JP7077153B2 - モータ及びブラシレスワイパーモータ - Google Patents

モータ及びブラシレスワイパーモータ Download PDF

Info

Publication number
JP7077153B2
JP7077153B2 JP2018113644A JP2018113644A JP7077153B2 JP 7077153 B2 JP7077153 B2 JP 7077153B2 JP 2018113644 A JP2018113644 A JP 2018113644A JP 2018113644 A JP2018113644 A JP 2018113644A JP 7077153 B2 JP7077153 B2 JP 7077153B2
Authority
JP
Japan
Prior art keywords
magnet
salient pole
radial
circumferential direction
rotor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2018113644A
Other languages
English (en)
Other versions
JP2019022430A (ja
JP2019022430A5 (ja
Inventor
竜 大堀
直樹 塩田
源作 山上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsuba Corp
Original Assignee
Mitsuba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsuba Corp filed Critical Mitsuba Corp
Priority to EP18835497.1A priority Critical patent/EP3657637B1/en
Priority to CN201880047701.7A priority patent/CN110915106B/zh
Priority to US16/632,370 priority patent/US11289960B2/en
Priority to PCT/JP2018/024195 priority patent/WO2019017161A1/ja
Publication of JP2019022430A publication Critical patent/JP2019022430A/ja
Publication of JP2019022430A5 publication Critical patent/JP2019022430A5/ja
Application granted granted Critical
Publication of JP7077153B2 publication Critical patent/JP7077153B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Iron Core Of Rotating Electric Machines (AREA)
  • Permanent Field Magnets Of Synchronous Machinery (AREA)

