JP7029222B2 - NC processing equipment for bone members - Google Patents

NC processing equipment for bone members Download PDF

Info

Publication number
JP7029222B2
JP7029222B2 JP2016056904A JP2016056904A JP7029222B2 JP 7029222 B2 JP7029222 B2 JP 7029222B2 JP 2016056904 A JP2016056904 A JP 2016056904A JP 2016056904 A JP2016056904 A JP 2016056904A JP 7029222 B2 JP7029222 B2 JP 7029222B2
Authority
JP
Japan
Prior art keywords
bone member
air
bone
dimensional shape
pressure signal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2016056904A
Other languages
Japanese (ja)
Other versions
JP2017173032A (en
Inventor
正良 山田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissin Manufacturing Co Ltd
Original Assignee
Nissin Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissin Manufacturing Co Ltd filed Critical Nissin Manufacturing Co Ltd
Priority to JP2016056904A priority Critical patent/JP7029222B2/en
Publication of JP2017173032A publication Critical patent/JP2017173032A/en
Application granted granted Critical
Publication of JP7029222B2 publication Critical patent/JP7029222B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Length Measuring Devices By Optical Means (AREA)
  • Length Measuring Devices With Unspecified Measuring Means (AREA)
  • Machine Tool Sensing Apparatuses (AREA)
  • A Measuring Device Byusing Mechanical Method (AREA)

Description

本発明は、骨部材の三次元形状寸法を高精度に測定するとともに、その骨部材を高精度に整形加工する骨部材用NC加工装置に関する。 The present invention relates to an NC processing device for a bone member that measures a three-dimensional shape dimension of a bone member with high accuracy and shapes the bone member with high accuracy.

骨折した骨を接合するために、従来からチタンなどの生体適合金属製の骨接合ねじなどが用いられてきた。骨接合ねじは、生体内での腐食の恐れや感染巣を提供する危険があるので、それを体外に取り出す再手術が必要であった。再手術は患者に麻酔の危険性や精神的、身体的負担を強いることになるので、生体内で周囲の骨と一体化して最終的には正常な骨に置換される材料、例えば、自家、あるいは、他家の骨を切り出し、この骨を整形加工した骨部材を骨折部に移植する技術が考案されている(例えば、特許文献1)。これにより再手術する必要がなくなり、患者の負担を大幅に軽減することができる。 Traditionally, biocompatible metal osteosynthesis screws such as titanium have been used to join fractured bones. Since the osteosynthesis screw has a risk of corrosion in the living body and a risk of providing a foci of infection, it was necessary to perform a re-operation to remove it from the body. Since re-surgery imposes anesthesia risk and mental and physical burden on the patient, materials that integrate with the surrounding bone in the body and are eventually replaced with normal bone, such as autologous, Alternatively, a technique has been devised in which a bone of another family is cut out and a bone member obtained by shaping the bone is transplanted to the fractured portion (for example, Patent Document 1). This eliminates the need for re-operation and can significantly reduce the burden on the patient.

手作業による骨部材の整形加工は、加工精度が低いという問題があった。特に、関節部分の骨移植の場合、手作業で整形加工したものは、加工精度が低いために、関節面に不具合を生じるという問題があった。これらの問題を解決するために、骨部材を精密に加工する骨部材加工システムが提案されている(特許文献2)。しかし、形状測定装置などを用いて、予め、整形加工する骨部材の形状を測定した後に、その骨部材を骨部材加工システムに移動載置して整形加工するので、正確に載置することが困難であった。また、骨部材加工システムにおける骨部材把持方法は、骨部材を下部から支持する支持具が可動ピストンであり、上部から固定具で固定するものであるために、骨部材の5面全体を1回の把持で加工することが不可能で、骨部材を再把持する必要があった。このため、再現性良く正確に再把持することが困難であった。すなわち、形状測定装置で正確に形状が測定できても、骨部材加工システムでNCプログラムどおりに正確に加工できても、骨部材の載置と固定(把持)および再把持のときに、位置ずれを起こして、整形加工した骨部材の形状は、目標とする形状にならないという問題があった。さらに、骨部材は比較的強度が弱く、複雑な形状をしている面を固定金具を用いて抑えつける従来方法によると、骨部材を損壊するおそれもあった。 The manual shaping of the bone member has a problem of low processing accuracy. In particular, in the case of bone grafting of a joint portion, a manually shaped one has a problem that a defect occurs in the joint surface due to low processing accuracy. In order to solve these problems, a bone member processing system for precisely processing a bone member has been proposed (Patent Document 2). However, after measuring the shape of the bone member to be shaped in advance using a shape measuring device or the like, the bone member is moved and placed on the bone member processing system for shaping, so that the bone member can be placed accurately. It was difficult. Further, in the bone member gripping method in the bone member processing system, since the support tool that supports the bone member from the lower part is a movable piston and is fixed by the fixative from the upper part, the entire five surfaces of the bone member are once. It was impossible to process by gripping the bone member, and it was necessary to re-grasp the bone member. Therefore, it was difficult to re-grip accurately with good reproducibility. That is, even if the shape can be measured accurately by the shape measuring device or the bone member can be processed accurately according to the NC program by the bone member processing system, the position shifts when the bone member is placed, fixed (grasping) and re-grasping. There was a problem that the shape of the shaped bone member did not reach the target shape. Further, the bone member has a relatively weak strength, and according to the conventional method of holding down a surface having a complicated shape by using a fixing metal fitting, there is a possibility that the bone member may be damaged.

特許第4737595号Patent No. 4737595 特開2015-134064号公報Japanese Unexamined Patent Publication No. 2015-134064.

本発明は、かかる実情に鑑みてなされたもので、空気マイクロメータにより骨部材との隙間を測定する三次元形状寸法測定手段を備えることで、骨部材の載置と固定(把持)および再把持のときに生ずる位置ずれをなくすとともに、骨部材を損壊することなく確実に固定して、高精度に骨部材を整形加工する骨部材用NC加工装置を提供することを目的とする。
The present invention has been made in view of such circumstances, and by providing a three-dimensional shape dimension measuring means for measuring a gap with a bone member with an air micrometer, the bone member is placed, fixed (grasped), and re-grasped. It is an object of the present invention to provide an NC processing apparatus for a bone member, which eliminates the misalignment that occurs at the time of the above, secures the bone member without damaging it, and shapes the bone member with high accuracy.

上記の目的を達成するために、本発明に係る請求項1の骨部材用NC加工装置は、骨部材を把持する把持手段と、該骨部材の三次元形状寸法を測定する三次元形状寸法測定手段と、を備えたことを特徴としている。本発明の骨部材用NC加工装置は、三次元形状寸法測定手段を備えているので、骨部材の移動載置が不要になり、位置ずれは生じない。 In order to achieve the above object, the NC processing device for a bone member according to claim 1 according to the present invention includes a gripping means for gripping the bone member and a three-dimensional shape dimension measurement for measuring the three-dimensional shape dimension of the bone member. It is characterized by having means and. Since the NC processing device for a bone member of the present invention is provided with a three-dimensional shape dimension measuring means, it is not necessary to move and place the bone member, and no positional deviation occurs.

また、請求項2の前記把持手段は、複数本の真空吸着支持棒であることを特徴としている。本発明の骨部材用NC加工装置によれば、複雑で曲面の形状である骨部材を複数本の棒により複数点で支持するため、前記骨部材を確実に把持することができる。また、骨部材を再把持しなくても、骨部材の5面全体を整形加工することができる。 Further, the gripping means according to claim 2 is characterized by having a plurality of vacuum suction support rods. According to the NC processing apparatus for bone members of the present invention, since the bone member having a complicated curved surface shape is supported by a plurality of rods at a plurality of points, the bone member can be reliably gripped. Further, the entire five surfaces of the bone member can be shaped without re-grasping the bone member.

