITO or a metal such as Ag, and the second conductivity type semiconductor layer 7 and the semiconductor electrode 23 are separated from each other. It is an electrode that ensures good conduction between the semiconductor layer 7 of the second conductivity type and the semiconductor electrode 23 while being joined. That is, if the semiconductor layer 7 of the second conductivity type and the semiconductor electrode 23 are directly bonded, for example, a PN junction or the like is formed, and good conduction cannot be ensured. Therefore, in the present embodiment, a connection electrode 11 that makes ohmic contact, for example, is provided on both the second conductivity type semiconductor layer 7 and the semiconductor electrode 23 to achieve good electrical connection between the second conductivity type semiconductor layer 7 and the semiconductor electrode 23 . I have secured. Furthermore, in the semiconductor light emitting device of Embodiment 1, light is emitted through the semiconductor electrode 23 by utilizing the translucency of the semiconductor electrode 23. Therefore, the connection electrode 11 is composed of, for example, a translucent electrode member such as ITO. do.

また、接続電極11は、第2導電型半導体層7と半導体電極23とを接合するとともに、第2導電型半導体層7と半導体電極23との間の良好な導通を確保する電極であり、第2パッド電極33を介して注入される電流の拡散は半導体電極23が担う。したがって、接続電極11は、電流拡散を担っていた従来の電極に比較すると十分薄く形成することが可能である。例えば、半導体電極23を介して光を出射する実施形態1の半導体発光素子では、接続電極11は、電流拡散を担っていた従来のITO等の透光性電極に比較すると十分薄く形成することが可能であり、接続電極11による光の吸収は極めて小さくできる。また、実施形態1の半導体発光素子において、電流拡散を担う半導体電極23は、上述したように、効果的に電流拡散を可能にするシート抵抗となるように厚くしても光の吸収は十分小さくできる。
したがって、実施形態1の半導体発光素子において、透光性を有しかつ電流拡散を担う半導体電極23を備えることにより、光の吸収が実質的になく抵抗率の低い電極構造が実現でき、光取り出し効率が高く、発光効率が高く、駆動電圧の低い半導体発光素子を提供することが可能になる。
The connection electrode 11 is an electrode that joins the semiconductor layer 7 of the second conductivity type and the semiconductor electrode 23 and ensures good conduction between the semiconductor layer 7 of the second conductivity type and the semiconductor electrode 23. The semiconductor electrode 23 is responsible for spreading the current injected through the 2-pad electrode 33 . Therefore, the connection electrode 11 can be formed to be sufficiently thin as compared with the conventional electrodes that are in charge of current diffusion. For example, in the semiconductor light emitting device of Embodiment 1 that emits light through the semiconductor electrode 23, the connection electrode 11 can be formed to be sufficiently thin as compared with a conventional translucent electrode such as ITO, which is responsible for current diffusion. It is possible, and the absorption of light by the connection electrode 11 can be made extremely small. In addition, in the semiconductor light emitting device of Embodiment 1, as described above, the semiconductor electrode 23 responsible for current diffusion does not absorb light sufficiently even if it is thick enough to have a sheet resistance that enables effective current diffusion. can.
Therefore, in the semiconductor light emitting device of Embodiment 1, by providing the semiconductor electrode 23 that has translucency and is responsible for current diffusion, an electrode structure that does not substantially absorb light and has a low resistivity can be realized, and light extraction can be achieved. It is possible to provide a semiconductor light emitting device with high efficiency, high luminous efficiency, and low driving voltage.

半導体電極23の膜厚は、2μm以上200μm以下、好ましくは3μm以上20μm以下、より好ましくは4μm以上10μm以下とすることができる。上述したようにある程度以上の膜厚にすることで、抵抗が低くなるため効率的に電流を流すことができる。また、上述したようにある程度以下の膜厚にすることで、半導体電極作成時の半導体電極と成長基板との熱膨張差による反りの影響を緩和できるため、工程歩留り向上が見込まれる。 The film thickness of the semiconductor electrode 23 can be 2 μm or more and 200 μm or less, preferably 3 μm or more and 20 μm or less, more preferably 4 μm or more and 10 μm or less. As described above, by increasing the film thickness to a certain level or more, the resistance becomes low, so that the current can flow efficiently. In addition, by reducing the film thickness to a certain value or less as described above, the effect of warpage due to the difference in thermal expansion between the semiconductor electrode and the growth substrate can be alleviated, so an improvement in process yield can be expected.