Description

本発明は、モータ及びブラシレスワイパーモータに関するものである。
ブラシレスモータ(以下、単にモータと称することがある)は、コイルが巻回されたティースを有するステータと、ステータの径方向内側に回転自在に設けられたロータと、を備えている。ステータには、コイルに給電を行うことにより鎖交磁束が形成される。ロータは、回転軸と、この回転軸に外嵌固定される略円柱状のロータコアと、ロータコアに設けられた永久磁石と、を有している。そして、ステータに形成された鎖交磁束とロータコアに設けられた永久磁石との間に磁気的な吸引力や反発力が生じ、ロータが継続的に回転する。
ここで、ロータに永久磁石を配置する方式としては、大きく2つに大別される。1つは、ロータコアにスリットを複数形成し、スリット内に永久磁石を配置する永久磁石埋込方式(IPM:Interior Permanent Magnet)がある。
また、ロータに永久磁石を配置するもう1つの方式として、ロータコアの外周面に永久磁石を配置する方式(SPM:Surface Permanent Magnet)がある(例えば、特許文献1参照)。
特開2016-214081号公報
ところで、上記したようなモータを、例えば、自動車用のワイパーモータに用いる場合などに、高回転化と高トルク化との双方が要求されることがある。
SPM方式のモータにおいては、電流供給の進角化と広角化を図れば、高回転化を図ることができる。電流供給の広角化とは、交互に供給する3相の各相の電流の供給タイミングを互いにラップさせ、120°以上に広角化させることである。このようにして、進角通電及び広角通電による弱め界磁を用いることで、モータの高回転化を図ることができる。
このようなSPM方式のモータにおいて、高トルク化を図るには、磁石の使用量を増やす必要があり、磁石コストが高いという問題がある。
これに対し、IPM方式のモータの場合、電流供給の進角化と広角化を行うと、リラクタンストルクが生じるものの、高回転化に繋がらない。これは、IPM方式のモータの場合、永久磁石の磁極における磁束の方向であるd軸、及びd軸に対して磁気的に直交するq軸のインダクタンスが高い。このため、電流供給の進角化と広角化を行って界磁を弱めても、モータの回転数が上がりにくいのである。
そこで、本発明は、上述した事情に鑑みてなされたものであって、コスト上昇を抑えつつ、高回転化及び高トルク化を図ることのできるモータ及びブラシレスワイパーモータを提供することである。
本発明は、上記課題を解決するため、以下の手段を採用する。
すなわち、本発明のモータは、環状のステータコア、及び前記ステータコアの内周面から径方向内側に向かって突出する複数のティースを有するステータと、前記ティースに巻回されるコイルと、前記ステータコアの径方向内側で回転軸線回りに回転するシャフトと、前記シャフトに固定され、前記回転軸線を径方向中心とするロータコアと、前記ロータコアの外周面に配置され、前記回転軸線回りの周方向両側の端部における前記径方向の厚さが、前記周方向の中間部における前記径方向の厚さよりも小さい磁石と、前記ロータコアの前記外周面の周方向で隣り合う前記磁石の間に、前記磁石の周方向の端部よりも径方向外側に向かって突出形成された突極と、を備え、前記突極の前記径方向外側の端部における周方向の幅寸法は、電気角で40°以下に設定されており、前記磁石の磁極数と前記ティースの数との比は、2:3に設定されており、前記突極の前記径方向外側の端面に、前記回転軸線方向に沿って溝部を1つ形成し、前記溝部は、径方向内側に向かうに従って周方向の幅が徐々に狭くなるように形成されており、前記周方向両側で前記磁石の端部に対向する前記突極の一対の突極側対向面は、互いに平行に形成されており、前記周方向における前記溝部の幅は、前記周方向における前記一対の突極側対向面の間の幅よりも小さいことを特徴とする。
このような構成によれば、ロータコアの外周面に、フェライト磁石を配置することで、d軸方向のインダクタンス値を小さくすることができる。また、希土類磁石ではなくフェライト磁石を用いることで、磁石の径方向寸法を大きくしても、磁石使用量増加にともなうコスト上昇を抑えることができる。
また、フェライト磁石の周方向の端部の厚さを、周方向の中間部の厚さより小さくするとともに、突極をフェライト磁石よりも径方向外側に突出させることで、磁束が突極に集中するため、減磁界がフェライト磁石の端部に作用しにくくなる。
また、突極の電気角を40°以下として、周方向における突極の幅寸法を小さくすることで、q軸方向におけるインダクタンス値を小さくすることができ、減磁界を抑えることができる。
このようにして、モータの高トルク化、トルクリップルの抑制、コギングの抑制を図ることができる。また、このようなモータにおいては、進角通電と広角通電とを行うことで、高回転化を図ることができる。
また、突極の径方向内側の根元部の幅寸法が大きく、径方向外側の先端部の幅寸法が小さい台形状であると、周方向で隣り合う突極どうしの間に配置されるフェライト磁石の周方向両側の端部が薄くなり、減磁が生じやすくなる。また、突極の根元部の幅寸法が小さく、先端部の幅寸法が大きい台形状であると、突極で磁束密度が飽和しやすい。これに対し、突極を、周方向両側の対向面を互いに平行に形成することで、減磁も生じにくく、磁束密度の飽和も抑えることができる。
さらに、突極の径方向外側の端面に溝部があることで、突極の径方向外側の端面全体でみたとき、この端面とティースとの間隔を不均一にすることができる。
この結果、ロータ回転中に突極がティース間を通過する前後でティースに生じる磁束密度の急激な上昇を抑制できる。このため、ロータの急激なトルク変動を低減でき、トルクリップルを低下させることができる。
また、本発明のモータは、前記周方向で前記突極側対向面と対向する前記磁石の磁石側対向面で、且つ前記径方向外側には、前記磁石の前記径方向外側の外周面に向かうに従って漸次前記突極から離間するように斜面が形成されており、前記斜面と前記突極とは非接触であり、前記溝部の溝深さは、前記溝部の底部の位置が、前記突極を挟んで両側に位置する前記磁石の前記周方向両側の端部における径方向外側の外周面側の角部同士を結ぶ直線よりも前記径方向内側で、且つ前記周方向で隣り合う2つの前記磁石に形成された前記斜面の前記径方向内側端の角部同士を結ぶ直線上、又は前記直線よりも前記径方向外側に位置するように設定されていることが好ましい。
また、本発明のモータは、記突極には、前記突極側対向面、及び該突極側対向面と対向する前記磁石の磁石側対向面のそれぞれで、且つ前記突極の前記径方向外側の端部に対応する箇所を避けた位置に、前記突極と前記磁石とを嵌合させる凹凸嵌合部が設けられていることが好ましい。
このような構成によれば、ロータコアの外周面に、ボンド磁石を配置することで、d軸方向のインダクタンス値を小さくすることができる。また、突極の周方向両側面、及びこの周方向両側面と対向するボンド磁石の対向面のそれぞれで、且つ突極の径方向外側の端部に対応する箇所を避けた位置で、突極と磁石とが凹凸嵌合されている。このため、ロータの回転により磁石に遠心力が作用し、この磁石がロータコアから飛散してしまうのが防止される。さらに、例えば突極の径方向外側の端面に凸部を設け、この凸部によって磁石の飛散を防止する場合と比較して、磁石端部(凸部とのラップ箇所)における磁束漏れを低減することができる。
また、ロータ外周面における突極が占める割合をできる限り小さく抑えることができる。この結果、コギングトルクを低減できる。
さらに、ボンド磁石を用いることで、凹凸嵌合部の成形が容易になる。また、これに加え、ボンド磁石には磁性体の他に樹脂が混合されるので、磁石の径方向寸法を大きくしても、同じ磁性体を焼結させた磁石と比較して、磁石使用量増加にともなう質量の増加を抑えることができる。
また、磁石の周方向の端部よりも径方向外側に向かって突極を突出させることにより、磁石の磁束を突極に集中させることができる。このため、磁石の端部に減磁界が作用しにくくなるようにすることができる。
ここで、突極に溝部が形成されることにより、突極に集中する磁束が僅かに低減されてしまう。このため、溝部の溝深さを制限することにより、突極にできる限り磁束を集中させることができ、高いリラクタンストルクを確保できる。
また、本発明のモータは、前記突極、及び前記磁石の前記回転軸線方向の中央部を避けた前記回転軸線方向の両端部のみに、それぞれ前記凹凸嵌合部が設けられていることが好ましい。
このような構成によれば、ロータコアから磁石が飛散してしまうのを防止しつつ、磁束の通りやすい回転軸線方向の内側の磁石の体積を大きく設定できる。このため、磁石の有効磁束をできる限り増加させることができる。突極や永久磁石に複雑な凹凸嵌合部を形成する箇所を、最低限にすることができる。
また、本発明のモータにおいて、前記突極の前記径方向外側の端部における周方向の幅寸法は、電気角θが20°以上に設定されていてもよい。
このような構成によれば、突極の径方向における幅寸法を電気角20°以上に確保することで、磁束が突極に集中することによって減磁界がフェライト磁石の端部に作用しにくくなるという効果を、確実に得ることができる。また、突極の電気角θを20°以上40°以下とすることで、高いリラクタンストルクを得ることができる。
また、本発明のモータにおいて、前記磁石の着磁の配向はパラレル配向であるようにしてもよい。
このような構成によれば、モータのコギングを抑えるとともに、高い磁束密度を得ることができる。
また、本発明のブラシレスワイパーモータは、上記したようなモータを備えたことを特徴とする。
このような構成によれば、フェライト磁石を用いることで、コスト上昇を抑えつつ、ブラシレスワイパーモータの高回転化、高トルク化、トルクリップルの抑制、コギングの抑制を図ることができる。
本発明によれば、コスト上昇を抑えつつ、高回転化及び高トルク化を図ることが可能となる。
