JP2017173032A - Nc machining apparatus for bone member - Google Patents

Nc machining apparatus for bone member Download PDF

Info

Publication number
JP2017173032A
JP2017173032A JP2016056904A JP2016056904A JP2017173032A JP 2017173032 A JP2017173032 A JP 2017173032A JP 2016056904 A JP2016056904 A JP 2016056904A JP 2016056904 A JP2016056904 A JP 2016056904A JP 2017173032 A JP2017173032 A JP 2017173032A
Authority
JP
Japan
Prior art keywords
bone member
bone
dimensional shape
processing apparatus
shape dimension
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2016056904A
Other languages
Japanese (ja)
Other versions
JP7029222B2 (en
Inventor
山田 正良
Masayoshi Yamada
正良 山田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nisshin Seisakusho KK
Original Assignee
Nisshin Seisakusho KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nisshin Seisakusho KK filed Critical Nisshin Seisakusho KK
Priority to JP2016056904A priority Critical patent/JP7029222B2/en
Publication of JP2017173032A publication Critical patent/JP2017173032A/en
Application granted granted Critical
Publication of JP7029222B2 publication Critical patent/JP7029222B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

PROBLEM TO BE SOLVED: To provide an NC machining apparatus for a bone member that eliminates the positional deviation occurring during the mounting, fixing (holding), and re-holding of the bone member, certainly fixes the bone member without damaging it, and accurately shapes the bone member.SOLUTION: The NC machining apparatus for a bone member of the present invention includes: holding means for holding the bone member; and three-dimensional shape dimension measuring means for measuring a three-dimensional shape dimension of the bone member. Since the NC machining apparatus for the bone member of the present invention includes the three-dimensional shape dimension measuring means, the moving or mounting of the bone member is not required, and the position during the measurement of the three-dimensional shape dimension does not deviate from that during the three-dimensional NC machining.SELECTED DRAWING: Figure 1

Description

本発明は、骨部材の三次元形状寸法を高精度に測定するとともに、その骨部材を高精度に整形加工する骨部材用NC加工装置に関する。 The present invention relates to a bone member NC processing apparatus that measures a three-dimensional shape dimension of a bone member with high accuracy and shapes the bone member with high accuracy.

骨折した骨を接合するために、従来からチタンなどの生体適合金属製の骨接合ねじなどが用いられてきた。骨接合ねじは、生体内での腐食の恐れや感染巣を提供する危険があるので、それを体外に取り出す再手術が必要であった。再手術は患者に麻酔の危険性や精神的、身体的負担を強いることになるので、生体内で周囲の骨と一体化して最終的には正常な骨に置換される材料、例えば、自家、あるいは、他家の骨を切り出し、この骨を整形加工した骨部材を骨折部に移植する技術が考案されている(例えば、特許文献1)。これにより再手術する必要がなくなり、患者の負担を大幅に軽減することができる。 In order to join fractured bones, bone joining screws made of biocompatible metals such as titanium have been conventionally used. Since the bone screw has a risk of corrosive in vivo and a risk of providing an infection site, a reoperation for removing it from the body was necessary. Re-surgery imposes the risk of anesthesia and mental and physical burden on the patient, so it can be integrated into the surrounding bones in the body and eventually replaced with normal bones, Alternatively, a technique has been devised in which a bone of another family is cut out and a bone member obtained by shaping the bone is transplanted into a fractured part (for example, Patent Document 1). This eliminates the need for re-operation and can greatly reduce the burden on the patient.

