JP7046554B2 - オレフィン重合用触媒およびエチレン系重合体の製造方法 - Google Patents

オレフィン重合用触媒およびエチレン系重合体の製造方法 Download PDF

Info

Publication number
JP7046554B2
JP7046554B2 JP2017197558A JP2017197558A JP7046554B2 JP 7046554 B2 JP7046554 B2 JP 7046554B2 JP 2017197558 A JP2017197558 A JP 2017197558A JP 2017197558 A JP2017197558 A JP 2017197558A JP 7046554 B2 JP7046554 B2 JP 7046554B2
Authority
JP
Japan
Prior art keywords
group
component
carbon atoms
atom
groups
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2017197558A
Other languages
English (en)
Other versions
JP2019070089A (ja
Inventor
恭行 原田
陽一 田中
雅貴 近藤
一輝 波戸
宏子 土谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Chemicals Inc
Prime Polymer Co Ltd
Original Assignee
Mitsui Chemicals Inc
Prime Polymer Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Chemicals Inc, Prime Polymer Co Ltd filed Critical Mitsui Chemicals Inc
Priority to JP2017197558A priority Critical patent/JP7046554B2/ja
Publication of JP2019070089A publication Critical patent/JP2019070089A/ja
Application granted granted Critical
Publication of JP7046554B2 publication Critical patent/JP7046554B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
  • Transition And Organic Metals Composition Catalysts For Addition Polymerization (AREA)

