JP7039902B2 - 多焦点レンズ、計測装置および計測方法 - Google Patents

多焦点レンズ、計測装置および計測方法 Download PDF

Info

Publication number
JP7039902B2
JP7039902B2 JP2017180932A JP2017180932A JP7039902B2 JP 7039902 B2 JP7039902 B2 JP 7039902B2 JP 2017180932 A JP2017180932 A JP 2017180932A JP 2017180932 A JP2017180932 A JP 2017180932A JP 7039902 B2 JP7039902 B2 JP 7039902B2
Authority
JP
Japan
Prior art keywords
light
lens
region
measuring device
optical element
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2017180932A
Other languages
English (en)
Other versions
JP2019056618A (ja
Inventor
宏之 堀田
二朗 松田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujifilm Business Innovation Corp
Original Assignee
Fuji Xerox Co Ltd
Fujifilm Business Innovation Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Xerox Co Ltd, Fujifilm Business Innovation Corp filed Critical Fuji Xerox Co Ltd
Priority to JP2017180932A priority Critical patent/JP7039902B2/ja
Publication of JP2019056618A publication Critical patent/JP2019056618A/ja
Application granted granted Critical
Publication of JP7039902B2 publication Critical patent/JP7039902B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Length Measuring Devices By Optical Means (AREA)