また、請求項3の前記真空吸着支持棒は該先端部が、前記骨部材に密着するように、角度自在にして、柔軟性のある生体適合部材により覆われていることを特徴としている。本発明の真空吸着支持棒によれば、該先端部が骨部材に密着して支持するので、骨部材を確実に把持することができる。 Further, the vacuum suction support rod according to claim 3 is characterized in that the tip portion thereof is angled freely so as to be in close contact with the bone member and is covered with a flexible biocompatible member. According to the vacuum suction support rod of the present invention, the tip portion of the rod adheres to and supports the bone member, so that the bone member can be reliably gripped.

また、請求項4の前記真空吸着支持棒は、該先端部に柔軟性のある生体適合部材により形成されている吸盤を備えることを特徴としている。本発明の真空吸着支持棒によれば、該先端部に備えられた吸盤が、骨部材に、より強く密着するので、骨部材をより確実に把持することができる。 Further, the vacuum suction support rod according to claim 4 is characterized by having a suction cup formed of a flexible biocompatible member at the tip portion thereof. According to the vacuum suction support rod of the present invention, the suction cup provided at the tip thereof adheres more strongly to the bone member, so that the bone member can be gripped more reliably.

また、請求項5の三次元形状寸法測定手段は、前記骨部材に接触したことを検知する接触探針を備えることを特徴としている。本発明の骨部材NC加工装置よれば、刃具の代わりに接触探針を把持して、骨部材表面上を走査することによって、その骨部材の三次元形状寸法を容易に測定することができる。すなわち、別途、三次元形状寸法測定装置を備えなくても、接触探針と骨部材用NC加工装置とで、三次元形状寸法測定装置の機能を持たせることができる。 Further, the three-dimensional shape dimension measuring means according to claim 5 is characterized by including a contact probe for detecting contact with the bone member. According to the bone member NC processing apparatus of the present invention, the three-dimensional shape dimension of the bone member can be easily measured by grasping the contact probe instead of the cutting tool and scanning on the surface of the bone member. That is, even if the three-dimensional shape and dimension measuring device is not separately provided, the contact probe and the NC processing device for the bone member can have the function of the three-dimensional shape and dimension measuring device.

また、請求項6の前記接触探針は、前記骨部材に接する接触部分が生体適合性部材により形成されていることを特徴としている。本発明の骨部材NC加工装置よれば、骨部材の三次元形状寸法を測定するときに、生体に適合しない切屑などが骨部材に付着することを防止することができる。 Further, the contact probe according to claim 6 is characterized in that the contact portion in contact with the bone member is formed of a biocompatible member. According to the bone member NC processing apparatus of the present invention, it is possible to prevent chips and the like that are not compatible with a living body from adhering to the bone member when measuring the three-dimensional shape dimension of the bone member.

また、請求項7の前記三次元形状寸法測定手段は、前記骨部材との隙間を測定する空気マイクロメータを備えたことを特徴としている。本発明の骨部材NC加工装置よれば、刃具の代わりに空気マイクロメータのノズル部を把持して、骨部材表面上を走査することによって、その骨部材の三次元形状寸法を容易に測定することができる。すなわち、別途、三次元形状寸法測定装置を備えなくても、接触探針と骨部材用NC加工装置とで、三次元形状寸法測定装置の機能を持たせることができる。さらに、空気マイクロメータは非接触で隙間が測定できるので、骨部材を損傷するおそれがなくなる。 Further, the three-dimensional shape dimension measuring means according to claim 7 is characterized by including an air micrometer for measuring a gap with the bone member. According to the bone member NC processing apparatus of the present invention, the three-dimensional shape dimension of the bone member can be easily measured by grasping the nozzle portion of the air micrometer instead of the cutting tool and scanning on the surface of the bone member. Can be done. That is, even if the three-dimensional shape and dimension measuring device is not separately provided, the contact probe and the NC processing device for the bone member can have the function of the three-dimensional shape and dimension measuring device. Further, since the air micrometer can measure the gap without contact, there is no possibility of damaging the bone member.

また、請求項8の前記三次元形状寸法測定手段は、前記骨部材との距離を測定する光学式距離測定器を備えることを特徴としている。本発明の骨部材NC加工装置よれば、刃具の代わりに光学式距離測定器の光学測定部を把持して、骨部材表面上を走査することによって、その骨部材の三次元形状寸法を容易に測定することができる。すなわち、別途、三次元形状寸法測定装置を備えなくても、光学式距離測定器と骨部材用NC加工装置とで、三次元形状寸法測定装置の機能を持たせることができる。さらに、光学式距離測定器は非接触で距離が測定できるので、骨部材を損傷するおそれがなくなる。 Further, the three-dimensional shape dimension measuring means according to claim 8 is characterized by including an optical distance measuring device for measuring a distance from the bone member. According to the bone member NC processing apparatus of the present invention, the three-dimensional shape dimension of the bone member can be easily determined by grasping the optical measuring unit of the optical distance measuring device instead of the cutting tool and scanning on the surface of the bone member. Can be measured. That is, even if the three-dimensional shape and dimension measuring device is not separately provided, the optical distance measuring device and the NC processing device for the bone member can have the function of the three-dimensional shape and dimension measuring device. Further, since the optical distance measuring device can measure the distance without contact, there is no possibility of damaging the bone member.

また、請求項9の前記三次元形状寸法測定手段は、前記骨部材上に光学模様を投影する光学模様投影手段と、前記骨部材上に投影された光学模様を撮像する電子カメラと、該電子カメラから出力される画像信号から前記骨部材の三次元形状寸法を計算する画像処理装置と、を備えたことを特徴としている。接触探針や空気マイクロメータ、および光学式距離測定器の場合、骨部材用NC加工装置は、二次元あるいは三次元の走査をする必要があり、骨部材の三次元形状寸法の測定には長時間を要する。本発明の骨部材NC加工装置よれば、光学模様投影手段は多次元の走査を必要としないので、骨部材の三次元形状寸法の測定時間を短縮することができる。 Further, the three-dimensional shape dimension measuring means according to claim 9 includes an optical pattern projecting means for projecting an optical pattern on the bone member, an electronic camera for capturing an optical pattern projected on the bone member, and the electron. It is characterized by being provided with an image processing device that calculates the three-dimensional shape dimension of the bone member from an image signal output from a camera. In the case of contact probes, air micrometer, and optical distance measuring instruments, NC processing equipment for bone members requires two-dimensional or three-dimensional scanning, which is long for measuring the three-dimensional shape dimensions of bone members. It takes time. According to the bone member NC processing apparatus of the present invention, since the optical pattern projection means does not require multidimensional scanning, the measurement time of the three-dimensional shape dimension of the bone member can be shortened.

また、請求項10の前記光学模様投影手段は、該光源がレーザーであり、かつ、前記光学模様が直線であることを特徴としている。本発明の骨部材NC加工装置よれば、光学模様が直線であれば一次元の走査のみによって、凸形状などの骨部材の三次元形状を精度の良くかつ短時間で測定することができる。 Further, the optical pattern projection means according to claim 10 is characterized in that the light source is a laser and the optical pattern is a straight line. According to the bone member NC processing apparatus of the present invention, if the optical pattern is a straight line, the three-dimensional shape of the bone member such as a convex shape can be measured accurately and in a short time only by one-dimensional scanning.