本発明の施形態におけるワイパーモータの斜視図である。 本発明の施形態におけるワイパーモータの、図1のA-A線に沿う断面図である。 本発明の第1参考例におけるステータ及びロータを軸方向からみた平面図である。 図3のロータを拡大した図である。 本発明の第1参考例におけるロータのq軸、d軸のインダクタンスを示すグラフである。 本発明の第1参考例におけるロータに進角通電と広角通電とを行った場合の、トルクと回転数との関係を示すグラフである。 本発明の第1参考例における突極の幅寸法を異ならせた場合にロータで発生するトルクを示すグラフである。 本発明の第1参考例における突極の幅寸法を異ならせた場合にロータで発生するリップル率を示すグラフである。 本発明の第1参考例における突極の幅寸法を異ならせた場合にロータで発生するコギングを示すグラフである。 本発明の第1参考例におけるロータの磁石の周方向の端部における磁束密度を示すグラフである。 本発明の第1参考例における突極を磁石の周方向の端部よりも径方向外側に突出させた場合の、突極の周囲における磁束の向きを示す図である。 本発明の第1参考例における突極を磁石の周方向の端部よりも径方向外側に突出させない場合の、突極の周囲における磁束の向きを示す図である。 本発明の第1参考例における磁石の配向をパラレル配向、ラジアル配向としたときの、ロータで発生するコギングを示すグラフである。 本発明の第1参考例における磁石の配向をパラレル配向、ラジアル配向としたときの、ロータで発生する有効磁束を示すグラフである。 本発明の第1参考例におけるロータの磁石の周方向の端部における磁束密度を示すグラフである。 本発明の第1参考例における磁石の配向をパラレル配向とした場合とラジアル配向とした場合の、磁束密度の最小値を示すグラフである。 本発明の第1参考例の変形例におけるステータ及びロータを軸方向からみた平面図である。 本発明の第1参考例の変形例における突極への磁束の流れを示す説明図である。 本発明の第2参考例におけるステータ及びロータを軸方向からみた平面図である。 図19のロータを拡大した図である。 本発明の第2参考例における磁石の磁束の流れを示す説明図である。 本発明の第1参考例の変形例における磁石と、第2参考例における磁石との、コギングの違いを比較したグラフである。 本発明の第1参考例の変形例における磁石と、第2参考例における磁石との、有効磁束の違いを比較したグラフである。 本発明の第2参考例の第1変形例におけるステータ及びロータを軸方向からみた平面図である。 本発明の第2参考例の第2変形例におけるステータ及びロータを軸方向からみた平面図である。 本発明の第2参考例の第3変形例におけるステータ及びロータを軸方向からみた平面図である。 本発明の第2参考例の第4変形例におけるロータコアの斜視図である。 本発明の施形態におけるステータ及びロータを軸方向からみた平面図である。 図28のロータを拡大した図である。 本発明の施形態における磁束密度の変化を示すグラフであって、(a)は、周方向に隣接するティース間を突極の端部が跨る直前を示し、(b)は、周方向に隣接するティース間を突極の端部が跨いだ後を示す。 本発明の第1参考例施形態のトルクの変化を示すグラフである。 その他の突極の形状の一例を示し、(a)は、ロータの一部拡大図であり、(b)は、トルクの変化を示すグラフである。 その他の突極の形状の一例を示し、(a)は、ロータの一部拡大図であり、(b)は、トルクの変化を示すグラフである。 その他の突極の形状の一例を示し、(a)は、ロータの一部拡大図であり、(b)は、トルクの変化を示すグラフである。 その他の突極の形状の一例を示し、(a)は、ロータの一部拡大図であり、(b)は、トルクの変化を示すグラフである。
次に、本発明の実施形態に係るモータ及びブラシレスワイパーモータについて、図面を参照して説明をする。
(第1参考例
(ワイパーモータ)
図1は、ワイパーモータ1の斜視図である。図2は、図1のA-A線に沿う断面図である。
図1、図2に示すように、ワイパーモータ(ブラシレスワイパーモータ)1は、例えば車両に搭載されるワイパの駆動源となる。ワイパーモータ1は、モータ部(モータ)2と、モータ部2の回転を減速して出力する減速部3と、モータ部2の駆動制御を行うコントローラ部4と、を備えている。
なお、以下の説明において、単に軸方向という場合は、モータ部2のシャフト31の回転軸線方向をいい、単に周方向という場合は、シャフト31の周方向をいい、単に径方向という場合は、シャフト31の径方向をいうものとする。
(モータ部)
モータ部2は、モータケース5と、モータケース5内に収納されている略円筒状のステータ8と、ステータ8の径方向内側に設けられ、ステータ8に対して回転可能に設けられたロータ9と、を備えている。モータ部2は、ステータ8に電力を供給する際にブラシを必要としない、いわゆるブラシレスモータである。
(モータケース)
モータケース5は、例えばアルミダイキャスト等の放熱性の優れた材料により形成されている。モータケース5は、軸方向に分割可能に構成された第1モータケース6と、第2モータケース7と、からなる。第1モータケース6及び第2モータケース7は、それぞれ有底筒状に形成されている。
第1モータケース6は、底部10が減速部3のギヤケース40と接合されるように、このギヤケース40と一体成形されている。底部10の径方向略中央には、ロータ9のシャフト31を挿通可能な貫通孔10aが形成されている。
また、第1モータケース6の開口部6aに、径方向外側に向かって張り出す外フランジ部16が形成されているとともに、第2モータケース7の開口部7aに、径方向外側に向かって張り出す外フランジ部17が形成されている。これら外フランジ部16,17同士を突き合わせて内部空間を有するモータケース5を形成している。そして、モータケース5の内部空間に、第1モータケース6及び第2モータケース7に内嵌されるようにステータ8が配置されている。
(ステータ)
図3は、ステータ8及びロータ9を軸方向からみた平面図である。
図2、図3に示すように、ステータ8は、径方向に沿う断面形状が略円形となる筒状のコア部21と、コア部21から径方向内側に向かって突出する複数(例えば、本第1参考例では6つ)のティース22と、が一体成形されたステータコア20を有している。
ステータコア20は、複数の金属板を軸方向に積層することにより形成されている。なお、ステータコア20は、複数の金属板を軸方向に積層して形成する場合に限られるものではなく、例えば、軟磁性粉を加圧成形することにより形成してもよい。
ティース22は、コア部21の内周面から径方向に沿って突出するティース本体101と、ティース本体101の径方向内側端から周方向に沿って延びる鍔部102と、が一体成形されたものである。鍔部102は、ティース本体101から周方向両側に延びるように形成されている。そして、周方向で隣り合う鍔部102の間に、スロット19が形成される。
また、コア部21の内周面、及びティース22は、樹脂製のインシュレータ23によって覆われている。このインシュレータ23の上から各ティース22にコイル24が巻回されている。各コイル24は、コントローラ部4からの給電により、ロータ9を回転させるための磁界を生成する。
(ロータ)
ロータ9は、ステータ8の径方向内側に微小隙間を介して回転自在に設けられている。ロータ9は、減速部3を構成するウォーム軸44(図2参照)と一体成形されたシャフト31と、シャフト31に外嵌固定されこのシャフト31を軸心C1とする略円柱状のロータコア32と、ロータコア32の外周面に設けられた4つの磁石33と、を備えている。このように、モータ部2において、磁石33の磁極数とスロット19(ティース22)の数との比は、4:6である。
ロータコア32は、複数の金属板を軸方向に積層することにより形成されている。なお、ロータコア32は、複数の金属板を軸方向に積層して形成する場合に限られるものではなく、例えば、軟磁性粉を加圧成形することにより形成してもよい。
また、ロータコア32の径方向略中央には、軸方向に貫通する貫通孔32aが形成されている。この貫通孔32aに、シャフト31が圧入されている。なお、貫通孔32aに対してシャフト31を挿入とし、接着剤等を用いてシャフト31にロータコア32を外嵌固定してもよい。
さらに、ロータコア32の外周面32bには、4つの突極35が周方向に等間隔で設けられている。突極35は、径方向外側に突出され、且つロータコア32の軸方向全体に延びるように形成されている。また、突極35の径方向外側で、且つ周方向両側の角部には、丸面取り部35aが形成されている。
このように形成されたロータコア32の外周面32bは、周方向で隣り合う2つの突極35の間が、それぞれ磁石収納部36として構成されている。これら磁石収納部36に、それぞれ磁石33が配置され、例えば接着剤等によりロータコア32に固定される。
図4は、図3のロータ9を拡大した図である。
図3、図4に示すように、磁石33は、シャフト31の軸心C1回りの周方向両側の端部33sにおける径方向の厚さが、周方向中間部33cにおける径方向の厚さよりも小さくなるように形成される。すなわち、図3に詳示するように、磁石33は、径方向外側の外周面33aの曲率半径R1が、磁石33の径方向内側の内周面33bの曲率半径R2が小さく設定されている。このため、磁石33の径方向外側の外周面33aとティース22の内周面との間の微小隙間は、磁石33の周方向中央が最も小さく、この周方向中央から周方向に離間するに従って徐々に大きくなる。
また、磁石33は、フェライト磁石である。さらに、磁石33は、着磁(磁界)の配向が厚み方向に沿ってパラレル配向となるように着磁されている。そして、周方向に磁極が互い違いになるように、磁石33が配置されている。また、ロータコア32の突極35は、周方向で隣り合う磁石33の間、つまり、磁極の境界(極境界)に位置している。
突極35は、径方向外側の端部35tにおける周方向の幅寸法が、電気角θで20°以上40°以下に設定されている。
なお、突極35の径方向外側の端部35tにおける周方向の幅寸法とは、突極35に丸面取り部35aが形成されていないとした場合の周方向の両角部35b間の幅寸法をいう。以下の説明では、突極35における径方向外側の端部35tにおける周方向の幅寸法を、単に突極35の径方向における幅寸法と称して説明する。
さらに、突極35は、周方向両側において磁石33の周方向の端部33sに対向する対向面35sが、互いに平行に形成されているのが好ましい。
また、磁石33を上記のように形成することにより、この磁石33の最大外径と突極35の最大外径とが同一寸法でありながら、突極35が磁石33の周方向の端部33sよりも径方向外側に突出されている。
(減速部)
図1、図2に戻り、減速部3は、モータケース5が取り付けられているギヤケース40と、ギヤケース40内に収納されるウォーム減速機構41と、を備えている。ギヤケース40は、例えばアルミダイキャスト等の放熱性の優れた材料により形成されている。ギヤケース40は、一面に開口部40aを有する箱状に形成されており、内部にウォーム減速機構41を収容するギヤ収容部42を有する。また、ギヤケース40の側壁40bには、第1モータケース6が一体成形されている箇所に、この第1モータケース6の貫通孔10aとギヤ収容部42とを連通する開口部43が形成されている。
さらに、ギヤケース40の側壁40bには、3つの固定ブラケット54a,54b,54cが一体成形されている。これら固定ブラケット54a,54b,54cは、不図示の車体等に、ワイパーモータ1を固定するためのものである。3つの固定ブラケット54a,54b,54cは、モータ部2を避けるように、周方向にほぼ等間隔に配置されている。各固定ブラケット54a,54b,54cには、それぞれ防振ゴム55が装着されている。防振ゴム55は、ワイパーモータ1を駆動する際の振動が、不図示の車体に伝達されてしまうのを防止するためのものである。