Description

本発明は、多焦点レンズ、計測装置および計測方法に関する。
特許文献1には、往路光軸を有し、測定光を投光する為の投光光学系と、復路光軸を有し、反射光を受光する為の受光光学系とを具備し、該受光光学系が反射光を受光し集光させる為の受光レンズと、反射光が入射する受光面と、該受光面と受光レンズとの間に配置されたリング状の孔明き多焦点光学部材とを有することを特徴とする光波距離測定装置が開示されている。特許文献1に開示された光波距離測定装置では、測定光が受光レンズの孔を通過し、反射光は受光レンズの孔とレンズを通過する構成となっている。
特許文献2には、固体撮像素子と、少なくとも2枚のレンズと、光線を制限する絞りとを有し、レンズのうち1つは、固体撮像素子の光入射側にある複数の焦点距離を有する複数焦点レンズであり、絞りは、複数焦点レンズの光入射側にあることを特徴とする撮像装置が開示されている。特許文献2に開示された撮像装置は、2枚のレンズの間に絞りを配置し、レンズのうちの1枚は2焦点レンズとなっているが、レンズと絞りとの距離はレンズの焦点距離とは異なっている。
特開2004-069611号公報 特開2007-108600号公報
本発明の課題は、2枚のレンズとその間に設けられた絞りを含む光学系を用いた計測装置において、単焦点レンズ単体を用いた場合と比較してより計測精度を向上させることである。
上記目的を達成するために、請求項1に記載の計測装置は、対象物へ照射する照射光を発光する発光部と、前記発光部から発光された前記照射光の発散度合いを変える第1のレンズと、前記第1のレンズから出射された前記照射光を絞る絞り部と、前記絞り部を通過した前記照射光を前記対象物の予め定められた方向から照射するように前記対象物上に集光する第1の光学素子と、前記絞り部と前記第1の光学素子との間に配置され、前記照射光が前記対象物に照射されて反射した反射光を受光する受光部と、前記照射光が前記対象物に照射されて反射し前記受光部で受光される前記反射光を前記受光部の受光面に集光する第2の光学素子と、を含むものである。
また、請求項2に記載の発明は、請求項1に記載の発明において、前記第2の光学素子は、第1の焦点距離を有する第2のレンズであり、前記第1の光学素子は、前記照射光を透過するとともに前記第1の焦点距離を補正する補正素子および前記照射光を透過する前記第2の光学素子の一部で構成され、前記補正素子および前記第2の光学素子の一部による焦点位置が前記絞り部の中心とされているものである。
また、請求項3に記載の発明は、請求項2に記載の発明において、前記発光部は予め定められた方向に配列された複数の発光素子を備え、前記第1の光学素子は前記予め定められた方向に延伸されるとともに前記複数の発光素子の各々からの照射光を透過させる長さを有するものである。
また、請求項4に記載の発明は、請求項1に記載の発明において、前記第1の光学素子と前記第2の光学素子とは多焦点レンズとして一体に構成され、前記第1の光学素子は、焦点位置が前記絞り部の中心とされている前記多焦点レンズの第1の領域とされ、前記第2の光学素子は、前記反射光を前記受光面に集光する焦点距離を有する前記多焦点レンズの第2の領域とされたものである。
また、請求項5に記載の発明は、請求項4に記載の発明において、前記第1の領域と前記第2の領域とは互いに屈折率が異なるものである。
また、請求項6に記載の発明は、請求項4に記載の発明において、前記第1の領域と前記第2の領域とは互いに表面の曲率が異なるものである。
また、請求項7に記載の発明は、請求項4から請求項6のいずれか1項に記載の発明において、前記発光部は予め定められた方向に配列された複数の発光素子を備え、前記第1の領域は前記予め定められた方向に延伸されるとともに前記複数の発光素子の各々からの照射光を透過させる長さを有するものである。
また、請求項8に記載の発明は、請求項4から請求項7のいずれか1項に記載の発明において、前記第1の領域と前記第2の領域との間に遮光部材を備えるものである。
上記目的を達成するために、請求項9に記載の計測方法は、対象物へ照射する照射光を発光する発光部と、前記発光部から発光された前記照射光の発散度合いを変えるレンズと、前記レンズから出射された前記照射光を絞る絞り部と、前記絞り部を通過した前記照射光が前記対象物に照射されて反射した反射光を受光する受光部と、を含む計測装置による計測方法であって、第1の光学素子により前記絞り部を通過した前記照射光が予め定められた方向から前記対象物に照射されるように前記照射光を前記対象物上に集光させ、第2の光学素子により前記照射光が前記対象物に照射されて反射し前記受光部で受光される前記反射光を前記受光部の受光面に集光させるものである。
上記目的を達成するために、請求項10に記載の多焦点レンズは、第1の焦点距離を有する第1の領域と、予め定められた方向に延伸された扁平形状の前記第1の焦点距離と異なる第2の焦点距離を有する第2の領域と、を含み、平面視において、前記第2の領域は前記第1の領域に含まれて形成されているか、または前記予め定められた方向の両端が前記第1の領域の周縁の一部と重なって形成されているものである。
また、請求項11に記載の発明は、請求項10に記載の発明において、前記第1の領域と前記第2の領域との界面は、断面視において、前記多焦点レンズの光軸に対し予め定められた角度傾けられたものである。
また、請求項12に記載の発明は、請求項10または請求項11に記載の発明において、前記第1の領域と前記第2の領域との間に、前記多焦点レンズを双方向に透過する光同士を遮光する遮光部をさらに含むものである。