次に、実施形態1の半導体発光素子の製造方法を説明する。
実施形態1の半導体発光素子の製造方法は、半導体電極形成プロセスと、半導体積層構造形成プロセスと、電極構造形成プロセスとを含む。半導体電極形成プロセスと半導体積層構造形成プロセスとは並行して行うことができ、電極構造形成プロセスは、半導体電極形成プロセス及び半導体積層構造形成プロセスの後に行われる。
Next, a method for manufacturing the semiconductor light emitting device of Embodiment 1 will be described.
The method for manufacturing a semiconductor light emitting device according to Embodiment 1 includes a semiconductor electrode forming process, a semiconductor lamination structure forming process, and an electrode structure forming process. The semiconductor electrode formation process and the semiconductor lamination structure formation process can be performed in parallel, and the electrode structure formation process is conducted after the semiconductor electrode formation process and the semiconductor lamination structure formation process.

(半導体電極形成プロセス)
本製造方法では、図2Aに示すように、まず、例えば、サファイアからなる成長基板21の上に例えばバッファ層を介して、例えば、n型GaN等の窒化物半導体からなる半導体電極23を成長させる。
この半導体電極23を介して光を出射する実施形態1に係る半導体発光素子では、半導体電極23を構成する半導体材料としては、発光層を構成する半導体材料より大きなバンドギャップを有している半導体材料が選択される。なお、発光層として井戸層と障壁層からなる多重量子井戸構造を適用する場合は、井戸層よりもバンドギャップが大きな半導体材料が選択される。また、不純物の添加により低い抵抗値が実現できる半導体材料が選択される。例えば、窒化物半導体発光素子では、活性層としてInを含む窒化物半導体を用いる場合には、不純物としてSi又はGe等を添加したn型GaN、n型AlGaNを半導体電極23を構成する半導体材料として選択できる。n型GaNの場合、不純物濃度は、結晶が悪くなりすぎない程度に高くするのが好ましく、例えば、1×1018/cm以上1×1019/cm以下とすることができる。また、n型AlGaNの場合、不純物濃度は、例えば、1×1018/cm以上1×1019/cm以下とすることができる。n型GaNは、結晶性良く厚い膜厚に成長させることができることから、例えば、青色等の可視光を発光する窒化物半導体発光素子を構成する際に好ましい材料としてあげられる。また、n型AlGaNは、GaNよりバンドギャップが広く、Alの比率を高くすることにより、紫外線の吸収率を小さくできるので、紫外光を発光する窒化物半導体発光素子を構成する際に好ましい材料としてあげられる。n型AlGaNのAlの混晶比は、AlxGa1-xN(1>x>0)としたときに、0.02≦x≦0.1、好ましくは0.02≦x≦0.06とすることができる。
(Semiconductor electrode formation process)
In this manufacturing method, as shown in FIG. 2A, first, a semiconductor electrode 23 made of, for example, a nitride semiconductor such as n-type GaN is grown on a growth substrate 21 made of, for example, sapphire via, for example, a buffer layer. .
In the semiconductor light emitting device according to Embodiment 1, which emits light through the semiconductor electrode 23, the semiconductor material forming the semiconductor electrode 23 is a semiconductor material having a bandgap larger than that of the semiconductor material forming the light emitting layer. is selected. When applying a multiple quantum well structure composed of well layers and barrier layers as the light emitting layer, a semiconductor material having a larger bandgap than that of the well layers is selected. Also, a semiconductor material is selected that can realize a low resistance value by adding impurities. For example, in a nitride semiconductor light emitting device, when a nitride semiconductor containing In is used as an active layer, n-type GaN or n-type AlGaN doped with Si or Ge as an impurity is used as a semiconductor material forming the semiconductor electrode 23. You can choose. In the case of n-type GaN, the impurity concentration is preferably as high as not to deteriorate the crystallinity, and can be, for example, 1×10 18 /cm 3 or more and 1×10 19 /cm 3 or less. In the case of n-type AlGaN, the impurity concentration can be, for example, 1×10 18 /cm 3 or more and 1×10 19 /cm 3 or less. Since n-type GaN can be grown to a large thickness with good crystallinity, it is a preferable material for forming a nitride semiconductor light-emitting device that emits visible light such as blue light, for example. In addition, n-type AlGaN has a wider bandgap than GaN, and by increasing the ratio of Al, it is possible to reduce the absorption rate of ultraviolet rays. can give. The mixed crystal ratio of Al in n-type AlGaN should be 0.02≦x≦0.1, preferably 0.02≦x≦0.06, where AlxGa1−xN (1>x>0). can be done.