また、ギヤケース40の底壁40cには、略円筒状の軸受ボス49が突設されている。軸受ボス49は、ウォーム減速機構41の出力軸48を回転自在に支持するためのものであって、内周面に不図示の滑り軸受が設けられている。さらに、軸受ボス49の先端内周縁には、不図示のOリングが装着されている。これにより、軸受ボス49を介して外部から内部に塵埃や水が侵入してしまうことが防止される。また、軸受ボス49の外周面には、複数のリブ52が設けられている。これにより、軸受ボス49の剛性が確保されている。
ギヤ収容部42に収容されたウォーム減速機構41は、ウォーム軸44と、ウォーム軸44に噛合されるウォームホイール45と、により構成されている。ウォーム軸44は、モータ部2のシャフト31と同軸上に配置されている。そして、ウォーム軸44は、両端がギヤケース40に設けられた軸受46,47によって回転自在に支持されている。ウォーム軸44のモータ部2側の端部は、軸受46を介してギヤケース40の開口部43に至るまで突出している。この突出したウォーム軸44の端部とモータ部2のシャフト31との端部が接合され、ウォーム軸44とシャフト31とが一体化されている。なお、ウォーム軸44とシャフト31は、1つの母材からウォーム軸部分と回転軸部分とを成形することにより一体として形成してもよい。
ウォーム軸44に噛合されるウォームホイール45には、このウォームホイール45の径方向中央に出力軸48が設けられている。出力軸48は、ウォームホイール45の回転軸方向と同軸上に配置されており、ギヤケース40の軸受ボス49を介してギヤケース40の外部に突出している。出力軸48の突出した先端には、不図示の電装品と接続可能なスプライン48aが形成されている。
また、ウォームホイール45の径方向中央には、出力軸48が突出されている側とは反対側に、不図示のセンサマグネットが設けられている。このセンサマグネットは、ウォームホイール45の回転位置を検出する回転位置検出部60の一方を構成している。この回転位置検出部60の他方を構成する磁気検出素子61は、ウォームホイール45のセンサマグネット側(ギヤケース40の開口部40a側)でウォームホイール45と対向配置されているコントローラ部4に設けられている。
(コントローラ部)
モータ部2の駆動制御を行うコントローラ部4は、磁気検出素子61が実装されたコントローラ基板62と、ギヤケース40の開口部40aを閉塞するように設けられたカバー63と、を有している。そして、コントローラ基板62が、ウォームホイール45のセンサマグネット側(ギヤケース40の開口部40a側)に対向配置されている。
コントローラ基板62は、いわゆるエポキシ基板に複数の導電性のパターン(不図示)が形成されたものである。コントローラ基板62には、モータ部2のステータコア20から引き出されたコイル24の端末部が接続されていると共に、カバー63に設けられたコネクタ11の不図示の端子が電気的に接続されている。また、コントローラ基板62には、磁気検出素子61の他に、コイル24に供給する電流を制御するFET(Field Effect Transistor:電界効果トランジスタ)等のスイッチング素子からなるパワーモジュール(不図示)が実装されている。さらに、コントローラ基板62には、このコントローラ基板62に印加される電圧の平滑化を行うコンデンサ(不図示)等が実装されている。
このように構成されたコントローラ基板62を覆うカバー63は、樹脂により形成されている。また、カバー63は、若干外側に膨出するように形成されている。そして、カバー63の内面側は、コントローラ基板62等を収容するコントローラ収容部56とされている。
また、カバー63の外周部に、コネクタ11が一体成形されている。このコネクタ11は、不図示の外部電源から延びるコネクタと嵌着可能に形成されている。そして、コネクタ11の不図示の端子に、コントローラ基板62が電気的に接続されている。これにより、外部電源の電力がコントローラ基板62に供給される。
さらに、カバー63の開口縁には、ギヤケース40の側壁40bの端部と嵌め合わされる嵌合部81が突出形成されている。嵌合部81は、カバー63の開口縁に沿う2つの壁81a,81bにより構成されている。そして、これら2つの壁81a,81bの間に、ギヤケース40の側壁40bの端部が挿入(嵌め合い)される。これにより、ギヤケース40とカバー63との間にラビリンス部83が形成される。このラビリンス部83によって、ギヤケース40とカバー63との間から塵埃や水が浸入してしまうことが防止される。なお、ギヤケース40とカバー63との固定は、不図示のボルトを締結することにより行われる。
(ワイパーモータの動作)
次に、ワイパーモータ1の動作について説明する。
ワイパーモータ1は、コネクタ11を介してコントローラ基板62に供給された電力が、不図示のパワーモジュールを介してモータ部2の各コイル24に選択的に供給される。ここで、コントローラ基板62は、コイル24に対し、進角通電と、電気角θが121°から180°の広角通電とを行う。また、コントローラ基板62は、コイル24の駆動電圧に、5次高調波を重畳している。
すると、ステータ8(ティース22)に所定の鎖交磁束が形成され、この鎖交磁束とロータ9の磁石33により形成される有効磁束との間で磁気的な吸引力や反発力が生じる。これにより、ロータ9が継続的に回転する。
ロータ9が回転すると、シャフト31と一体化されているウォーム軸44が回転し、さらにウォーム軸44に噛合されているウォームホイール45が回転する。そして、ウォームホイール45に連結されている出力軸48が回転し、所望の電装品が駆動する。
また、コントローラ基板62に実装されている磁気検出素子61によって検出されたウォームホイール45の回転位置検出結果は、信号として不図示の外部機器に出力される。不図示の外部機器は、ウォームホイール45の回転位置検出信号に基づいて、不図示のパワーモジュールのスイッチング素子等の切替えタイミングが制御され、モータ部2の駆動制御が行われる。なお、パワーモジュールの駆動信号の出力やモータ部2の駆動制御は、コントローラ部4で行われていても良い。
(ロータの作用、効果)
次に、図5~図16に基づいて、ロータ9の作用、効果について説明する。
モータ部2は、ロータコア32の外周面32bに、磁石33を配置した、いわゆるSPM(Surface Permanent Magnet)モータである。このため、d軸方向のインダクタンス値を小さくすることができる。ここで、ロータ9において、d軸方向のインダクタンス値を、さらに小さくするには、磁石33の径方向の寸法を大きくする必要がある。本第1参考例において、磁石33は、フェライト磁石からなるので、磁石33の径方向の寸法を大きくして磁石使用量を増加させても、希土類磁石に比較し、コスト上昇を大幅に抑えることができる。
ここで、ロータコア32の外周面32bに設けられた4つの突極35は、周方向の幅寸法を電気角θで20°以上40°以下に設定されている。このように、周方向における突極35の幅寸法を電気角θで40°以下に設定することで、q軸方向におけるインダクタンス値を小さくすることができる。これにより、減磁界を抑えるとともに、高いリラクタンストルクを得ることができる。以下、より具体的に説明する。
図5は、ロータ9のq軸、d軸のインダクタンスLq、Ld[mH]を示すグラフであって、本第1参考例のロータ9と、従来構造のロータとを比較している。なお、ここでいう従来構造とは、ロータコアに複数形成したスリット内に永久磁石を配置した、いわゆるIPM(Interior Permanent Magnet)モータのロータの構造である。
同図に示すように、従来構造と比較して、本第1参考例のロータ9は、q軸、d軸とも、インダクタンス値が小さくなっていることが確認できる。
図6は、縦軸をロータ9の回転数[rpm]とし、横軸をロータ9のトルク[N・m]としたときのロータ9の回転数の変化を示すグラフである。より具体的には、図6は、ロータ9に進角通電と広角通電とを行った場合の、トルク[N・m]と回転数[rpm]との関係を示すグラフであって、本第1参考例のロータ9と、従来のIPM構造のロータとを比較している。
同図に示すように、従来構造と比較して、本第1参考例のロータ9は、より高いトルク、回転数を発生していることが確認できる。
図7は、縦軸をロータ9のトルク[N・m]とし、横軸をロータコア32に設けられた突極35の突極幅[mm]としたときのロータ9のトルクの変化を示すグラフである。より具体的には、図7は、突極35の周方向における幅寸法(電気角θ)を異ならせた場合に、本第1参考例のロータ9で発生するトルクを示すグラフである。
図8は、縦軸をロータ9のリップル率[%]とし、横軸をロータコア32の突極35の突極幅[mm]としたときのロータ9のリップル率の変化を示すグラフである。より具体的には、図8は、突極35の幅寸法を異ならせた場合に、本第1参考例のロータ9で発生するリップル率を示すグラフである。
図9は、縦軸をロータ9のコギング[mN・m]とし、横軸をロータコア32の突極35の突極幅[mm]としたときのロータ9のコギングの変化を示すグラフである。より具体的には、図9は、突極35の幅寸法を異ならせた場合に、本第1参考例のロータ9で発生するコギングを示すグラフである。
図7~図9に示すように、本第1参考例のロータ9は、突極35の周方向の幅寸法が3mm(電気角θ=20°)~5mm(電気角θ=40°)であるときに、高いリラクタンストルクを得るとともに、リップル率及びコギングを抑制できていることが確認できる。
また、突極35を磁石33の周方向の端部33sよりも径方向外側に突出させることで、磁束が突極35に集中する。このようにして、減磁界が磁石33の端部33sに作用しにくくなる。以下、より具体的に説明する。
図10は、縦軸をロータ9の磁石33の周方向の端部33sにおける磁束密度[T]とし、横軸をロータ9の回転角[deg]としたときの磁石33の周方向の端部33sにおける磁束密度の変化を示すグラフである。より具体的には、図10は、ロータ9の磁石33の周方向の端部33sにおける磁束密度[T]を示すグラフであって、突極35を磁石33の周方向の端部33sよりも径方向外側に突出させた場合(図10中、符号E)と、突極35を磁石33の周方向の端部33sよりも径方向外側に突出させない場合(図10中、符号C)とを比較している。
同図に示すように、突極35を磁石33の周方向の端部33sよりも径方向外側に突出させない場合に比較し、突極35を磁石33の周方向の端部33sよりも径方向外側に突出させた場合は、磁束密度が高く、減磁しにくいことが確認できる。
図11、図12は、突極35の周囲における磁束の向きを示す図であって、突極35を磁石33の周方向の端部33sよりも径方向外側に突出させた場合(図11)と、突極35を磁石33の周方向の端部33sよりも径方向外側に突出させない場合(図12)と、を比較している。