請求項1、請求項9および請求項10に記載の発明によれば、2枚のレンズとその間に設けられた絞りを含む光学系を用いた計測装置において、単焦点レンズ単体を用いた場合と比較してより計測精度が向上する、という効果が得られる。
請求項2に記載の発明によれば、第1の光学素子と第2の光学素子とを多焦点レンズとして一体に構成する場合と比較して、よりコストが削減される、という効果が得られる。
請求項3に記載の発明によれば、延伸方向、および発光素子からの照射光を透過させる長さを考慮しない第1の光学素子を用いる場合と比較して、第1の光学素子の大きさが抑制される、という効果が得られる。
請求項4に記載の発明によれば、第1の光学素子を、照射光を透過するとともに第1の焦点距離を補正する補正素子および照射光を透過する第2の光学素子の一部で構成する場合と比較して、部品点数が削減される、という効果が得られる。
請求項5に記載の発明によれば、第1の領域と第2の領域とを互いに表面の曲率が異なるように構成する場合と比較して、多焦点レンズが一般的な形状のレンズとされる、という効果が得られる。
請求項6に記載の発明によれば、第1の領域と第2の領域とを互いに屈折率が異なるように構成する場合と比較して、レンズの材質が均質化される、という効果が得られる。
請求項7に記載の発明によれば、延伸方向および発光素子からの照射光を透過させる長さを考慮しないで第1の領域を構成する場合と比較して、第1の領域の大きさが抑制される、という効果が得られる。
請求項8に記載の発明によれば、第1の領域と第2の領域との間に遮光部材を備えない場合と比較して、照射光と反射光の干渉が抑制される、という効果が得られる。
請求項11に記載の発明によれば、第1の領域と第2の領域との界面が、断面視において、多焦点レンズの光軸に対し平行な場合と比較して、多焦点レンズへの光の入射方向に応じて光の透過が効率化される、という効果が得られる。
請求項12に記載の発明によれば、第1の領域と第2の領域との間に、多焦点レンズを双方向に透過する光同士を遮光する遮光部を含まない場合と比較して、多焦点レンズを双方向に透過する光同士の干渉が抑制される、という効果が得られる。
第1の実施の形態に係る計測装置の構成の一例を示す断面図である。 (a)は実施の形態に係る受光器の構成の一例を示す平面図、(b)は受光 器の光量出力特性を示すグラフである。 第1の実施の形態に係る計測装置の動作を説明する、(a)は発光素子の配列方向に直交する方向から見た図、(b)は対象物側のレンズの詳細を示す図、(c)、(d)は発光素子の配列方向に平行な方向から見た図、である。 (a)は第1の実施の形態に係る多焦点レンズを計測装置の上方から見た図、(b)は変形例に係る多焦点レンズを計測装置の上方から見た図である。 第2の実施の形態に係る計測装置の構成の一例を示す断面図である。 第3の実施の形態に係る計測装置の構成の一例を示す断面図である。 (a)から(c)は、比較例に係る計測装置の動作を説明する図、(d)は、絞りの変形例を示す図である。
[第1の実施の形態]
図1から図4を参照して、本実施の形態に係る多焦点レンズ、計測装置および計測方法について詳細に説明する。まず、図1および図2を参照して、本実施の形態に係る計測装置10の構成の一例について説明する。図1は、計測装置10が対象物の計測を行う場合の構成を示している。
図1に示すように、計測装置10は、発光器14、光学系30、および受光器18を含んで構成されている。計測装置10は、-X方向に移動する対象物OBの微細領域にZ軸方向から順次光を照射し、各照射光に対する反射光の反射角度分布(光量分布の反射角度依存性)を取得する。取得した反射角度分布を用い、対象物OBの形状の変化や表面状態(シボ、エンボス、表面粗さ、表面欠陥、異物付着等)について、対象物OBとの距離や対象物OBの角度の変動に影響されずに計測がなされる。
より詳細には、図1に示すように、発光器14は、-X方向に移動する対象物OBが通過する計測領域Tに対して、装置上下方向(Z軸方向)の上方に配置されている。また、発光器14は、基板14A上Y軸方向に並べて実装され、-Z方向を発光方向とする複数の発光素子12を備えている。換言すれば、複数の発光素子12は、対象物OBの移動方向(-X方向)に対して直交(交差)する方向に並べられている。なお、図1では、基板14AのY軸方向の一端部(図中右端)に配置された発光素子12を発光素子12Aと表記し、基板14AのY軸方向他端部(図中左端)に配置された発光素子12を発光素子12Bと表記し、基板14Aの中央に配置された発光素子12を発光素子12Cと表記している。
本実施の形態に係る複数の発光素子12は、発光素子12Aから発光素子12Bまで、時間差を設けて順次発光されるように構成され、各発光素子12からの光が対象物OBの異なる位置に個別照射される。そして、対象物OBが計測領域Tにおいて-X方向に移動する間に、発光素子12Aから発光素子12Bまでの1周期の発光が複数回繰り返されるように構成されている。
発光素子12としては特に限定されないが、一例として、面発光レーザ(Vertical Cavity Surface Emitting Laser:VCSEL)、発光ダイオード(Light Emitting Diode:LED)等が用いられる。
光学系30は、レンズ32、レンズ34、およびレンズ32とレンズ34との間に配置された絞り40を含み、いわゆる両側テレセントリックレンズとして構成されている。光学系30は、発光器14と対象物OBとの間に配置され、発光素子12から発光された照射光を対象物OBに導くとともに、対象物OBで反射された反射光を受光器18に導く。