手作業による骨部材の整形加工は、加工精度が低いという問題があった。特に、関節部分の骨移植の場合、手作業で整形加工したものは、加工精度が低いために、関節面に不具合を生じるという問題があった。これらの問題を解決するために、骨部材を精密に加工する骨部材加工システムが提案されている(特許文献2)。しかし、形状測定装置などを用いて、予め、整形加工する骨部材の形状を測定した後に、その骨部材を骨部材加工システムに移動載置して整形加工するので、正確に載置することが困難であった。また、骨部材加工システムにおける骨部材把持方法は、骨部材を下部から支持する支持具が可動ピストンであり、上部から固定具で固定するものであるために、骨部材の5面全体を1回の把持で加工することが不可能で、骨部材を再把持する必要があった。このため、再現性良く正確に再把持することが困難であった。すなわち、形状測定装置で正確に形状が測定できても、骨部材加工システムでNCプログラムどおりに正確に加工できても、骨部材の載置と固定(把持)および再把持のときに、位置ずれを起こして、整形加工した骨部材の形状は、目標とする形状にならないという問題があった。さらに、骨部材は比較的強度が弱く、複雑な形状をしている面を固定金具を用いて抑えつける従来方法によると、骨部材を損壊するおそれもあった。 Manual shaping of bone members has a problem of low machining accuracy. In particular, in the case of bone grafting of a joint portion, a material that has been subjected to manual shaping has a problem of causing a problem on the joint surface due to low machining accuracy. In order to solve these problems, a bone member processing system that precisely processes bone members has been proposed (Patent Document 2). However, since the shape of the bone member to be shaped is measured in advance using a shape measuring device or the like, the bone member is moved and mounted on the bone member processing system, so that it can be placed accurately. It was difficult. Further, in the bone member gripping method in the bone member processing system, since the support member that supports the bone member from the lower part is a movable piston and is fixed from the upper part by the fixing tool, the entire five surfaces of the bone member are processed once. It was impossible to process by holding the bone member, and it was necessary to re-hold the bone member. For this reason, it has been difficult to accurately re-grip with good reproducibility. In other words, even if the shape can be measured accurately with the shape measuring device or accurately processed according to the NC program by the bone member processing system, the position shift occurs when the bone member is placed, fixed (gripped), and re-gripped. As a result, there is a problem that the shape of the shaped bone member does not become the target shape. Furthermore, the bone member has a relatively low strength, and according to the conventional method of suppressing a complicated surface using a fixing bracket, the bone member may be damaged.

特許第4737595号Japanese Patent No. 4737595 特開2015−134064号公報JP-A-2015-134064

本発明は、かかる実情に鑑みてなされたもので、骨部材の載置と固定(把持)および再把持のときに生ずる位置ずれをなくすとともに、骨部材を損壊することなく確実に固定して、高精度に骨部材を整形加工する骨部材用NC加工装置を提供することを目的とする。 The present invention has been made in view of such circumstances, and eliminates the positional deviation that occurs when placing and fixing (gripping) and re-gripping the bone member, and securely fixing the bone member without damaging it, It is an object of the present invention to provide a bone member NC processing apparatus for shaping a bone member with high accuracy.

上記の目的を達成するために、本発明に係る請求項1の骨部材用NC加工装置は、骨部材を把持する把持手段と、該骨部材の三次元形状寸法を測定する三次元形状寸法測定手段と、を備えたことを特徴としている。本発明の骨部材用NC加工装置は、三次元形状寸法測定手段を備えているので、骨部材の移動載置が不要になり、位置ずれは生じない。 In order to achieve the above object, an NC processing apparatus for a bone member according to claim 1 of the present invention includes a gripping means for gripping the bone member, and a three-dimensional shape dimension measurement for measuring the three-dimensional shape dimension of the bone member. Means. Since the NC processing apparatus for bone members of the present invention includes the three-dimensional shape dimension measuring means, it is not necessary to move and place the bone members, and no positional deviation occurs.

また、請求項2の前記把持手段は、複数本の真空吸着支持棒であることを特徴としている。本発明の骨部材用NC加工装置によれば、複雑で曲面の形状である骨部材を複数本の棒により複数点で支持するため、前記骨部材を確実に把持することができる。また、骨部材を再把持しなくても、骨部材の5面全体を整形加工することができる。 The gripping means according to claim 2 is a plurality of vacuum suction support rods. According to the NC processing apparatus for a bone member of the present invention, the bone member having a complicated and curved shape is supported at a plurality of points by a plurality of rods, so that the bone member can be reliably gripped. Further, the entire five surfaces of the bone member can be shaped without re-gripping the bone member.