また、請求項11の前記三次元形状寸法測定手段は、前記骨部材を少なくとも2つの方向から撮影する電子カメラと、該電子カメラから出力される画像信号から前記骨部材の三次元形状寸法を計算する画像処理装置と、を備えたことを特徴としている。本発明の骨部材NC加工装置よれば、骨部材の三次元形状寸法を短時間で測定することができる。 Further, the three-dimensional shape dimension measuring means according to claim 11 calculates the three-dimensional shape dimension of the bone member from an electronic camera that photographs the bone member from at least two directions and an image signal output from the electronic camera. It is characterized by being equipped with an image processing device. According to the bone member NC processing apparatus of the present invention, the three-dimensional shape dimension of the bone member can be measured in a short time.

本発明に係る骨部材加工装置の本体部10の斜視図Perspective view of the main body 10 of the bone member processing apparatus according to the present invention. 本発明に係る骨部材加工装置の骨部材支持部20の概略図であり、(a)は骨部材支持部20の概略上面図、(b)は(a)のA‐A´で切断した骨部材支持部20の概略縦断面図It is a schematic diagram of the bone member support portion 20 of the bone member processing apparatus according to the present invention, (a) is a schematic top view of the bone member support portion 20, and (b) is a bone cut by AA'of (a). Schematic vertical cross-sectional view of the member support portion 20 本発明に係る接触探針110の一例を示す概略図Schematic diagram showing an example of the contact probe 110 according to the present invention. 本発明に係る空気マイクロメータ120の一例を示す概略構造図Schematic structural diagram showing an example of the air micrometer 120 according to the present invention. 本発明に係る光学式距離測定器130の一例を示す概略図Schematic diagram showing an example of the optical distance measuring device 130 according to the present invention. 本発明に係る光学模様投影手段140の直線状の光学模様と、電子カメラ141の概略配置図A linear optical pattern of the optical pattern projecting means 140 according to the present invention and a schematic layout of the electronic camera 141. 本発明に係る2つの電子カメラ151、152の概略配置図Schematic layout of two electronic cameras 151 and 152 according to the present invention.

本発明の骨部材用NC加工装置の実施形態を以下に図面に基づいて説明するが、本発明はこの実施形態に限定されない。骨部材用NC加工装置は、本体部10と、図示しない真空ポンプおよび制御部90を備える。 The embodiment of the NC processing apparatus for a bone member of the present invention will be described below with reference to the drawings, but the present invention is not limited to this embodiment. The NC processing device for bone members includes a main body portion 10, a vacuum pump and a control portion 90 (not shown).

図1は、本発明に係る本体部10の斜視図である。本体部10は、骨部材支持部20と、回転テーブル30と、旋回テーブル40と、X軸直動ステージ50と、Y軸直動ステージ60と、Z軸直動ステージ70と、スピンドル80と、を備える。骨部材支持部20は回転テーブル30上に、該回転テーブル30は旋回テーブル40上に、該旋回テーブル40はX軸直動ステージ50上に、該X軸直動ステージ50はY軸直動ステージ60上に、該Y軸直動ステージ60はベース11上に、それぞれ、取り付けられている。一方、スピンドル80は先端部80aと、胴体部80bと、胴体部80bを収めるハウジング83と、図示しない駆動部とで構成される。スピンドル80はZ軸直動ステージ70上に、該Z軸直動ステージ70はカラム18に、該カラム18はベース11上に、それぞれ、取り付けられている。骨部材支持部20に把持される骨部材25とスピンドル80の先端部80aに固定される刃具84との相対的配置は、刃具84が骨部材25の5面を加工できるものとなっている。 FIG. 1 is a perspective view of the main body 10 according to the present invention. The main body 10 includes a bone member support portion 20, a rotary table 30, a swivel table 40, an X-axis linear motion stage 50, a Y-axis linear motion stage 60, a Z-axis linear motion stage 70, a spindle 80, and the like. To prepare for. The bone member support portion 20 is on the rotary table 30, the rotary table 30 is on the swivel table 40, the swivel table 40 is on the X-axis linear motion stage 50, and the X-axis linear motion stage 50 is the Y-axis linear motion stage. On the 60, the Y-axis linear motion stage 60 is mounted on the base 11, respectively. On the other hand, the spindle 80 includes a tip portion 80a, a body portion 80b, a housing 83 for accommodating the body portion 80b, and a drive unit (not shown). The spindle 80 is mounted on the Z-axis linear motion stage 70, the Z-axis linear motion stage 70 is mounted on the column 18, and the column 18 is mounted on the base 11. The relative arrangement of the bone member 25 gripped by the bone member support portion 20 and the cutting tool 84 fixed to the tip portion 80a of the spindle 80 allows the cutting tool 84 to process the five surfaces of the bone member 25.

本体部10における、骨部材支持部20と、回転テーブル30と、旋回テーブル40と、X軸直動ステージ50と、Y軸直動ステージ60と、Z軸直動ステージ70と、スピンドル80と、の取付方法は、上に説明した取付方法だけでなく、他の取付方法であっても良い。例えば、骨部材支持部20は回転テーブル30上に、該回転テーブル30は旋回テーブル40上に、該旋回テーブル40はX軸直動ステージ50上に、該X軸直動ステージ50はベース11上に、それぞれ取り付け、スピンドル80はZ軸直動ステージ70上に、該Z軸直動ステージ70はカラム18に、該カラム18はY軸直動ステージ60上に、該Y軸直動ステージ60はベース11上に、それぞれ、取り付けたものであっても良い。 In the main body 10, the bone member support portion 20, the rotary table 30, the swivel table 40, the X-axis linear motion stage 50, the Y-axis linear motion stage 60, the Z-axis linear motion stage 70, the spindle 80, and the like. The mounting method is not limited to the mounting method described above, but may be another mounting method. For example, the bone member support portion 20 is on the rotary table 30, the rotary table 30 is on the swivel table 40, the swivel table 40 is on the X-axis linear motion stage 50, and the X-axis linear motion stage 50 is on the base 11. The spindle 80 is on the Z-axis linear motion stage 70, the Z-axis linear motion stage 70 is on the column 18, the column 18 is on the Y-axis linear motion stage 60, and the Y-axis linear motion stage 60 is on the Y-axis linear motion stage 60. They may be mounted on the base 11, respectively.

また、本体部10は、回転テーブル30と旋回テーブル40とは備えず、骨部材支持部20と、X軸直動ステージ50と、Y軸直動ステージ60と、Z軸直動ステージ70と、スピンドル80と、を備えたものであっても良い。さらに、本体部10は、回転テーブル30および旋回テーブル40のいずれか一方のテーブルと、骨部材支持部20と、X軸直動ステージ50と、Y軸直動ステージ60と、Z軸直動ステージ70と、スピンドル80と、を備えたものであっても良い。 Further, the main body portion 10 is not provided with the rotary table 30 and the rotary table 40, but includes a bone member support portion 20, an X-axis linear motion stage 50, a Y-axis linear motion stage 60, and a Z-axis linear motion stage 70. It may be provided with a spindle 80. Further, the main body portion 10 includes a rotary table 30 or a swivel table 40, a bone member support portion 20, an X-axis linear motion stage 50, a Y-axis linear motion stage 60, and a Z-axis linear motion stage. 70 and a spindle 80 may be provided.

図2は、骨部材支持部20の概略図であり、(a)は骨部材支持部20の概略上面図、(b)は(a)のA‐A´で切断した骨部材支持部20の概略縦断面図である。骨部材支持部20は、基板21と、3本の真空吸着支持棒22a,22b,22cと、真空継手28と、を備える。基板21には、真空継手28と3本の真空吸着支持棒22a,22b,22cとが取り付けられ、真空継手28と真空吸着支持棒22a,22b,2cとの間には、真空継手28から三分枝する空気通路が設けられている。真空継手28は、屈曲自在な配管29を介して図示しない真空ポンプに接続される。 2A and 2B are schematic views of the bone member support portion 20, where FIG. 2A is a schematic top view of the bone member support portion 20, and FIG. It is a schematic vertical sectional view. The bone member support portion 20 includes a substrate 21, three vacuum suction support rods 22a, 22b, 22c, and a vacuum joint 28. A vacuum joint 28 and three vacuum suction support rods 22a, 22b, 22c are attached to the substrate 21, and between the vacuum joint 28 and the vacuum suction support rods 22a, 22b, 2c, vacuum joints 28 to 3 are attached. There is a branching air passage. The vacuum joint 28 is connected to a vacuum pump (not shown) via a flexible pipe 29.