つまり、受光器18は、レンズ34から出射された発光素子12からの照射光が対象物OBで反射し、再度レンズ34を透過した光束の少なくとも一部を受光するように構成されている。また、本実施の形態では、レンズ32の光軸とレンズ34の光軸とが共通の光軸Mとされ、この光軸Mが、発光器14の発光素子12Cの中心、および後述する絞り40の開口部42の中心を通っている。
レンズ32は、一例として平面視で円形状の平凸レンズとされ、レンズ32の直径は、発光素子12Aから発光素子12BまでのY軸方向の寸法より長くされている。そのため、各発光素子12から発光された光のほぼすべてはレンズ32を透過し、レンズ32を透過した光は発散度合を変えられ、平行光とされてレンズ34に向かう。
レンズ34は、一例として平面視で円形状の平凸レンズとされ、本実施の形態では、レンズ34の直径は、レンズ32の直径より長くされている。そして、レンズ34は、レンズ32から出射されてレンズ34を透過する光束(照射光)を対象物OBの表面200に向けて集光するとともに、照射光が対象物OBで反射された反射光を受光素子16に集光する。レンズ34は多焦点レンズとされ、本実施の形態では一例として二焦点レンズとされている。すなわち、焦点距離がf1とされた第1のレンズ部34aと、焦点距離がf2とされた第2のレンズ部34bとを有している。本実施の形態では、焦点距離f1はレンズ34と後述する絞り40の中心との距離と等しくされ、焦点距離f2は、レンズ34と後述する受光素子16の受光面との距離と等しくされている。第1のレンズ部34aおよび第2のレンズ部34bは、例えばレンズ34において屈折率の異なる領域を形成することによって、あるいは、レンズ34の表面に曲率の異なる領域を形成することによって構成される。屈折率の違いを用いる場合にはレンズ34の形状は一般的な形状とされ、曲率の違いを用いる場合にはレンズの材質が均質化されるという特徴があるので、光学系の設計条件等を勘案していずれかを選択すればよい。レンズ34の詳細については後述する。
絞り40には、略円形状の開口部42が形成されており、この開口部42によって、発光素子12から発光されレンズ32を透過してレンズ34に入射する光束を絞る。より具体的には、絞り40は、板面をX-Y平面に平行とされた板状とされ、開口部42によって形成される円形状は光軸Mを中心軸としている。そして、Z軸方向において、この開口部42の中心とレンズ32との距離は、レンズ32の焦点距離と略等しくされ、開口部42の中心とレンズ34との距離は、レンズ34の焦点距離と略等しくされている。
受光器18は、複数の受光素子16を含んで構成され、対象物OBで反射され光学系30のレンズ34を透過した反射光RF(図3(d)参照)を受光する。本実施の形態に係る受光器18は、レンズ32とレンズ34との間に配置された絞り40の、Z軸方向下側に配置されている。受光素子16としては、特に制限はないが、例えば、フォトダイオード(Photodiode:PD)、電荷結合素子(Charge-Coupled Device:CCD)等が用いられる。
図2(a)に、受光器18の構成の一例を示す。図2(a)は、受光器18を、Z軸方向から見た平面図である。図1に示す受光器18は、図2(a)のX-X’で切断した断面図を表している。図2(a)に示すように、受光器18は、一例として、中央に略円形の開口部18Bを有する略円形の基板18Aの上に、複数の受光素子16(図2(a)では、60個の例が示されている)が面状(アレイ状)に配置されて構成されている。計測装置10では、この複数の受光素子16の全体を受光領域RAとして反射光RFを受光する。
受光領域RAで受光される反射光RFの範囲は、一例として、光軸Mに平行な軸を中心とした角度0°~40°の範囲の反射光RFである。この反射光RFが受光領域RAで受光されると、各受光素子16の受光光量により立体的な分布が形成される。完全拡散面において反射された場合のように、反射光RFが等方的な場合には、この立体的な分布の、Z軸を含む平面で切断した断面の形状は、図2(b)に示すように略ガウス曲線となる。
なお、図2(b)の横軸の受光素子番号1~6は、図2(a)に示した受光素子16の番号1~6に対応している。また、受光領域RAにおける受光素子16と受光素子16との間では反射光RFが受光されないので、実際の出力分布は離散的となるが、図2(b)ではこれを省略して図示している。
次に、図3を参照して、計測装置10の動作について説明する。図3(a)は計測装置10を図1と同じ方向から見た図、図3(c)、(d)は計測装置10を図1と90°異なる方向から見た図である。一方、図3(b)は、図3(c)、(d)と同じ方向から見た場合のレンズ34の詳細を示している。
図3(a)に示すように、発光器14に搭載された発光素子12は、一例として-Y方向(図2では方向D1と表記)に順次発光する。光学系30は順次発光された各発光素子12からの光束を、発光素子12の位置によらずに、細く絞られかつ光軸Mに平行な照射光IFとして+Y方向(図2では方向D2と表記)に順次対象物OBに照射する。この際、照射光IFは、レンズ34の第1のレンズ部34aを透過する。すなわち、照射光IFは、第1のレンズ部34aによって対象物OB上に集光される。