また、請求項3の前記真空吸着支持棒は該先端部が、前記骨部材に密着するように、角度自在にして、柔軟性のある生体適合部材により覆われていることを特徴としている。本発明の真空吸着支持棒によれば、該先端部が骨部材に密着して支持するので、骨部材を確実に把持することができる。 Further, the vacuum suction support rod according to claim 3 is characterized in that the distal end portion is freely angled so as to be in close contact with the bone member and is covered with a flexible biocompatible member. According to the vacuum suction support rod of the present invention, since the tip end portion is in close contact with and supported by the bone member, the bone member can be reliably gripped.

また、請求項4の前記真空吸着支持棒は、該先端部に柔軟性のある生体適合部材により形成されている吸盤を備えることを特徴としている。本発明の真空吸着支持棒によれば、該先端部に備えられた吸盤が、骨部材に、より強く密着するので、骨部材をより確実に把持することができる。 Further, the vacuum adsorption support rod according to claim 4 is characterized in that a suction cup formed of a flexible biocompatible member is provided at the tip portion. According to the vacuum suction support rod of the present invention, since the suction cup provided at the tip end portion is more closely attached to the bone member, the bone member can be gripped more reliably.

また、請求項5の三次元形状寸法測定手段は、前記骨部材に接触したことを検知する接触探針を備えることを特徴としている。本発明の骨部材NC加工装置よれば、刃具の代わりに接触探針を把持して、骨部材表面上を走査することによって、その骨部材の三次元形状寸法を容易に測定することができる。すなわち、別途、三次元形状寸法測定装置を備えなくても、接触探針と骨部材用NC加工装置とで、三次元形状寸法測定装置の機能を持たせることができる。 According to a fifth aspect of the present invention, there is provided the three-dimensional shape measurement means comprising a contact probe for detecting contact with the bone member. According to the bone member NC processing apparatus of the present invention, the three-dimensional shape dimension of the bone member can be easily measured by grasping the contact probe instead of the cutting tool and scanning the surface of the bone member. That is, even if the 3D shape dimension measuring device is not separately provided, the contact probe and the bone member NC processing device can have the function of the 3D shape dimension measuring device.

また、請求項6の前記接触探針は、前記骨部材に接する接触部分が生体適合性部材により形成されていることを特徴としている。本発明の骨部材NC加工装置よれば、骨部材の三次元形状寸法を測定するときに、生体に適合しない切屑などが骨部材に付着することを防止することができる。 The contact probe according to claim 6 is characterized in that a contact portion in contact with the bone member is formed of a biocompatible member. According to the bone member NC processing apparatus of the present invention, when measuring the three-dimensional shape dimension of the bone member, it is possible to prevent chips and the like that are not compatible with a living body from adhering to the bone member.

また、請求項7の前記三次元形状寸法測定手段は、前記骨部材との隙間を測定する空気マイクロメータを備えたことを特徴としている。本発明の骨部材NC加工装置よれば、刃具の代わりに空気マイクロメータのノズル部を把持して、骨部材表面上を走査することによって、その骨部材の三次元形状寸法を容易に測定することができる。すなわち、別途、三次元形状寸法測定装置を備えなくても、接触探針と骨部材用NC加工装置とで、三次元形状寸法測定装置の機能を持たせることができる。さらに、空気マイクロメータは非接触で隙間が測定できるので、骨部材を損傷するおそれがなくなる。 The three-dimensional shape measurement means according to claim 7 includes an air micrometer for measuring a gap with the bone member. According to the bone member NC processing apparatus of the present invention, the three-dimensional shape dimension of the bone member can be easily measured by grasping the nozzle portion of the air micrometer instead of the cutting tool and scanning the surface of the bone member. Can do. That is, even if the 3D shape dimension measuring device is not separately provided, the contact probe and the bone member NC processing device can have the function of the 3D shape dimension measuring device. Further, since the air micrometer can measure the gap without contact, there is no possibility of damaging the bone member.