次に、図2Bに示すように、半導体電極23の上面に、例えば、熱硬化性樹脂等の接着樹脂からなる接着層25を形成して、例えば、サファイア等からなる支持基板27を接合する。
次に、レーザリフトオフ法等を用いて、図2Cに示すように、成長基板21を除去する。具体的には、成長基板21を透過し、半導体電極23を構成する半導体材料により吸収される波長のレーザ光を選択して、そのレーザ光を成長基板21側から照射して成長基板21と半導体電極23の界面近傍の温度を上昇させ接着層がアブレーション(分解)されることで成長基板21を除去する。
Next, as shown in FIG. 2B, an adhesive layer 25 made of adhesive resin such as thermosetting resin is formed on the upper surface of the semiconductor electrode 23, and a supporting substrate 27 made of sapphire or the like is bonded.
Next, as shown in FIG. 2C, the growth substrate 21 is removed using a laser lift-off method or the like. Specifically, a laser beam having a wavelength that passes through the growth substrate 21 and is absorbed by the semiconductor material that constitutes the semiconductor electrode 23 is selected, and the laser beam is irradiated from the growth substrate 21 side so that the growth substrate 21 and the semiconductor are separated from each other. The growth substrate 21 is removed by raising the temperature in the vicinity of the interface of the electrode 23 and ablating (decomposing) the adhesive layer.

成長基板21を除去した後、半導体電極23の表面を化学機械研磨法等により研磨して半導体電極23の表面を平滑にし、図2Cに示すように、成長基板21を除去して露出させた半導体電極23の表面に、例えば、ITO等の金属酸化物又はAg等の金属からなる第2オーミック電極29を形成する。 After removing the growth substrate 21, the surface of the semiconductor electrode 23 is polished by a chemical mechanical polishing method or the like to smooth the surface of the semiconductor electrode 23, and as shown in FIG. A second ohmic electrode 29 made of, for example, a metal oxide such as ITO or a metal such as Ag is formed on the surface of the electrode 23 .

(半導体積層構造形成プロセス)
半導体積層構造形成プロセスでは、まず、例えば、サファイア等からなる基板1を準備する。
次に、図2Dに示すように、半導体層を成長させる基板1の表面を加工して凸部を形成する。なお、基板1の表面を加工する工程は必須の工程ではない。
この表面加工は、基板の結晶形態及び凸部が形成される基板表面の面方位、マスク形状及び寸法、エッチング条件とを目的形状に応じて設定することにより形成することができる。
(Semiconductor laminated structure formation process)
In the semiconductor laminated structure forming process, first, a substrate 1 made of, for example, sapphire is prepared.
Next, as shown in FIG. 2D, the surface of the substrate 1 on which the semiconductor layer is to be grown is processed to form projections. Note that the step of processing the surface of the substrate 1 is not an essential step.
This surface processing can be performed by setting the crystal form of the substrate, the plane orientation of the substrate surface on which the projections are formed, the shape and dimensions of the mask, and the etching conditions according to the desired shape.

例えば、サファイア基板のC面からなる表面に円形のマスクを形成して、エッチングをすると、初期段階ではマスクが形成されていない部分がエッチングにより除去されてマスク形状がほぼそのまま反映された円形の凸部が形成されるが、エッチングが進むにつれて結晶形態に起因するエッチング速度の方向依存性(方向によるエッチングが進む速度が異なること)の影響を受けることになり、結晶形態が反映された形状になっていく。凸部を形成することで、結晶性に優れた半導体層の成長が可能で、かつ光取り出し効率に優れた半導体層を構成することが可能になる。 For example, when a circular mask is formed on the C-plane surface of a sapphire substrate and etched, the portion where the mask is not formed is removed by etching in the initial stage, resulting in a circular projection that reflects the shape of the mask almost as it is. However, as the etching progresses, it is affected by the directional dependency of the etching rate due to the crystal morphology (the etching speed differs depending on the direction), and the crystal morphology is reflected in the shape. To go. By forming the projections, it is possible to grow a semiconductor layer with excellent crystallinity and to form a semiconductor layer with excellent light extraction efficiency.