換言すれば、各発光素子12を発光させて走査することにより、細く絞られ互いに平行な略円形の光束(スポット)が対象物OBに個別照射される。さらに、本実施の形態に係る計測装置10では、照射光IFの光束のレンズ34による集光点付近に対象物OBを配置することにより、対象物OBにおける各照射光IFの照射領域がほぼ同径の微細な領域とされている。このことにより、計測装置10では、対象物OBの位置がZ軸方向で上下変動しても、ほぼ同じ照射径で各照射光が照射されるため、対象物OBの像のボケが極めて小さくされる。なお、本実施の形態では、図示の煩雑さを避けるために、必ずしも焦点距離等実際の比率で現していない。
発光素子12は発光器14上のY軸方向に配列されているため、図3(c)に示すように、発光素子12が順次発光してもY軸方向から見ると照射光IFは一定に見える。つまり、照射光IFは比較的細い光束となるので第1のレンズ部34aのレンズ34に占める割合も小さくなる。また、図3(b)に示すように、本実施の形態に係る第1のレンズ部34aと第2のレンズ部34bとの界面(以下、「界面」。第1のレンズ部34aの「側面」ともいえる)は、照射光IFの光束の傾斜角度に合わせ、光軸M(図1も参照)に対して予め定められた角度θだけ傾けられている。この角度θの傾きは、界面全周に亘って設けてもよいし、例えば第1のレンズ部34aの長手方向の界面にのみ設けてもよい。第1のレンズ部34aの側面を傾けることによって第2のレンズ部34bの領域が増加し、反射光RFの透過がより効率化される。なお、第1のレンズ部34aの側面は光軸Mに対して必ずしも傾ける必要はなく、光軸Mに平行であってもよい。
図3(d)は、照射光IFが対象物OBで反射された反射光RFが受光器18(図3(d)では図示省略)の受光素子16に集光する状態を示している。図3(d)に示すように、反射光RFの大部分は焦点距離f2の第2のレンズ部34bを透過して、受光素子16の受光面上に集光される。本実施の形態では、焦点距離f2はf2<焦点距離f1とされている。
以上のように構成された計測装置10では、対象物OBの位置がZ軸方向において上下に変動して、あるいは、Y軸方向において左右に変動して、異なる発光素子からの照射光IFが照射されても、対象物OBへの照射位置が同じである限り、受光領域RAにおける出力分布は常に一定となる。換言すれば、対象物OBとして照射径程度の大きさの微小な領域を仮定すると、この対象物OBがZ軸方向において上下に、あるいは、Y軸方向において左右に移動した場合、異なる発光素子12による異なる照射光IFで照射され、異なる反射光RFを反射することになるが、本実施の形態に係る計測装置10では、受光領域RAに含まれる受光素子16全体による出力分布は、反射光RFの発生位置によらず常に同じ出力分布となる。
ここで、絞り40の下面のZ軸方向の位置をS1、受光素子16の受光面のZ軸方向の位置をS2とすると、計測装置10では位置S1とS2とは異なっている。この理由は、図1に示すように、本実施の形態では絞り40の下面に受光器18を配置していることによる。本実施の形態のような計測装置では、絞り40とレンズ34との距離と、受光素子16の受光面とレンズ34との距離とがともにレンズ34の焦点距離となっていることが好ましい。しかしながら、本実施の形態では上記実装上の理由からレンズ34の焦点距離をこのように設定することが困難となっている。
図7を参照して、上記点についてより詳細に説明する。図7(a)は比較例に係る計測装置100を示している。計測装置100は、レンズ34が単焦点のレンズ50に変更されている以外は、図1に示す計測装置10と同様なので、同様の構成には同じ符号を付して詳細な説明を省略する。図7(b)は反射光RFがレンズ50を介して受光素子16に進行する状態を示しており、図7(c)は計測装置100の絞り40と受光素子16の配置関係を示している。
図7(a)、(b)に示すように、計測装置100では絞り40の底面のZ軸方向の位置S1と、受光素子16の受光面のZ軸方向の位置S2が異なっている。図7(c)は、この違いを拡大して示したものであり、図7(c)に示すように、位置S1と位置S2とは高低差Δhだけ異なっている。従って、レンズ50の焦点距離は、絞り40からレンズ50までの距離か、受光素子16の受光面からレンズ50までの距離か、いずれか一方に合わせて設定せざるをえない。例えば、レンズ50の焦点距離を絞り40からレンズ50までの距離に合わせると、計測装置100の計測精度が低下する。つまり、上述したように、図2(a)に示す受光器18において、本来は異なる位置で反射した光でも同じ角度であれば同じ受光素子16で受光されることになるが、この精度が不十分なのでこの際の角度分解能が低下する。
上記現象を回避する構成として、図7(d)に示すような絞り44を用いる構成も考えられる。図7(d)に示すように、絞り44は曲がり部46を備えるとともに、曲がり部46の先端が受光素子16の受光面と面一な開口部48となるように構成されている。このような構成であれば絞り44とレンズ50との距離と、受光素子16の受光面とレンズ50との距離とが等しくされる。しかしながら、本絞り44の場合、長さΔdの曲がり部46の部分には受光素子16を配置できないというデメリットがある。
上記現象を回避するために、本実施の形態に係る計測装置10ではレンズ34を多焦点レンズとしている。そして、上述したように、第1のレンズ部34aの焦点距離f1はレンズ34と絞り40の中心との距離と等しくされ、第2のレンズ部34bの焦点距離f2は、レンズ34と受光素子16の受光面との距離と等しくされている。このことにより、計測装置10では、光学系30をテレセントリック光学系とするとともに、対象物OBで反射した反射光RFが受光素子16の受光面に集光される。従って、対象物OBで反射された反射光RFが常に焦点が合った状態で受光素子16の受光面に入射されるので、レンズ34を単焦点レンズとする場合と比較して、計測装置10の計測精度が向上する。