Description

本発明は、オレフィン重合用触媒およびこれを用いたエチレン系重合体の製造方法に関する。
オレフィン重合体は、様々な成形方法により成形され、多方面の用途に使用されている。例えば、食料品、液体物または日用雑貨などの包装に用いられるフィルムまたはシートには、エチレン系重合体の押出成形体が用いられている。成形方法または用途に応じて、オレフィン重合体に要求される特性は異なってくるが、例えば、Tダイ成形を行う際、高速においても安定的に成形が可能(高速成膜加工性)、ネックインが小さいなどの加工性能を有することが求められている。
高圧法ラジカル重合により製造される低密度ポリエチレン(LDPE)は、複雑な長鎖分岐構造を有しているため溶融張力が大きく、そのためにネックインが小さいなど成形加工性が良いため、さまざまな用途に供されている。しかしながら、成形体の引張強度、引裂強度または耐衝撃強度などの機械的強度は低く、またTダイ成形における高速成膜加工性に劣るといった問題点も残されている。
チーグラー触媒またはメタロセン触媒を使用して製造されるエチレン系重合体は、LDPEとは対照的に、その分子構造に由来して、引張強度、引裂強度または耐衝撃強度が高く、そのため機械的強度が必要とされる用途に供されているが、溶融張力が小さく成形加工性に劣るといった問題点がある。
また、長鎖分岐を有するエチレン系重合体を製造する方法として、ハーフチタノセン錯体触媒を用いた方法もある。ハーフチタノセン錯体触媒を用いたエチレン系重合体を製造する方法として、例えば、Cp-ホスフィンイミンチタノセン担持触媒を用いた方法(特許文献1)、フェノキシイミン配位子を有するI V 族遷移金属化合物とCp-ホスフィンイミン錯体との共担持触媒を用いた方法(特許文献2)、Cp-ホスフィンイミン錯体担持触媒を用いた気相重合による方法(特許文献3)が提案されている。
特開平11-071420号公報 特開2006-169521号公報 特表2015-520276号公報
しかし、特許文献1には長鎖分岐を有する重合体に関する記載はなく、特許文献2は、分子量分布と組成分布の制御を目的にした方法を開示するものであり、長鎖分岐を有する重合体に関しては言及していない。特許文献3は、長鎖分岐を有する重合体に関して言及しているが、得られる重合体の長鎖分岐量が十分に高いとは言えなかった。以上のとおり、従来のハーフチタノセン錯体触媒を用いた方法では、長鎖分岐が多く導入されたエチレン系重合体を製造することができないのが実情であった。
本発明は、従来技術における上記の問題点に鑑みてなされたものであって、長鎖分岐が多く導入されたエチレン系重合体を製造することができるエチレン重合用触媒、およびこれを用いたエチレン系重合体の製造方法を提供することを目的とする。
本発明者らは、上記課題を解決すべく鋭意研究したところ、ハーフチタノセン錯体と架橋ビスCp型メタロセンとを組み合わせて用いることによって、上記課題を解決できることを見出し、本発明を完成させるに至った。
本発明の要旨は以下のとおりである。
[1]
下記成分(A)、成分(B)および成分(C)を含んでなるオレフィン重合用触媒。
成分(A):下記一般式[1]または[2]で表される遷移金属化合物。
Figure 0007046554000001
Figure 0007046554000002
(一般式[1]および[2]中、Mは、周期表第4族遷移金属原子であり、
nは、Mの価数を満たす1~4の整数であり、
Xは、水素原子、ハロゲン原子、炭化水素基、アニオン配位子または孤立電子対で配位可能な中性配位子であり、該アニオン配位子が、ハロゲン含有基、ケイ素含有基、酸素含有基、硫黄含有基、窒素含有基、リン含有基、ホウ素含有基、アルミニウム含有基または共役ジエン系誘導体基であり、nが2以上の場合は、複数存在するXで示される基は互いに同一でも異なっていてもよく、互いに結合して環を形成してもよく、
Cpは、置換基を有していてもよい、シクロペンタジエニル型配位子であり、前記置換基は、隣接した他の置換基と、互いに結合して置換基を有していてもよい環を形成してもよく、
Nは、窒素原子であり、
Pは、リン原子であり、
1~R3は、それぞれ独立に、水素原子、炭素数1~40の炭化水素基、ハロゲン含有基、ケイ素含有基、酸素含有基、窒素含有基または硫黄含有基であり、それぞれ同一でも異なっていてもよく、R1~R3のうち隣接した置換基同士は、互いに結合して置換基を有していてもよい単環またはビシクロ環を形成してもよい。)
成分(B):下記一般式[3]で表される遷移金属化合物
Figure 0007046554000003
(一般式[2]中、Mは、周期表第4族遷移金属原子であり、
nは、Mの価数を満たす1~4の整数であり、
mは、1~2の整数であり、
Xは、水素原子、ハロゲン原子、炭化水素基、アニオン配位子または孤立電子対で配位可能な中性配位子であり、該アニオン配位子が、ハロゲン含有基、ケイ素含有基、酸素含有基、硫黄含有基、窒素含有基、リン含有基、ホウ素含有基、アルミニウム含有基または共役ジエン系誘導体基であり、nが2以上の場合は、複数存在するXで示される基は互いに同一でも異なっていてもよく、互いに結合して環を形成してもよく、
Qは、周期表第14族原子であり、
4~R13は、それぞれ独立に、水素原子、炭素数1~40の炭化水素基、ハロゲン含有基、ケイ素含有基、酸素含有基、窒素含有基または硫黄含有基であり、それぞれ同一でも異なっていてもよく、R4~R7およびR8~R11のうち隣接した置換基同士は、互いに結合して置換基を有していてもよい環を形成してもよく、R12およびR13は、互いに結合してQを含む環を形成してもよく、該環は置換基を有していてもよい。)
成分(C):(c-1)下記一般式[4]、[5]または[6]で表される有機金属化合物、(c-2)有機アルミニウムオキシ化合物、ならびに(c-3)成分(A)および成分(B)と反応してイオン対を形成する化合物よりなる群から選ばれる少なくとも1種の化合物。
RamAl(ORb)n Hp Xq ・・・[4]
(一般式[4]中、Ra およびRb は、炭素原子数が1~15の炭化水素基を示し、互いに同一でも異なっていてもよく、Xはハロゲン原子を示し、mは0<m≦3、nは0≦n<3、pは0≦p<3、qは0≦q<3の数であり、かつm+n+p+q=3である。)
Ma AlRa4 ・・・[5]
(一般式[5]中、Ma はLi、NaまたはKを示し、Ra は炭素原子数が1~15の炭化水素基を示す。)
RarMbRbs Xt ・・・[6]
(一般式[6]中、Ra およびRb は、炭素原子数が1~15の炭化水素基を示し、互いに同一でも異なっていてもよく、Mb は、Mg、ZnまたはCdを示し、Xはハロゲン原子を示し、rは0<r≦2、sは0≦s≦1、tは0≦t≦1であり、かつr+s+t=2である。)
[2]
前記一般式[1]および[2]において、
Cpが、それぞれ置換基を有していてもよい、シクロペンタジエニル型配位子またはインデニル型配位子であり、
Mが、チタン原子であり、
Xが、それぞれ独立に、水素原子、ハロゲン原子、炭素数1~20の炭化水素基、ケイ素含有基、酸素含有基または共役ジエン系二価誘導体基であり、
1~R3が、それぞれ独立に、炭素数1~20の炭化水素基、炭素数1~20の酸素含有基または炭素数1~20の窒素含有基であり、それぞれ同一でも異なっていてもよく、
前記一般式[3]において、
Mが、ジルコニウム原子であり、
Xが、それぞれ独立に、水素原子、ハロゲン原子、炭素数1~20の炭化水素基、ケイ素含有基または酸素含有基であり、
Qが、炭素原子またはケイ素原子であり、
4~R13が、それぞれ独立に、水素原子、炭素数1~20の炭化水素基、ケイ素含有基、酸素含有基、窒素含有基または硫黄含有基であることを特徴とする前記[1]に記載のオレフィン重合用触媒。
[3]
前記一般式[1]および[2]において、
1~R3が、それぞれ独立に、炭素数1~20の炭化水素基または炭素数1~20の窒素含有基であり、それぞれ同一でも異なっていてもよく、
前記一般式[3]において、
mが、1であり、
Qが、ケイ素原子であり、
4~R13が、それぞれ独立に、水素原子、炭素数1~20の炭化水素基、炭素数1~20のケイ素含有基、炭素数1~20の酸素含有基または炭素数1~20の窒素含有基であることを特徴とする前記[2]に記載のオレフィン重合用触媒。
[4]
固体状担体(S)、上記成分(A)、成分(B)および上記成分(C)より形成される固体状触媒成分(X)からなる前記[1]から[3]のいずれかに記載のオレフィン重合用触媒。
[5]
成分(C)が(c-2)有機アルミニウムオキシ化合物であり、固体状担体(S)が多孔質酸化物であることを特徴とする前記[4]に記載のオレフィン重合用触媒。
[6]
前記[1]から[5]のいずれかに記載のオレフィン重合用触媒の存在下、エチレンを単独で、またはエチレンと炭素数3以上20以下のオレフィンとを重合することを特徴とするエチレン系重合体の製造方法。
[7]
エチレン系重合体が、エチレンと炭素数4以上20以下のα-オレフィンとの共重合体であって、下記要件(1)~(3)を満たすことを特徴とする、前記[6]に記載のエチレン系重合体の製造方法。
(1)190℃における2.16kg荷重でのメルトフローレート(MFR)が0.
1g/10分以上30g/10分以下である;
(2)密度が875kg/m3以上945kg/m3以下である;
(3)135℃デカリン中で測定した極限粘度〔[η](dl/g)〕と、GPC-粘度検出器法(GPC-VISCO)により測定された重量平均分子量の0.776乗(Mw0.776)の比、[η]/Mw0.776が、0.90×10-4以上2.10×10-4以下である。
本発明のオレフィン重合用触媒およびエチレン系重合体の製造方法を用いれば、長鎖分岐が多く導入されたエチレン系重合体を製造することができる。
[オレフィン重合用触媒]
本発明のオレフィン重合用触媒は、下記成分(A)、成分(B)および成分(C)を含んでなる。本発明のオレフィン重合用触媒は、さらに固体状担体(S)を含むことができる。
<成分(A)>
成分(A)は、下記一般式[1]または[2]で表される遷移金属化合物である。
Figure 0007046554000004
Figure 0007046554000005
前記式[1]および[2]において、Mは周期表第4族遷移金属原子であり、具体的にはチタン原子、ジルコニウム原子、ハフニウム原子であり、好ましくはチタン原子である。
前記式[1]および[2]において、nは、前記遷移金属Mの価数を満たす1~4の整数であり、好ましくは1または2である。
前記式[1]および[2]において、Xは、水素原子、ハロゲン原子、炭化水素基、アニオン配位子または孤立電子対で配位可能な中性配位子であり、前記アニオン配位子は、ハロゲン含有基、ケイ素含有基、酸素含有基、硫黄含有基、窒素含有基、リン含有基、ホウ素含有基、アルミニウム含有基または共役ジエン系誘導体基である。
Xは、好ましくは水素原子、ハロゲン原子、炭素数1~20の炭化水素基、ケイ素含有基、酸素含有基または共役ジエン系誘導体基である。
nが2以上の場合は、複数存在するXは互いに同一でも異なっていてもよく、互いに結合して環を形成してもよい。また、前記環が複数存在する場合には、前記環は互いに同一であっても異なっていてもよい。
前記ハロゲン原子としては、フッ素、塩素、臭素、ヨウ素などが挙げられる、好ましくは塩素または臭素である。
前記炭化水素基としては、例えば、
メチル基、エチル基、1-プロピル基、1-ブチル基、1-ペンチル基、1-ヘキシル基、1-ヘプチル基、1-オクチル基、iso-プロピル基、sec-ブチル基(ブタン-2-イル基)、tert-ブチル基(2-メチルプロパン-2-イル基)、iso-ブチル基(2-メチルプロピル基)、ペンタン-2-イル基、2-メチルブチル基、iso-ペンチル基(3-メチルブチル基)、ネオペンチル基(2,2-ジメチルプロピル基)、シアミル基(1,2-ジメチルプロピル基)、iso-ヘキシル基(4-メチルペンチル基)、2,2-ジメチルブチル基、2,3-ジメチルブチル基、3,3-ジメチルブチル基、テキシル基(2,3-ジメチルブタ-2-イル基)、4,4-ジメチルペンチル基などの直鎖状または分岐状のアルキル基;
ビニル基、アリル基、プロペニル基(プロパ-1-エン-1-イル基)、iso-プロペニル基(プロパ-1-エン-2-イル基)、アレニル基(プロパ-1,2-ジエン-1-イル基)、ブタ-3-エン-1-イル基、クロチル基(ブタ-2-エン-1-イル基)、ブタ-3-エン-2-イル基、メタリル基(2-メチルアリル基)、ブタ-1,3-ジエニル基、ペンタ-4-エン-1-イル基、ペンタ-3-エン-1-イル基、ペンタ-2-エン-1-イル基、iso-ペンテニル基(3-メチルブタ-3-エン-1-イル基)、2-メチルブタ-3-エン-1-イル基、ペンタ-4-エン-2-イル基、プレニル基(3-メチルブタ-2-エン-1-イル基)などの直鎖状または分岐状のアルケニル基もしくは不飽和二重結合含有基;
エチニル基、プロパ-2-イン-1-イル基、プロパルギル基(プロパ-1-イン-1-イル基)などの直鎖状または分岐状のアルキニル基もしくは不飽和三重結合含有基;
ベンジル基、2-メチルベンジル基、4-メチルベンジル基、2,4,6-トリメチルベンジル基、3,5-ジメチルベンジル基、クミニル基(4-iso-プロピルベンジル基)、2,4,6-トリ-iso-プロピルベンジル基、4-tert-ブチルベンジル基、3,5-ジ-tert-ブチルベンジル基、1-フェニルエチル基、ベンズヒドリル基(ジフェニルメチル基)などの芳香族含有直鎖状または分岐状のアルキル基および不飽和二重結合含有基;
シクロプロピル基、シクロブチル基、シクロペンチル基、シクロヘキシル基、シクロヘプチル基、シクロヘプタトリエニル基、ノルボルニル基、ノルボルネニル基、1-アダマンチル基、2-アダマンチル基などの環状飽和炭化水素基;
フェニル基、トリル基(メチルフェニル基)、キシリル基(ジメチルフェニル基)、メシチル基(2,4,6-トリメチルフェニル基)、クメニル基(iso-プロピルフェニル基)、ジュリル基(2,3,5,6-テトラメチルフェニル基)、2,6-ジ-iso-プロピルフェニル基、2,4,6-トリ-iso-プロピルフェニル基、4-tert-ブチルフェニル基、3,5-ジ-tert-ブチルフェニル基、ナフチル基、ビフェニル基、terフェニル基、ビナフチル基、アセナフタレニル基、フェナントリル基、アントラセニル基、ピレニル基、フェロセニル基などの芳香族置換基
が挙げられる。
前記炭化水素基の中でも、メチル基、iso-ブチル基、ネオペンチル基、シアミル基、ベンジル基、フェニル基、トリル基、キシリル基、メシチル基、クメニル基が好ましい。
前記ハロゲン含有基としては、例えば、フルオロメチル基、トリフルオロメチル基、トリクロロメチル基、ペンタフルオロエチル基、2,2,2-トリフルオロエチル基、フルオロフェニル基、ジフルオロフェニル基、トリフルオロフェニル基、テトラフルオロフェニル基、ペンタフルオロフェニル基、トリフルオロメチルフェニル基、ビストリフルオロメチルフェニル基、ヘキサクロロアンチモン酸アニオンが挙げられる。
前記ハロゲン含有基の中でも、ペンタフルオロフェニル基が好ましい。
前記ケイ素含有基としては、例えば、トリメチルシリル基、トリエチルシリル基、トリ-iso-プロピルシリル基、ジフェニルメチルシリル基、tert-ブチルジメチルシリル基、tert-ブチルジフェニルシリル基、トリフェニルシリル基、トリス(トリメチルシリル)シリル基、トリメチルシリルメチル基などが挙げられる。
前記ケイ素含有基の中でも、トリメチルシリルメチル基が好ましい。
前記酸素含有基としては、例えば、メトキシ基、エトキシ基、n-プロポキシ基、iso-プロポキシ基、アリルオキシ基、n-ブトキシ基、sec-ブトキシ基、iso-ブトキシ基、tert-ブトキシ基、ベンジルオキシ基、メトキシメトキシ基、フェノキシ基、2,6-ジメチルフェノキシ基、2,6-ジ-iso-プロピルフェノキシ基、2,6-ジ-tert-ブチルフェノキシ基、2,4,6-トリメチルフェノキシ基、2,4,6-トリ-iso-プロピルフェノキシ基、アセトキシ基、ピバロイルオキシ基、ベンゾイルオキシ基、トリフルオロアセトキシ基、過塩素酸アニオン、過ヨウ素酸アニオンが挙げられる。
前記酸素含有基の中でも、メトキシ基、エトキシ基、iso-プロポキシ基、tert-ブトキシ基が好ましい。
前記硫黄含有基としては、例えば、メシル基(メタンスルフォニル基)、フェニルスルホニル基、トシル基(p-トルエンスルホニル基)、トリフリル基(トリフルオロメタンスルホニル基)、ノナフリル基(ノナフルオロブタンスルホニル基)、メシラート基(メタンスルホナート基)、トシラート基(p-トルエンスルホナート基)、トリフラート基(トリフルオロメタンスルホナート基)、ノナフラート基(ノナフルオロブタンスルホナート基)が挙げられる。
前記硫黄含有基の中でも、トリフラート(トリフルオロメタンスルホナート)が好ましい。
前記窒素含有基としては、例えば、アミノ基、シアノ基、メチルアミノ基、ジメチルアミノ基、エチルアミノ基、ジエチルアミノ基、アリルアミノ基、ジアリルアミノ基、ベンジルアミノ基、ジベンジルアミノ基、ピロリジニル基、ピペリジニル基、モルホリル基、ピロリル基、ビストリフリルイミド基などが挙げられる。
前記窒素含有基の中でも、ジメチルアミノ基、ジエチルアミノ基、ピロリジニル基、ピロリル基、ビストリフリルイミド基が好ましい。
前記リン含有基としては、例えば、ヘキサフルオロリン酸アニオンが挙げられる。
前記ホウ素含有基としては、例えば、テトラフルオロホウ酸アニオン、テトラキス(ペンタフルオロフェニル)ホウ酸アニオン、(メチル)(トリス(ペンタフルオロフェニル))ホウ酸アニオン、(ベンジル)(トリス(ペンタフルオロフェニル))ホウ酸アニオン、テトラキス((3,5-ビストリフルオロメチル)フェニル)ホウ酸アニオン、BR4(Rはそれぞれ独立に水素、アルキル基、置換基を有してもよいアリール基またはハロゲン原子等を示す。)で表される基が挙げられる。
前記アルミニウム含有基としては、例えば、
Figure 0007046554000006
で表される四員環、あるいは
Figure 0007046554000007
で表される四員環
(Mは、前記一般式(1)中のMを表す。)
を形成可能な、AlR4(Rは水素、アルキル基、置換基を有してもよいアリール基またはハロゲン原子等を示す)で表される基が挙げられる。
前記共役ジエン系誘導体基としては、例えば、1,3-ブタジエニル基、イソプレニル基(2-メチル-1,3-ブタジエニル基)、ピペリレニル基(1,3-ペンタジエニル基)、2,4-ヘキサジエニル基、1,4-ジフェニル-1,3-ペンタジエニル基、シクロペンタジエニル基など、メタロシクロペンテン基が挙げられる。
孤立電子対で配位可能な中性配位子としては、例えば、ジエチルエーテル、テトラヒドロフラン、ジオキサン、1,2-ジメトキシエタンなどのエーテル類、トリエチルアミン、ジエチルアミンなどのアミン類、ピリジン、ピコリン、ルチジン、オキサゾリン、オキサゾール、チアゾール、イミダゾール、チオフェンなどの複素環式化合物、トリフェニルホスフィン、トリシクロヘキシルホスフィン、トリ-tert-ブチルホスフィンなどの有機リン化合物が挙げられる。
前記式[1]および[2]において、Cpは、置換基を有していてもよい、シクロペンタジエニル型配位子であり、前記置換基は、隣接した他の置換基と、互いに結合して置換基を有していてもよい環を形成してもよい。前記シクロペンタジエニル型配位子は、π型結合によって金属に結合している5員環炭素環を有する置換配位子であり、置換シクロペンタジエニル配位子、置換テトラヒドロインデニル配位子、置換オクタヒドロフルオレニル配位子、置換ヒドロアズレニル配位子、置換ペンタヒドロアズレニル配位子、置換ジヒドロシクロペンテノアニュレン配位子、置換シクロペンテノピロール配位子、置換シクロペンテノチオフェン配位子および置換シクロペンテノジチオフェン配位子等の置換シクロペンタジエニル型配位子、置換インデニル配位子、置換テトラヒドロインデニル配位子、置換ベンゾインデニル配位子、置換ジヒドロインダセニル配位子、置換インデノピロール配位子、置換インデノインドール配位子および置換インデノチオフェン等の置換インデニル型配位子、ならびに置換フルオレニル配位子等を含む。シクロペンタジエニル型配位子としては、置換シクロペンタジエニル型配位子および置換インデニル型配位子が好ましく、より好ましくは、置換シクロペンタジエニル配位子、置換ジヒドロシクロペンテノアニュレン配位子、置換シクロペンテノチオフェン配位子、置換シクロペンテノジチオフェン配位子、置換インデニル配位子である。
前記式[1]および[2]において、Nは窒素原子であり、前記式[2]においてPはリン原子である。
前記式[1]におけるR1およびR2、式[2]におけるR1~R3、ならびにシクロペンタジエニル型配位子の置換基は、それぞれ独立に、水素原子、炭素数1~40の炭化水素基、ハロゲン含有基、ケイ素含有基、酸素含有基、窒素含有基または硫黄含有基である。R1~R3は、好ましくは、炭素数1~20の炭化水素基、炭素数1~20の酸素含有基または炭素数1~20の窒素含有基であり、より好ましくは、炭素数1~20の炭化水素基または炭素数1~20の窒素含有基である。R1~R3は、それぞれ同一でも異なっていてもよい。
前記炭素数1~40の炭化水素基としては、炭素数1~20の炭化水素基が挙げられ、より具体的な例としては、上述したXの例として挙げられた炭化水素基の具体例が挙げられる。
前記炭素数1~40の炭化水素基は、好ましくは、炭素数1~20の炭化水素基(但し、芳香族炭化水素基を除く)または炭素数6~40の芳香族炭化水素基である。前記の炭素数1~20の炭化水素基は、好ましくは炭素数1~20の脂肪族または脂環族の炭化水素基である。炭素数1~20の炭化水素基には、アリールアルキル基の様な芳香族構造を有する置換基も含まれる。
前記炭素数1~40の炭化水素基としては、例えば、
メチル基、エチル基、1-プロピル基、1-ブチル基、1-ペンチル基、1-ヘキシル基、1-ヘプチル基、1-オクチル基、1-ノニル基、1-デカニル基、1-ウンデカニル基、1-ドデカニル基、1-エイコサニル基、iso-プロピル基、sec-ブチル基、tert-ブチル基、iso-ブチル基、ペンタン-2-イル基、2-メチルブチル基、iso-ペンチル基、ネオペンチル基、tert-ペンチル基(1,1-ジメチルプロピル基)、シアミル基、ペンタン-3-イル基、2-メチルペンチル基、3-メチルペンチル基、iso-ヘキシル基、1,1-ジメチルブチル基(2-メチルペンタン-2-イル基)、3-メチルペンタン-2-イル基、4-メチルペンタン-2-イル基、2,2-ジメチルブチル基、2,3-ジメチルブチル基、3,3-ジメチルブチル基、テキシル基、3-メチルペンタン-3-イル基、3,3-ジメチルブタ-2-イル基、ヘキサン-3-イル基、2-メチルペンタン-3-イル基、ヘプタン-4-イル基、2,4-ジメチルペンタン-2-イル基、3-エチルペンタン-3-イル基、4,4-ジメチルペンチル基、4-メチルヘプタン-4-イル基、4-プロピルヘプタン-4-イル基、2,3,3-トリメチルブタン-2-イル基、2,4,4-トリメチルペンタン-2-イル基などの炭素原子数が1~40の直鎖状または分岐状のアルキル基;