真空吸着支持棒22a,22b,22cのそれぞれの先端部には、柔軟性のある部材により形成された吸口24a,24b,24cが、ボールジョイント23a,23b,23cを介して取り付けられている。真空吸着支持棒22a,22b,22cの軸芯部、ボールジョイント24a、24b、24cの中心部、および、吸口24a,24b,24cの中心部には、それぞれ空気通路が設けられ、真空継手28の三分枝した空気通路に接続されている。したがって、骨部材25を吸口24a,24b,24c上に置き、真空ポンプを起動すると、骨部材25は、吸口24a,24b,24cによって吸着される。このとき、ボールジョイント23a,23b,23cにより、吸口24a,24b,24cは骨部材25の形状に合わせて自在に角度を変えられるため、骨部材25は真空吸着支持棒22a,22b,22c上に確実に固定される。 Suction ports 24a, 24b, 24c formed of flexible members are attached to the respective tips of the vacuum suction support rods 22a, 22b, 22c via ball joints 23a, 23b, 23c. Air passages are provided in the shaft cores of the vacuum suction support rods 22a, 22b, 22c, the center of the ball joints 24a, 24b, 24c, and the center of the suction ports 24a, 24b, 24c, respectively. It is connected to a three-branched air passage. Therefore, when the bone member 25 is placed on the suction ports 24a, 24b, 24c and the vacuum pump is started, the bone member 25 is adsorbed by the suction ports 24a, 24b, 24c. At this time, the ball joints 23a, 23b, 23c allow the suction ports 24a, 24b, 24c to freely change the angle according to the shape of the bone member 25, so that the bone member 25 is placed on the vacuum suction support rods 22a, 22b, 22c. It is securely fixed.

本実施例では、真空吸着支持棒の本数は3本であったが、3本以上の複数本の真空吸着支持棒を用いても良い。また、本実施例では、真空吸着支持棒22a,22b,22cのそれぞれの先端部に吸口24a,24b,24cを備えるものであったが、柔軟性のある部材により形成された吸盤を備えたものであっても良い。なお、吸口24a,24b,24cおよび吸盤は生体適合部材により形成することが好ましい。 In this embodiment, the number of vacuum suction support rods is 3, but a plurality of vacuum suction support rods of 3 or more may be used. Further, in this embodiment, the suction ports 24a, 24b, 24c are provided at the tips of the vacuum suction support rods 22a, 22b, and 22c, respectively, but the suction cups formed of flexible members are provided. It may be. The suction ports 24a, 24b, 24c and suction cups are preferably formed of biocompatible members.

回転テーブル30と旋回テーブル40は、回転案内ガイド(例えば、ベアリング)、減速器(例えば、ウォームギア)、サーボモータなどで構成され、サーボアンプを介して、制御部90(例えば、NC制御装置)からの制御信号により回転駆動される。また、X軸直動ステージ50と、Y軸直動ステージ60と、Z軸直動ステージ70とは、直線案内ガイド(例えば、LMガイド)、サーボモータなどで構成され、サーボアンプを介して、制御部90(例えば、NC制御装置)からの制御信号により直線駆動される。スピンドル80は、カップリングを介して、スピンドルモータ85に連結されている。スピンドルモータ85は、ドライバを介して、制御部90(例えば、NC制御装置)からの制御信号により回転駆動される。したがって、制御部90は、骨部材支持部20に把持される骨部材25とスピンドル80に固定される刃具84との相対的配置は、刃具84が骨部材25の任意部分を5面加工できるものとなっている。 The rotary table 30 and the swivel table 40 are composed of a rotation guide guide (for example, a bearing), a speed reducer (for example, a worm gear), a servomotor, and the like, and are connected to a control unit 90 (for example, an NC control device) via a servo amplifier. It is driven to rotate by the control signal of. Further, the X-axis linear motion stage 50, the Y-axis linear motion stage 60, and the Z-axis linear motion stage 70 are composed of a linear guide (for example, an LM guide), a servomotor, and the like, and are via a servo amplifier. It is linearly driven by a control signal from the control unit 90 (for example, an NC control device). The spindle 80 is connected to the spindle motor 85 via a coupling. The spindle motor 85 is rotationally driven by a control signal from a control unit 90 (for example, an NC control device) via a driver. Therefore, in the control unit 90, the relative arrangement between the bone member 25 gripped by the bone member support portion 20 and the cutting tool 84 fixed to the spindle 80 is such that the cutting tool 84 can process an arbitrary portion of the bone member 25 on five surfaces. It has become.

スピンドル80の先端部80aは、刃具84を把持するツールホルダー81が脱着可能にして固定できる構造になっている。また、スピンドル80の先端部80aは、下記に述べる接触探針110や、空気マイクロメータ120の空気ノズル部121や、光学式距離測定器130の光学測定部131を、それぞれのホルダーを介して脱着可能にして固定できる構造になっている。 The tip portion 80a of the spindle 80 has a structure in which the tool holder 81 that grips the cutting tool 84 can be detached and fixed. Further, the tip portion 80a of the spindle 80 attaches / detaches the contact probe 110 described below, the air nozzle portion 121 of the air micrometer 120, and the optical measuring portion 131 of the optical distance measuring instrument 130 via the respective holders. It has a structure that allows it to be fixed.

次に、本発明に係る骨部材用NC加工装置の動作モードについて、以下に説明する。動作モードには、<形状測定モード>と<整形加工モード>とがある。 Next, the operation mode of the NC processing apparatus for bone members according to the present invention will be described below. The operation mode includes <shape measurement mode> and <shaping mode>.

<整形加工モード>
この動作モードは、制御部90に予め記憶したプログラムに従って被加工物を加工するものであって、通常のNC加工装置における動作と同じあるので説明は省略する。
<形状測定モード>
この動作モードでは、三次元形状寸法測定手段100に、接触探針110、空気マイクロメータ120、光学式距離測定器130、光学模様投影手段140と電子カメラ141とによる方法、あるいは、2つの方向から撮影する電子カメラ151,152と画像処理装置153とによる方法、のいずれのものを用いるかによって、実施形態が異なる。
<Shaping mode>
This operation mode processes the workpiece according to a program stored in advance in the control unit 90, and is the same as the operation in a normal NC processing apparatus, so the description thereof will be omitted.
<Shape measurement mode>
In this operation mode, the three-dimensional shape dimension measuring means 100 is equipped with a contact probe 110, an air micrometer 120, an optical distance measuring device 130, an optical pattern projecting means 140 and an electronic camera 141, or from two directions. The embodiment differs depending on which of the electronic cameras 151 and 152 for photographing and the method using the image processing device 153 is used.

[第1の実施形態]
この実施形態では、接触探針110を三次元形状寸法測定手段100に用いる。接触探針110は、該探針部が被測定物に接触すると電気的な接触信号を発生するものである。
[First Embodiment]
In this embodiment, the contact probe 110 is used as the three-dimensional shape dimension measuring means 100. The contact probe 110 generates an electrical contact signal when the probe portion comes into contact with the object to be measured.