次に、図4を参照して、照射光IFおよび反射光RFのレンズ34における透過領域についてより詳細に説明する。図4(a)は、計測装置10の一部についてZ軸方向上方から見た平面図であり、図4(a)の<1>は照射光IFの透過、<2>は反射光RFの透過を示している。図4(a)<1>に示すように、本実施の形態では、略円形状のレンズ34の直径方向に延伸された略矩形の領域が第1のレンズ部34aとされ、その余の領域が第2のレンズ部34bとされている。発光器14に配列された発光素子12は、照射光IFが第1のレンズ部34aを透過する位置に配置される。
一方、図4(a)の<2>に示すように、反射光RFは上述したように対象物OB上の反射点から等方的に反射されるので、平面視で略円形状の分布となり、主としてレンズ34の第2のレンズ部34bを透過する。この際、一部の反射光RFが第1のレンズ部34aを透過するが、この角度の反射光RFの大部分は絞り40の開口部42の方向に向かうので、受光器18における受光に大きく影響することはない。
図4(b)は、レンズ34の変形例であるレンズ34Aを示しており、図4(a)と同様、図4(b)<1>が照射光IFの透過、<2>は反射光RFの透過を示している。レンズ34Aとレンズ34とは、第1のレンズ部34Aaの形状が異なっている。すなわち、レンズ34の第1のレンズ部34aは、レンズ34の周縁部まで延伸され、延伸方向の両端がレンズ34の周縁部と重なっている。一方、レンズ34Aの第1のレンズ部34Aaは、レンズ34A含まれ、延伸方向の両端がレンズ34A周縁まで達していない。このように、第1のレンズ部34a、あるいは34Aaは発光素子12からの照射光IFが透過される大きさであること以外、レンズ34あるいは34Aに対する第1のレンズ部34a、あるいは34Aaの占める大きさについて特に制限はない。さらに、第1のレンズ部34a、あるいは34Aaは発光素子12からの照射光IFが透過される形状であればよいので、矩形に限られず、扁平形状の楕円、ひし形等、レンズ設計等に応じて適切な形状を選択してよい。
[第2の実施の形態]
図5を参照して、本実施の形態に係る計測装置10Aについて説明する。計測装置10Aは、計測装置10のレンズ34をレンズ34Bに置き換えた形態である。従って、同様の構成には同じ符号を付して詳細な説明を省略する。
図5(a)に示すように、本実施の形態に係るレンズ34Bは、焦点距離がf1の第1のレンズ部34Ba、および焦点距離がf2の第2のレンズ部34Bbを備えるとともに、第1のレンズ部34Baと第2のレンズ部34Bbとの界面に遮光部34Bcを備えている。遮光部34Bcは、例えば第1のレンズ部34Baと第2のレンズ部34Bbを別体とし、第1のレンズ部34Ba、第2のレンズ部34Bbの一方、あるいは双方の側面に金属膜等の反射部材を蒸着して形成される。本実施の形態に係る計測装置10Aは、上記実施の形態に係るレンズ34、あるいは34Aにおいて、照射光IFと反射光RFとの干渉が懸念される場合に好適な形態である。
[第3の実施の形態]
図6を参照して、本実施の形態に係る計測装置10Bについて説明する。本実施の形態は、上記各実施の形態に係る多焦点のレンズ34(レンズ34A、34B)の代わりに、単焦点レンズと補正素子を用いた形態である。従って、上記各実施の形態に係る計測装置と同様の構成には同じ符号を付し、詳細な説明を省略する。
図6(a)、(b)に示すように、計測装置10Bは、レンズ60と補正素子62とを備えている。レンズ60は単焦点レンズであり、レンズ60の焦点距離f2はレンズ60と受光素子16の受光面との間の距離とされている。この場合、絞り40とレンズ60との距離は、焦点距離f2よりも高低差Δhだけ長くなる。そのため、補正素子62を設けている。すなわち、補正素子62は、発光素子12からの照射光IFが透過するレンズ60の領域の焦点距離を、レンズ60の焦点距離f2から、レンズ60と絞り40の中心との距離である焦点距離f1に変更する機能を有している。
本実施の形態に係る計測装置10Bによっても、光学系30がテレセントリック光学系とされるとともに、反射光RFが受光素子16の受光面に本来受光されるべき反射角度の光が受光されるので、単焦点レンズ単体を用いた場合と比較してより計測精度が向上する。本実施の形態に係る計測装置10Bによれば、単焦点レンズと簡易な補正素子ですむため、多焦点レンズを用いる場合と比較してコストが削減される。また、補正素子を変更すればよいので、焦点距離の変更もより容易である。
なお、本実施の形態ではレンズ60の照射光IFが透過する領域の焦点距離を補正する形態を例示して説明したが、これに限られず、反射光RFが透過する領域の焦点距離を補正する形態としてもよい。この場合レンズ60の焦点距離は、絞り40の中心とレンズ60との距離と等しくされる。
10、10A、10B 計測装置
12、12A、12B、12C 発光素子
14 発光器
14A 基板
16 受光素子
18 受光器
18A 基板
18B 開口部
30 光学系
32 レンズ
34、34A、34B レンズ
34a、34Aa、34Ba 第1のレンズ部
34b、34Ab、34Bb 第2のレンズ部
34Bc 遮光部
40 絞り
42 開口部
44 絞り
46 曲がり部
48 開口部
50 レンズ
60 レンズ
62 補正素子
100 計測装置
200 表面
D1、D2 方向
f1、f2 焦点距離
IF 照射光
M 光軸
RF 反射光
OB 対象物
RA 受光領域
S1、S2 位置
T 計測領域
Δh 高低差