ビニル基、アリル基、プロペニル基、iso-プロペニル基、アレニル基、ブタ-3-エン-1-イル基、クロチル基、ブタ-3-エン-2-イル基、メタリル基、ブタ-1,3-ジエニル基、ペンタ-4-エン-1-イル基、ペンタ-3-エン-1-イル基、ペンタ-2-エン-1-イル基、iso-ペンテニル基、2-メチルブタ-3-エン-1-イル基、ペンタ-4-エン-2-イル基、プレニル基、2-メチル-ブタ-2-エン-1-イル基、ペンタ-3-エン-2-イル基、2-メチル-ブタ-3-エン-2-イル基、ペンタ-1-エン-3-イル基、ペンタ-2,4-ジエン-1-イル基、ペンタ-1,3-ジエン-1-イル基、ペンタ-1,4-ジエン-3-イル基、iso-プレニル基(2-メチル-ブタ-1,3-ジエン-1-イル基)、ペンタ-2,4-ジエン-2-イル基、ヘキサ-5-エン-1-イル基、ヘキサ-4-エン-1-イル基、ヘキサ-3-エン-1-イル基、ヘキサ-2-エン-1-イル基、4-メチル-ペンタ-4-エン-1-イル基、3-メチル-ペンタ-4-エン-1-イル基、2-メチル-ペンタ-4-エン-1-イル基、ヘキサ-5-エン-2-イル基、4-メチル-ペンタ-3-エン-1-イル基、3-メチル-ペンタ-3-エン-1-イル基、2,3-ジメチル-ブタ-2-エン-1-イル基、2-メチルペンタ-4-エン-2-イル基、3-エチルペンタ-1-エン-3-イル基、ヘキサ-3,5-ジエン-1-イル基、ヘキサ-2,4-ジエン-1-イル基、4-メチルペンタ-1,3-ジエン-1-イル基、2,3-ジメチル-ブタ-1,3-ジエン-1-イル基、ヘキサ-1,3,5-トリエン-1-イル基、2-(シクロペンタジエニル)プロパン-2-イル基、2-(シクロペンタジエニル)エチル基などの炭素原子数が2~40の直鎖状または分岐状のアルケニル基もしくは不飽和二重結合含有基;
エチニル基、プロパ-2-イン-1-イル基、プロパルギル基、ブタ-1-イン-1-イル基、ブタ-2-イン-1-イル基、ブタ-3-イン-1-イル基、ペンタ-1-イン-1-イル基、ペンタ-2-イン-1-イル基、ペンタ-3-イン-1-イル基、ペンタ-4-イン-1-イル基、3-メチル-ブタ-1-イン-1-イル基、ペンタ-3-イン-2-イル基、2-メチル-ブタ-3-イン-1-イル基、ペンタ-4-イン-2-イル基、ヘキサ-1-イン-1-イル基、3,3-ジメチル-ブタ-1-イン-1-イル基、2-メチル-ペンタ-3-イン-2-イル基、2,2-ジメチル-ブタ-3-イン-1-イル基、ヘキサ-4-イン-1-イル基、ヘキサ-5-イン-1-イル基などの炭素原子数が2~40の直鎖状または分岐状のアルキニル基もしくは不飽和三重結合含有基;
ベンジル基、2-メチルベンジル基、4-メチルベンジル基、2,4,6-トリメチルベンジル基、3,5-ジメチルベンジル基、クミニル基、2,4,6-トリ-iso-プロピルベンジル基、4-tert-ブチルベンジル基、3,5-ジ-tert-ブチルベンジル基、1-フェニルエチル基、ベンズヒドリル基、クミル基(2-フェニルプロパン-2-イル基)、2-(4-メチルフェニル)プロパン-2-イル基、2-(3,5-ジメチルフェニル)プロパン-2-イル基、2-(4-tert-ブチルフェニル)プロパン-2-イル基、2-(3,5-ジ-tert-ブチルフェニル)プロパン-2-イル基、3-フェニルペンタン-3-イル基、4-フェニルヘプタ-1,6-ジエン-4-イル基、1,2,3-トリフェニルプロパン-2-イル基、1,1-ジフェニルエチル基、1,1-ジフェニルプロピル基、1,1-ジフェニル-ブタ-3-エン-1-イル基、1,1,2-トリフェニルエチル基、トリチル基(トリフェニルメチル基)、トリ-(4-メチルフェニル)メチル基、2-フェニルエチル基、スチリル基(2-フェニルビニル基)、2-(2-メチルフェニル)エチル基、2-(4-メチルフェニル)エチル基、2-(2,4,6-トリメチルフェニル)エチル基、2-(3,5-ジメチルフェニル)エチル基、2-(2,4,6-トリ-iso-プロピルフェニル)エチル基、2-(4-tert-ブチルフェニル)エチル基、2-(3,5-ジ-tert-ブチルフェニル)エチル基、2-メチル-1-フェニルプロパン-2-イル基、3-フェニルプロピル基、シンナミル基(3-フェニルアリル基)、ネオフィル基(2-メチル-2-フェニルプロピル基)、3-メチル-3-フェニルブチル基、2-メチル-4-フェニルブタン-2-イル基、シクロペンタジエニルジフェニルメチル基、2-(1-インデニル)プロパン-2-イル基、(1-インデニル)ジフェニルメチル基、2-(1-インデニル)エチル基、2-(テトラヒドロ-1-インダセニル)プロパン-2-イル基、(テトラヒドロ-1-インダセニル)ジフェニルメチル基、2-(テトラヒドロ-1-インダセニル)エチル基、2-(1-ベンゾインデニル)プロパン-2-イル基、(1-ベンゾインデニル)ジフェニルメチル基、2-(1-ベンゾインデニル)エチル基、2-(9-フルオレニル)プロパン-2-イル基、(9-フルオレニル)ジフェニルメチル基、2-(9-フルオレニル)エチル基、2-(1-アズレニル)プロパン-2-イル基、(1-アズレニル)ジフェニルメチル基、2-(1-アズレニル)エチル基などの炭素原子数が7~40の芳香族含有直鎖状または分岐状のアルキル基および不飽和二重結合含有基;
シクロプロピル基、シクロブチル基、シクロペンチル基、シクロペンテニル基、シクロペンタジエニル基、ジメチルシクロペンタジエニル基、n-ブチルシクロペンタジエニル基、n-ブチル-メチルシクロペンタジエニル基、テトラメチルシクロペンタジエニル基、1-メチルシクロペンチル基、1-アリルシクロペンチル基、1-ベンジルシクロペンチル基、シクロヘキシル基、シクロヘキセニル基、シクロヘキサジエニル基、1-メチルシクロヘキシル基、1-アリルシクロヘキシル基、1-ベンジルシクロヘキシル基、シクロヘプチル基、シクロヘプテニル基、シクロヘプタトリエニル基、1-メチルシクロヘプチル基、1-アリルシクロヘプチル基、1-ベンジルシクロヘプチル基、シクロオクチル基、シクロオクテニル基、シクロオクタジエニル基、シクロオクタトリエニル基、1-メチルシクロオクチル基、シクロドデシル基、1-アリルシクロオクチル基、1-ベンジルシクロオクチル基、4-シクロヘキシル-tert-ブチル基、ノルボルニル基、ノルボルネニル基、ノルボルナジエニル基、2-メチルビシクロ[2.2.1]ヘプタン-2-イル基、7-メチルビシクロ[2.2.1]ヘプタン-7-イル基、ビシクロ[2.2.2]オクタン-1-イル基、ビシクロ[2.2.2]オクタン-2-イル基、1-アダマンチル基、2-アダマンチル基、1-(2-メチルアダマンチル)、1-(3-メチルアダマンチル)、1-(4-メチルアダマンチル)、1-(2-フェニルアダマンチル)、1-(3-フェニルアダマンチル)、1-(4-フェニルアダマンチル)、1-(3,5-ジメチルアダマンチル)、1-(3,5,7-トリメチルアダマンチル)、1-(3,5,7-トリフェニルアダマンチル)、ペンタレニル基、インデニル基、フルオレニル基、インダセニル基、テトラヒドロインダセニル基、ベンゾインデニル基、アズレニル基などの炭素原子数が3~40の環状飽和および不飽和炭化水素基;
フェニル基、トリル基、キシリル基、メシチル基、クメニル基、ジュリル基、2,6-ジ-iso-プロピルフェニル基、2,4,6-トリ-iso-プロピルフェニル基、4-tert-ブチルフェニル基、3,5-ジ-tert-ブチルフェニル基、アリルフェニル基、(ブタ-3-エン-1-イル)フェニル基、(ブタ-2-エン-1-イル)フェニル基、メタリルフェニル基、プレニルフェニル基、4-アダマンチルフェニル基、3,5-ジ-アダマンチルフェニル基、ナフチル基、ビフェニル基、terフェニル基、ビナフチル基、アセナフタレニル基、フェナントリル基、アントラセニル基、ピレニル基、フェロセニル基などの炭素原子数が6~40の芳香族置換基
などが挙げられる。
前記炭素原子数が1~40の直鎖状または分岐状のアルキル基の中でも、メチル基、エチル基、1-プロピル基、1-ブチル基、1-ペンチル基、1-ヘキシル基、1-ヘプチル基、1-オクチル基、iso-プロピル基、sec-ブチル基、tert-ブチル基、iso-ブチル基、iso-ペンチル基、ネオペンチル基、tert-ペンチル基、ペンタン-3-イル基、iso-ヘキシル基、1,1-ジメチルブチル基、3,3-ジメチルブチル基、テキシル基、3-メチルペンタン-3-イル基、ヘプタン-4-イル基、2,4-ジメチルペンタン-2-イル基、3-エチルペンタン-3-イル基、4,4-ジメチルペンチル基、4-メチルヘプタン-4-イル基、4-プロピルヘプタン-4-イル基、2,4,4-トリメチルペンタン-2-イル基などが好ましく、メチル基、エチル基、1-プロピル基、1-ブチル基、1-ペンチル基、1-ヘキシル基、iso-プロピル基、tert-ブチル基、ネオペンチル基、2,4-ジメチルペンタン-2-イル基、2,4,4-トリメチルペンタン-2-イル基がより好ましい。
前記炭素原子数が2~40の直鎖状または分岐状のアルケニル基もしくは不飽和二重結合含有基の中でも、ビニル基、アリル基、ブタ-3-エン-1-イル基、クロチル基、メタリル基、ペンタ-4-エン-1-イル基、プレニル基、ペンタ-1,4-ジエン-3-イル基、ヘキサ-5-エン-1-イル基、2-メチルペンタ-4-エン-2-イル基、2-(シクロペンタジエニル)プロパン-2-イル基、2-(シクロペンタジエニル)エチル基などが好ましく、ビニル基、アリル基、ブタ-3-エン-1-イル基、ペンタ-4-エン-1-イル基、プレニル基、ヘキサ-5-エン-1-イル基がより好ましい。
前記炭素原子数が2~40の直鎖状または分岐状のアルキニル基もしくは不飽和三重結合含有基の中でも、エチニル基、プロパ-2-イン-1-イル基、プロパルギル基、ブタ-2-イン-1-イル基、ブタ-3-イン-1-イル基、ペンタ-3-イン-1-イル基、ペンタ-4-イン-1-イル基、3-メチル-ブタ-1-イン-1-イル基、3,3-ジメチル-ブタ-1-イン-1-イル基、ヘキサ-4-イン-1-イル基、ヘキサ-5-イン-1-イル基などが好ましく、プロパ-2-イン-1-イル基、プロパルギル基、ブタ-2-イン-1-イル基、ブタ-3-イン-1-イル基がより好ましい。
前記炭素原子数が7~40の芳香族含有直鎖状または分岐状のアルキル基および不飽和二重結合含有基の中でも、ベンジル基、2-メチルベンジル基、4-メチルベンジル基、2,4,6-トリメチルベンジル基、3,5-ジメチルベンジル基、クミニル基、2,4,6-トリ-iso-プロピルベンジル基、4-tert-ブチルベンジル基、3,5-ジ-tert-ブチルベンジル基、ベンズヒドリル基、クミル基、1,1-ジフェニルエチル基、トリチル基、2-フェニルエチル基、2-(4-メチルフェニル)エチル基、2-(2,4,6-トリメチルフェニル)エチル基、2-(3,5-ジメチルフェニル)エチル基、2-(2,4,6-トリ-iso-プロピルフェニル)エチル基、2-(4-tert-ブチルフェニル)エチル基、2-(3,5-ジ-tert-ブチルフェニル)エチル基、スチリル基、2-メチル-1-フェニルプロパン-2-イル基、3-フェニルプロピル基、シンナミル基、ネオフィル基、シクロペンタジエニルジフェニルメチル基、2-(1-インデニル)プロパン-2-イル基、(1-インデニル)ジフェニルメチル基、2-(1-インデニル)エチル基、2-(9-フルオレニル)プロパン-2-イル基、(9-フルオレニル)ジフェニルメチル基、2-(9-フルオレニル)エチル基などが好ましく、ベンジル基、ベンズヒドリル基、クミル基、1,1-ジフェニルエチル基、トリチル基、2-フェニルエチル基、3-フェニルプロピル基、シンナミル基がより好ましい。
前記炭素原子数が3~40の環状飽和および不飽和炭化水素基の中でも、シクロプロピル基、シクロブチル基、シクロペンチル基、シクロペンテニル基、シクロペンタジエニル基、1-メチルシクロペンチル基、1-アリルシクロペンチル基、1-ベンジルシクロペンチル基、シクロヘキシル基、シクロヘキセニル基、1-メチルシクロヘキシル基、1-アリルシクロヘキシル基、1-ベンジルシクロヘキシル基、シクロヘプチル基、シクロヘプテニル基、シクロヘプタトリエニル基、1-メチルシクロヘプチル基、1-アリルシクロヘプチル基、1-ベンジルシクロヘプチル基、シクロオクチル基、シクロオクテニル基、シクロオクタジエニル基、シクロドデシル基、4-シクロヘキシル-tert-ブチル基、ノルボルニル基、2-メチルビシクロ[2.2.1]ヘプタン-2-イル基、ビシクロ[2.2.2]オクタン-1-イル基、1-アダマンチル基、2-アダマンチル基、ペンタレニル基、インデニル基、フルオレニル基などが好ましく、シクロペンチル基、シクロペンテニル基、1-メチルシクロペンチル基、シクロヘキシル基、シクロヘキセニル基、1-メチルシクロヘキシル基、シクロオクチル基、シクロドデシル基、1-アダマンチル基がより好ましい。
前記炭素原子数が6~40の芳香族置換基の中でも、フェニル基、トリル基、キシリル基、メシチル基、クメニル基、2,6-ジ-iso-プロピルフェニル基、2,4,6-トリ-iso-プロピルフェニル基、4-tert-ブチルフェニル基、3,5-ジ-tert-ブチルフェニル基、アリルフェニル基、プレニルフェニル基、4-アダマンチルフェニル基、ナフチル基、ビフェニル基、terフェニル基、ビナフチル基、フェナントリル基、アントラセニル基、フェロセニル基などが好ましく、フェニル基、トリル基、キシリル基、メシチル基、クメニル基、2,6-ジ-iso-プロピルフェニル基、2,4,6-トリ-iso-プロピルフェニル基、4-tert-ブチルフェニル基、3,5-ジ-tert-ブチルフェニル基、アリルフェニル基、4-アダマンチルフェニル基、ナフチル基、ビフェニル基、ビナフチル基、フェナントリル基、アントラセニル基がより好ましい。
前記ハロゲン含有基としては、例えば、フルオロメチル基、トリフルオロメチル基、トリクロロメチル基、ペンタフルオロエチル基、2,2,2-トリフルオロエチル基、ヘプタフルオロプロピル基、3,3,3-トリフルオロプロピル基、ノナフルオロブチル基、4,4,4-トリフルオロブチル基、ドデカフルオロヘキシル基、6,6,6-トリフルオロヘキシル基、クロロフェニル基、フルオロフェニル基、ジフルオロフェニル基、トリフルオロフェニル基、テトラフルオロフェニル基、ペンタフルオロフェニル基、ペンタフルオロフェニルメチル基、ジ-tert-ブチル-フルオロフェニル基、トリフルオロメチルフェニル基、ビストリフルオロメチルフェニル基、トリフルオロメトキシフェニル基、ビストリフルオロメトキシフェニル基、トリフルオロメチルチオフェニル基、ビストリフルオロメチルチオフェニル基、フルオロビフェニル基、ジフルオロビフェニル基、トリフルオロビフェニル基、テトラフルオロビフェニル基、ペンタフルオロビフェニル基、ジ-tert-ブチル-フルオロビフェニル基、トリフルオロメチルビフェニル基、ビストリフルオロメチルビフェニル基、トリフルオロメトキシビフェニル基、ビストリフルオロメトキシビフェニル基、トリフルオロメチルジメチルシリル基、トリフルオロメトキシ基、ペンタフルオロエトキシ基、フルオロフェノキシ基、ジフルオロフェノキシ基、トリフルオロフェノキシ基、ペンタフルオロフェノキシ基、ジ-tert-ブチル-フルオロフェノキシ基、トリフルオロメチルフェノキシ基、ビストリフルオロメチルフェノキシ基、トリフルオロメトキシフェノキシ基、ビストリフルオロメトキシフェノキシ基、ジフルオロメチレンジオキシフェニル基、ビストリフルオロメチルフェニルイミノメチル基、トリフルオロメチルチオ基、などが挙げられる。
前記ハロゲン含有基の中でも、フルオロメチル基、トリフルオロメチル基、ペンタフルオロエチル基、2,2,2-トリフルオロエチル基、3,3,3-トリフルオロプロピル基、4,4,4-トリフルオロブチル基、フルオロフェニル基、ジフルオロフェニル基、トリフルオロフェニル基、テトラフルオロフェニル基、ペンタフルオロフェニル基、ペンタフルオロフェニルメチル基、トリフルオロメチルフェニル基、ビストリフルオロメチルフェニル基、トリフルオロメトキシフェニル基、ペンタフルオロビフェニル基、トリフルオロメチルビフェニル基、ビストリフルオロメチルビフェニル基、トリフルオロメトキシ基、ペンタフルオロフェノキシ基、ビストリフルオロメチルフェノキシ基、ビストリフルオロメチルフェノキシ基、ジフルオロメチレンジオキシフェニル基、トリフルオロメチルチオ基が好ましく、トリフルオロメチル基、フルオロフェニル基、ジフルオロフェニル基、ペンタフルオロフェニル基、ペンタフルオロフェニルメチル基、トリフルオロメチルフェニル基、ビストリフルオロメチルフェニル基、ペンタフルオロビフェニル基、トリフルオロメトキシ基、ペンタフルオロフェノキシ基がより好ましい。
前記ケイ素含有基としては、例えば、トリメチルシリル基、トリエチルシリル基、トリ-iso-プロピルシリル基、ジフェニルメチルシリル基、tert-ブチルジメチルシリル基、tert-ブチルジフェニルシリル基、トリフェニルシリル基、トリス(トリメチルシリル)シリル基、シクロペンタジエニルジメチルシリル基、ジ-n-ブチル(シクロペンタジエニル)シリル基、シクロペンタジエニルジフェニルシリル基、インデニルジメチルシリル基、ジ-n-ブチル(インデニル)シリル基、インデニルジフェニルシリル基、フルオレニルジメチルシリル基、ジ-n-ブチル(フルオレニル)シリル基、フルオレニルジフェニルシリル基、4-トリメチルシリルフェニル基、4-トリエチルシリルフェニル基、4-トリ-iso-プロピルシリルフェニル基、4-tert-ブチルジフェニルシリルフェニル基、4-トリフェニルシリルフェニル基、4-トリス(トリメチルシリル)シリルフェニル基、3,5-ビス(トリメチルシリル)フェニル基などが挙げられる。
前記ケイ素含有基の中でも、トリメチルシリル基、トリエチルシリル基、トリ-iso-プロピルシリル基、tert-ブチルジメチルシリル基、トリフェニルシリル基、シクロペンタジエニルジメチルシリル基、シクロペンタジエニルジフェニルシリル基、インデニルジメチルシリル基、インデニルジフェニルシリル基、フルオレニルジメチルシリル基、フルオレニルジフェニルシリル基、4-トリメチルシリルフェニル基、4-トリエチルシリルフェニル基、4-トリ-iso-プロピルシリルフェニル基、4-トリフェニルシリルフェニル基、3,5-ビス(トリメチルシリル)フェニル基などが好ましく、トリメチルシリル基、トリエチルシリル基、tert-ブチルジメチルシリル基、4-トリメチルシリルフェニル基、4-トリエチルシリルフェニル基、4-トリ-iso-プロピルシリルフェニル基、3,5-ビス(トリメチルシリル)フェニル基がより好ましい。
前記酸素含有基としては、炭素数1~20の酸素含有基が好ましく、例えば、メトキシ基、エトキシ基、n-プロポキシ基、iso-プロポキシ基、アリルオキシ基、n-ブトキシ基、sec-ブトキシ基、iso-ブトキシ基、tert-ブトキシ基、メタリルオキシ基、プレニルオキシ基、ベンジルオキシ基、メトキシメトキシ基、メトキシエトキシ基、フェノキシ基、ナフトキシ基、トルイルオキシ基、iso-プロピルフェノキシ基、アリルフェノキシ基、tert-ブチルフェノキシ基、メトキシフェノキシ基、iso-プロポキシフェノキシ基、アリルオキシフェノキシ基、ビフェニルオキシ基、ビナフチルオキシ基、メトキシメチル基、アリルオキシメチル基、ベンジルオキシメチル基、フェノキシメチル基、メトキシエチル基、アリルオキシエチル基、ベンジルオキシエチル基、フェノキシエチル基、メトキシプロピル基、アリルオキシプロピル基、ベンジルオキシプロピル基、フェノキシプロピル基、メトキシビニル基、アリルオキシビニル基、ベンジルオキシビニル基、フェノキシビニル基、メトキシアリル基、アリルオキシアリル基、ベンジルオキシアリル基、フェノキシアリル基、ジメトキシメチル基、ジ-iso-プロポキシメチル基、ジオキソラニル基、テトラメチルジオキソラニル基、ジオキサニル基、メトキシフェニル基、iso-プロポキシフェニル基、アリルオキシフェニル基、フェノキシフェニル基、メチレンジオキシフェニル基、3,5-ジメチル-4-メトキシフェニル基、3,5-ジ-tert-ブチル-4-メトキシフェニル基、フリル基、メチルフリル基、テトラヒドロフリル基、ピラニル基、テトラヒドロピラニル基、フロフリル基、ベンゾフリル基、ジベンゾフリル基などが挙げられる。
前記酸素含有基の中でも、メトキシ基、エトキシ基、iso-プロポキシ基、アリルオキシ基、n-ブトキシ基、tert-ブトキシ基、プレニルオキシ基、ベンジルオキシ基、フェノキシ基、ナフトキシ基、トルイルオキシ基、iso-プロピルフェノキシ基、アリルフェノキシ基、tert-ブチルフェノキシ基、メトキシフェノキシ基、ビフェニルオキシ基、ビナフチルオキシ基、アリルオキシメチル基、ベンジルオキシメチル基、フェノキシメチル基、メトキシエチル基、メトキシアリル基、ベンジルオキシアリル基、フェノキシアリル基、ジメトキシメチル基、ジオキソラニル基、テトラメチルジオキソラニル基、ジオキサニル基、ジメチルジオキサニル基、メトキシフェニル基、iso-プロポキシフェニル基、アリルオキシフェニル基、フェノキシフェニル基、メチレンジオキシフェニル基、3,5-ジメチル-4-メトキシフェニル基、3,5-ジ-tert-ブチル-4-メトキシフェニル基、フリル基、メチルフリル基、テトラヒドロピラニル基、フロフリル基、ベンゾフリル基、ジベンゾフリル基等などが好ましく、メトキシ基、iso-プロポキシ基、tert-ブトキシ基、アリルオキシ基、フェノキシ基、ジメトキシメチル基、ジオキソラニル基、メトキシフェニル基、iso-プロポキシフェニル基、アリルオキシフェニル基、フェノキシフェニル基、3,5-ジメチル-4-メトキシフェニル基、3,5-ジ-tert-ブチル-4-メトキシフェニル基、フリル基、メチルフリル基、ベンゾフリル基、ジベンゾフリル基がより好ましい。