次に、図2Dに示すように、基板1の加工した表面に、例えばn型窒化物半導体からなる第1導電型半導体層3と、例えばInを含む窒化物半導体からなる発光層5と、例えばp型窒化物半導体からなる第2導電型半導体層7とを成長させて、半導体積層構造を作製する。
さらに、図2Dに示すように、例えば、ITOからなる第1オーミック電極9を第2導電型半導体層7の上面の全面に形成する。
Next, as shown in FIG. 2D, on the processed surface of the substrate 1, a first conductivity type semiconductor layer 3 made of, for example, an n-type nitride semiconductor, a light emitting layer 5 made of, for example, a nitride semiconductor containing In, and, for example, A second conductivity type semiconductor layer 7 made of a p-type nitride semiconductor is grown to fabricate a semiconductor laminated structure.
Furthermore, as shown in FIG. 2D, a first ohmic electrode 9 made of, for example, ITO is formed on the entire upper surface of the second conductivity type semiconductor layer 7 .

なお、ITOからなる第1オーミック電極9を形成後に、第1オーミック電極9の表面をCMP(Chemical Mechanical Polishing)法等の公知の方法で平坦化してもよい。すなわち、半導体層を成長させる際に、p型窒化物半導体層の表面に凹凸ができることがあり、このとき、第1オーミック電極9の表面も凹凸に形成されてしまい、第2オーミック電極29との接合が困難になる可能性がある。このような場合、第1オーミック電極9の表面を平坦化することで第2オーミック電極29との接合が容易になる。 After forming the first ohmic electrode 9 made of ITO, the surface of the first ohmic electrode 9 may be planarized by a known method such as CMP (Chemical Mechanical Polishing). That is, when the semiconductor layer is grown, unevenness may be formed on the surface of the p-type nitride semiconductor layer. Bonding can be difficult. In such a case, planarizing the surface of the first ohmic electrode 9 facilitates bonding with the second ohmic electrode 29 .

(電極構造形成プロセス)
ここでは、半導体積層構造の第2導電型半導体層7の上面の全面に形成された第1オーミック電極9(図2E参照)と、支持基板27に支持された半導体電極23の表面に形成された第2オーミック電極29(図2C参照)とを、常温接合により接合する(図2F参照)。本実施形態では、常温接合として表面活性化接合方法を用いる。表面活性化接合方法とは、接合界面をイオンビームやプラズマなどをあてて接合界面を活性化させた後に、各部材を直接接合する方法である。表面活性化接合方法によれば、材料同士を純粋に接合することができる。本実施形態において、第1オーミック電極9及び第2オーミック電極29の接合体である接続電極11は、ITOから構成されることとなる。
(Electrode structure formation process)
Here, the first ohmic electrode 9 (see FIG. 2E) formed on the entire upper surface of the second-conductivity-type semiconductor layer 7 of the semiconductor laminated structure and the semiconductor electrode 23 supported by the support substrate 27 formed on the surface of the semiconductor electrode 23 . The second ohmic electrode 29 (see FIG. 2C) is joined by room temperature joining (see FIG. 2F). In this embodiment, a surface activation bonding method is used as room temperature bonding. The surface activation bonding method is a method in which each member is directly bonded after activating the bonding interface by irradiating the bonding interface with an ion beam, plasma, or the like. According to the surface activated bonding method, materials can be purely bonded together. In this embodiment, the connection electrode 11, which is a joint body of the first ohmic electrode 9 and the second ohmic electrode 29, is made of ITO.

なお、本実施形態では、常温接合として表面活性化接合方法を用いているが、原子拡散接合方法により接合することも可能である。また、熱圧着等により接合することもできる。 In this embodiment, the surface activation bonding method is used as room temperature bonding, but bonding can also be performed by an atomic diffusion bonding method. Moreover, it can also be joined by thermocompression bonding or the like.