Claims (11)

  1. 対象物へ照射する照射光を発光する発光部と、
    前記発光部から発光された前記照射光の発散度合いを変える第1のレンズと、
    前記第1のレンズから出射された前記照射光を絞る絞り部と、
    前記絞り部を通過した前記照射光を前記対象物の予め定められた方向から照射するように前記対象物上に集光する第1の光学素子と、
    前記絞り部と前記第1の光学素子との間に配置され、前記照射光が前記対象物に照射されて反射した反射光を受光する受光部と、
    前記照射光が前記対象物に照射されて反射し前記受光部で受光される前記反射光を前記受光部の受光面に集光する第2の光学素子と、を含む
    計測装置。
  2. 前記第2の光学素子は、第1の焦点距離を有する第2のレンズであり、
    前記第1の光学素子は、前記照射光を透過するとともに前記第1の焦点距離を補正する補正素子および前記照射光を透過する前記第2の光学素子の一部で構成され、前記補正素子および前記第2の光学素子の一部による焦点位置が前記絞り部の中心とされている
    請求項1に記載の計測装置。
  3. 前記発光部は予め定められた方向に配列された複数の発光素子を備え、
    前記第1の光学素子は前記予め定められた方向に延伸されるとともに前記複数の発光素子の各々からの照射光を透過させる長さを有する
    請求項2に記載の計測装置。
  4. 前記第1の光学素子と前記第2の光学素子とは多焦点レンズとして一体に構成され、
    前記第1の光学素子は、焦点位置が前記絞り部の中心とされている前記多焦点レンズの第1の領域とされ、
    前記第2の光学素子は、前記反射光を前記受光面に集光する焦点距離を有する前記多焦点レンズの第2の領域とされた
    請求項1に記載の計測装置。
  5. 前記第1の領域と前記第2の領域とは互いに屈折率が異なる
    請求項4に記載の計測装置。
  6. 前記第1の領域と前記第2の領域とは互いに表面の曲率が異なる
    請求項4に記載の計測装置。
  7. 前記発光部は予め定められた方向に配列された複数の発光素子を備え、
    前記第1の領域は前記予め定められた方向に延伸されるとともに前記複数の発光素子の各々からの照射光を透過させる長さを有する
    請求項4から請求項6のいずれか1項に記載の計測装置。
  8. 前記第1の領域と前記第2の領域との間に遮光部材を備える
    請求項4から請求項7のいずれか1項に記載の計測装置。
  9. 対象物へ照射する照射光を発光する発光部と、
    前記発光部から発光された前記照射光の発散度合いを変えるレンズと、
    前記レンズから出射された前記照射光を絞る絞り部と、
    前記絞り部を通過した前記照射光が前記対象物に照射されて反射した反射光を受光する受光部と、を含む計測装置による計測方法であって、
    第1の光学素子により前記絞り部を通過した前記照射光が予め定められた方向から前記対象物に照射されるように前記照射光を前記対象物上に集光させ、
    第2の光学素子により前記照射光が前記対象物に照射されて反射し前記受光部で受光される前記反射光を前記受光部の受光面に集光させる
    計測方法。
  10. 第1の焦点距離を有する第1の領域と、
    予め定められた方向に延伸された前記第1の焦点距離と異なる第2の焦点距離を有する第2の領域と、を含み、
    平面視において、前記第2の領域は前記第1の領域に含まれて形成されているか、または前記予め定められた方向の両端が前記第1の領域の周縁の一部と重なって形成されている
    多焦点レンズであって、
    前記第1の領域と前記第2の領域との界面は、断面視において、前記多焦点レンズの光軸に対し予め定められた角度傾けられた
    多焦点レンズ。
  11. 第1の焦点距離を有する第1の領域と、
    予め定められた方向に延伸された前記第1の焦点距離と異なる第2の焦点距離を有する第2の領域と、を含み、
    平面視において、前記第2の領域は前記第1の領域に含まれて形成されているか、または前記予め定められた方向の両端が前記第1の領域の周縁の一部と重なって形成されている
    多焦点レンズであって、
    前記第1の領域と前記第2の領域との間に、前記多焦点レンズを双方向に透過する光同士を遮光する遮光部をさらに含む
    多焦点レンズ。
JP2017180932A 2017-09-21 2017-09-21 多焦点レンズ、計測装置および計測方法 Active JP7039902B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017180932A JP7039902B2 (ja) 2017-09-21 2017-09-21 多焦点レンズ、計測装置および計測方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017180932A JP7039902B2 (ja) 2017-09-21 2017-09-21 多焦点レンズ、計測装置および計測方法