前記窒素含有基としては、炭素数1~20の窒素含有基が好ましく、例えば、アミノ基、ジメチルアミノ基、ジエチルアミノ基、ジ-n-プロピルアミノ基、ジ-iso-プロピルアミノ基、ジ-n-ブチルアミノ基、ジ-iso-ブチルアミノ基、ジシクロペンチルアミノ基、ジシクロヘキシルアミノ基、アリルアミノ基、ジアリルアミノ基、ジデシルアミノ基、ベンジルアミノ基、ジベンジルアミノ基、ピロリジニル基、ピペリジニル基、モルホリル基、アゼピニル基、アダマンチルアミノ基、ジメチルアミノメチル基、ジベンジルアミノメチル基、ピロリジニルメチル基、ジメチルアミノエチル基、ベンジルアミノメチル基、ベンジルアミノエチル基、ピロリジニルエチル基、ジメチルアミノビニル基、ベンジルアミノビニル基、ピロリジニルビニル基、ジメチルアミノプロピル基、ベンジルアミノプロピル基、ピロリジニルプロピル基、ジメチルアミノアリル基、ベンジルアミノアリル基、ピロリジニルアリル基、アミノフェニル基、ジメチルアミノフェニル基、3,5-ジメチル-4-ジメチルアミノフェニル基、3,5-ジ-iso-プロピル-4-ジメチルアミノフェニル基、ジュロリジニル基、テトラメチルジュロリジニル基、ピロリジニルフェニル基、ピペリジニルフェニル基、モルフォリルフェニル基、ピロリルフェニル基、ピリジルフェニル基、キノリルフェニル基、イソキノリルフェニル基、インドリニルフェニル基、インドリルフェニル基、カルバゾリルフェニル基、ジ-tert-ブチルカルバゾリルフェニル基、ピロリル基、メチルピロリル基、フェニルピロリル基、ピリジル基、キノリル基、テトラヒドロキノリル基、iso-キノリル基、テトラヒドロ-iso-キノリル基、インドリル基、インドリニル基、カルバゾリル基、ジ-tert-ブチルカルバゾリル基、イミダゾリル基、ジメチルイミダゾリジニル基、ベンゾイミダソリル基、オキサゾリル基、オキサゾリジニル基、ベンゾオキサゾリル基などが挙げられる。
前記窒素含有基の中でも、アミノ基、ジメチルアミノ基、ジエチルアミノ基、ジ-n-プロピルアミノ基、ジ-iso-プロピルアミノ基、ジ-n-ブチルアミノ基、ジ-iso-ブチルアミノ基、ジシクロペンチルアミノ基、ジシクロヘキシルアミノ基、アリルアミノ基、ベンジルアミノ基、ジベンジルアミノ基、ピロリジニル基、ピペリジニル基、モルホリル基、アダマンチルアミノ基、ジメチルアミノメチル基、ベンジルアミノメチル基、ピロリジニルメチル基、ジメチルアミノエチル基、ピロリジニルエチル基、ジメチルアミノプロピル基、ピロリジニルプロピル基、ジメチルアミノアリル基、ピロリジニルアリル基、アミノフェニル基、ジメチルアミノフェニル基、3,5-ジメチル-4-ジメチルアミノフェニル基、3,5-ジ-iso-プロピル-4-ジメチルアミノフェニル基、ジュロリジニル基、テトラメチルジュロリジニル基、ピロリジニルフェニル基、ピペリジニルフェニル基、モルフォリルフェニル基、ピロリルフェニル基、カルバゾリルフェニル基、ジ-tert-ブチルカルバゾリルフェニル基、ピロリル基、ピリジル基、キノリル基、テトラヒドロキノリル基、iso-キノリル基、テトラヒドロ-iso-キノリル基、インドリル基、インドリニル基、カルバゾリル基、ジ-tert-ブチルカルバゾリル基、イミダゾリル基、ジメチルイミダゾリジニル基、ベンゾイミダソリル基、オキサゾリル基、オキサゾリジニル基、ベンゾオキサゾリル基などが好ましく、アミノ基、ジメチルアミノ基、ジエチルアミノ基、ジ-iso-プロピルアミノ基、ジシクロペンチルアミノ基、ジシクロヘキシルアミノ基、ピロリジニル基、ピペリジニル基、モルホリル基、ジメチルアミノフェニル基、3,5-ジメチル-4-ジメチルアミノフェニル基、3,5-ジ-iso-プロピル-4-ジメチルアミノフェニル基、ジュロリジニル基、テトラメチルジュロリジニル基、ピロリジニルフェニル基、ピペリジニルフェニル基、モルフォリルフェニル基、ピロリルフェニル基、ピロリル基、ピリジル基、カルバゾリル基、イミダゾリル基がより好ましい。
前記硫黄含有基としては、例えば、メチルチオ基、エチルチオ基、ベンジルチオ基、フェニルチオ基、ナフチルチオ基、メチルチオメチル基、ベンジルチオメチル基、フェニルチオメチル基、ナフチルチオメチル基、メチルチオエチル基、ベンジルチオエチル基、フェニルチオエチル基、ナフチルチオエチル基、メチルチオビニル基、ベンジルチオビニル基、フェニルチオビニル基、ナフチルチオビニル基、メチルチオプロピル基、ベンジルチオプロピル基、フェニルチオプロピル基、ナフチルチオプロピル基、メチルチオアリル基、ベンジルチオアリル基、フェニルチオアリル基、ナフチルチオアリル基、メルカプトフェニル基、メチルチオフェニル基、チエニルフェニル基、メチルチエニルフェニル基、ベンゾチエニルフェニル基、ジベンゾチエニルフェニル基、ベンゾジチエニルフェニル基、チエニル基、テトラヒドロチエニル基、メチルチエニル基、チエノフリル基、チエノチエニル基、ベンゾチエニル基、ジベンゾチエニル基、チエノベンゾフリル基、ベンゾジチエニル基、ジチオラニル基、ジチアニル基、オキサチオラニル基、オキサチアニル基、チアゾリル基、ベンゾチアゾリル基、チアゾリジニル基などが挙げられる。
前記硫黄含有基の中でも、チエニル基、メチルチエニル基、チエノフリル基、チエノチエニル基、ベンゾチエニル基、ジベンゾチエニル基、チエノベンゾフリル基、ベンゾジチエニル基、チアゾリル基、ベンゾチアゾリル基が好ましい。
前記式[1]におけるR1およびR2同士は、互いに結合して置換基を有していてもよい単環またはビシクロ環を形成してもよい。この場合に形成される環は、イミン炭素原子を含む置換基を有していてもよい4~8員環の飽和または不飽和炭化水素環あるいはヘテロ環として環を形成することが好ましい。本発明の効果を奏する限り特に限定されないが、好ましくは5又は6員環であり、この場合、イミン炭素原子と併せた構造として、例えば、置換シクロペンタン環、置換シクロヘキサン環、置換シクロヘプタン環、置換ビシクロ[2.2.1]ヘプタン環、置換ビシクロ[2.2.2]オクタン環、置換ピロリジン環、置換イソインドリン環、置換イミダゾリジン環、置換ジヒドロイミダゾール環、置換テトラヒドロピリミジン環などが挙げられ、置換シクロペンタン環、置換シクロヘキサン環、置換ピロリジン環、置換イソインドリン環、置換イミダゾリジン環、置換ジヒドロイミダゾール環であることが好ましい。
前記式[2]におけるR1~R3の隣接した置換基は、互いに結合して置換基を有していてもよい単環またはビシクロ環を形成してもよい。この場合に形成される環は、リン原子を含む置換基を有していてもよい4~8員環の飽和または不飽和ヘテロ環として環を形成することが好ましい。本発明の効果を奏する限り特に限定されないが、好ましくは5又は7員環であり、この場合、リン原子と併せた構造として、例えば、置換ホスフォール環、置換ホスフォラン環、置換ジヒドロホスフェピン環、置換ジオキサホスフェピン環、置換ジアザホスフェピン環、置換ホスファアダマンタン環、置換トリオキサホスファアダマンタン環などが挙げられ、置換ジヒドロホスフェピン環、置換ジオキサホスフェピン環、置換ジアザホスフェピン環、置換トリオキサホスファアダマンタン環であることが好ましい。
以下に前記一般式[1]または[2]で表される遷移金属化合物である成分(A)の具体例を示すが、特にこれによって本発明の範囲が限定されるものではない。
便宜上、前記遷移金属化合物である成分(A)のMXn(金属部分)で表される部分を除いたリガンド構造を、シクロペンタジエニル型配位子部分、イミド型配位子部分の構造の2つに分ける。シクロペンタジエニル型配位子部分の略称をα、イミド型配位子部分R1、R2およびR3置換基の略称をβ、イミド型配位子部分環状構造の略称をγとし、各置換基の略称を[表1]~[表3]に示す。
Figure 0007046554000008
Figure 0007046554000009
Figure 0007046554000010
なお、前記[表3]中のRaおよびRbは、前記[表2]の略称βで示される置換基である。また、[表3]中の波線は窒素原子との結合部位を示す。
金属部分MXnの具体的な例示としては、TiF2、TiCl2、TiBr2、TiI2、Ti(Me)2、Ti(Bn)2、Ti(Allyl)2、Ti(CH2-tBu)2、Ti(1,3-ブタジエニル)、Ti(1,3-ペンタジエニル)、Ti(2,4-ヘキサジエニル)、Ti(1,4-ジフェニル-1,3-ペンタジエニル)、Ti(CH2-Si(Me)32、Ti(ОMe)2、Ti(ОiPr)2、Ti(NMe22、Ti(ОMs)2、Ti(ОTs)2、Ti(ОTf)2、ZrF2、ZrCl2、ZrBr2、ZrI2、Zr(Me)2、Zr(Bn)2、Zr(Allyl)2、Zr(CH2-tBu)2、Zr(1,3-ブタジエニル)、Zr(1,3-ペンタジエニル)、Zr(2,4-ヘキサジエニル)、Zr(1,4-ジフェニル-1,3-ペンタジエニル)、Zr(CH2-Si(Me)32、Zr(ОMe)2、Zr(ОiPr)2、Zr(NMe22、Zr(ОMs)2、Zr(ОTs)2、Zr(ОTf)2、HfF2、HfCl2、HfBr2、HfI2、Hf(Me)2、Hf(Bn)2、Hf(Allyl)2、Hf(CH2-tBu)2、Hf(1,3-ブタジエニル)、Hf(1,3-ペンタジエニル)、Hf(2,4-ヘキサジエニル)、Hf(1,4-ジフェニル-1,3-ペンタジエニル)、Hf(CH2-Si(Me)32、Hf(ОMe)2、Hf(ОiPr)2、Hf(NMe22、Hf(ОMs)2、Hf(ОTs)2、Hf(ОTf)2などが挙げられる。Meはメチル基、Bnはベンジル基、tBuはtert-ブチル基、Si(Me)3はトリメチルシリル基、ОMeはメトキシ基、ОiPrはiso-プロポキシ基、NMe2はジメチルアミノ基、ОMsはメタンスルホナート基、ОTsはp-トルエンスルホナート基、ОTfはトリフルオロメタンスルホナート基である。
成分(A)が前記一般式[1]で表される遷移金属化合物である場合、上記の表記に従えば、シクロペンタジエニル型配位子部分が[表1]中のα-7、イミド型配位子部分R1置換基が[表2]中のβ-51、イミド型配位子部分R2置換基が[表2]中のβ-32の組み合わせで構成され、金属部分のMXnがTiCl2の場合は、下記式[7]で表される化合物を例示している。
Figure 0007046554000011
また、シクロペンタジエニル型配位子部分が[表1]中のα-7、イミド型配位子部分環状構造が[表3]中のγ-9、イミド型配位子部分環状構造Ra置換基が[表2]中のβ-13の組み合わせで構成され、金属部分のMXnがTiMe2の場合は、下記式[8]で表される化合物を例示している。
Figure 0007046554000012
また、シクロペンタジエニル型配位子部分が[表1]中のα-1、イミド型配位子部分環状構造が[表3]中のγ-10、イミド型配位子部分環状構造RaおよびRb置換基がいずれも[表2]中のβ-9の組み合わせで構成され、金属部分のMXnがTiBn2の場合は、下記式[9]で表される化合物を例示している。
Figure 0007046554000013
また、シクロペンタジエニル型配位子部分が[表1]中のα-41、イミド型配位子部分R1およびR2置換基がいずれも[表2]中のβ-9の組み合わせで構成され、金属部分のMXnがTi(1,3-ペンタジエニル)の場合は、下記式[10]で表される化合物を例示している。
Figure 0007046554000014
同様に、成分(A)が前記一般式[2]で表される遷移金属化合物である場合、上記の表記に従えば、シクロペンタジエニル型配位子部分が[表1]中のα-25、イミド型配位子部分R1、R2およびR3置換基がいずれも[表2]中のβ-9の組み合わせで構成され、金属部分のMXnがTiCl2の場合は、下記式[11]で表される化合物を例示している。
Figure 0007046554000015
また、シクロペンタジエニル型配位子部分が[表1]中のα-7、イミド型配位子部分R1、R2およびR3置換基がいずれも[表2]中のβ-9の組み合わせで構成され、金属部分のMXnがTiMe2の場合は、下記式[12]で表される化合物を例示している。
Figure 0007046554000016
また、シクロペンタジエニル型配位子部分が[表1]中のα-18、イミド型配位子部分R1、R2およびR3置換基がいずれも[表2]中のβ-11の組み合わせで構成され、金属部分のMXnがTiBn2の場合は、下記式[13]で表される化合物を例示している。
Figure 0007046554000017
また、シクロペンタジエニル型配位子部分が[表1]中のα-1、イミド型配位子部分R1およびR2置換基がいずれも[表2]中のβ-9、イミド型配位子部分R3置換基が[表2]中のβ-60の組み合わせで構成され、金属部分のMXnがTi(1,3-ペンタジエニル)の場合は、下記式[14]で表される化合物を例示している。
Figure 0007046554000018
前記遷移金属化合物[1]および[2]は、従来公知の方法を利用して製造することができ、特に製造法が限定されるわけではない。公知の製造方法として例えば、「Оrganometallics 1999,18,1116.」、特表2001-516776号公報、「Оrganometallics 2001,20,4424.」、「Chem. Commun. 2002,608.」、「Оrganometallics 2003,22,1937.」、「J.Organomet.Chem. 2004,689,203.」、「Оrganometallics 2004,23,1562.」、「Оrganometallics 2004,23,3309.」、WО2005/090418号公報、US6239061号公報、「Оrganometallics 2005,24,2548.」、特表2007-529584号公報、「J.Organomet.Chem. 2011,696,2451.」、「Dalton Trans. 2011,40,7842.」、特開2012-007171号公報、特開2012-046764号公報、特開2013-155371号公報、特表2013-510214号公報、特表2013-515120号公報、US9045504号公報、特表2014-509670号公報、US9035081号公報、特表2015-520276号公報、特表2016-532730号公報、特表2017-509595号公報などが挙げられる。
なお、本発明において遷移金属化合物[1]または[2]は、1種単独で用いてもよく、前記遷移金属化合物[1]または[2]のうち、化学構造の異なる遷移金属化合物[1]同士または遷移金属化合物[2]同士を2種以上併用してもよく、化学構造の異なる遷移金属化合物[1]および[2]を2種以上併用してもよい。
<成分(B)>
成分(B)は、下記一般式[3]で表される遷移金属化合物である。
Figure 0007046554000019
前記式[3]において、Mは周期表第4族遷移金属原子であり、具体的にはチタン原子、ジルコニウム原子、ハフニウム原子であり、好ましくはジルコニウム原子である。
前記式[3]において、nは、前記遷移金属Mの価数を満たす1~4の整数であり、好ましくは1または2である。
前記式[3]において、mは1~2の整数であり、好ましくは1である。
前記式[3]において、Xは、水素原子、ハロゲン原子、炭化水素基、アニオン配位子または孤立電子対で配位可能な中性配位子であり、前記アニオン配位子は、ハロゲン含有基、ケイ素含有基、酸素含有基、硫黄含有基、窒素含有基、リン含有基、ホウ素含有基、アルミニウム含有基または共役ジエン系誘導体基である。nが2以上の場合は、複数存在するXで示される基は互いに同一でも異なっていてもよく、互いに結合して環を形成してもよい。
Xは、好ましくは水素原子、ハロゲン原子、炭素数1~20の炭化水素基、ケイ素含有基または酸素含有基である。
Xが表わすハロゲン原子、炭化水素基、孤立電子対で配位可能な中性配位子、ハロゲン含有基、ケイ素含有基、酸素含有基、硫黄含有基、窒素含有基、リン含有基、ホウ素含有基、アルミニウム含有基および共役ジエン系誘導体の具体例としては、前記式[1]および[2]においてこれらの基として例示された基と同様の基を挙げることができる。
前記式[3]において、Qは、周期表第14族原子であり、たとえば炭素原子、ケイ素原子、ゲルマニウム原子またはスズ原子であり、好ましくは炭素原子またはケイ素原子であり、より好ましくはケイ素原子である。
前記式[3]において、R4、R5、R6、R7、R8、R9、R10、R11、R12およびR13は、それぞれ独立に、水素原子、炭素数1~40の炭化水素基、ハロゲン含有基、ケイ素含有基、酸素含有基、窒素含有基または硫黄含有基である。R4~R12は、好ましくは、水素原子、炭素数1~20の炭化水素基、ケイ素含有基、酸素含有基、窒素含有基または硫黄含有基であり、より好ましくは、水素原子、炭素数1~20の炭化水素基、炭素数1~20のケイ素含有基、炭素数1~20の酸素含有基または炭素数1~20の窒素含有基である。R4~R12は、それぞれ同一でも異なっていてもよい。
4~R12が表わす炭素数1~40の炭化水素基、ハロゲン含有基、ケイ素含有基、酸素含有基、窒素含有基および硫黄含有基の具体例としては、前記式[1]におけるR1およびR2、式[2]におけるR1~R3として例示された基と同様の基を挙げることができる。
前記式[3]において、R4とR5、R6とR7、R8とR9、R10とR11は、互いに結合して置換基を有していてもよい飽和環を形成してもよい。この場合に形成される環は、シクロペンタジエニル環部分に縮環する置換基を有していてもよい5~8員環の飽和または不飽和炭化水素基として環を形成することが好ましい。なお、環が複数存在する場合には互いに同一でも異なっていてもよい。本発明の効果を奏する限り特に限定されないが、好ましくは6又は7員環であり、この場合、母核のシクロペンタジエニル部分と併せた構造として、例えば、置換インデン環、置換テトラヒドロ-1-インデン環、置換1-ベンゾインデン環、置換1-ジヒドロインダセン環、置換フルオレン環、置換テトラヒドロインデン環、置換オクタヒドロフルオレン環、置換ヒドロアズレニル環、置換ペンタヒドロアズレン環、置換ジヒドロシクロペンテノアニュレン環、置換シクロペンタピロール環、置換シクロペンタチオフェン環、置換シクロペンタジチオフェン環、置換インデノピロール環、置換インデノインドール環および置換インデノチオフェン環が挙げられ、置換インデン環、置換テトラヒドロ-1-インデン環、置換ジヒドロインダセン環であることが好ましい。
5とR6、R9とR10は、互いに結合して置換基を有していてもよい環を形成してもよい。この場合に形成される環は、シクロペンタジエニル環部分に縮環する置換基を有していてもよい5~8員環の飽和または不飽和炭化水素基として環を形成することが好ましい。なお、環が複数存在する場合には互いに同一でも異なっていてもよい。本発明の効果を奏する限り特に限定されないが、好ましくは6又は7員環であり、この場合、母核のシクロペンタジエニル部分と併せた構造として、例えば、置換2-インデン環、置換テトラヒドロ-2-インデン環、置換2-ベンゾインデン環、置換2-ジヒドロインダセン環が挙げられ、置換2-インデン環、置換2-ジヒドロインダセン環であることが好ましい。
12とR13は、互いに結合してQを含む環を形成してもよく、該環は置換基を有していてもよい。この場合に形成される環は、置換基を有していてもよい3~8員環の飽和または不飽和環を形成することが好ましい。本発明の効果を奏する限り特に限定されないが、好ましくは4~6員環であり、この場合、Qと併せた構造として、例えば、置換シクロブタン環、置換シクロペンタン環、置換フルオレン環、置換シラシクロブタン(シレタン)環、置換シラシクロペンタン(シロラン)環、置換シラシクロヘキサン(シリナン)、置換シラフルオレン環が挙げられ、置換シクロペンタン環、置換シラシクロブタン環、置換シラシクロペンタン環であることが好ましい。
以下に前記一般式[3]で表される遷移金属化合物である成分(B)の具体例を示すが、特にこれによって本発明の範囲が限定されるものではない。
便宜上、前記遷移金属化合物[3]のMXn(金属部分)で表される部分を除いたリガンド構造を、シクロペンタジエニル環部分、架橋部分の構造の2つに分ける。シクロペンタジエニル環部分の略称をδ、架橋部分の構造の略称をεとし、各置換基の略称を[表4]および[表5]に示す。
Figure 0007046554000020
Figure 0007046554000021
金属部分MXnの具体的な例示としては、前記一般式[1]または[2]で表される遷移金属化合物である成分(A)において例示されたものと同様のものを挙げることができる。
上記の表記に従えば、一方のシクロペンタジエニル環部分が[表4]中のδ-6、もう一方のシクロペンタジエニル環部分が[表4]中のδ-1、架橋部分が[表5]中のε-9の組み合わせで構成され、金属部分のMXnがZrCl2の場合は、下記化合物[15]を例示している。
Figure 0007046554000022
また、一方のシクロペンタジエニル環部分が[表4]中のδ-1、もう一方のシクロペンタジエニル環部分が[表4]中のδ-16、架橋部分が[表5]中のε-9の組み合わせで構成され、金属部分のMXnがZrCl2の場合は、下記化合物[16]を例示している。
Figure 0007046554000023
また、一方のシクロペンタジエニル環部分が[表4]中のδ-17、もう一方のシクロペンタジエニル環部分が[表4]中のδ-1、架橋部分が[表5]中のε-9の組み合わせで構成され、金属部分のMXnがZrCl2の場合は、下記化合物[17]を例示している。
Figure 0007046554000024
また、一方のシクロペンタジエニル環部分が[表4]中のδ-7、もう一方のシクロペンタジエニル環部分が[表4]中のδ-22、架橋部分が[表5]中のε-9の組み合わせで構成され、金属部分のMXnがZrCl2の場合は、下記化合物[18]を例示している。
Figure 0007046554000025
前記遷移金属化合物[3]は、従来公知の方法を利用して製造することができ、特に製造法が限定されるわけではない。公知の製造方法として例えば、特開平11-315089号公報、特開2001-302687号公報、特開2001-220404号公報、「高分子論文集 2002,59,243.」、特表2003-522194号公報、「Macromolecules 2004,37,2342.」、特開2007-320935号公報、特開2011-126813号公報、特許第5455354号公報などが挙げられる。
なお、本発明において遷移金属化合物[3]は、1種単独で用いてもよく、化学構造の異なる遷移金属化合物を2種以上併用してもよい。
<成分(C)>
成分(C)は、(c-1)下記一般式[4]、[5]または[6]で表される有機金属化合物、(c-2)有機アルミニウムオキシ化合物、ならびに(c-3)成分(A)および成分(B)と反応してイオン対を形成する化合物よりなる群から選ばれる少なくとも1種の化合物である。
RamAl(ORb)n Hp Xq ・・・[4]
式[4]中、RaおよびRbは、それぞれ独立に炭素原子数が1~15の炭化水素基を示し、Xはハロゲン原子を示し、mは0<m≦3、nは0≦n<3、pは0≦p<3、qは0≦q<3の数であり、かつm+n+p+q=3である。
Ma AlRa4 ・・・[5]