原子拡散接合方法は、金属膜から成る薄膜同士を重ね合わせることにより、接合界面及び結晶粒界において原子拡散が生じて両者間で強固な接合させる方法である。また、原子拡散接合方法は、例えば金属同士の接合のように同一材質間の接合のみならず、金属と半導体、金属酸化物と半導体または金属と金属酸化物間の異種材質間での接合を行うことも可能である。
さらに、原子拡散接合方法により接合する際には、第1オーミック電極9及び第2オーミック電極29は、例えば、20nm以下の厚さであってもよい。したがって、接続電極11の厚さを極めて薄くでき、接続電極11による光の吸収を抑制することができる。
原子拡散接合方法により接合する場合、第1オーミック電極9及び第2オーミック電極29の間にさらに原子拡散層を形成するようしてもよい。原子拡散層を設けると、均一性の高い接合を容易に実現できる。第1オーミック電極9と第2オーミック電極29との原子拡散層は、金属からなり、例えばAu又はTi等で構成される。このとき、原子拡散層は、光の吸収がない程度に薄い膜厚とする。原子拡散層に用いる材料により異なるが、例えばAuを用いる場合は、0.1μm~0.4μmで形成する。
The atomic diffusion bonding method is a method in which thin films made of metal films are superimposed on each other so that atomic diffusion occurs at the bonding interface and the crystal grain boundary to form a strong bond between the two. In addition, the atomic diffusion bonding method performs not only bonding between the same materials such as bonding between metals, but also bonding between dissimilar materials such as metal and semiconductor, metal oxide and semiconductor, or metal and metal oxide. is also possible.
Furthermore, when bonding by the atomic diffusion bonding method, the first ohmic electrode 9 and the second ohmic electrode 29 may have a thickness of 20 nm or less, for example. Therefore, the thickness of the connection electrode 11 can be made extremely thin, and the absorption of light by the connection electrode 11 can be suppressed.
When bonding by the atomic diffusion bonding method, an atomic diffusion layer may be further formed between the first ohmic electrode 9 and the second ohmic electrode 29 . By providing the atomic diffusion layer, highly uniform bonding can be easily realized. The atomic diffusion layers of the first ohmic electrode 9 and the second ohmic electrode 29 are made of metal such as Au or Ti. At this time, the atomic diffusion layer should be thin enough to absorb no light. Depending on the material used for the atom diffusion layer, for example, when Au is used, the thickness is 0.1 μm to 0.4 μm.

また、実施形態1においては、成長基板21に成長させた半導体電極23を支持基板27に接合したものを電極構造形成プロセスに用いている。半導体電極は、製造過程において半導体電極と成長基板との熱膨張差により半導体電極側へ凸となる反りが発生することがある。支持基板27に接合することで、反りを軽減することができるため、半導体電極に設けられた第2オーミック電極29と半導体積層構造の第2導電型半導体層7の上面の全面に形成された第1オーミック電極9と接合しやすくなる。なお、支持基板27に接合する工程は必須の工程ではなく、成長基板21に成長させた半導体電極23を電極構造形成プロセスに用いることもできることは言うまでもない。この場合は、半導体電極23を形成した後に、半導体電極23の表面の研磨することとなる。こうすることで、支持基板27に貼り合わせる工程がなくなるため、生産性を向上させることができる。 Further, in Embodiment 1, the semiconductor electrode 23 grown on the growth substrate 21 and bonded to the support substrate 27 is used in the electrode structure formation process. During the manufacturing process, the semiconductor electrode may be warped so as to protrude toward the semiconductor electrode due to the difference in thermal expansion between the semiconductor electrode and the growth substrate. Since warping can be reduced by bonding to the support substrate 27, the second ohmic electrode 29 provided on the semiconductor electrode and the second conductive type semiconductor layer 7 formed on the entire upper surface of the second conductivity type semiconductor layer 7 of the semiconductor laminated structure are covered with the second ohmic electrode 29. It becomes easier to join with the 1-ohmic electrode 9 . Needless to say, the step of bonding to the support substrate 27 is not an essential step, and the semiconductor electrode 23 grown on the growth substrate 21 can also be used in the electrode structure formation process. In this case, the surface of the semiconductor electrode 23 is polished after the semiconductor electrode 23 is formed. By doing so, the step of bonding to the support substrate 27 is eliminated, so productivity can be improved.

次に、図2Gに示すように、接着層25及び支持基板27を除去する。具体的には、支持基板27を透過し、半導体電極23を構成する半導体材料により吸収される波長のレーザ光を選択して、そのレーザ光を支持基板27側から照射して支持基板27と接着層25の界面近傍の温度を上昇させ接着層25がアブレーション(分解)されることで支持基板27を除去する。その後酸素によるアッシング、硫酸などの薬液などを用いて接着層25を除去する。特に、硫酸などの薬液によれば、半導体電極23にダメージを与えることがない。 Next, as shown in FIG. 2G, the adhesive layer 25 and the support substrate 27 are removed. Specifically, a laser beam having a wavelength that passes through the support substrate 27 and is absorbed by the semiconductor material forming the semiconductor electrode 23 is selected, and the laser beam is irradiated from the support substrate 27 side to adhere to the support substrate 27 . The support substrate 27 is removed by raising the temperature in the vicinity of the interface of the layer 25 and ablating (decomposing) the adhesive layer 25 . Thereafter, the adhesive layer 25 is removed by ashing with oxygen, chemical solution such as sulfuric acid, or the like. In particular, chemicals such as sulfuric acid do not damage the semiconductor electrodes 23 .