また、請求項8の前記三次元形状寸法測定手段は、前記骨部材との距離を測定する光学式距離測定器を備えることを特徴としている。本発明の骨部材NC加工装置よれば、刃具の代わりに光学式距離測定器の光学測定部を把持して、骨部材表面上を走査することによって、その骨部材の三次元形状寸法を容易に測定することができる。すなわち、別途、三次元形状寸法測定装置を備えなくても、光学式距離測定器と骨部材用NC加工装置とで、三次元形状寸法測定装置の機能を持たせることができる。さらに、光学式距離測定器は非接触で距離が測定できるので、骨部材を損傷するおそれがなくなる。 The three-dimensional shape dimension measuring means according to claim 8 is characterized by comprising an optical distance measuring device for measuring a distance from the bone member. According to the bone member NC processing apparatus of the present invention, the three-dimensional shape dimension of the bone member can be easily obtained by grasping the optical measuring unit of the optical distance measuring device instead of the cutting tool and scanning the surface of the bone member. Can be measured. That is, even if the 3D shape dimension measuring apparatus is not separately provided, the optical distance measuring device and the bone member NC processing apparatus can have the function of the 3D shape dimension measuring apparatus. Furthermore, since the optical distance measuring device can measure the distance without contact, there is no possibility of damaging the bone member.

また、請求項9の前記三次元形状寸法測定手段は、前記骨部材上に光学模様を投影する光学模様投影手段と、前記骨部材上に投影された光学模様を撮像する電子カメラと、該電子カメラから出力される画像信号から前記骨部材の三次元形状寸法を計算する画像処理装置と、を備えたことを特徴としている。接触探針や空気マイクロメータ、および光学式距離測定器の場合、骨部材用NC加工装置は、二次元あるいは三次元の走査をする必要があり、骨部材の三次元形状寸法の測定には長時間を要する。本発明の骨部材NC加工装置よれば、光学模様投影手段は多次元の走査を必要としないので、骨部材の三次元形状寸法の測定時間を短縮することができる。 The three-dimensional shape dimension measuring means according to claim 9 includes an optical pattern projecting means for projecting an optical pattern on the bone member, an electronic camera for imaging the optical pattern projected on the bone member, and the electronic And an image processing device for calculating a three-dimensional shape dimension of the bone member from an image signal output from a camera. In the case of a contact probe, air micrometer, and optical distance measuring device, the NC processing device for bone members needs to perform two-dimensional or three-dimensional scanning. It takes time. According to the bone member NC processing apparatus of the present invention, since the optical pattern projection means does not require multidimensional scanning, the measurement time of the three-dimensional shape dimension of the bone member can be shortened.

また、請求項10の前記光学模様投影手段は、該光源がレーザーであり、かつ、前記光学模様が直線であることを特徴としている。本発明の骨部材NC加工装置よれば、光学模様が直線であれば一次元の走査のみによって、凸形状などの骨部材の三次元形状を精度の良くかつ短時間で測定することができる。 The optical pattern projecting means according to claim 10 is characterized in that the light source is a laser and the optical pattern is a straight line. According to the bone member NC processing apparatus of the present invention, if the optical pattern is a straight line, the three-dimensional shape of the bone member such as a convex shape can be measured with high accuracy and in a short time only by one-dimensional scanning.

また、請求項11の前記三次元形状寸法測定手段は、前記骨部材を少なくとも2つの方向から撮影する電子カメラと、該電子カメラから出力される画像信号から前記骨部材の三次元形状寸法を計算する画像処理装置と、を備えたことを特徴としている。本発明の骨部材NC加工装置よれば、骨部材の三次元形状寸法を短時間で測定することができる。 The three-dimensional shape dimension measuring means according to claim 11 calculates an three-dimensional shape dimension of the bone member from an electronic camera for photographing the bone member from at least two directions and an image signal output from the electronic camera. And an image processing apparatus. According to the bone member NC processing apparatus of the present invention, the three-dimensional shape dimension of the bone member can be measured in a short time.