式[5]中、MaはLi、NaまたはKを示し、Raは炭素原子数が1以上15以下の炭化水素基を示す。
RarMbRbs Xt ・・・[6]
式[6]中、RaおよびRbは、それぞれ独立に炭素原子数が1以上15以下の炭化水素基を示し、MbはMg、ZnおよびCdから選ばれ、Xはハロゲン原子を示し、rは0<r≦2、sは0≦s≦1、tは0≦t≦1であり、かつr+s+t=2である。
前記有機金属化合物(c-1)の中では、前記式[4]で示されるものが好ましく、具体的には、トリメチルアルミニウム、トリエチルアルミニウム、トリイソプロピルアルミニウム、トリイソブチルアルミニウム、トリヘキシルアルミニウム、トリオクチルアルミニウム、トリ2-エチルヘキシルアルミニウムなどのトリアルキルアルミニウム;ジメチルアルミニウムクロリド、ジエチルアルミニウムクロリド、ジイソプロピルアルミニウムクロリド、ジイソブチルアルミニウムクロリド、ジメチルアルミニウムブロミドなどのジアルキルアルミニウムハライド;メチルアルミニウムセスキクロリド、エチルアルミニウムセスキクロリド、イソプロピルアルミニウムセスキクロリド、ブチルアルミニウムセスキクロリド、エチルアルミニウムセスキブロミドなどのアルキルアルミニウムセスキハライド;メチルアルミニウムジクロリド、エチルアルミニウムジクロリド、イソプロピルアルミニウムジクロリド、エチルアルミニウムジブロミドなどのアルキルアルミニウムジハライド;ジメチルアルミニウムハイドライド、ジエチルアルミニウムハイドライド、ジヒドロフェニルアルミニウムハイドライド、ジイソプロピルアルミニウムハイドライド、ジ-n-ブチルアルミニウムハイドライド、ジイソブチルアルミニウムハイドライド、ジイソヘキシルアルミニウムハイドライド、ジフェニルアルミニウムハイドライド、ジシクロヘキシルアルミニウムハイドライド、ジ-sec-ヘプチルアルミニウムハイドライド、ジ-sec-ノニルアルミニウムハイドライドなどのアルキルアルミニウムハイドライド;ジメチルアルミニウムエトキサイド、ジエチルアルミニウムエトキサイド、ジイソプロピルアルミニウムメトキサイド、ジイソブチルアルミニウムエトキサイドなどのジアルキルアルミニウムアルコキサイドなどが挙げられる。
前記式[5]の例としては、水素化アルミニウムリチウムなどが挙げられ、前記式[6]の例としては、特開2003-171412号公報などに記載されたジアルキル亜鉛化合物などが挙げられ、フェノール化合物などと組合せて用いることもできる。
前記有機アルミニウムオキシ化合物(c-2)としては、トリアルキルアルミニウムまたはトリシクロアルキルアルミニウムから調製された有機アルミニウムオキシ化合物が好ましく、トリメチルアルミニウムまたはトリイソブチルアルミニウムから調製されたアルミノキサンが特に好ましい。このような有機アルミニウムオキシ化合物は、1種単独または2種以上を組み合わせて用いられる。
前記成分(A)および成分(B)と反応してイオン対を形成する化合物(c-3)としては、特開平1-501950号公報、特開平1-502036号公報、特開平3-179005号公報、特開平3-179006号公報、特開平3-207703号公報、特開平3-207704号公報およびUS5321106などに記載されたルイス酸、イオン性化合物、ボラン化合物およびカルボラン化合物や、さらにはヘテロポリ化合物およびイソポリ化合物などを用いることができる。
本発明に係るオレフィン重合用触媒では、助触媒成分としてメチルアルミノキサン等の有機アルミニウムオキシ化合物を併用すると、オレフィン化合物に対して非常に高い重合活性を示すだけでなく、本発明のオレフィン重合用触媒が固体状担体を含む場合、固体状担体中の活性水素と反応し助触媒成分を含有した固体担体成分を容易に調製できるため、成分(C)は、少なくとも有機アルミニウムオキシ化合物(c-2)を含むことが好ましい。
<固体状担体(S)>
本発明に係るオレフィン重合用触媒は、得られる重合体の嵩密度が高まることなどにより生産効率が向上することから、固体状担体(S)を含むことが好ましい。
固体状担体(S)は、無機化合物または有機化合物であって、顆粒状または微粒子状の固体である。
前記固体状担体(S)として用いられる無機化合物としては、多孔質酸化物、無機塩化物、粘土、粘土鉱物またはイオン交換性層状化合物が挙げられる。
前記多孔質酸化物としては、SiO2、Al23、MgO、ZrO、TiO2、B23、CaO、ZnO、BaOおよびThO2など、またはこれらを含む複合物または混合物、具体的には、天然または合成ゼオライト、SiO2-MgO、SiO2-Al23、SiO2-TiO2、SiO2-V25、SiO2-Cr23およびSiO2-TiO2-MgOなどが用いられる。これらのうち、SiO2を主成分とするものが好ましい。
なお、上記多孔質酸化物には、少量のNa2CO3、K2CO3、CaCO3、MgCO3、Na2SO4、Al2(SO43、BaSO4、KNO3、Mg(NO32、Al(NO33、Na2O、K2O、Li2O等の炭酸塩、硫酸塩、硝酸塩、酸化物成分を含有していても差し支えない。
このような多孔質酸化物は、種類および製法によりその性状は異なるが、本発明で用いられる固体状担体(S)としては、粒径が通常0.2~300μm、好ましくは1~200μmであって、比表面積が通常50~1200m2/g、好ましくは100~1000m2/gの範囲にあり、細孔容積が通常0.3~30cm3/gの範囲にあるものが好ましい。このような担体は、必要に応じて、例えば、100~1000℃、好ましくは150~700℃で焼成して用いられる。
前記無機ハロゲン化物としては、例えば、MgCl2、MgBr2、MnCl2、MnBr2などが挙げられる。無機ハロゲン化物は、そのまま用いてもよいし、ボールミル、振動ミルにより粉砕した後に用いてもよい。また、アルコール等の溶媒に無機ハロゲン化物を溶解させた後、析出剤によって微粒子状に析出させたものを用いることもできる。
粘土は、通常粘土鉱物を主成分として構成される。また、イオン交換性層状化合物は、イオン結合等によって構成される面が互いに弱い結合力で平行に積み重なった結晶構造を有する化合物であり、含有するイオンが交換可能なものである。大部分の粘土鉱物はイオン交換性層状化合物である。また、これらの粘土、粘土鉱物、イオン交換性層状化合物としては、天然産のものに限らず、人工合成物を使用することもできる。
また、粘土、粘土鉱物またはイオン交換性層状化合物として、粘土、粘土鉱物、また、六方細密パッキング型、アンチモン型、CdCl2型、CdI2型等の層状の結晶構造を有するイオン結晶性化合物等を例示することができる。
このような粘土、粘土鉱物としては、カオリン、ベントナイト、木節粘土、ガイロメ粘土、アロフェン、ヒシンゲル石、パイロフィライト、ウンモ群、モンモリロナイト群、バーミキュライト、リョクデイ石群、パリゴルスカイト、カオリナイト、ナクライト、ディッカイト、ハロイサイト等が挙げられ、イオン交換性層状化合物としては、α-Zr(HAsO42・H2O、α-Zr(HPO42、α-Zr(KPO42・3H2O、α-Ti(HPO42、α-Ti(HAsO42・H2O、α-Sn(HPO42・H2O、γ-Zr(HPO42、γ-Ti(HPO42、γ-Ti(NH4PO42・H2O等の多価金属の結晶性酸性塩等が挙げられる。
このような粘土、粘土鉱物またはイオン交換性層状化合物は、水銀圧入法で測定した半径20Å以上の細孔容積が0.1cc/g以上のものが好ましく、0.3~5cc/gのものが特に好ましい。ここで、細孔容積は、水銀ポロシメーターを用いた水銀圧入法により、細孔半径20~3×104Åの範囲について測定される。半径20Å以上の細孔容積が0.1cc/gより小さいものを担体として用いた場合には、高い重合活性が得られにくい傾向がある。
粘土および粘土鉱物には、化学処理を施すことも好ましい。化学処理としては、表面に付着している不純物を除去する表面処理、粘土の結晶構造に影響を与える処理等、いずれも使用できる。化学処理として具体的には、酸処理、アルカリ処理、塩類処理、有機物処理等が挙げられる。酸処理は、表面の不純物を取り除くほか、結晶構造中のAl、Fe、Mg等の陽イオンを溶出させることによって表面積を増大させる。アルカリ処理では粘土の結晶構造が破壊され、粘土の構造の変化をもたらす。また、塩類処理や有機物処理では、イオン複合体、分子複合体、有機誘導体等を形成し、表面積や層間距離を変えることができる。
イオン交換性層状化合物は、イオン交換性を利用し、層間の交換性イオンを別の大きな嵩高いイオンと交換することにより、層間が拡大した状態の層状化合物であってもよい。このような嵩高いイオンは、層状構造を支える支柱的な役割を担っており、通常、ピラーと呼ばれる。また、このように層状化合物の層間に別の物質を導入することをインターカレーションという。インターカレーションするゲスト化合物としては、TiCl4、ZrCl4等の陽イオン性無機化合物、Ti(OR)4、Zr(OR)4、PO(OR)3、B(OR)3等の金属アルコキシド(Rは炭化水素基等)、[Al134(OH)247+、[Zr4(OH)142+、[Fe3O(OCOCH36+等の金属水酸化物イオン等が挙げられる。これら化合物は単独で、あるいは2種以上組み合わせて用いられる。また、これら化合物をインターカレーションする際に、Si(OR)4、Al(OR)3、Ge(OR)4等の金属アルコキシド(Rは炭化水素基等)等を加水分解して得た重合物、SiO2等のコロイド状無機化合物等を共存させることもできる。また、ピラーとしては、上記金属水酸化物イオンを層間にインターカレーションした後に加熱脱水することにより生成する酸化物等が挙げられる。
粘土、粘土鉱物、イオン交換性層状化合物は、そのまま用いてもよく、またボールミル、ふるい分け等の処理を行った後に用いてもよい。また、新たに水を添加吸着させ、あるいは加熱脱水処理した後に用いてもよい。さらに、単独で用いても、2種以上を組み合わせて用いてもよい。
固体状担体(S)として用いられる有機化合物としては、例えば、粒径が10~300μmの範囲にある顆粒状ないしは微粒子状固体などが挙げられる。前記有機化合物の具体例としては、例えば、エチレン、プロピレン、1-ブテン、4-メチル-1-ペンテン等の炭素原子数が2~14のオレフィンを主成分として生成される重合体またはビニルシクロヘキサン、スチレン、ジビニルベンゼンを主成分として生成される重合体や反応体、およびそれらの変成体からなる顆粒状ないしは微粒子状固体などが挙げられる。
また、特開平11-140113号公報、特開2000-38410号公報、特開2000-95810号公報、WO2010/55652A1などに記載された方法で、上記成分(C)を不溶化させて得られる固体成分を、固体状担体(S)として用いることもできる。
固体状担体(S)としては、成形時の異物防止の観点から、多孔質酸化物が好ましい。
上記に示したオレフィン重合用触媒の好ましい態様としては、前記一般式[1]および[2]において、Cpが、それぞれ置換基を有していてもよい、シクロペンタジエニル配位子またはインデニル配位子であり、Mが、チタン原子であり、Xが、それぞれ独立に、水素原子、ハロゲン原子、炭素数1~20の炭化水素基、ケイ素含有基、酸素含有基または共役ジエン系二価誘導体基であり、R1~R3が、それぞれ独立に、炭素数1~20の炭化水素基、炭素数1~20の酸素含有基または炭素数1~20の窒素含有基であり、それぞれ同一でも異なっていてもよく、前記一般式[3]において、Mが、ジルコニウム原子であり、Xが、それぞれ独立に、水素原子、ハロゲン原子、炭素数1~20の炭化水素基、ケイ素含有基または酸素含有基であり、Qが、炭素原子またはケイ素原子であり、R4~R13が、それぞれ独立に、水素原子、炭素数1~20の炭化水素基、ケイ素含有基、酸素含有基、窒素含有基または硫黄含有基であるオレフィン重合用触媒である。
上記に示したオレフィン重合用触媒のさらに好ましい態様としては、上記好ましい態様のうち、前記一般式[1]および[2]において、R1~R3が、それぞれ独立に、炭素数1~20の炭化水素基または炭素数1~20の窒素含有基であり、それぞれ同一でも異なっていてもよく、前記一般式[3]において、mが、1であり、Qが、ケイ素原子であり、R4~R13が、それぞれ独立に、水素原子、炭素数1~20の炭化水素基、炭素数1~20のケイ素含有基、炭素数1~20の酸素含有基または炭素数1~20の窒素含有基であるオレフィン重合用触媒である。
<オレフィン重合用触媒の調製方法>
本発明に係るオレフィン重合用触媒は、成分(A)、成分(B)、成分(C)および固体状担体(S)を不活性炭化水素中または不活性炭化水素を用いた重合系中に添加することにより調製される固体触媒成分(X)が好ましい態様の一つである。
固体触媒成分(X)の例としては、固体状担体(S)、成分(C)および成分(A)から形成される固体触媒成分(X-A)と、固体状担体(S)、成分(C)および成分(B)から形成される固体触媒成分(X-B)とからなるオレフィン重合用触媒;ならびに、固体状担体(S)、成分(A)、成分(B)および成分(C)より形成される固体触媒成分(X-C)からなるオレフィン重合用触媒が挙げられる。これらの中では、固体触媒成分(X-C)からなるオレフィン重合用触媒がより好ましい。
各成分の接触順序は任意であるが、好ましいオレフィン重合用触媒の調製方法としては、例えば、
(i)成分(C)と固体状担体(S)を接触させ、次いで成分(A)を接触させて固体触媒成分(X-A)を調製するとともに、成分(C)と固体状担体(S)を接触させ、次いで成分(B)を接触させて固体触媒成分(X-B)を調製する方法、
(ii)成分(A)と成分(C)を混合接触させ、次いで固体状担体(S)に接触させて固体触媒成分(X-A)を調製するとともに、成分(B)と成分(C)を混合接触させ、次いで固体状担体(S)に接触させて固体触媒成分(X-B)を調製する方法、
(iii)成分(C)と固体状担体(S)を接触させ、次いで成分(A)と成分(C)の接触物を接触させて固体触媒成分(X-A)を調製するとともに、成分(C)と固体状担体(S)を接触させ、次いで成分(B)と成分(C)の接触物を接触させて固体触媒成分(X-B)を調製する方法、
(iv)成分(C)と固体状担体(S)を接触させ、次いで成分(A)を接触させた後、さらに成分(C)を接触させて固体触媒成分(X-A)を調製するとともに、成分(C)と固体状担体(S)を接触させ、次いで成分(B)を接触させた後、さらに成分(C)を接触させて固体触媒成分(X-B)を調製する方法、
(v)固体状担体(S)と成分(C)を接触させ、次いで成分(A)を接触させた後、成分(B)を接触させて固体触媒成分(X-C)を調製する方法、
(vi)固体状担体(S)と成分(C)を接触させ、次いで成分(B)を接触させた後、成分(A)を接触させて固体触媒成分(X-C)を調製する方法、
(vii)固体状担体(S)と成分(C)を接触させ、次いで成分(A)と成分(B)の接触混合物を接触させて固体触媒成分(X-C)を調製する方法、
(viii)成分(A)と成分(B)を接触させ、次いで成分(C)を接触させた後、固体状担体(S)に接触させて固体触媒成分(X-C)を調製する方法、
(ix)固体状担体(S)と成分(C)を接触させた後、さらに成分(C)を接触させ、次いで成分(A)および成分(B)をこの順で接触させて固体触媒成分(X-C)を調製する方法、
(x)固体状担体(S)と成分(C)を接触させた後、さらに成分(C)を接触させ、次いで成分(B)および成分(A)をこの順で接触させて固体触媒成分(X-C)を調製する方法、
(xi)固体状担体(S)と成分(C)を接触させた後、さらに成分(C)を接触させ、次いで成分(A)と成分(B)の接触混合物を接触させて固体触媒成分(X-C)を調製する方法、
(xii)固体状担体(S)と成分(C)を接触させ、次いで成分(A)と成分(B)と成分(C)の接触混合物を接触させて固体触媒成分(X-C)を調製する方法、
(xiii)固体状担体(S)と成分(C)を接触させ、次いで成分(A)と成分(C)の接触混合物を接触させた後、成分(B)を接触させて固体触媒成分(X-C)を調製する方法、
(xiv)固体状担体(S)と成分(C)を接触させ、次いで成分(B)と成分(C)の接触混合物を接触させた後、成分(A)を接触させて固体触媒成分(X-C)を調製する方法、
(xv)固体状担体(S)と成分(C)を接触させた後、さらに成分(C)を接触させ、次いで成分(A)と成分(C)の接触混合物および成分(B)と成分(C)の接触混合物をこの順で接触させて固体触媒成分(X-C)を調製する方法、
(xvi)固体状担体(S)と成分(C)を接触させた後、さらに成分(C)を接触させ、次いで成分(B)と成分(C)の接触混合物および成分(A)と成分(C)の接触混合物をこの順で接触させて固体触媒成分(X-C)を調製する方法、
(xvii)固体状担体(S)と成分(C)を接触させた後、さらに成分(C)を接触させ、次いで成分(A)と成分(B)と成分(C)の接触混合物を接触させて固体触媒成分(X-C)を調製する方法、
(xviii)成分(A)および成分(C)の混合物と成分(B)および成分(C)の混合物とを予め混合した後、固体状担体(S)と成分(C)の接触物に接触させて固体触媒成分(X-C)を調製する方法、
(xix)成分(A)および成分(C)の混合物と成分(B)および成分(C)の混合物とを予め混合した後、固体状担体(S)と成分(C)を接触させ、さらに成分(C)を接触させた接触混合物に接触させて固体触媒成分(X-C)を調製する方法
などが挙げられる。
成分(C)が複数用いられる場合は、その成分(C)同士が同一であっても異なっていてもよい。このうち、特に好ましい接触順序としては、(xi)、(xiii)、(xv
)、(xvi)、(xvii)、(xxii)、(xxiii)および(xxiv)が挙げられる。
前記接触順序形態を示した各方法におけるいずれの工程においても、成分(G)を共存させることにより、重合反応中のファウリングが抑制されたり、生成重合体の粒子性状が改善されたりする。成分(G)としては、極性官能基を有する化合物を用いることができ、非イオン性(ノニオン)界面活性剤が好ましく、ポリアルキレンオキサイドブロック、高級脂肪族アミド、ポリアルキレンオキサイド、ポリアルキレンオキサイドアルキルエーテル、アルキルジエタノールアミン、ポリオキシアルキレンアルキルアミン、グリセリン脂肪酸エステル、N-アシルアミノ酸がより好ましい。これらは1種を用いてもよく、2種以上を併用してもよい。
本発明に係るエチレン重合用触媒の調製に用いる溶媒としては、不活性炭化水素溶媒が挙げられ、具体的には、プロパン、ブタン、ペンタン、ヘキサン、ヘプタン、オクタン、デカン、ドデカン、灯油等の脂肪族炭化水素、シクロペンタン、シクロヘキサン、メチルシクロペンタン等の脂環族炭化水素、ベンゼン、トルエン、キシレン等の芳香族炭化水素、エチレンクロリド、クロルベンゼン、ジクロロメタン等のハロゲン化炭化水素またはこれらの混合物等を挙げることができる。
成分(C)と固体状担体(S)の接触においては、成分(C)中の反応部位と固体状担体(S)中の反応部位との反応により成分(C)と固体状担体(S)が化学的に結合され、成分(C)と固体状担体(S)の接触物が形成される。成分(C)と固体状担体(S)との接触時間は、通常0~20時間、好ましくは0~10時間であり、接触温度は、通常-50~200℃、好ましくは-20~120℃である。成分(C)と固体状担体(S)との初期接触を急激に行うと、その反応発熱や反応エネルギーにより固体状担体(S)が崩壊し、得られる固体触媒成分(X)のモルフォロジーが悪化し、これを重合に用いた場合ポリマーモルフォロジー不良により連続運転が困難になることが多い。そのため、成分(C)と固体状担体(S)との接触初期は、反応発熱を抑制する目的で、-20~30℃の低温で接触させる、または、反応発熱を制御し、初期接触温度を維持可能な速度で反応させることが好ましい。また、成分(C)と固体状担体(S)を接触させ、さらに成分(C)を接触させる場合においても同様である。成分(C)と固体状担体(S)との接触のモル比(成分(C)/固体状担体(S))は、任意に選択できるが、そのモル比が高いほうが、成分(A)および成分(B)の接触量を増加でき、固体触媒成分(X)の活性を向上させることができる。具体的には、成分(C)と固体状担体(S)のモル比[=成分(C)のモル量/固体状担体(S)のモル量]は、好ましくは0.2~2.0、特に好ましくは0.4~2.0である。
成分(C)と固体状担体(S)の接触物と、成分(A)および成分(B)との接触に関して、接触時間は、通常0~5時間、好ましくは0~2時間であり、接触温度は、通常-50~200℃、好ましくは-50~100℃の範囲内である。成分(A)および成分(B)の成分(C)に対する接触量は、成分(C)の種類と量に大きく依存する。成分(c-1)の場合は、成分(c-1)と成分(A)および成分(B)中の全遷移金属原子(M)とのモル比[(c-1)/M]が、通常0.01~100000、好ましくは0.05~50000となるような量で用いられる。成分(c-2)の場合は、成分(c-2)中のアルミニウム原子と成分(A)および成分(B)中の全遷移金属原子(M)とのモル比[(c-2)/M]が、通常10~500000、好ましくは20~100000となるような量で用いられる。成分(c-3)の場合は、成分(c-3)と、成分(A)および成分(B)中の全遷移金属原子(M)とのモル比[(c-3)/M]が、通常1~10、好ましくは1~5となるような量で用いられる。なお、成分(C)と成分(A)および成分(B)中の全遷移金属原子(M)とのモル比は、誘導結合プラズマ発光分析法(ICP分析法)により求めることができる。
成分(A)と成分(B)の使用比は、製造したい重合体の分子量および分子量分布などに応じて適宜決定できる。
オレフィンの重合には、前記のような固体触媒成分(X)をそのまま用いることができるが、この固体触媒成分(X)にオレフィンを予備重合させ予備重合触媒成分(XP)を形成してから用いることもできる。
予備重合触媒成分(XP)は、固体触媒成分(X)存在下、通常、不活性炭化水素溶媒中、オレフィンを導入させることにより調製することができる。反応方式としては、回分式、半連続式および連続式のいずれの方法でも使用することができる。また反応は、減圧、常圧または加圧下のいずれでも行うことができる。この予備重合によって、固体状触媒成分1g当たり、通常0.01~1000g、好ましくは0.1~800g、より好ましくは0.2~500gの重合体を生成させる。
不活性炭化水素溶媒中で調製した予備重合触媒成分(XP)は、懸濁液から分離した後、再び不活性炭化水素中に懸濁させ、得られた懸濁液中にオレフィンを導入してもよく、また、乾燥させた後オレフィンを導入してもよい。
予備重合温度は、通常-20~80℃、好ましくは0~60℃である。また、予備重合時間は、通常0.5~100時間、好ましくは1~50時間である。