接着層25及び支持基板27を除去した後、第1導電型半導体層3の一部(電極形成表面)を露出するために、電極形成表面の上にある、半導体電極23、第2導電型半導体層7及び発光層5の一部を除去する。
次に、第1導電型半導体層3の電極形成表面に第1電極41を形成し、半導体電極23の表面の一部に第2パッド電極33を形成する。例えば、第1電極41と第2パッド電極33は、Ti、Al、Ti、Pt及びAuの同一構成の積層体により形成することができ、一括して同時に作製してもよい。
After removing the adhesive layer 25 and the support substrate 27, the semiconductor electrode 23, the second conductivity type semiconductor, and the semiconductor electrode 23 on the electrode formation surface are exposed in order to expose a portion of the first conductivity type semiconductor layer 3 (electrode formation surface). Part of layer 7 and light-emitting layer 5 is removed.
Next, a first electrode 41 is formed on the electrode forming surface of the first conductivity type semiconductor layer 3 , and a second pad electrode 33 is formed on a part of the surface of the semiconductor electrode 23 . For example, the first electrode 41 and the second pad electrode 33 can be formed of a laminated body having the same configuration of Ti, Al, Ti, Pt, and Au, and may be simultaneously produced collectively.

以上のようにして、図1に示す実施形態1の半導体発光素子が作製される。 As described above, the semiconductor light emitting device of Embodiment 1 shown in FIG. 1 is manufactured.

以上の実施形態1の半導体発光素子は、半導体電極23を介して光を出射するように構成したが、本発明はこれに限定されるものではなく、半導体電極の上に誘電体多層膜などからなる光反射層を設けてサファイア等の透光性を有する基板1側から光を出射するように構成してもよい。基板1側から光を出射する場合においても、電極側へと向かう光を反射させて取り出す際に電極での吸収があるため、吸収を抑制することで発光効率を向上させることができる。 Although the semiconductor light emitting device of Embodiment 1 described above is configured to emit light through the semiconductor electrode 23, the present invention is not limited to this. A light reflecting layer may be provided to emit light from the side of the substrate 1 having translucency such as sapphire. Even when the light is emitted from the substrate 1 side, the light emitted toward the electrode side is absorbed by the electrode when the light is reflected and taken out.

また、実施形態1の半導体発光素子では、第2導電型窒化物半導体層の上に形成された第1オーミック電極9と、半導体電極23上に形成された第2オーミック電極29とを接合するようにした。
しかしながら、本発明はこれに限定されるものではなく、第2導電型窒化物半導体層と半導体電極23のいずれか一方に接続電極を形成して、その接続電極と第2導電型窒化物半導体層と半導体電極23の他方と直接接合するようにしてもよい(図3参照)。
また、第2導電型窒化物半導体層に接続電極を形成後、スパッタ法(例えば、ECR(Electron Cyclotron Resonance)スパッタ法)を用いて接続電極に直接半導体電極23を形成してもよい。
Further, in the semiconductor light emitting device of Embodiment 1, the first ohmic electrode 9 formed on the second conductivity type nitride semiconductor layer and the second ohmic electrode 29 formed on the semiconductor electrode 23 are joined together. made it
However, the present invention is not limited to this, and a connection electrode is formed on either one of the second conductivity type nitride semiconductor layer and the semiconductor electrode 23, and the connection electrode and the second conductivity type nitride semiconductor layer are formed. and the other of the semiconductor electrodes 23 (see FIG. 3).
Alternatively, after forming the connection electrode on the nitride semiconductor layer of the second conductivity type, the semiconductor electrode 23 may be directly formed on the connection electrode using a sputtering method (for example, an ECR (Electron Cyclotron Resonance) sputtering method).

1 基板
3 第1導電型半導体層
5 発光層
7 第2導電型半導体層
43 第2電極
9,11,29 接続電極
21 成長基板
23 半導体電極
41 第1電極(第1パッド電極)
33 第2パッド電極
Reference Signs List 1 substrate 3 first conductivity type semiconductor layer 5 light emitting layer 7 second conductivity type semiconductor layer 43 second electrode 9, 11, 29 connection electrode 21 growth substrate 23 semiconductor electrode 41 first electrode (first pad electrode)
33 second pad electrode

Claims (6)