本発明に係る骨部材加工装置の本体部10の斜視図The perspective view of the main-body part 10 of the bone member processing apparatus which concerns on this invention. 本発明に係る骨部材加工装置の骨部材支持部20の概略図であり、(a)は骨部材支持部20の概略上面図、(b)は(a)のA‐A´で切断した骨部材支持部20の概略縦断面図It is the schematic of the bone member support part 20 of the bone member processing apparatus which concerns on this invention, (a) is a schematic top view of the bone member support part 20, (b) is the bone | frame cut | disconnected by AA 'of (a). Schematic longitudinal sectional view of the member support 20 本発明に係る接触探針110の一例を示す概略図Schematic showing an example of the contact probe 110 according to the present invention. 本発明に係る空気マイクロメータ120の一例を示す概略構造図Schematic structural diagram showing an example of an air micrometer 120 according to the present invention 本発明に係る光学式距離測定器130の一例を示す概略図Schematic showing an example of the optical distance measuring device 130 according to the present invention. 本発明に係る光学模様投影手段140の直線状の光学模様と、電子カメラ141の概略配置図Schematic layout of the linear optical pattern of the optical pattern projection unit 140 and the electronic camera 141 according to the present invention. 本発明に係る2つの電子カメラ151、152の概略配置図Schematic layout of two electronic cameras 151, 152 according to the present invention

本発明の骨部材用NC加工装置の実施形態を以下に図面に基づいて説明するが、本発明はこの実施形態に限定されない。骨部材用NC加工装置は、本体部10と、図示しない真空ポンプおよび制御部90を備える。 An embodiment of the NC processing apparatus for bone members of the present invention will be described below with reference to the drawings, but the present invention is not limited to this embodiment. The bone member NC processing apparatus includes a main body 10 and a vacuum pump and control unit 90 (not shown).

図1は、本発明に係る本体部10の斜視図である。本体部10は、骨部材支持部20と、回転テーブル30と、旋回テーブル40と、X軸直動ステージ50と、Y軸直動ステージ60と、Z軸直動ステージ70と、スピンドル80と、を備える。骨部材支持部20は回転テーブル30上に、該回転テーブル30は旋回テーブル40上に、該旋回テーブル40はX軸直動ステージ50上に、該X軸直動ステージ50はY軸直動ステージ60上に、該Y軸直動ステージ60はベース11上に、それぞれ、取り付けられている。一方、スピンドル80は先端部80aと、胴体部80bと、胴体部80bを収めるハウジング83と、図示しない駆動部とで構成される。スピンドル80はZ軸直動ステージ70上に、該Z軸直動ステージ70はカラム18に、該カラム18はベース11上に、それぞれ、取り付けられている。骨部材支持部20に把持される骨部材25とスピンドル80の先端部80aに固定される刃具84との相対的配置は、刃具84が骨部材25の5面を加工できるものとなっている。   FIG. 1 is a perspective view of a main body 10 according to the present invention. The main body 10 includes a bone member support 20, a rotary table 30, a turning table 40, an X-axis linear motion stage 50, a Y-axis linear motion stage 60, a Z-axis linear motion stage 70, a spindle 80, Is provided. The bone member support unit 20 is on a rotary table 30, the rotary table 30 is on a rotary table 40, the rotary table 40 is on an X-axis linear stage 50, and the X-axis linear stage 50 is a Y-axis linear stage. The Y-axis linearly moving stage 60 is mounted on the base 11. On the other hand, the spindle 80 includes a front end portion 80a, a body portion 80b, a housing 83 that houses the body portion 80b, and a drive unit (not shown). The spindle 80 is mounted on a Z-axis linear motion stage 70, the Z-axis linear motion stage 70 is mounted on the column 18, and the column 18 is mounted on the base 11. The relative arrangement of the bone member 25 held by the bone member support 20 and the blade 84 fixed to the tip 80a of the spindle 80 is such that the blade 84 can process five surfaces of the bone member 25.