予備重合に使用する固体触媒成分(X)の形態としては、すでに述べたものを制限無く利用することができる。また、必要に応じて成分(C)が用いられ、特に(c-1)中の前記式(3)に示される有機アルミニウム化合物が好ましく用いられる。成分(C)として式(3)の有機アルミニウム化合物が用いられる場合、成分(C)中のアルミニウム原子(Al)と成分(A)および(B)である遷移金属化合物とのモル比(成分(C)/遷移金属化合物)で、通常0.1~10000、好ましくは0.5~5000の量で用いられる。
予備重合系における固体触媒成分(X)の濃度は、固体触媒成分(X)/重合容積1リットル比で、通常1~1000グラム/リットル、好ましくは10~500グラム/リットルであることが望ましい。予備重合時には、ファウリング抑制または粒子性状改善を目的として、前記成分(G)を共存させることができる。
また予備重合触媒成分(XP)の流動性改善や重合時のヒートスポット・シーティングやポリマー塊の発生抑制を目的に、予備重合によって一旦生成させた予備重合触媒成分(XP)に成分(G)を接触させてもよい。
成分(G)を混合接触させる際の温度は、通常-50~50℃、好ましくは-20~50℃であり、接触時間は1~1000分間、好ましくは5~600分間である。
固体触媒成分(X)と成分(G)とを混合接触するに際して、成分(G)は、固体触媒成分(X)100重量部に対して、通常0.1~20重量部、好ましくは0.3~10重量部、より好ましくは0.4~5重量部の量で用いられる。
固体触媒成分(X)と成分(G)との混合接触は、不活性炭化水素溶媒中で行うことができ、不活性炭化水素溶媒としては、固体触媒成分(X)の調製に用いる溶媒と同様のものが挙げられる。
本発明に係るオレフィン重合用触媒は、予備重合触媒成分(XP)を乾燥して乾燥予備重合触媒として用いることができる。予備重合触媒成分(XP)の乾燥は、通常得られた予備重合触媒の懸濁液から濾過などにより分散媒である炭化水素を除去した後に行われる。
予備重合触媒成分(XP)の乾燥は、予備重合触媒成分(XP)を不活性ガスの流通下、70℃以下、好ましくは20~50℃の範囲の温度に保持することにより行われる。得られた乾燥予備重合触媒の揮発成分量は2.0重量%以下、好ましくは1.0重量%以下であることが望ましい。乾燥予備重合触媒の揮発成分量は、少ないほどよく、特に下限はないが、実用的には0.001重量%である。乾燥時間は、乾燥温度にもよるが通常3~8時間である。乾燥予備重合触媒の揮発成分量が2.0重量%を超えると、乾燥予備重合触媒の流動性が低下し、安定的に重合反応器に供給できなくなることがある。
ここで、乾燥予備重合触媒の揮発成分量は、たとえば、減量法、ガスクロマトグラフィーを用いる方法などにより測定される。
減量法では、乾燥予備重合触媒を不活性ガス雰囲気下において110℃で1時間加熱した際の減量を求め、加熱前の乾燥予備重合触媒に対する百分率として表す。
ガスクロマトグラフィーを用いる方法では、乾燥予備重合触媒から炭化水素などの揮発成分を抽出し、内部標準法に従って検量線を作成した上でGC面積から重量%として算出する。
乾燥予備重合触媒の揮発成分量の測定方法は、乾燥予備重合触媒の揮発成分量が約1重量%以上である場合には、減量法が採用され、乾燥予備重合触媒の揮発成分量が約1重量%以下である場合には、ガスクロマトグラフィーを用いる方法が採用される。
予備重合触媒成分(XP)の乾燥に用いられる不活性ガスとしては、窒素ガス、アルゴンガス、ネオンガスなどが挙げられる。このような不活性ガスは、酸素濃度が20ppm以下、好ましくは10ppm以下、より好ましくは5ppm以下(体積基準)であり、水分含量が20ppm以下、好ましくは10ppm以下、より好ましくは5ppm以下(重量基準)であることが望ましい。不活性ガス中の酸素濃度および水分含量が上記の範囲を超えると、乾燥予備重合触媒のオレフィン重合活性が大きく低下することがある。
上記乾燥予備重合触媒は、流動性に優れているので、重合反応器への供給を安定的に行うことができる。また、気相重合系内に懸濁に用いた溶媒を同伴させずに済むため安定的に重合を行うことができる。
[エチレン系重合体の製造方法]
次に、本発明に係るエチレン系重合体の製造方法に関して記載する。上述した本発明のオレフィン重合用触媒の存在下、エチレンを単独で重合するか、またはエチレンと炭素数3以上20以下のオレフィンとを共重合することによりエチレン系重合体を得る。本発明のオレフィン重合用触媒を用いることで、数多くの長鎖分岐を有するエチレン系共重合体を効率的に製造できる。本発明において、エチレン系重合体中のエチレン含量は好ましくは70モル%以上(モノマー単位の合計を100モル%とする。)である。
本発明では、重合は溶解重合、懸濁重合等の液相重合法または気相重合法のいずれにおいても実施できるが、懸濁重合法および気相重合法においては前記固体触媒成分(X)を用いることが好ましい。
液相重合法において用いられる不活性炭化水素媒体の具体例としては、例えば、プロパン、ブタン、ペンタン、ヘキサン、ヘプタン、オクタン、デカン、ドデカン、灯油等の脂肪族炭化水素;シクロペンタン、シクロヘキサン、メチルシクロペンタン等の脂環族炭化水素;ベンゼン、トルエン、キシレン等の芳香族炭化水素;エチレンクロリド、クロルベンゼン、ジクロロメタン等のハロゲン化炭化水素およびこれらの混合物等が挙げられる。また、液相重合法においては、オレフィン自身を溶媒として用いることもできる。
上記オレフィン重合用触媒を用いて、エチレンの重合を行うに際して、成分(A)および成分(B)は、反応容積1リットル当たり、通常10-12~10-1モル、好ましくは10-8~10-2モルになるような量で用いられる。また、成分(C)が用いられ、特に(c-1)中の式(3)に示される有機アルミニウム化合物が好まれて使用される。
また、上述の固体触媒成分(X)を用いたエチレンの重合温度は、通常-50~+200℃、好ましくは0~170℃、特に好ましくは60~170℃の範囲である。重合圧力は、通常、常圧~100kg/cm2、好ましくは常圧~50kg/cm2の条件下であり、重合反応は、回分式、半連続式、連続式のいずれの方法においても行うことができる。さらに重合を反応条件の異なる2段以上に分けて行うことも可能である。
得られる重合体の分子量は、重合系に水素を存在させるか、または重合温度を変化させることによって調節することができる。一般的に低分子量成分が多くなるほど、重合反応器壁や撹拌翼への付着も多くなり、清掃工程への負荷がかかることにより生産性の低下を招くことがある。重合時には、ファウリング抑制または粒子性状改善を目的として、成分(G)を共存させることができる。
本発明において共重合反応に供給されるオレフィンは、炭素数3以上20以下のオレフィンから選ばれる1種以上のモノマーである。炭素数が3以上20以下のオレフィンの具体例としては、例えば、プロピレン、1-ブテン、1-ペンテン、1-ヘキセン、4-メチル-1-ペンテン、1-オクテン、1-デセン、1-ドデセン、1-テトラデセン、1-ヘキサデセン、1-オクタデセン、1-エイコセンなどのα-オレフィン;シクロペンテン、シクロヘプテン、ノルボルネン、5-メチル-2-ノルボルネン、テトラシクロドデセン、2-メチル1,4,5,8-ジメタノ-1,2,3,4,4a,5,8,8a-オクタヒドロナフタレンなどの環状オレフィン等が挙げられる。また、上記オレフィンとして、例えば、スチレン、ビニルシクロヘキサン、ジエンやアクリル酸、メタクリル酸、フマル酸、無水マレイン酸等;アクリル酸メチル、アクリル酸エチル、メタクリル酸メチル、メタクリル酸エチル、メタクリル酸等の極性モノマー等も挙げられる。
本発明の好ましい態様である、本発明のオレフィン重合用触媒の存在下で、エチレンと炭素数4以上20以下、好ましくは炭素数6以上10以下のα-オレフィンとを共重合することにより得られるエチレン系重合体は、下記要件(1)~(3)を満たすことが好ましい。なお、これらの要件の測定方法は、実施例に記載の通りである。
(1)190℃における2.16kg荷重でのメルトフローレート(MFR)が0.1g/10分以上30g/10分以下である。
下限は好ましくは0.5g/10分、より好ましくは1.0g/10分であり、上限は好ましくは25g/10分、より好ましくは20g/10分である。メルトフローレート(MFR)が前記範囲であることにより、エチレン系重合体のせん断粘度が高すぎず、成形性が良好であるとともに、エチレン系重合体の引張強度やヒートシール強度などの機械的強度が良好になる。
メルトフローレート(MFR)は分子量に強く依存しており、メルトフローレート(MFR)が小さいほど分子量は大きく、メルトフローレート(MFR)が大きいほど分子量は小さくなる。また、エチレン系重合体の分子量は、重合系内における水素とエチレンとの組成比(水素/エチレン)により決定されることが知られている(例えば、曽我和雄他編、「Catalytic Olefin Polymerization」、講談社サイエンティフィク、1990年、p.376)。このため、水素/エチレンを増減させることで、エチレン系重合体のメルトフローレート(MFR)を増減させることが可能である。
(2)密度が875kg/m3以上945kg/m3以下である。
下限は好ましくは885kg/m3、より好ましくは900kg/m3であり、上限は好ましくは943kg/m3、より好ましくは940kg/m3である。密度が前記範囲の場合、エチレン系重合体から成形されたフィルムの表面べたつきが少なく耐ブロッキング性に優れるとともに、該フィルムの衝撃強度が良好となり、ヒートシール強度、破袋強度などの機械的強度が良好である。
一般に、密度はエチレン系重合体のα-オレフィン含量に依存しており、α-オレフィン含量が少ないほど密度は高く、α-オレフィン含量が多いほど密度は低くなる。また、エチレン系重合体中のα-オレフィン含量は、重合系内におけるα-オレフィンとエチレンとの組成比(α-オレフィン/エチレン)により決定されることが知られている(例えば、Walter Kaminsky, Makromol.Chem. 193, p.606(1992))。このため、α-オレフィン/エチレンを増減させることで、上記範囲の密度を有するエチレン系重合体を製造することができる。
(3)135℃デカリン中で測定した極限粘度〔[η](dl/g)〕と、GPC-粘度検出器法(GPC-VISCO)により測定された重量平均分子量の0.776乗(Mw0.776)の比、[η]/Mw0.776が、0.90×10-4以上2.10×10-4以下である。すなわち、本発明で用いられるエチレン系重合体では、[η]とMwが下記式(Eq-1)
0.90×10-4≦[η]/Mw0.776≦2.10×10-4 --------(Eq-1)
を満たす。ここで、下限値は好ましくは0.95×10-4、上限値は好ましくは2.00×10-4である。
エチレン系重合体中に長鎖分岐が導入されると、長鎖分岐の無い直鎖型エチレン系重合体に比べ、分子量の割に極限粘度[η](dl/g)が小さくなることが知られている(例えばWalther Burchard, ADVANCES IN POLYMER SCIENCE, 143, Branched PolymerII, p.137(1999))。そのため、本エチレン系重合体においても、極限粘度[η](dl/g)が2.10×10-4×Mw0.776以下の場合は多数の長鎖分岐を有しており、成形性、流動性に優れる。
成分(A)は、分子量が比較的低く、また数多くの末端に二重結合を有する重合体を生成できるため、成分(B)により効率的に取り込まれ、数多くの長鎖分岐を有する重合体を製造できる。
物性値のばらつきを抑制するなどの目的で、重合反応により得られたエチレン系重合体粒子および所望により添加される他の成分は、任意の方法で溶融され、混練、造粒することもできる。
本発明で得られるエチレン系重合体は以下のような方法によりペレット化してもよい。
(i)エチレン系重合体および所望により添加される他の成分を、押出機、ニーダー等を用いて機械的にブレンドして、所定の大きさにカットする方法。
(ii)エチレン系重合体および所望により添加される他の成分を適当な良溶媒(たとえば、ヘキサン、ヘプタン、デカン、シクロヘキサン、ベンゼン、トルエンおよびキシレン等の炭化水素溶媒)に溶解し、次いで溶媒を除去、しかる後に押出機、ニーダー等を用いて機械的にブレンドして所定の大きさにカットする方法。
本発明で得られるエチレン系重合体は、本発明の目的を損なわない範囲で、耐候性安定剤、耐熱安定剤、帯電防止剤、スリップ防止剤、アンチブロッキング剤、防曇剤、滑剤、顔料、染料、核剤、可塑剤、老化防止剤、塩酸吸収剤、酸化防止剤等の添加剤が必要に応じて配合されていてもよい。
本発明で得られるエチレン系重合体、および必要に応じて熱可塑性樹脂や添加剤を含む樹脂組成物は、一般のフィルム成形やブロー成形、インジェクション成形および押出成形により加工される。フィルム成形では押出ラミネート成形、Tダイフィルム成形、インフレーション成形(空冷、水冷、多段冷却、高速加工)などにより得られる。該エチレン系重合体を用いて得られたフィルムは単層でも使用することができるが、多層とすることでさらに様々な機能を付与することができる。その場合には、前記各成形法における共押出法が挙げられる。一方押出ラミネート成形やドライラミネート法のような貼合ラミネート成形法によって、共押出が困難な紙やバリアフィルム(アルミ箔、蒸着フィルム、コーティングフィルムなど)との積層が挙げられる。ブロー成形やインジェクション成形、押出成形での、共押出法による多層化での高機能製品の作製については、フィルム成形と同様に可能である。
本発明で得られるエチレン系重合体、および必要に応じて熱可塑性樹脂や添加剤を含む樹脂組成物を加工することにより得られる成形体としては、フィルム、ブロー輸液バック、ブローボトル、ガソリンタンク、押出成形によるチューブ、パイプ、引きちぎりキャップ、日用雑貨品等射出成形物、繊維、回転成形による大型成形品などがあげられる。
さらに、本発明で得られるエチレン系重合体、および必要に応じて熱可塑性樹脂や添加剤を含む樹脂組成物を加工することにより得られるフィルムは、水物包装袋、液体スープ包袋、液体紙器、ラミ原反、特殊形状液体包装袋(スタンディングパウチ等)、規格袋、重袋、ラップフィルム、砂糖袋、油物包装袋、食品包装用等の各種包装用フィルム、プロテクトフィルム、輸液バック、農業用資材等に好適である。また、ナイロン、ポリエステル等の基材と貼り合わせて、多層フィルムとして用いることもできる。
以下、実施例に基づいて本発明をより具体的に説明するが、本発明はこれら実施例に何ら限定されるものではない。なお、下記の実施例および比較例において、エチレン系重合体の製造における遊離ポリマー量および得られたエチレン系重合体の物性の測定は以下のようにして行った。
<メルトフローレート(MFR)>
190℃、2.16kg荷重(kgf)の条件下で測定した。
<密度(D)>
MFR測定時に得られるストランドを100℃で30分間熱処理し、更に室温で1時間放置した後に密度勾配管法で測定した。
<数平均分子量(Mn)、重量平均分子量(Mw)、Z平均分子量(Mz)、分子量分布(Mw/Mn、Mz/Mw)>
Agilent社製GPC-粘度検出器(GPC-VISCO)PL-GPC220を用い、以下のように測定した。
分析カラムにはAgilent PLgel Olexisを2本用い、検出器には示差屈折計および3キャピラリー粘度計を用い、カラム温度は145℃とし、移動相としてはo-ジクロロベンゼンを用い、流速を1.0ml/分とし、試料濃度は0.1重量%とした。標準ポリスチレンには、東ソー社製のものを用いた。分子量計算は、粘度計および屈折計から実測粘度を計算し、実測ユニバーサルキャリブレーションより数平均分子量(Mn)、重量平均分子量(Mw)、Z平均分子量(Mz)、分子量分布(Mw/Mn、Mz/Mw)を求めた。
<極限粘度[η]>
測定サンプル約20mgをデカリン15mlに溶解し、135℃のオイルバス中で比粘度ηspを測定した。このデカリン溶液にデカリン溶媒を5ml追加して希釈後、同様にして比粘度ηspを測定した。この希釈操作をさらに2回繰り返し、下記式(Eq-2)に示すように濃度(C)を0に外挿した時のηsp/Cの値を極限粘度[η](単位;dl/g)として求めた。
[η]=lim(ηsp/C) (C→0) -------- (Eq-2)
[成分(A)および成分(B)の合成]
<合成例1>(インデニル)Ti(N=C(t-Bu)2)Cl2(以下「成分(A-1)」ともいう)は、J.Organomet.Chem.2004,689,203.記載の方法によって合成した。
Figure 0007046554000026
<合成例2> (1-(ペンタフルオロフェニルメチル)インデニル)Ti(N=P(t-Bu)3)Cl2(以下「成分(A-2)」ともいう)は、特開2015-520276号公報記載の方法によって合成した。
Figure 0007046554000027
<合成例3>ジメチルシリレン(3-n-プロピルシクロペンタジエニル)(シクロペンタジエニル)ジルコニウムジクロリド(以下「成分(B-1)」ともいう)の合成
下記式(B-1)で示される成分(B-1)は、特許第5455354号公報記載の方法によって合成した。
Figure 0007046554000028
[実施例1]
<固体触媒成分(X-1)の調製>
内容積270Lの攪拌機付き反応器を用い、窒素雰囲気下、固体状担体[S]として、シリカゲル(富士シリシア化学株式会社製、レーザー光回折散乱法の体積分布の累積50%粒径:70μm、比表面積:340m2/g、細孔容積:1.3cm3/g、250℃で10時間乾燥)10kgを77Lのトルエンに懸濁させた後、0~5℃に冷却した。この懸濁液に成分(C)としてメチルアルミノキサンのトルエン溶液(Al原子換算で3.5mol/L)19.4リットルを30分間かけて滴下した。この際、系内温度を0~5℃に保った。次いで、これらを0~5℃で30分間接触させた後、1.5時間かけて系内温度を95℃まで昇温して、引き続き95℃で4時間接触させた。その後、常温まで降温して、上澄み液をデカンテーションにより除去し、さらにトルエンで2回洗浄することで、全量115リットルのトルエンスラリーを調製した。得られたスラリーの一部を採取し分析したところ、固体分濃度は122.6g/L、Al濃度は0.612mol/Lであった。
次に充分に窒素置換した内容積200mLの攪拌機付き反応器に、窒素雰囲気下、トルエン30mL、並びに前記で得られたスラリー1.63mL(固体分重量0.2g)を装入した。次いで、合成例1で得られた化合物(A-1)のトルエン溶液をZrとして4.80μmol加え、合成例3で得られた化合物(B-1)のトルエン溶液をZrとして0.20μmol加えた(成分(A)/成分(B)のモル比=96/4)。これらを系内温度20~25℃で1時間接触させた後、上澄み液をデカンテーションにより除去し、さらにヘキサンを用いて2回洗浄した。これにより、全量40mLの固体触媒成分(X-1)のスラリーを調製した。
<エチレン系重合体の製造>
充分に窒素置換した内容積1リットルのSUS製オートクレーブに、窒素雰囲気下、ヘプタン500ミリリットルを添加した後、エチレンを流通させ反応器内をエチレンで飽和させた。次に、1-ヘキセンを10mL、トリイソブチルアルミニウムを0.375mmol、およびスラリーの状態の前記固体触媒成分(X-1)のスラリー を固体分として80.0mg装入した後、エチレンにて80℃、0.8MPaGに昇温、昇圧し、90分間重合反応を行った。得られたポリマーをろ過後、80℃で10時間真空乾燥することで、エチレン系重合体45.7gを得た。
得られたエチレン系重合体に、耐熱安定剤としてIrganoX1076(商品名、チバスペシャリティケミカルズ株式会社製)0.1質量%、Irgafos168(商品名、チバスペシャリティケミカルズ株式会社製)0.1質量%を加え、ラボプラストミル(株式会社東洋精機製作所製)を用い、樹脂温度180℃、回転数50rpmで5分間溶融混練した。さらに、この溶融ポリマーを、プレス成形機(株式会社神藤金属工業所製)を用い、冷却温度20℃、冷却時間5分間、冷却圧力100kg/cm2の条件にて冷却した。得られた試料を測定用試料として、物性測定を行った。結果を表1に示す。
[実施例2]
<固体触媒成分(X-2)の調製>
実施例1において、成分(A-1)4.80μmolの代わりに成分(A-2)0.75μmolを用い、成分(B-1)0.20μmolを4.25μmolに変更し、成分(A)/成分(B)のモル比を15/85にしたこと以外は実施例1と同様にして固体触媒成分(X-2)のスラリーを調製した。
<エチレン系重合体の製造>
充分に窒素置換した内容積1リットルのSUS製オートクレーブに、窒素雰囲気下、ヘプタン500ミリリットルを添加した後、エチレンを流通させ反応器内をエチレンで飽和させた。次に、1-ヘキセンを10mL、トリイソブチルアルミニウムを0.375mmol、およびスラリーの状態の前記固体触媒成分(X-2)を固体分として14.0mg装入した後、エチレンにて80℃、0.8MPaGに昇温、昇圧し、90分間重合反応を行った。得られたポリマーをろ過後、80℃で10時間真空乾燥することで、エチレン系重合体93.3gを得た。
得られたエチレン系重合体を実施例1と同様の方法で溶融混練および冷却し、得られた試料を測定用試料として、物性測定を行った。結果を表1に示す。
[比較例1]
<固体触媒成分(X-3)の調製>
実施例2において、成分(A-2)0.75μmolを5.00μmolに変更し、成分(B-1)を使用しなかったこと以外は実施例2と同様にして、固体触媒成分(X-3)のスラリーを調製した。
<エチレン系重合体の製造>
充分に窒素置換した内容積1リットルのSUS製オートクレーブに、窒素雰囲気下、ヘプタン500ミリリットルを添加した後、エチレンを流通させ反応器内をエチレンで飽和させた。次に、1-ヘキセンを10mL、トリイソブチルアルミニウムを0.375mmol、およびスラリーの状態の前記固体触媒成分(X-3)を固体分として14.0mg装入した後、水素濃度0.20vol%のエチレン・水素混合ガスを用いて、80℃、0.8MPaGに昇温、昇圧し、90分間重合反応を行った。得られたポリマーをろ過後、80℃で10時間真空乾燥することで、エチレン系重合体115.9gを得た。
得られたエチレン系重合体を実施例1と同様の方法で溶融混練および冷却し、得られた試料を測定用試料として、物性測定を行った。結果を表1に示す。
Figure 0007046554000029
成分(A)に加え、成分(B)も用いた実施例1、2は、成分(A)のみを用いた比較例1に比べ、[η]/Mw0.776の値が小さく、これは長鎖分岐導入量が多いことを意味するものである。