第1導電型の第1半導体層と、第2導電型の第2半導体層と、前記第1半導体層と前記第2半導体層の間に形成された発光領域と、前記第1半導体層に接続された第1電極と、前記第2半導体層に接続された第2電極とを含む半導体発光素子であって、
前記第2電極は、
透光性を有し、前記第2半導体層と接触し、Ag、Al、Ni、Au及びITOの少なくとも1つを含む接続電極と、
透光性を有し、前記接続電極と接触し、GaN又はAlGaNからなる半導体電極と、
前記半導体電極の上面の一部に設けられたパッド電極と、を有し、
前記半導体電極の膜厚は、2μm以上200μm以下であり、
前記接続電極は、
ITOからなり、前記第2半導体層に接続された第1接続電極と、
Ag、Al、Ni、Auの少なくとも1つを含み、前記半導体電極に接続された第2接続電極と、
を有し、
前記第1接続電極の膜厚は、前記第2接続電極の膜厚よりも厚い、半導体発光素子。
A first semiconductor layer of a first conductivity type, a second semiconductor layer of a second conductivity type, a light emitting region formed between the first semiconductor layer and the second semiconductor layer, and connected to the first semiconductor layer and a second electrode connected to the second semiconductor layer,
The second electrode is
a connection electrode having translucency, being in contact with the second semiconductor layer, and containing at least one of Ag, Al, Ni, Au, and ITO;
a semiconductor electrode made of GaN or AlGaN, which has translucency and is in contact with the connection electrode;
a pad electrode provided on a part of the upper surface of the semiconductor electrode;
The film thickness of the semiconductor electrode is 2 μm or more and 200 μm or less ,
The connection electrode is
a first connection electrode made of ITO and connected to the second semiconductor layer;
a second connection electrode including at least one of Ag, Al, Ni, and Au and connected to the semiconductor electrode;
has
The semiconductor light-emitting device , wherein the film thickness of the first connection electrode is thicker than the film thickness of the second connection electrode .
前記第1接続電極の膜厚は、1nm以上100nm以下である、請求項に記載の半導体発光素子。 2. The semiconductor light emitting device according to claim 1 , wherein said first connection electrode has a film thickness of 1 nm or more and 100 nm or less. 前記第2接続電極の膜厚は、0.1nm以上0.8nm以下である、請求項1または2に記載の半導体発光素子。 3. The semiconductor light emitting device according to claim 1 , wherein said second connection electrode has a film thickness of 0.1 nm or more and 0.8 nm or less. 前記半導体電極は、n型GaNまたはn型AlGaNである、請求項1からのいずれか1項に記載の半導体発光素子。 4. The semiconductor light emitting device according to claim 1 , wherein said semiconductor electrode is n-type GaN or n-type AlGaN. 前記半導体電極の不純物濃度は、1×1018cm-3以上1×1019cm-3以下である、請求項に記載の半導体発光素子。 5. The semiconductor light emitting device according to claim 4 , wherein said semiconductor electrode has an impurity concentration of 1×10 18 cm −3 or more and 1×10 19 cm −3 or less. 前記半導体発光素子は、紫外光を発する窒化物半導体発光素子であり、
前記半導体電極は、n型AlGaNである、請求1からのいずれか1項に記載の半導体発光素子。
The semiconductor light emitting device is a nitride semiconductor light emitting device that emits ultraviolet light,
6. The semiconductor light emitting device according to claim 1 , wherein said semiconductor electrode is n-type AlGaN.
JP2021084521A 2019-08-08 2021-05-19 semiconductor light emitting device Active JP7128429B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2021084521A JP7128429B2 (en) 2019-08-08 2021-05-19 semiconductor light emitting device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019146213A JP6888651B2 (en) 2019-08-08 2019-08-08 Semiconductor light emitting device
JP2021084521A JP7128429B2 (en) 2019-08-08 2021-05-19 semiconductor light emitting device

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2019146213A Division JP6888651B2 (en) 2019-08-08 2019-08-08 Semiconductor light emitting device

Publications (2)

Publication Number Publication Date
JP2021121034A JP2021121034A (en) 2021-08-19
JP7128429B2 true JP7128429B2 (en) 2022-08-31

Family

ID=68768674

Family Applications (2)

Application Number Title Priority Date Filing Date
JP2019146213A Active JP6888651B2 (en) 2019-08-08 2019-08-08 Semiconductor light emitting device
JP2021084521A Active JP7128429B2 (en) 2019-08-08 2021-05-19 semiconductor light emitting device

Family Applications Before (1)

Application Number Title Priority Date Filing Date
JP2019146213A Active JP6888651B2 (en) 2019-08-08 2019-08-08 Semiconductor light emitting device