図3は、接触探針110の一例を示す概略図である。接触探針110は、小さな球111と、円柱形ロッド112と、バネ113と、スタイラス114と、スタイラスホルダ115と、を備える。円柱形ロッド112の先端には小さな球111が、一方、円柱形ロッド112の他端部にはスタイラス114が固定されており、スタイラス114はバネ113により3点支持機構でスタイラスホルダ114の位置を定位置に保持されている。小さな球112が被測定物に接触すると、スタイラス114がスタイラスホルダ115を押す圧力が変化し、スタイラス114とスタイラスホルダ115との電気抵抗も変化する。接触探針110は、この電気抵抗の変化を検知して電気的な接触信号を出力する。 FIG. 3 is a schematic view showing an example of the contact probe 110. The contact probe 110 includes a small sphere 111, a cylindrical rod 112, a spring 113, a stylus 114, and a stylus holder 115. A small sphere 111 is fixed to the tip of the cylindrical rod 112, while a stylus 114 is fixed to the other end of the cylindrical rod 112. The stylus 114 uses a spring 113 to support the position of the stylus holder 114 by a three-point support mechanism. It is held in place. When the small sphere 112 comes into contact with the object to be measured, the pressure at which the stylus 114 pushes the stylus holder 115 changes, and the electrical resistance between the stylus 114 and the stylus holder 115 also changes. The contact probe 110 detects this change in electrical resistance and outputs an electrical contact signal.

接触探針110の探針部である小さな球111は、耐摩耗性の高い材質(例えば、サファイア)のものが好ましい。さらに、小さな球111の材質は、生体適合材料であることが好ましい。 The small ball 111, which is the probe portion of the contact probe 110, is preferably made of a material having high wear resistance (for example, sapphire). Further, the material of the small sphere 111 is preferably a biocompatible material.

本実施形態における被測定物の三次元形状寸法測定では、骨部材用NC加工装置の本体部10のスピンドル80の先端部80aに接触探針ホルダーを介して接触探針110を把持させるとともに、被測定物である骨部材25を骨部材支持部20に固定する。制御部90は、予め記憶したプログラムに従って、被測定物に接触探針110の探針部である小さな球111を接触させ、その接触位置を制御部90の記憶部に記憶する。この動作を多数繰り返して他の接触位置を制御部90の記憶部に記憶する。その後、制御部90は、該記憶部に記憶された多数の接触位置から、被測定物の三次元形状寸法を算出する。さらに具体的には、例えば、XY平面上に碁盤目状の格子点を設定し、ある格子点のXY位置に接触探針110の探針部を移動させた後に、接触探針110をZ軸に沿って下降させ接触位置を検出して記憶する動作を、各格子点において繰り返すことによって三次元形状寸法の算出に必要な三次元接触位置が測定できる。 In the three-dimensional shape dimensional measurement of the object to be measured in the present embodiment, the contact probe 110 is gripped by the tip 80a of the spindle 80 of the main body 10 of the NC processing device for bone members via the contact probe holder, and the contact probe 110 is gripped. The bone member 25, which is the object to be measured, is fixed to the bone member support portion 20. The control unit 90 brings the small sphere 111, which is the probe unit of the contact probe 110, into contact with the object to be measured according to a program stored in advance, and stores the contact position in the storage unit of the control unit 90. This operation is repeated many times to store other contact positions in the storage unit of the control unit 90. After that, the control unit 90 calculates the three-dimensional shape dimension of the object to be measured from a large number of contact positions stored in the storage unit. More specifically, for example, after setting a grid-shaped grid point on the XY plane and moving the probe portion of the contact probe 110 to the XY position of a certain grid point, the contact probe 110 is moved to the Z axis. The three-dimensional contact position required for calculating the three-dimensional shape dimension can be measured by repeating the operation of descending along the line and detecting and storing the contact position at each grid point.

[第2の実施形態]
この実施形態では、空気マイクロメータ120を三次元形状寸法測定手段100に用いる。空気マイクロメータ120は、該空気マイクロメータ120のノズル部121を通過する空気流量を測定し、該空気流量からノズル部121と被測定物との隙間寸法を測定するものである。
[Second Embodiment]
In this embodiment, the air micrometer 120 is used as the three-dimensional shape dimension measuring means 100. The air micrometer 120 measures the air flow rate passing through the nozzle portion 121 of the air micrometer 120, and measures the gap size between the nozzle portion 121 and the object to be measured from the air flow rate.

図4は、空気マイクロメータ120の一例を示す概略構造図である。空気マイクロメータ120は、空気ノズル部121と、オリフィス122と、第1圧力計124と、第2圧力計126と、空気源127と、流量計算手段128と、隙間寸法計算手段129と、を備える。空気ノズル121と空気源127とは屈曲自在の配管で接続され、該配管の途中にオリフィス122が挿入される。該オリフィス122の空気ノズル121側に設けられた第1空気圧室123には第1圧力計124を、該オリフィス122の空気源側に設けられた第2空気圧室125は第2圧力計126を備え、それぞれオリフィス122の空気ノズル側及びオリフィス122の空気源側の空気圧を測定し、それぞれ第1圧力信号及び第2圧力信号として出力する。流量計算手段128は、第1圧力信号及び第2圧力信号から、空気ノズル121を通過する空気流量を計算し、流量信号として出力する。隙間寸法計算手段は、流量信号及び第2圧力信号から、空気ノズル121と被測定物との隙間寸法を計算し、制御部90に対して寸法信号として出力する。 FIG. 4 is a schematic structural diagram showing an example of the air micrometer 120. The air micrometer 120 includes an air nozzle portion 121, an orifice 122, a first pressure gauge 124, a second pressure gauge 126, an air source 127, a flow rate calculation means 128, and a gap dimension calculation means 129. .. The air nozzle 121 and the air source 127 are connected by a flexible pipe, and an orifice 122 is inserted in the middle of the pipe. The first pneumatic chamber 123 provided on the air nozzle 121 side of the orifice 122 is provided with a first pressure gauge 124, and the second pneumatic chamber 125 provided on the air source side of the orifice 122 is provided with a second pressure gauge 126. , The air pressure on the air nozzle side of the orifice 122 and the air pressure on the air source side of the orifice 122 are measured, and output as a first pressure signal and a second pressure signal, respectively. The flow rate calculating means 128 calculates the air flow rate passing through the air nozzle 121 from the first pressure signal and the second pressure signal, and outputs it as a flow rate signal. The clearance dimension calculation means calculates the clearance dimension between the air nozzle 121 and the object to be measured from the flow rate signal and the second pressure signal, and outputs the dimension signal to the control unit 90.

流量計算手段128や隙間寸法計算手段129の機能は、アナログデジタル変換器、ROM、RAM、MPU、デジタルアナログ変換器などの個別ICで構成したもの、あるいは、これらの個別ICを集積したワンチップマイコンで容易に構成でき、また制御部90に組み込んでもよい。ノズルと平面との隙間から流れる空気流量を測定すれば、ノズルと平面との隙間寸法が計算できることは、日本工業規格(流量式空気マイクロメータJISB7535)に記載されているので、ここでの説明は省略する。 The functions of the flow rate calculation means 128 and the gap dimension calculation means 129 are composed of individual ICs such as an analog-to-digital converter, ROM, RAM, MPU, and digital-to-analog converter, or a one-chip microcomputer that integrates these individual ICs. It can be easily configured with the above, and may be incorporated into the control unit 90. It is described in the Japanese Industrial Standards (flow rate type air micrometer JISB7535) that the clearance size between the nozzle and the flat surface can be calculated by measuring the flow rate of the air flowing from the gap between the nozzle and the flat surface. Omit.