Publications (2)

Publication Number Publication Date
JP2019056618A JP2019056618A (ja) 2019-04-11
JP7039902B2 true JP7039902B2 (ja) 2022-03-23

Family

ID=66107453

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017180932A Active JP7039902B2 (ja) 2017-09-21 2017-09-21 多焦点レンズ、計測装置および計測方法

Country Status (1)

Country Link
JP (1) JP7039902B2 (ja)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010026427A (ja) 2008-07-24 2010-02-04 Fujitsu Ltd 波長選択スイッチ
WO2012043211A1 (ja) 2010-10-01 2012-04-05 富士フイルム株式会社 撮像装置
WO2014024745A1 (ja) 2012-08-06 2014-02-13 富士フイルム株式会社 撮像装置
JP2015072175A (ja) 2013-10-02 2015-04-16 富士ゼロックス株式会社 検査装置

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2803047C2 (de) * 1978-01-25 1983-07-14 Fa. Carl Zeiss, 7920 Heidenheim Mehrstärken-Brillenlinse
US5164584A (en) * 1991-06-24 1992-11-17 Ncr Corporation Optical scanner with power efficient lens
JPH058441A (ja) * 1991-06-29 1993-01-19 Kyocera Corp 画像装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010026427A (ja) 2008-07-24 2010-02-04 Fujitsu Ltd 波長選択スイッチ
WO2012043211A1 (ja) 2010-10-01 2012-04-05 富士フイルム株式会社 撮像装置
WO2014024745A1 (ja) 2012-08-06 2014-02-13 富士フイルム株式会社 撮像装置
JP2015072175A (ja) 2013-10-02 2015-04-16 富士ゼロックス株式会社 検査装置

Also Published As

Publication number Publication date
JP2019056618A (ja) 2019-04-11

Similar Documents

Publication Publication Date Title
US9285266B2 (en) Object detector including a light source with light emitting region of a first size in a first direction and a second size in a second direction
US5479010A (en) Photoelectric encoder having a plane mirror disposed parallel to the optical axis of a concave mirror
JP6892734B2 (ja) 光波距離測定装置
JP2018152713A (ja) 画像読取装置
JP2015108794A (ja) 結像光学素子
JP7039902B2 (ja) 多焦点レンズ、計測装置および計測方法
KR101267098B1 (ko) 광원 장치
JP2024012418A (ja) 投受光装置及び測距装置
JP3139050U (ja) レーザースキャン光学エンジン装置
JP2001084092A (ja) 座標入力装置
JP6547514B2 (ja) 計測装置
JP2018508998A (ja) センサ装置
JP2014010285A (ja) 照射角可変の照射装置および撮像装置
JP2018050182A (ja) 画像読取装置
JP6215822B2 (ja) デジタル移動測定装置
CN111066213B (zh) 光模块的制造方法
WO2022190522A1 (ja) 三角測距式変位センサ
KR101809768B1 (ko) 검출 방법 및 검출 장치
US11942489B2 (en) Image reading device
JP7216240B1 (ja) 光学装置及びイメージセンサ
JP6128811B2 (ja) 照明装置及びそれを備える画像読取装置
WO2022018819A1 (ja) 光源装置
JP7087283B2 (ja) 計測装置および計測方法
JP2013029650A (ja) レンズアレイおよびイメージセンサモジュール
JP5170171B2 (ja) 光走査装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200831

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20210616

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210803

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20211001

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220208

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220221

R150 Certificate of patent or registration of utility model

Ref document number: 7039902

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150