Claims (7)

  1. 下記成分(A)、成分(B)および成分(C)を含んでなるオレフィン重合用触媒。
    成分(A):下記一般式[1]または[2]で表される遷移金属化合物。
    Figure 0007046554000030
    Figure 0007046554000031
    (一般式[1]および[2]中、Mは、チタン原子であり、
    nは、Mの価数を満たす1~4の整数であり、
    Xは、水素原子、ハロゲン原子、炭化水素基、アニオン配位子または孤立電子対で配位可能な中性配位子であり、該アニオン配位子が、ハロゲン含有基、ケイ素含有基、酸素含有基、硫黄含有基、窒素含有基、リン含有基、ホウ素含有基、アルミニウム含有基または共役ジエン系誘導体基であり、nが2以上の場合は、複数存在するXで示される基は互いに同一でも異なっていてもよく、互いに結合して環を形成してもよく、
    Cpは、置換基を有していてもよい、シクロペンタジエニル型配位子であり、前記置換基は、隣接した他の置換基と、互いに結合して置換基を有していてもよい環を形成してもよく、
    Nは、窒素原子であり、
    Pは、リン原子であり、
    1~R3は、それぞれ独立に、水素原子、炭素数1~40の炭化水素基、ハロゲン含有基、ケイ素含有基、酸素含有基、窒素含有基または硫黄含有基であり、それぞれ同一でも異なっていてもよく、R1~R3のうち隣接した置換基同士は、互いに結合して置換基を有していてもよい単環またはビシクロ環を形成してもよい。)
    成分(B):下記一般式[3]で表される遷移金属化合物
    Figure 0007046554000032
    (一般式[3]中、Mは、周期表第4族遷移金属原子であり、
    nは、Mの価数を満たす1~4の整数であり、
    mは、1~2の整数であり、
    Xは、水素原子、ハロゲン原子、炭化水素基、アニオン配位子または孤立電子対で配位可能な中性配位子であり、該アニオン配位子が、ハロゲン含有基、ケイ素含有基、酸素含有基、硫黄含有基、窒素含有基、リン含有基、ホウ素含有基、アルミニウム含有基または共役ジエン系誘導体基であり、nが2以上の場合は、複数存在するXで示される基は互いに同一でも異なっていてもよく、互いに結合して環を形成してもよく、
    Qは、周期表第14族原子であり、
    4~R13は、それぞれ独立に、水素原子、炭素数1~40の炭化水素基、ハロゲン含有基、ケイ素含有基、酸素含有基、窒素含有基または硫黄含有基であり、それぞれ同一でも異なっていてもよく12およびR13は、互いに結合してQを含む環を形成してもよく、該環は置換基を有していてもよい。)
    成分(C):(c-1)下記一般式[4]、[5]または[6]で表される有機金属化合物、(c-2)有機アルミニウムオキシ化合物、ならびに(c-3)成分(A)および成分(B)と反応してイオン対を形成する化合物よりなる群から選ばれる少なくとも1種の化合物。
    RamAl(ORb)n Hp Xq ・・・[4]
    (一般式[4]中、Ra およびRb は、炭素原子数が1~15の炭化水素基を示し、互いに同一でも異なっていてもよく、Xはハロゲン原子を示し、mは0<m≦3、nは0≦n<3、pは0≦p<3、qは0≦q<3の数であり、かつm+n+p+q=3である。)Ma AlRa4 ・・・[5]
    (一般式[5]中、Ma はLi、NaまたはKを示し、Ra は炭素原子数が1~15の炭化水素基を示す。)
    RarMbRbs Xt ・・・[6]
    (一般式[6]中、Ra およびRb は、炭素原子数が1~15の炭化水素基を示し、互いに同一でも異なっていてもよく、Mb は、Mg、ZnまたはCdを示し、Xはハロゲン原子を示し、rは0<r≦2、sは0≦s≦1、tは0≦t≦1であり、かつr+s+t=2である。)
  2. 前記一般式[1]および[2]において、
    Cpが、それぞれ置換基を有していてもよい、シクロペンタジエニル配位子またはインデニル配位子であり
    Xが、それぞれ独立に、水素原子、ハロゲン原子、炭素数1~20の炭化水素基、ケイ素含有基、酸素含有基または共役ジエン系二価誘導体基であり、
    1~R3が、それぞれ独立に、炭素数1~20の炭化水素基、炭素数1~20の酸素含有基または炭素数1~20の窒素含有基であり、それぞれ同一でも異なっていてもよく、
    前記一般式[3]において、
    Mが、ジルコニウム原子であり、
    Xが、それぞれ独立に、水素原子、ハロゲン原子、炭素数1~20の炭化水素基、ケイ素含有基または酸素含有基であり、
    Qが、炭素原子またはケイ素原子であり、
    4~R13が、それぞれ独立に、水素原子、炭素数1~20の炭化水素基、ケイ素含有基、酸素含有基、窒素含有基または硫黄含有基であることを特徴とする請求項1に記載のオレフィン重合用触媒。
  3. 前記一般式[1]および[2]において、
    1~R3が、それぞれ独立に、炭素数1~20の炭化水素基または炭素数1~20の窒素含有基であり、それぞれ同一でも異なっていてもよく、
    前記一般式[3]において、
    mが、1であり、
    Qが、ケイ素原子であり、
    4~R13が、それぞれ独立に、水素原子、炭素数1~20の炭化水素基、炭素数1~20のケイ素含有基、炭素数1~20の酸素含有基または炭素数1~20の窒素含有基であることを特徴とする請求項2に記載のオレフィン重合用触媒。
  4. 固体状担体(S)、上記成分(A)、成分(B)および成分(C)より形成される固体状触媒成分(X)からなる請求項1から3のいずれかに記載のオレフィン重合用触媒。
  5. 成分(C)が(c-2)有機アルミニウムオキシ化合物であり、固体状担体(S)が多孔質酸化物であることを特徴とする請求項4に記載のオレフィン重合用触媒。
  6. 請求項1から5のいずれかに記載のオレフィン重合用触媒の存在下、エチレンを単独で、またはエチレンと炭素数3以上20以下のオレフィンとを重合することを特徴とするエチレン系重合体の製造方法。
  7. エチレン系重合体が、エチレンと炭素数4以上20以下のα-オレフィンとの共重合体であって、下記要件(1)~(3)を満たすことを特徴とする、請求項6に記載のエチレン系重合体の製造方法。
    (1)190℃における2.16kg荷重でのメルトフローレート(MFR)が0.1g/10分以上30g/10分以下である;
    (2)密度が875kg/m3以上945kg/m3以下である;
    (3)135℃デカリン中で測定した極限粘度〔[η](dl/g)〕と、GPC-粘度検出器法(GPC-VISCO)により測定された重量平均分子量の0.776乗(Mw0.776)の比、[η]/Mw0.776が、0.90×10 -4 以上2.10×10-4以下である。
JP2017197558A 2017-10-11 2017-10-11 オレフィン重合用触媒およびエチレン系重合体の製造方法 Active JP7046554B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017197558A JP7046554B2 (ja) 2017-10-11 2017-10-11 オレフィン重合用触媒およびエチレン系重合体の製造方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017197558A JP7046554B2 (ja) 2017-10-11 2017-10-11 オレフィン重合用触媒およびエチレン系重合体の製造方法