図12に示すように、突極35を磁石33の周方向の端部33sよりも径方向外側に突出させない場合に比較し、図11に示すように、突極35を磁石33の周方向の端部33sよりも径方向外側に突出させた場合は、磁石33の端部33sに磁束が集中するのを抑え、突極35に磁束が集中することが確認できる。
また、突極35は、周方向両側において磁石33の周方向の端部33sに対向する対向面35sを、互いに平行に形成した。ここで、突極35の径方向内側の根元部の幅寸法が大きく、径方向外側の先端部の幅寸法が小さい台形状であると、周方向で隣り合う突極35どうしの間に配置される磁石33の周方向両側の端部33sが薄くなり、減磁が生じやすくなる。また、突極35の根元部の幅寸法が小さく、先端部の幅寸法が大きい台形状であると、突極35で磁束密度が飽和しやすい。これに対し、突極35を、周方向両側の対向面35sを互いに平行に形成することで、減磁も生じにくく、磁束密度の飽和も抑えることができる。
また、磁石33の着磁の配向はパラレル配向であるようにした。これにより、コギングを抑えるとともに、高い磁束密度を得ることができる。
図13は、磁石33の着磁の配向をパラレル配向、ラジアル配向としたときの、本第1参考例のロータ9で発生するコギング[mN・m]を示すグラフである。図14は、磁石33の着磁の配向をパラレル配向、ラジアル配向としたときの、本第1参考例のロータ9で発生する有効磁束[μWb]を示すグラフである。
図13、図14に示すように、磁石33の着磁の配向をパラレル配向とすることで、コギングを抑制するとともに、有効磁束が高まることが確認できる。
図15は、縦軸をロータ9の磁石33の周方向の端部33sにおける磁束密度[T]とし、横軸をロータ9の回転角[deg]としたときの磁石33の周方向の端部33sにおける磁束密度の変化を示すグラフである。より具体的には、図15は、ロータ9の磁石33の周方向の端部33sにおける磁束密度[T]を示すグラフであって、突極35を磁石33の周方向の端部33sよりも径方向外側に突出させた場合(図15中、符号E)と、突極35を磁石33の周方向の端部33sよりも径方向外側に突出させない場合(図15中、符号C)と、のそれぞれで、磁石33の着磁の配向をパラレル配向とした場合とラジアル配向とした場合とを比較している。
図16は、突極35を磁石33の周方向の端部33sよりも径方向外側に突出させた場合(図16中、符号E)と、突極35を磁石33の周方向の端部33sよりも径方向外側に突出させない場合(図16中、符号C)と、のそれぞれで、磁石33の着磁の配向をパラレル配向とした場合とラジアル配向としたときの、磁束密度の最小値(MIN)を比較している。
図15、図16に示すように、突極35を磁石33の周方向の端部33sよりも径方向外側に突出させるとともに、磁石33の着磁の配向をパラレル配向とすることで、減磁界を有効に抑制することができる。
このように、上述の第1参考例におけるモータ部2及びワイパーモータ1は、環状のステータコア20、及びステータコア20の内周面から径方向内側に向かって突出する複数のティース22を有するステータ8と、ティース22に巻回されるコイル24と、ステータコア20の径方向内側で回転軸線回りに回転するシャフト31と、シャフト31に固定され、回転軸線を径方向中心とするロータコア32と、ロータコア32の外周面32bに配置され、回転軸線回りの周方向両側の端部33sにおける径方向の厚さが、周方向中間部における径方向の厚さよりも小さい磁石33と、ロータコア32の外周面32bの周方向で隣り合う磁石33の間に、磁石33の周方向の端部33sよりも径方向外側に向かって突出形成され、突極35の径方向における幅寸法は、電気角θが40°以下に設定されている突極35と、を備え、磁石33の磁極数とティース22の数との比は2:3である。
このような構成によれば、ロータコア32の外周面32bに、磁石33を配置することで、d軸方向のインダクタンス値を小さくすることができる。また、希土類磁石ではなく磁石33を用いることで、磁石33の径方向寸法を大きくしても、磁石使用量増加にともなうコスト上昇を抑えることができる。
また、突極35を磁石33の周方向の端部33sよりも径方向外側に突出させることで、磁束が突極35に集中するため、減磁界が磁石33の端部33sに作用しにくくなる。
また、突極35の電気角θを40°以下に設定して、周方向における突極35の幅寸法を小さくすることで、q軸方向におけるインダクタンス値を小さくすることができ、減磁界を抑えることができる。
さらに、磁石33の周方向両側の端部33sにおける径方向の厚さを、周方向中間部33cにおける厚さよりも小さくすることで、磁石33の端部33sに磁束が集中するのを抑え、突極35に磁束を集中させることができる。これによっても、減磁界が磁石33の端部33sに作用しにくくなる。
このようにして、モータ部2の高トルク化、トルクリップルの抑制、コギングの抑制を図ることができる。また、このようなモータ部2においては、進角通電と広角通電とを行うことで、高回転化を図ることができる。したがって、コスト上昇を抑えつつ、高回転化及び高トルク化を図ることが可能となる。
また、モータ部2において、突極35は、周方向両側において磁石33の周方向の端部33sに対向する対向面35sが、互いに平行に形成されている。
このような構成によれば、減磁が生じにくく、磁束密度の飽和を抑えることができる。
また、モータ部2は、突極35の径方向における幅寸法は、電気角θが20°以上である。
このような構成によれば、突極35の電気角θを20°以上として、径方向における幅寸法を一定以上に確保することによって、磁束が突極35に集中することで、減磁界が磁石33の端部33sに作用しにくくなるという効果を、確実に得ることができる。また、突極35の電気角θを20°以上40°以下に設定することで、高いリラクタンストルクを得ることができる。
さらに、モータ部2は、磁石33の着磁の方向をパラレル配向であるので、モータ部2のコギングを抑えるとともに、高い磁束密度を得ることができる。
(第1参考例の変形例)
次に、図17、図18に基づいて、第1参考例の変形例について説明する。
図17は、第1参考例の変形例におけるステータ8及びロータ9を軸方向からみた平面図であって、前述の第1参考例の図3に対応している。
同図に示すように、本変形例では、突極35の径方向外側の端部35tに、周方向に延びる凸部91が形成されている。この点、凸部91が形成されていない前述の第1参考例の突極35と異なる点である。
より詳しくは、突極35の凸部91は、磁石33の端部33sに径方向外側から被さるように突極35の端部35tから周方向に沿って突出している。これにより、突極35に対する磁石33の径方向への移動が規制される。このため、ロータ9の回転時に磁石33に作用する遠心力によって、この磁石33がロータコア32から飛散してしまうことが防止される。
図18は、第1参考例の変形例における突極35への磁束の流れを示す説明図である。
ところで、図18の矢印に示すように、突極35の凸部91により磁石33の端部33sを覆うと、この磁石33の端部33sの磁束が、凸部91を通って突極35に漏れてしまう可能性がある。このような場合、磁石33のティース22に向かう有効磁束が減少してしまう。さらに、ロータ9の外周面において、突極35が占める割合が大きくなることで、コギングが大きくなってしまう虞がある。そこで、後述する第2参考例が有効である。
(第2参考例
次に、図19~図21に基づいて、この発明の第2参考例について説明する。なお、第1参考例と同一態様には、同一符号を付して説明する(以下の参考例、実施形態及び変形例についても同様)。
図19は、本発明の第2参考例におけるステータ8及びロータ209を軸方向からみた平面図であって、前述の第1参考例の図3に対応している。
同図に示すように、第1参考例と第2参考例との相違点は、第1参考例の磁石33はフェライト磁石であるのに対し、第2参考例の磁石233はボンド磁石である点にある。ボンド磁石としては、例えば、ネオジムボンド磁石等が挙げられる。
また、第2参考例には、突極235及び磁石233に、それぞれ凹凸嵌合部290が設けられている。この点、前述の第1参考例と相違する点である。凹凸嵌合部290について、以下に詳述する。
図20は、図19のロータ209を拡大した図である。
同図に示すように、突極235には、磁石233の周方向の端部233sに対向する2つの対向面235sに、それぞれ凸部291が1つずつ磁石233に向かって(周方向に向かって)突出形成されている。また、凸部291は、軸方向全体に渡って形成されている。さらに、凸部291は、突極235の径方向外側の端部235tを避けるように、径方向中央よりもやや径方向外側寄りに配置されている。
一方、磁石233の端部233sには、周方向で突極235と対向する対向面233uに、それぞれ突極235の凸部291と嵌合可能な凹部292が、軸方向全体に渡って形成されている。そして、これら突極235の凸部291と、磁石233の凹部292よって、凹凸嵌合部290が構成されている。凹凸嵌合部290によって、突極235に対する磁石233の径方向への移動が規制される。
ロータコア232へ磁石233を組付ける際は、まず、ロータコア232の軸方向端部に磁石233を配置する。そして、突極235の凸部291と磁石233の凹部292の位置を合わせる。この後、ロータコア232の軸方向端部から磁石233を挿入する。これにより、ロータコア232への磁石233の組付けが完了する。
なお、予め磁石233を成型せずに、ロータコア232を不図示の金型に配置し、溶融された磁石233を不図示の金型に流し込み、この後、磁石233を硬化させて成型(インサート成型)するようにしてもよい。
したがって、上述の第2参考例によれば、磁石233がボンド磁石であるので、容易に凹部292を形成することができる。また、ロータコア232に磁石233をインサート成型する等、磁石233を形成する方法として、さまざまな方法を選択することが可能になり、生産性を向上できる。
さらに、前述の第1参考例の変形例と同様の効果に加え、図21の矢印に示すように、突極235(第1参考例の変形例における凸部91)への磁石233の磁束の漏れを防止できる。この結果、磁石233のティース22に向かう有効磁束の減少を抑制でき、ロータ209のコギングが大きくなってしまうことを防止できる。
図22は、第1参考例の変形例における磁石33と、第2参考例における磁石233との、コギング[mN・m]の違いを比較したグラフである。図23は、第1参考例の変形例における磁石33と、第2参考例における磁石233との、有効磁束[μWb]の違いを比較したグラフである。
図22、図23に示すように、第1参考例の変形例と比較して、第2参考例のコギングが抑制されるとともに、有効磁束が高められることが確認できる。