Country Status (1)

Country Link
JP (2) JP6888651B2 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002009335A (en) 2000-06-19 2002-01-11 Hitachi Cable Ltd Light-emitting diode
JP2004146541A (en) 2002-10-23 2004-05-20 Shin Etsu Handotai Co Ltd Light emitting element and method of manufacturing same
JP2004179369A (en) 2002-11-27 2004-06-24 Shiro Sakai Semiconductor device and its manufacturing method
JP2005109207A (en) 2003-09-30 2005-04-21 Shin Etsu Handotai Co Ltd Light emitting element and method of manufacturing the same
JP2008187033A (en) 2007-01-30 2008-08-14 Sharp Corp Nitride semiconductor light-emitting element
US20130009167A1 (en) 2011-07-06 2013-01-10 Sharp Kabushiki Kaisha Light emitting diode with patterned structures and method of making the same

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7061065B2 (en) * 2003-03-31 2006-06-13 National Chung-Hsing University Light emitting diode and method for producing the same
JP5598321B2 (en) * 2010-12-28 2014-10-01 住友電気工業株式会社 Manufacturing method of semiconductor device
US9269696B2 (en) * 2012-04-25 2016-02-23 Epistar Corporation Light-emitting device

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002009335A (en) 2000-06-19 2002-01-11 Hitachi Cable Ltd Light-emitting diode
JP2004146541A (en) 2002-10-23 2004-05-20 Shin Etsu Handotai Co Ltd Light emitting element and method of manufacturing same
JP2004179369A (en) 2002-11-27 2004-06-24 Shiro Sakai Semiconductor device and its manufacturing method
JP2005109207A (en) 2003-09-30 2005-04-21 Shin Etsu Handotai Co Ltd Light emitting element and method of manufacturing the same
JP2008187033A (en) 2007-01-30 2008-08-14 Sharp Corp Nitride semiconductor light-emitting element
US20130009167A1 (en) 2011-07-06 2013-01-10 Sharp Kabushiki Kaisha Light emitting diode with patterned structures and method of making the same

Also Published As

Publication number Publication date
JP6888651B2 (en) 2021-06-16
JP2021121034A (en) 2021-08-19
JP2019208070A (en) 2019-12-05

Similar Documents

Publication Publication Date Title
JP4050444B2 (en) Light emitting device and manufacturing method thereof
JP5032017B2 (en) Semiconductor light emitting device, method for manufacturing the same, and semiconductor light emitting device
JP4225510B2 (en) Compound semiconductor light emitting diode and method for manufacturing the same
JP4597796B2 (en) Nitride-based compound semiconductor light-emitting device and method for manufacturing the same
JP2005259820A (en) Group iii-v compound semiconductor light emitting element and its manufacturing method
JP2007103689A (en) Semiconductor light emitting device
JP2008091862A (en) Nitride semiconductor light emitting device, and manufacturing method of nitride semiconductor light emitting device
JP2013038248A (en) Semiconductor light-emitting element
US10892382B2 (en) Semiconductor light-emitting element
JP4121551B2 (en) Light emitting device manufacturing method and light emitting device
US20120319161A1 (en) Method for manufacturing semiconductor light emitting device and semiconductor light emitting device wafer
US20130341661A1 (en) Semiconductor light emitting element
KR101480551B1 (en) vertical structured group 3 nitride-based light emitting diode and its fabrication methods
JP4174581B2 (en) Method for manufacturing light emitting device
JP7128429B2 (en) semiconductor light emitting device
KR101534846B1 (en) fabrication of vertical structured light emitting diodes using group 3 nitride-based semiconductors and its related methods
KR101499954B1 (en) fabrication of vertical structured light emitting diodes using group 3 nitride-based semiconductors and its related methods
JP4918245B2 (en) Light emitting diode and manufacturing method thereof
JP2004221112A (en) Oxide semiconductor light emitting element
JP2006319248A (en) Nitride semiconductor light emitting ellement
JP4913415B2 (en) Light emitting diode and manufacturing method thereof
JP2007059623A (en) Manufacturing method of high-intensity light-emitting diode having reflection layer
KR101550913B1 (en) 3 fabrication of vertical structured light emitting diodes using group 3 nitride-based semiconductors and its related methods
JP2004146537A (en) Light emitting element and method of manufacturing the same
JP7360007B2 (en) Manufacturing method of light emitting device

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210616

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210616

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20220425

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220517

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220531

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220719

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220801

R151 Written notification of patent or utility model registration

Ref document number: 7128429

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151