本実施形態における被測定物の三次元形状寸法測定では、まずスピンドル80の先端部80aに、図示しない空気ノズルホルダを介して空気ノズル部121を接続し、被測定物である骨部材25を骨部材支持部20に固定する。次に、外部入力または制御部90によって空気源127を起動させると共に、制御部90は予め記憶したプログラムに従って、所定の位置へ空気ノズルを移動させ、該位置で空気ノズル部121を骨部材25へと近づけていく。流量計算手段128は、空気ノズル部121と被測定物との間の空気流量を計算し、隙間寸法計算手段129へ流量信号を出力する。該流量信号から、隙間寸法計算手段129は隙間寸法を計算して、制御部90の記憶部へと記憶させる。かかる一連動作を多数繰り返し、多数の隙間寸法を制御部90に記憶する。最後に、制御部90は、該記憶部に記憶された多数の隙間寸法から、被測定物の三次元形状寸法を算出する。 In the three-dimensional shape dimensional measurement of the object to be measured in the present embodiment, first, the air nozzle portion 121 is connected to the tip portion 80a of the spindle 80 via an air nozzle holder (not shown), and the bone member 25 which is the object to be measured is boned. It is fixed to the member support portion 20. Next, the air source 127 is activated by an external input or the control unit 90, and the control unit 90 moves the air nozzle to a predetermined position according to a program stored in advance, and the air nozzle unit 121 is moved to the bone member 25 at that position. And get closer. The flow rate calculation means 128 calculates the air flow rate between the air nozzle portion 121 and the object to be measured, and outputs a flow rate signal to the gap size calculation means 129. From the flow rate signal, the gap size calculation means 129 calculates the gap size and stores it in the storage unit of the control unit 90. A large number of such series of operations are repeated, and a large number of gap dimensions are stored in the control unit 90. Finally, the control unit 90 calculates the three-dimensional shape dimension of the object to be measured from a large number of gap dimensions stored in the storage unit.

[第3の実施形態]
この実施形態では、光学式距離測定器130を三次元形状寸法測定手段100に用いる。光学式距離測定器130は、光学式距離測定器130が光を照射した位置と被測定物からの反射光を受光した位置とのずれから、光学式距離測定器130と被測定物との距離を計算するものである。
[Third Embodiment]
In this embodiment, the optical distance measuring device 130 is used as the three-dimensional shape dimension measuring means 100. The optical distance measuring device 130 is a distance between the optical distance measuring device 130 and the measured object due to the difference between the position where the optical distance measuring device 130 irradiates light and the position where the reflected light from the measured object is received. Is to calculate.

図5は、光学式距離測定器130の一例を示す概略図である。光学式距離測定器130は、光学測定部131と、距離計算手段134と、を備え、光学測定部131は、光源132と、受光部133と、を備える。 FIG. 5 is a schematic view showing an example of the optical distance measuring instrument 130. The optical distance measuring device 130 includes an optical measuring unit 131 and a distance calculating means 134, and the optical measuring unit 131 includes a light source 132 and a light receiving unit 133.

受光部133は、反射光を受光した位置に応じた受光位置信号を出力できるように構成され、例えば複数のフォトダイオードで構成することができる。距離計算手段134は、受光部133から出力される受光位置信号を受け取って被測定物と光学測定部131との距離を計算し、制御部90に対して距離信号として出力する。距離計算手段134の機能は、アナログデジタル変換器、ROM、RAM、MPU、デジタルアナログ変換器などの個別ICで構成したもの、あるいは、これらの個別ICを集積したワンチップマイコンで容易に構成でき、また制御部90に組み込んでもよい。 The light receiving unit 133 is configured to be able to output a light receiving position signal according to the position where the reflected light is received, and can be configured by, for example, a plurality of photodiodes. The distance calculating means 134 receives the light receiving position signal output from the light receiving unit 133, calculates the distance between the object to be measured and the optical measuring unit 131, and outputs the distance signal to the control unit 90. The function of the distance calculation means 134 can be easily configured by an individual IC such as an analog-to-digital converter, ROM, RAM, MPU, or digital-to-analog converter, or by a one-chip microcomputer in which these individual ICs are integrated. Further, it may be incorporated in the control unit 90.

本実施形態における被測定物の三次元形状寸法測定では、スピンドル80の先端部80aに光学式距離測定器ホルダーを介して光学測定部131を把持させるとともに、被測定物である骨部材25を骨部材支持部20に固定する。次に、光学測定部131の光源132から光を照射すると共に、制御部90は光学測定部131を走査させる。走査の際、制御部90は、距離計算手段134から受け取る距離信号が一定となるように、すなわち受光部133における反射光受光位置が一定となるように制御し、走査した座標を、制御部90の記憶部へと記憶する。その後、制御部90は、該記憶部に記憶された走査座標から、被測定物の三次元形状寸法を算出する。なお、[実施形態1]や[実施形態2]と同様に、予め記憶したプログラムに従って所定の位置へと移動させ、各位置での被測定物と光源との距離を記憶し、これを多数の位置について行って、記憶された距離から三次元形状寸法を算出してもよい。 In the three-dimensional shape dimensional measurement of the object to be measured in the present embodiment, the optical measuring unit 131 is gripped by the tip 80a of the spindle 80 via the optical distance measuring instrument holder, and the bone member 25 which is the object to be measured is boned. It is fixed to the member support portion 20. Next, while irradiating light from the light source 132 of the optical measurement unit 131, the control unit 90 scans the optical measurement unit 131. At the time of scanning, the control unit 90 controls so that the distance signal received from the distance calculation means 134 becomes constant, that is, the reflected light receiving position in the light receiving unit 133 becomes constant, and the scanned coordinates are set to the control unit 90. It is memorized in the memory part of. After that, the control unit 90 calculates the three-dimensional shape dimension of the object to be measured from the scanning coordinates stored in the storage unit. As in [Embodiment 1] and [Embodiment 2], the distance between the object to be measured and the light source at each position is memorized by moving to a predetermined position according to a program stored in advance, and a large number of these are stored. You may go to the position and calculate the 3D shape dimension from the stored distance.

[第4の実施形態]
この実施形態では、光学模様投影手段140と、電子カメラ141と、投影面形状寸法計算手段142と、を三次元形状寸法測定手段100に用いる。
[Fourth Embodiment]
In this embodiment, the optical pattern projection means 140, the electronic camera 141, and the projection surface shape dimension calculation means 142 are used for the three-dimensional shape dimension measurement means 100.

図6は、光学模様投影手段140の直線状の光学模様と、電子カメラ141の概略配置図である。光学模様投影手段140と電子カメラ141とは、その位置関係と向きが固定され、スピンドル80のハウジング83に取り付けられる。光学模様投影手段140は、被測定物上に一次元、または二次元の光学模様を投影するものであり、直線状の光学模様を投影するレーザー光源を用いることが好ましい。電子カメラ141は、被測定物に投影された光学模様を撮像し、画像信号を出力する。投影面形状寸法計算手段142は、電子カメラ141から出力される画像信号から骨部材25の光学模様投影面の形状寸法を計算するものであり、この機能は、アナログデジタル変換器、ROM、RAM、MPU、デジタルアナログ変換器などの個別ICで構成したもの、あるいは、これらの個別ICを集積したワンチップマイコンで容易に構成でき、また制御部90に容易に組み込んでもよい。 FIG. 6 is a linear optical pattern of the optical pattern projection means 140 and a schematic layout of the electronic camera 141. The optical pattern projection means 140 and the electronic camera 141 are fixed in their positional relationship and orientation, and are attached to the housing 83 of the spindle 80. The optical pattern projection means 140 projects a one-dimensional or two-dimensional optical pattern onto the object to be measured, and it is preferable to use a laser light source that projects a linear optical pattern. The electronic camera 141 captures an optical pattern projected on the object to be measured and outputs an image signal. The projection surface shape dimension calculation means 142 calculates the shape dimension of the optical pattern projection surface of the bone member 25 from the image signal output from the electronic camera 141, and this function is an analog-to-digital converter, ROM, RAM, and the like. It can be easily configured by an individual IC such as an MPU or a digital-to-analog converter, or by a one-chip microcomputer in which these individual ICs are integrated, or may be easily incorporated into the control unit 90.