(第2参考例の第1変形例)
次に、図24に基づいて、第2参考例の第1変形例について説明する。
図24は、第2参考例の第1変形例におけるステータ8及びロータ209を軸方向からみた平面図であって、前述の第2参考例の図19に対応している。
同図に示すように、突極235の凸部291は、軸方向に直交する断面が略半円形状となるように形成されている。一方、磁石233の凹部292は、凸部291の形状に対応するように軸方向に直交する断面が略半円形状となるように形成されている。
このように構成することで、凹凸嵌合部290による嵌合面積(凸部291と凹部292との接触面積)を、前述の第2参考例と比較して増大することができる。このため、突極235と磁石233との凹凸嵌合部290を介した接合強度を高めることができる。
また、凸部291を軸方向に直交する断面で略半円状に形成することにより、凸部291の周方向先端に向かうに従って、凸部291の径方向の幅が小さくなる。このため、凹部292を形成した場合であっても、磁石233の体積をできる限り大きくすることができ、この分、磁石233の有効磁束を高めることができる。
(第2参考例の第2変形例)
図25は、第2参考例の第2変形例におけるステータ8及びロータ209を軸方向からみた平面図であって、前述の第2参考例の図19に対応している。
同図に示すように、突極235の凸部291は、軸方向に直交する断面が略三角形状となるように形成されている。一方、磁石233の凹部292は、凸部291の形状に対応するように軸方向に直交する断面が略三角形状となるように形成されている。
このように形成した場合であっても、前述の第2参考例の第1変形例と同様の効果を奏する。
(第2参考例の第3変形例)
図26は、第2参考例の第3変形例におけるステータ8及びロータ209を軸方向からみた平面図であって、前述の第2参考例の図19に対応している。
同図に示すように、第2参考例と第2参考例の第3変形例との相違点は、第2参考例の凸部291及び凹部292は、突極235の2つの対向面235s及び磁石233の対向面233uにそれぞれ1つずつ形成されているのに対し、第2参考例の第3変形例の凸部291及び凹部292は、突極235の2つの対向面235s及び磁石233の対向面233uにそれぞれ2つずつ形成されている点にある。
各凸部291及び凹部292は、それぞれ径方向に並んで配置されている。このように構成することで、凹凸嵌合部290による嵌合面積(凸部291と凹部292との接触面積)を、前述の第2参考例と比較して増大することができる。このため、突極235と磁石233との凹凸嵌合部290を介した接合強度を高めることができる。
(第2参考例の第4変形例)
図27は、第2参考例の第4変形例におけるロータコア232の斜視図である。
同図に示すように、第2参考例の第4変形例において、ロータコア232の突極235の対向面235sには、軸方向両端部のみに、凸部291が設けられている。換言すれば、ロータコア232の突極235の対向面235sには、軸方向中央の大部分に凸部291が設けられていない。
ここで、ロータコア232は、複数の金属板を軸方向に積層することにより形成されているので、軸方向両端に積層される所望の金属板のみに、凸部291が形成されている。すなわち、ロータコア232を構成する複数の金属板は、突極235に凸部291が形成されていない複数の第1金属板232aと、積層された第1金属板232aの軸方向最外側に配置され、突極235に凸部291が形成されている複数の第2金属板232bと、からなる。
したがって、上述の第2参考例の第4変形例によれば、前述の第2参考例と同様の効果に加え、凹凸嵌合部290を形成する箇所を最小限に抑え、ロータコア232の構造を簡素化できる。
また、突極235の軸方向両端部のみに凸部291が設けられているので、磁石233(図27においては不図示)の軸方向中央の大部分に、凸部291に嵌合させるための凹部292(図27においては不図示)を形成する必要がない。すなわち、磁石233は、磁束の通りやすい軸方向中央の大部分の体積を大きく設定できる。このため、磁石233の有効磁束をさらに増加させることができる。
なお、第2参考例、及びこの第2参考例の第1~第4の変形例においても、第1参考例と同様に、ロータコア232を、例えば、軟磁性粉を加圧成形することにより形成してもよい。
また、上述の第2参考例、及びこの第2参考例の第1~第4の変形例では、ロータコア232の突極235に凸部291を設け、磁石233に凸部291に嵌合する凹部292を設けた場合について説明した。しかしながら、これに限られるものではなく、ロータコア232の突極235に凹部292を設け、磁石233に凸部291を設けてもよい。ここで、突極235の周方向の突極幅は、約5mm程度に設定される場合がある。このように突極235の周方向の突極幅が小さい場合、突極235に凸部291を設けることが望ましい。このように構成することで、突極235の耐久性を向上できる上、突極35への磁束の通りを向上できる。
施形態)
次に、図28~図31に基づいて、この発明の施形態について説明する。
図28は、本発明の施形態におけるステータ8及びロータ309を軸方向からみた平面図であって、前述の第1参考例の図3に対応している。
同図に示すように、前述の第1参考例と本施形態との相違点は、前述の第1参考例のロータコア32における突極35の径方向外側の端部35tの形状と、本施形態のロータコア332における突極335の径方向外側の端部335tの形状とが異なる点にある。以下、詳述する。
図29は、図28のロータ309を拡大した図である。
同図に示すように、突極335の径方向外側の端部335tには、周方向略中央に、溝部391が軸方向全体に渡って形成されている。また、溝部391は、径方向内側に向かうに従って周方向の溝幅が徐々に狭くなるように、略V溝状に形成されている。さらに、溝部391の径方向の溝深さH1は、溝部391の底部391aが、突極335を挟んで両側に位置する2つの磁石33の端部33sにおける径方向外側の外周面の角部33k同士を結ぶ直線L1よりも径方向内側に位置するように設定されている。
このように、突極335の端部335tに溝部391を形成することで、突極335の端部335tの全体でみたとき、この端部335tとステータ8のティース22(鍔部102)との間隔を不均一にすることができる。すなわち、突極335の端部335tとティース22との間の間隔は、溝部391が形成されている箇所では大きくなるが、溝部391が形成されていない箇所では小さくなる。この結果、ロータ309の回転中に突極335がティース22間を通過する前後でティース22(鍔部102)に生じる磁束密度の急激な上昇を抑制できる。このため、ロータ309の急激なトルク変動を低減でき、トルクリップルを低下させることができる。
図30は、縦軸をティース22の磁束密度[T]とし、横軸をロータ309の回転角[deg]としたときの磁束密度の変化を示すグラフであって、(a)は、周方向に隣接するティース22間(スロット19)を突極335の端部335tが跨る直前を示し、(b)は、周方向に隣接するティース22間(スロット19)を突極335の端部335tが跨いだ後を示す。そして、前述の第1参考例と本施形態とを比較している。
図30(a)、図30(b)に示すように、前述の第1参考例と比較して、本施形態では、ロータ309の回転に伴ってティース22(鍔部102)に生じる磁束密度の急激な上昇が抑制されていることが確認できる。
図31は、縦軸をロータ309のトルク[N・m]とし、横軸をロータ309の回転角[deg]としたときのトルク[N.m]の変化を示すグラフであり、前述の第1参考例のロータ9と本施形態のロータ309とを比較している。
同図に示すように、前述の第1参考例と比較して、本施形態のトルクの変動が抑制できていることが確認できる。
また、本施形態では、溝部391の径方向の溝深さH1は、溝部391の底部391aが、突極335を挟んで両側に位置する2つの磁石33の端部33sにおける径方向外側の外周面の角部33k同士を結ぶ直線L1よりも径方向内側に位置するように設定されている。
ここで、本施形態の溝部391の作用、効果についてより具体的に説明するために、その他の形状を参照しながら詳述する。
図32~図35は、その他の突極の形状の一例を示し、それぞれ(a)は、ロータの一部拡大図であり、(b)は、縦軸をロータのトルク[N・m]とし、横軸をロータの回転角[deg]としたときのトルク[N.m]の変化を示すグラフである。
例えば、図32(a)に示すように、突極335の端部335tに、周方向の溝幅が一様な軸方向からみて略U字状の溝部491を形成した場合、図32(b)に示すように、第1参考例と比較してトルクの変動が大きくなることが確認できる。
また、図33(a)に示すように、突極335の端部335tを、径方向外側に凸となるように軸方向からみて略円弧状に形成した場合、図33(b)に示すように、第1参考例と比較してトルクの変動が大きくなることが確認できる。
さらに、図34(a)に示すように、突極335の端部335tに、径方向内側に向かうに従って周方向の溝幅が徐々に狭くなるように溝部391を形成した場合であっても、この溝部391は、周方向に2つ並んで形成されている場合、図34(b)に示すように、第1参考例と比較してトルクの変動が大きくなることが確認できる。
また、図35(a)に示すように、突極335の端部335tに、3つの溝部391を形成した場合も同様で、図35(b)に示すように、第1参考例と比較してトルクの変動が大きくなることが確認できる。
(その他の実施形態)
なお、本発明は上述の実施形態に限られるものではなく、本発明の趣旨を逸脱しない範囲において、上述の実施形態に種々の変更を加えたものを含む。
例えば、上述の実施形態では、モータとして、ワイパーモータ1を例に挙げたが、本発明に係るモータは、ワイパーモータ1以外にも、車両に搭載される電装品(例えば、パワーウインドウ、サンルーフ、電動シート等)の駆動源となるものや、その他のさまざまな用途に使用することができる。
これ以外にも、本発明の主旨を逸脱しない限り、上記実施の形態で挙げた構成を取捨選択したり、他の構成に適宜変更したりすることが可能である。
1…ワイパーモータ(ブラシレスワイパーモータ)
2…モータ部(モータ)
8…ステータ
9,209,309…ロータ
20…ステータコア
21…コア部
22…ティース
24…コイル
31…シャフト
32,232,332…ロータコア
32b…外周面
33,233…磁石
33a…外周面
33c…周方向中間部(周方向の中間部)
33k…角部
33s…端部
35,235,335…突極
35s,235s…対向面(突極側対向面)
233u…対向面(磁石側対向面)
290…凹凸嵌合部
291…凸部(凹凸嵌合部)
292…凹部(凹凸嵌合部)
391…溝部
391a…底部
L1…直線