Publications (2)

Publication Number Publication Date
JP2019070089A JP2019070089A (ja) 2019-05-09
JP7046554B2 true JP7046554B2 (ja) 2022-04-04

Family

ID=66441049

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017197558A Active JP7046554B2 (ja) 2017-10-11 2017-10-11 オレフィン重合用触媒およびエチレン系重合体の製造方法

Country Status (1)

Country Link
JP (1) JP7046554B2 (ja)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002105132A (ja) 2000-07-26 2002-04-10 Mitsui Chemicals Inc ポリマーおよびその製造方法
JP2003505542A (ja) 1999-07-19 2003-02-12 ノバ ケミカルズ(インターナショナル)ソシエテ アノニム 混合ホスフィンイミン触媒
JP2006169521A (ja) 2004-12-07 2006-06-29 Nova Chem Internatl Sa 単一支持体上の二成分触媒
JP2007520597A (ja) 2004-01-09 2007-07-26 シェブロン フィリップス ケミカル カンパニー エルピー 触媒組成物及び押出コーティング用途のポリオレフィン
JP2015526552A (ja) 2012-07-23 2015-09-10 ノヴァ ケミカルズ(アンテルナショナル)ソシエテ アノニム ポリマー組成の調整
WO2016057270A2 (en) 2014-10-09 2016-04-14 Chevron Phillips Chemical Company Lp Titanium phosphinimide and titanium iminoimidazolidide catalyst systems with activator-supports
WO2016063164A2 (en) 2014-10-21 2016-04-28 Nova Chemicals (International) S.A. Solution polymerization process

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003505542A (ja) 1999-07-19 2003-02-12 ノバ ケミカルズ(インターナショナル)ソシエテ アノニム 混合ホスフィンイミン触媒
JP2002105132A (ja) 2000-07-26 2002-04-10 Mitsui Chemicals Inc ポリマーおよびその製造方法
JP2007520597A (ja) 2004-01-09 2007-07-26 シェブロン フィリップス ケミカル カンパニー エルピー 触媒組成物及び押出コーティング用途のポリオレフィン
JP2006169521A (ja) 2004-12-07 2006-06-29 Nova Chem Internatl Sa 単一支持体上の二成分触媒
JP2015526552A (ja) 2012-07-23 2015-09-10 ノヴァ ケミカルズ(アンテルナショナル)ソシエテ アノニム ポリマー組成の調整
WO2016057270A2 (en) 2014-10-09 2016-04-14 Chevron Phillips Chemical Company Lp Titanium phosphinimide and titanium iminoimidazolidide catalyst systems with activator-supports
WO2016063164A2 (en) 2014-10-21 2016-04-28 Nova Chemicals (International) S.A. Solution polymerization process

Also Published As

Publication number Publication date
JP2019070089A (ja) 2019-05-09

Similar Documents

Publication Publication Date Title
JP6571965B2 (ja) オレフィン重合用触媒ならびにそれを用いたオレフィン重合体の製造方法
JP5405806B2 (ja) オレフィン重合用触媒およびそれを用いたエチレン系重合体の製造方法
JP2019059933A (ja) エチレン重合用触媒およびエチレン系重合体の製造方法
JP7248404B2 (ja) 遷移金属化合物、オレフィン重合用触媒およびオレフィン重合体の製造方法
JP2015174859A (ja) 遷移金属化合物、オレフィン重合用触媒およびオレフィン重合体の製造方法
JP7046554B2 (ja) オレフィン重合用触媒およびエチレン系重合体の製造方法
JP2009197226A (ja) エチレン共重合体、該エチレン共重合体を含む熱可塑性樹脂組成物およびこれらから得られる成形体
JP7288388B2 (ja) 遷移金属化合物、オレフィン重合用触媒およびオレフィン重合体の製造方法
JP7248405B2 (ja) 遷移金属化合物、オレフィン重合用触媒およびオレフィン重合体の製造方法
JP7437956B2 (ja) 遷移金属化合物、オレフィン重合用触媒およびオレフィン重合体の製造方法
JP7144261B2 (ja) 遷移金属化合物、オレフィン重合用触媒およびオレフィン重合体の製造方法
JP2017145303A (ja) オレフィン重合用触媒ならびにそれを用いたエチレン系重合体の製造方法
JP6987494B2 (ja) オレフィン重合用触媒およびエチレン系重合体の製造方法
JP7069284B2 (ja) オレフィン重合用触媒ならびにそれを用いたエチレン系重合体の製造方法
JP7011919B2 (ja) 遷移金属化合物およびオレフィン重合用触媒
JP2021152144A (ja) オレフィン重合用触媒および該オレフィン重合用触媒を用いたエチレン系重合体の製造方法
JP2020132629A (ja) 遷移金属化合物、オレフィン重合用触媒およびオレフィン重合体の製造方法
JP7132059B2 (ja) オレフィン重合用触媒および該オレフィン重合用触媒を用いたエチレン系重合体の製造方法
JP2022037931A (ja) 遷移金属化合物、オレフィン重合用触媒およびその製造方法
JP2021155345A (ja) 遷移金属化合物、オレフィン重合用触媒およびオレフィン重合体の製造方法
JP2023149088A (ja) オレフィン重合体の製造方法、遷移金属化合物およびオレフィン重合用触媒
JP2021155344A (ja) 遷移金属化合物、オレフィン重合用触媒およびオレフィン重合体の製造方法
JP2022037932A (ja) オレフィン重合体の製造方法
JP2023109143A (ja) 遷移金属化合物、オレフィン系重合用触媒およびオレフィン系重合体の製造方法
JP2021155407A (ja) 遷移金属化合物、オレフィン重合用触媒およびオレフィン重合体の製造方法

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200930

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20210810

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210817

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20211011

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220308

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220323

R150 Certificate of patent or registration of utility model

Ref document number: 7046554

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150