図6のように、光学模様投影手段140から照射された直線光は、投影部の表面形状に沿って歪み、直線状の光学模様を描く。電子カメラ141は、該直線状の光学模様の歪みを撮像し、画像信号として出力する。投影面形状寸法計算手段142は、受け取った該画像信号から投影部の表面形状を計算し、形状信号として制御部90へと出力し、制御部90の記憶部へと記憶させる。かかる一連の動作を、光学模様投影手段140及び電子カメラ141が取り付けられたハウジング83を一次元に走査させながら逐次行うことで、制御部90の記憶部に記憶されたレーザーの通過した部分の被測定物の表面形状に関する情報から、被測定物の三次元形状寸法を算出する。 As shown in FIG. 6, the linear light emitted from the optical pattern projection means 140 is distorted along the surface shape of the projection portion to draw a linear optical pattern. The electronic camera 141 captures the distortion of the linear optical pattern and outputs it as an image signal. The projection surface shape dimension calculation means 142 calculates the surface shape of the projection unit from the received image signal, outputs it as a shape signal to the control unit 90, and stores it in the storage unit of the control unit 90. By sequentially performing such a series of operations while scanning the housing 83 to which the optical pattern projection means 140 and the electronic camera 141 are mounted one-dimensionally, the cover of the portion where the laser has passed stored in the storage unit of the control unit 90 is covered. The three-dimensional shape dimension of the object to be measured is calculated from the information on the surface shape of the object to be measured.

[第5の実施形態]
この実施形態では、電子カメラ151、152と、画像処理装置153と、を三次元形状寸法測定手段100として用いる。
[Fifth Embodiment]
In this embodiment, the electronic cameras 151 and 152 and the image processing device 153 are used as the three-dimensional shape dimension measuring means 100.

図7は、2つの電子カメラ151、152の概略配置図である。電子カメラ151,152は、互いの位置関係が固定され、スピンドル80のハウジング83に配置される。電子カメラは3つ以上備えてもよい。図示しない画像処理装置153は、電子カメラ151,152から出力される画像信号から、ステレオ視の原理に基づいて被測定物の撮像面の形状寸法を計算するものである。画像処理装置153の機能は、市販のデジタル画像処理装置を用いて組み込むこともできるし、制御部90に容易に組み込むことができる。 FIG. 7 is a schematic layout of the two electronic cameras 151 and 152. The electronic cameras 151 and 152 are fixedly positioned with each other and are arranged in the housing 83 of the spindle 80. Three or more electronic cameras may be provided. The image processing device 153 (not shown) calculates the shape and dimension of the image pickup surface of the object to be measured from the image signals output from the electronic cameras 151 and 152 based on the principle of stereo vision. The function of the image processing device 153 can be incorporated by using a commercially available digital image processing device, or can be easily incorporated into the control unit 90.

本実施形態では、電子カメラ151,152が撮像し、出力した画像信号を、画像処理装置153がステレオ視の原理に基づいて処理することで撮像面の形状寸法を計算し、記憶するという一連の動作を複数の撮像面について実行し、複数の撮像面の形状寸法から被測定物の三次元形状寸法を算出する。 In the present embodiment, a series of image signals captured and output by the electronic cameras 151 and 152 are processed by the image processing device 153 based on the principle of stereoscopic vision to calculate and store the shape and dimensions of the image pickup surface. The operation is executed for a plurality of image pickup surfaces, and the three-dimensional shape dimensions of the object to be measured are calculated from the shape dimensions of the plurality of image pickup surfaces.

10 本体部
20 骨部材支持部
22a,22b,22c 真空吸着支持棒
23a,23b,23c ボールジョイント
24a.24b,24c 吸口
25 骨部材
30 回転テーブル
40 旋回テーブル
50 X軸直動ステージ
60 Y軸直動ステージ
70 Z軸直動ステージ
80 スピンドル
100 三次元形状寸法測定手段
110 接触探針
111 小さな球
112 円柱形ロッド
113 バネ
114 スタイラス
115 スタイラスホルダ
120 空気マイクロメータ
121 空気ノズル部
122 オリフィス
123 第1空気圧室
124 第1圧力計
125 第2空気圧室
126 第2圧力計
130 光学式距離測定器
132 光源
133 受光部
140 光学模様投影手段
141,151,152 電子カメラ
















10 Main body 20 Bone member support 22a, 22b, 22c Vacuum suction support rods 23a, 23b, 23c Ball joint 24a. 24b, 24c Mouthpiece 25 Bone member 30 Rotating table 40 Swing table 50 X-axis linear motion stage 60 Y-axis linear motion stage 70 Z-axis linear motion stage 80 Spindle 100 Three-dimensional shape Dimension measuring means 110 Contact probe 111 Small sphere 112 Cylindrical shape Rod 113 Spring 114 Stylus 115 Stylus holder 120 Pneumatic micrometer 121 Air nozzle 122 Orifice 123 1st pneumatic chamber 124 1st pressure gauge 125 2nd pneumatic chamber 126 2nd pressure gauge 130 Optical distance measuring instrument 132 Light source 133 Light receiving part 140 Optical pattern projection means 141,151,152 Electronic camera
















Claims (1)

骨部材を支持する骨部材支持部と、
該骨部材の三次元形状寸法を測定する三次元形状寸法測定手段と、
を備えた骨部材用NC加工装置であって、
前記三次元形状寸法測定手段は、前記骨部材との隙間を測定する空気マイクロメータを備え、
前記空気マイクロメータは、
空気ノズル部と、
空気源と、
前記空気ノズル部と前記空気源とを接続する配管と、
前記配管内に設けられたオリフィスと、前記配管内における前記オリフィスよりも前記空気ノズル部側の空気圧を計測し、計測した空気圧を示す第1圧力信号を出力する第1圧力計と、
前記配管内における前記オリフィスよりも前記空気源側の空気圧を計測し、計測した空気圧を示す第2圧力信号を出力する第2圧力計と、
前記第1圧力信号と前記第2圧力信号とから前記空気ノズル部を通過する空気流量を計算し、計算した空気流量を示す流量信号を出力する流量計算手段と、
前記流量信号と前記第2圧力信号とに基づいて、前記空気ノズル部と前記骨部材の表面との間の隙間寸法を計算する隙間寸法計算手段と、を有し、
前記空気ノズル部を所定位置に移動した後、前記所定位置で前記空気ノズル部を前記骨部材に近づけ、前記第1圧力信号と前記第2圧力信号とを取得し、前記第1圧力信号と前記第2圧力信号とに基づいて、前記隙間寸法計算手段により前記隙間寸法を計算してから、前記空気ノズル部の移動距離と前記隙間寸法とに基づいて、前記所定位置から前記骨部材の表面までの距離を計算する動作を、多数繰り返すことにより、前記骨部材の三次元形状寸法を計算する
ことを特徴とする骨部材用NC加工装置。
Bone member support part that supports the bone member and
A three-dimensional shape dimension measuring means for measuring the three-dimensional shape dimension of the bone member,
It is an NC processing device for bone members equipped with
The three-dimensional shape dimension measuring means includes an air micrometer for measuring a gap with the bone member.
The air micrometer
With the air nozzle
With an air source
A pipe connecting the air nozzle portion and the air source,
An orifice provided in the pipe, a first pressure gauge that measures the air pressure on the air nozzle portion side of the orifice in the pipe and outputs a first pressure signal indicating the measured air pressure.
A second pressure gauge that measures the air pressure on the air source side of the orifice in the pipe and outputs a second pressure signal indicating the measured air pressure.
A flow rate calculation means that calculates the air flow rate passing through the air nozzle portion from the first pressure signal and the second pressure signal and outputs a flow rate signal indicating the calculated air flow rate.
It has a gap dimension calculating means for calculating the gap dimension between the air nozzle portion and the surface of the bone member based on the flow rate signal and the second pressure signal.
After moving the air nozzle portion to a predetermined position, the air nozzle portion is brought closer to the bone member at the predetermined position to acquire the first pressure signal and the second pressure signal, and the first pressure signal and the first pressure signal. The gap size is calculated by the gap size calculating means based on the second pressure signal, and then the surface of the bone member is formed from the predetermined position based on the moving distance of the air nozzle portion and the gap size. By repeating the operation of calculating the distance to the bone member many times, the three-dimensional shape dimension of the bone member is calculated .
NC processing equipment for bone members.
JP2016056904A 2016-03-22 2016-03-22 NC processing equipment for bone members Active JP7029222B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016056904A JP7029222B2 (en) 2016-03-22 2016-03-22 NC processing equipment for bone members