Claims (7)

  1. 環状のステータコア、及び前記ステータコアの内周面から径方向内側に向かって突出する複数のティースを有するステータと、
    前記ティースに巻回されるコイルと、
    前記ステータコアの径方向内側で回転軸線回りに回転するシャフトと、
    前記シャフトに固定され、前記回転軸線を径方向中心とするロータコアと、
    前記ロータコアの外周面に配置され、前記回転軸線回りの周方向両側の端部における前記径方向の厚さが、前記周方向の中間部における前記径方向の厚さよりも小さい磁石と、
    前記ロータコアの前記外周面の周方向で隣り合う前記磁石の間に、前記磁石の周方向の端部よりも径方向外側に向かって突出形成された突極と、
    を備え、
    前記突極の前記径方向外側の端部における周方向の幅寸法は、電気角で40°以下に設定されており、
    前記磁石の磁極数と前記ティースの数との比は、2:3に設定されており、
    前記突極の前記径方向外側の端面に、前記回転軸線方向に沿って溝部を1つ形成し、
    前記溝部は、径方向内側に向かうに従って周方向の幅が徐々に狭くなるように形成されており、
    前記周方向両側で前記磁石の端部に対向する前記突極の一対の突極側対向面は、互いに平行に形成されており、
    前記周方向における前記溝部の幅は、前記周方向における前記一対の突極側対向面の間の幅よりも小さい
    ことを特徴とするモータ。
  2. 前記周方向で前記突極側対向面と対向する前記磁石の磁石側対向面で、且つ前記径方向外側には、前記磁石の前記径方向外側の外周面に向かうに従って漸次前記突極から離間するように斜面が形成されており、
    前記斜面と前記突極とは非接触であり、
    前記溝部の溝深さは、前記溝部の底部の位置が、前記突極を挟んで両側に位置する前記磁石の前記周方向両側の端部における径方向外側の外周面側の角部同士を結ぶ直線よりも前記径方向内側で、且つ前記周方向で隣り合う2つの前記磁石に形成された前記斜面の前記径方向内側端の角部同士を結ぶ直線上、又は前記直線よりも前記径方向外側に位置するように設定されている
    ことを特徴とする請求項1に記載のモータ。
  3. 記突極には、前記突極側対向面、及び該突極側対向面と対向する前記磁石の磁石側対向面のそれぞれで、且つ前記突極の前記径方向外側の端部に対応する箇所を避けた位置に、前記突極と前記磁石とを嵌合させる凹凸嵌合部が設けられている
    ことを特徴とする請求項1又は請求項2に記載のモータ。
  4. 前記突極、及び前記磁石の前記回転軸線方向の中央部を避けた前記回転軸線方向の両端部のみに、それぞれ前記凹凸嵌合部が設けられている
    ことを特徴とする請求項に記載のモータ。
  5. 前記突極の前記径方向外側の端部における周方向の幅寸法は、電気角20°以上に設定されている
    ことを特徴とする請求項1から請求項4の何れか1項に記載のモータ。
  6. 前記磁石の着磁の配向はパラレル配向である
    ことを特徴とする請求項1から請求項の何れか1項に記載のモータ。
  7. 請求項1から請求項の何れか一項に示すモータを備えたことを特徴とするブラシレスワイパーモータ。
JP2018113644A 2017-07-20 2018-06-14 モータ及びブラシレスワイパーモータ Active JP7077153B2 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP18835497.1A EP3657637B1 (en) 2017-07-20 2018-06-26 Motor and brushless wiper motor
CN201880047701.7A CN110915106B (zh) 2017-07-20 2018-06-26 马达以及无刷雨刮器马达
US16/632,370 US11289960B2 (en) 2017-07-20 2018-06-26 Motor and brushless wiper motor
PCT/JP2018/024195 WO2019017161A1 (ja) 2017-07-20 2018-06-26 モータ及びブラシレスワイパーモータ