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016056904A JP7029222B2 (en) 2016-03-22 2016-03-22 NC processing equipment for bone members

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2021000081A Division JP2021073100A (en) 2021-01-04 2021-01-04 Nc machining device for frame member

Publications (2)

Publication Number Publication Date
JP2017173032A JP2017173032A (en) 2017-09-28
JP7029222B2 true JP7029222B2 (en) 2022-03-03

Family

ID=59972951

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016056904A Active JP7029222B2 (en) 2016-03-22 2016-03-22 NC processing equipment for bone members

Country Status (1)

Country Link
JP (1) JP7029222B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10739128B2 (en) * 2018-02-26 2020-08-11 The Boeing Company Laser scanner scanning using a computer numerical controlled (CNC) system for movement
JP6697501B2 (en) * 2018-03-26 2020-05-20 ファナック株式会社 Work system
JP6606234B1 (en) 2018-07-13 2019-11-13 Dmg森精機株式会社 measuring device
CN117900139B (en) * 2024-03-18 2024-06-07 太原福莱瑞达物流设备科技有限公司 Multidirectional sorting stack conveyor

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010539458A (en) 2007-09-14 2010-12-16 ライカ ジオシステムズ アクチエンゲゼルシャフト Surface measuring method and measuring apparatus
JP6185947B2 (en) 2014-03-31 2017-08-23 ミネベアミツミ株式会社 Ultraviolet curable resin composition, sliding member, and manufacturing method of sliding member
JP2017169463A (en) 2016-03-22 2017-09-28 株式会社日進製作所 Cell mass adsorption-placing apparatus and cell mass transfer apparatus

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63263405A (en) * 1987-04-22 1988-10-31 Komatsu Ltd Hole shape measuring method by air micrometer
JPH0758185B2 (en) * 1988-11-29 1995-06-21 日産自動車株式会社 Three-dimensional measuring device
JPH07101162B2 (en) * 1991-04-11 1995-11-01 ロマテック株式会社 A device for detecting the surface contour in one section of an irregularly shaped plate-like object
JPH0861949A (en) * 1994-08-24 1996-03-08 Speedfam Co Ltd Surface contour measuring device for surface plate and polishing pad
JP3482077B2 (en) * 1996-08-09 2003-12-22 株式会社アドバンス Manufacturing method of dental prosthesis
JP6209054B2 (en) * 2013-10-29 2017-10-04 株式会社日進製作所 Air micrometer

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010539458A (en) 2007-09-14 2010-12-16 ライカ ジオシステムズ アクチエンゲゼルシャフト Surface measuring method and measuring apparatus
JP6185947B2 (en) 2014-03-31 2017-08-23 ミネベアミツミ株式会社 Ultraviolet curable resin composition, sliding member, and manufacturing method of sliding member
JP2017169463A (en) 2016-03-22 2017-09-28 株式会社日進製作所 Cell mass adsorption-placing apparatus and cell mass transfer apparatus

Also Published As

Publication number Publication date
JP2017173032A (en) 2017-09-28

Similar Documents

Publication Publication Date Title
JP7029222B2 (en) NC processing equipment for bone members
JP5032049B2 (en) A method for automatic calibration of the tool (s), especially in a tool turning device used for the manufacture of ophthalmic lenses
US10592734B2 (en) Method and device for the recording of body movements
CN104227722B (en) Robot system and robot control method
JP5595798B2 (en) Workpiece measuring method and apparatus for machine tool
JP7064884B2 (en) Calibration method of parts assembly device
CN111707189B (en) Laser displacement sensor light beam direction calibration method based on binocular vision
JP2004502137A (en) Method and system for acquiring and registering three-dimensional measurement data and three-dimensional images of oral constituents and oral constituents in the mouth in real time
US20090284755A1 (en) Device for Flexible Detection of the Geometric Shape of Objects by Means of Optical 3D Measuring Technology
EP2068113A1 (en) Calibrating method of image measuring instrument
JP2019063954A (en) Robot system, calibration method and calibration program
CN111750776A (en) Measuring method and measuring device of checking fixture and probe light pen structure
KR20080111653A (en) 3d measuring apparatus for camera using measurment probe of origin correction
CN105559809B (en) Scanning method and device
TWI525718B (en) System and method for picking and placement of chip dies
JP2021073100A (en) Nc machining device for frame member
JP5177643B2 (en) High precision laser processing and combined laser / electrolytic processing equipment
WO2017170488A1 (en) Optical axis position measuring system, optical axis position measuring method, optical axis position measuring program, and optical axis position measuring device
CN218247259U (en) Automatic throat swab collecting device
JP5389995B1 (en) Measuring system and machine tool equipped with the measuring system
JP6974492B2 (en) Alignment and identification tools and methods for dental and / or craniofacial surgical instruments and / or common surgical instruments
JP2000326082A (en) Laser beam machine
JP5302936B2 (en) measuring device
KR101009563B1 (en) Calibration apparatus for noncontact measuring system
JPS6129710A (en) Measuring method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190320

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20200122

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200203

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200312

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200608

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200805

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20201002

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20201130

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210104

C60 Trial request (containing other claim documents, opposition documents)

Free format text: JAPANESE INTERMEDIATE CODE: C60

Effective date: 20210104

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20210119

C21 Notice of transfer of a case for reconsideration by examiners before appeal proceedings

Free format text: JAPANESE INTERMEDIATE CODE: C21

Effective date: 20210126

A912 Re-examination (zenchi) completed and case transferred to appeal board

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20210305

C211 Notice of termination of reconsideration by examiners before appeal proceedings

Free format text: JAPANESE INTERMEDIATE CODE: C211

Effective date: 20210309

C22 Notice of designation (change) of administrative judge

Free format text: JAPANESE INTERMEDIATE CODE: C22

Effective date: 20210615

C22 Notice of designation (change) of administrative judge

Free format text: JAPANESE INTERMEDIATE CODE: C22

Effective date: 20210907

C13 Notice of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: C13

Effective date: 20210921

C19 Decision taken to dismiss amendment

Free format text: JAPANESE INTERMEDIATE CODE: C19

Effective date: 20211005

C30A Notification sent

Free format text: JAPANESE INTERMEDIATE CODE: C3012

Effective date: 20211005

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20211122

C23 Notice of termination of proceedings

Free format text: JAPANESE INTERMEDIATE CODE: C23

Effective date: 20211214

C03 Trial/appeal decision taken

Free format text: JAPANESE INTERMEDIATE CODE: C03

Effective date: 20220125

C30A Notification sent

Free format text: JAPANESE INTERMEDIATE CODE: C3012

Effective date: 20220125

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220218

R150 Certificate of patent or registration of utility model

Ref document number: 7029222

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150