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017141167 2017-07-20
JP2017141167 2017-07-20

Publications (3)

Publication Number Publication Date
JP2019022430A JP2019022430A (ja) 2019-02-07
JP2019022430A5 JP2019022430A5 (ja) 2021-10-14
JP7077153B2 true JP7077153B2 (ja) 2022-05-30

Family

ID=65355159

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018113644A Active JP7077153B2 (ja) 2017-07-20 2018-06-14 モータ及びブラシレスワイパーモータ

Country Status (1)

Country Link
JP (1) JP7077153B2 (ja)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7389609B2 (ja) * 2019-10-25 2023-11-30 株式会社ミツバ モータ装置
JP7475482B2 (ja) * 2020-10-27 2024-04-26 三菱電機株式会社 回転電機および電動パワーステアリング装置

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004048970A (ja) 2002-07-16 2004-02-12 Meidensha Corp 永久磁石形回転電機
WO2007074036A1 (en) 2005-12-29 2007-07-05 Arcelik Anonim Sirketi An electric motor
JP2014155372A (ja) 2013-02-12 2014-08-25 Mitsubishi Electric Corp 表面磁石型回転子とその製造方法及び表面磁石型回転子を備えた永久磁石型回転電機並びに永久磁石型回転電機を用いた電動パワーステアリング装置
WO2014167645A1 (ja) 2013-04-09 2014-10-16 三菱電機株式会社 永久磁石型モータ及び電動パワーステアリング装置
WO2015011747A1 (ja) 2013-07-22 2015-01-29 三菱電機株式会社 永久磁石型モータ、及び電動パワーステアリング装置
JP2015122842A (ja) 2013-12-20 2015-07-02 ファナック株式会社 磁石を有する電動機の回転子、電動機、及び回転子の製造方法
JP2016042763A (ja) 2014-08-18 2016-03-31 日東電工株式会社 回転電機用永久磁石、回転電機用永久磁石の製造方法、回転電機及び回転電機の製造方法
JP2016063728A (ja) 2014-09-22 2016-04-25 株式会社ミツバ ブラシレスモータ

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004048970A (ja) 2002-07-16 2004-02-12 Meidensha Corp 永久磁石形回転電機
WO2007074036A1 (en) 2005-12-29 2007-07-05 Arcelik Anonim Sirketi An electric motor
JP2014155372A (ja) 2013-02-12 2014-08-25 Mitsubishi Electric Corp 表面磁石型回転子とその製造方法及び表面磁石型回転子を備えた永久磁石型回転電機並びに永久磁石型回転電機を用いた電動パワーステアリング装置
WO2014167645A1 (ja) 2013-04-09 2014-10-16 三菱電機株式会社 永久磁石型モータ及び電動パワーステアリング装置
WO2015011747A1 (ja) 2013-07-22 2015-01-29 三菱電機株式会社 永久磁石型モータ、及び電動パワーステアリング装置
JP2015122842A (ja) 2013-12-20 2015-07-02 ファナック株式会社 磁石を有する電動機の回転子、電動機、及び回転子の製造方法
JP2016042763A (ja) 2014-08-18 2016-03-31 日東電工株式会社 回転電機用永久磁石、回転電機用永久磁石の製造方法、回転電機及び回転電機の製造方法
JP2016063728A (ja) 2014-09-22 2016-04-25 株式会社ミツバ ブラシレスモータ

Also Published As

Publication number Publication date
JP2019022430A (ja) 2019-02-07

Similar Documents

Publication Publication Date Title
US11289960B2 (en) Motor and brushless wiper motor
JP6640621B2 (ja) 電動機用ロータ、およびブラシレスモータ
JP7077153B2 (ja) モータ及びブラシレスワイパーモータ
JP2010022088A (ja) 磁石回転型回転電機
JP7105624B2 (ja) モータ及びブラシレスワイパーモータ
JP6870989B2 (ja) ロータおよび電動モータ
WO2019198464A1 (ja) モータ及びブラシレスワイパーモータ
JP7080702B2 (ja) モータ及びブラシレスワイパーモータ
US20210384783A1 (en) Rotor, motor and brushless motor
JP7090014B2 (ja) ロータ、モータ、ブラシレスワイパーモータ及びロータの製造方法
JP2019193350A (ja) モータ、ブラシレスワイパーモータ、及びモータの駆動方法
JP7287825B2 (ja) モータ、及びワイパモータ
JP2018182999A (ja) ロータ及び電動モータ
WO2020100457A1 (ja) モータ及びブラシレスワイパーモータ
JP3790773B2 (ja) 永久磁石回転電機および自動車
JP2018183011A (ja) 電動モータ及びブラシレスモータ
JP6871051B2 (ja) 同期モータ及びブラシレスモータ
JP6655500B2 (ja) 電動モータ
EP3657637B1 (en) Motor and brushless wiper motor
JP2020115733A (ja) モータ及びブラシレスワイパーモータ
JP2023161742A (ja) 電動モータ
JP2023173172A (ja) 電動モータ
JP2022071593A (ja) ロータ、モータ及びブラシレスワイパーモータ
JP2023161321A (ja) 電動モータ
JP2020078148A (ja) ロータ、モータ及びブラシレスワイパーモータ

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20201204

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20201204

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210715

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20211116

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220105

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220510

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220518

R150 Certificate of patent or registration of utility model

Ref document number: 7077153

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150