本体部10における、骨部材支持部20と、回転テーブル30と、旋回テーブル40と、X軸直動ステージ50と、Y軸直動ステージ60と、Z軸直動ステージ70と、スピンドル80と、の取付方法は、上に説明した取付方法だけでなく、他の取付方法であっても良い。例えば、骨部材支持部20は回転テーブル30上に、該回転テーブル30は旋回テーブル40上に、該旋回テーブル40はX軸直動ステージ50上に、該X軸直動ステージ50はベース11上に、それぞれ取り付け、スピンドル80はZ軸直動ステージ70上に、該Z軸直動ステージ70はカラム18に、該カラム18はY軸直動ステージ60上に、該Y軸直動ステージ60はベース11上に、それぞれ、取り付けたものであっても良い。 In the main body 10, the bone member support 20, the rotary table 30, the turning table 40, the X-axis translation stage 50, the Y-axis translation stage 60, the Z-axis translation stage 70, the spindle 80, The attachment method is not limited to the attachment method described above, but may be another attachment method. For example, the bone member support 20 is on the rotary table 30, the rotary table 30 is on the turning table 40, the turning table 40 is on the X-axis linear motion stage 50, and the X-axis linear motion stage 50 is on the base 11. The spindle 80 is mounted on the Z-axis translation stage 70, the Z-axis translation stage 70 is on the column 18, the column 18 is on the Y-axis translation stage 60, and the Y-axis translation stage 60 is Each may be mounted on the base 11.

また、本体部10は、回転テーブル30と旋回テーブル40とは備えず、骨部材支持部20と、X軸直動ステージ50と、Y軸直動ステージ60と、Z軸直動ステージ70と、スピンドル80と、を備えたものであっても良い。さらに、本体部10は、回転テーブル30および旋回テーブル40のいずれか一方のテーブルと、骨部材支持部20と、X軸直動ステージ50と、Y軸直動ステージ60と、Z軸直動ステージ70と、スピンドル80と、を備えたものであっても良い。   The main body 10 does not include the rotary table 30 and the turning table 40, and includes the bone member support 20, the X-axis linear motion stage 50, the Y-axis linear motion stage 60, the Z-axis linear motion stage 70, A spindle 80 may be provided. Further, the main body 10 includes one of the rotary table 30 and the turning table 40, the bone member support 20, the X-axis linear motion stage 50, the Y-axis linear motion stage 60, and the Z-axis linear motion stage. 70 and a spindle 80 may be provided.

図2は、骨部材支持部20の概略図であり、(a)は骨部材支持部20の概略上面図、(b)は(a)のA‐A´で切断した骨部材支持部20の概略縦断面図である。骨部材支持部20は、基板21と、3本の真空吸着支持棒22a,22b,22cと、真空継手28と、を備える。基板21には、真空継手28と3本の真空吸着支持棒22a,22b,22cとが取り付けられ、真空継手28と真空吸着支持棒22a,22b,2cとの間には、真空継手28から三分枝する空気通路が設けられている。真空継手28は、屈曲自在な配管29を介して図示しない真空ポンプに接続される。   2A and 2B are schematic views of the bone member support portion 20, wherein FIG. 2A is a schematic top view of the bone member support portion 20, and FIG. 2B is a view of the bone member support portion 20 cut along AA ′ in FIG. It is a schematic longitudinal cross-sectional view. The bone member support unit 20 includes a substrate 21, three vacuum suction support rods 22 a, 22 b, 22 c, and a vacuum joint 28. A vacuum joint 28 and three vacuum suction support rods 22a, 22b, and 22c are attached to the substrate 21, and a space between the vacuum joint 28 and the vacuum suction support rods 22a, 22b, and 2c from the vacuum joint 28 is three. A branching air passage is provided. The vacuum joint 28 is connected to a vacuum pump (not shown) through a flexible pipe 29.

真空吸着支持棒22a,22b,22cのそれぞれの先端部には、柔軟性のある部材により形成された吸口24a,24b,24cが、ボールジョイント23a,23b,23cを介して取り付けられている。真空吸着支持棒22a,22b,22cの軸芯部、ボールジョイント24a、24b、24cの中心部、および、吸口24a,24b,24cの中心部には、それぞれ空気通路が設けられ、真空継手28の三分枝した空気通路に接続されている。したがって、骨部材25を吸口24a,24b,24c上に置き、真空ポンプを起動すると、骨部材25は、吸口24a,24b,24cによって吸着される。このとき、ボールジョイント23a,23b,23cにより、吸口24a,24b,24cは骨部材25の形状に合わせて自在に角度を変えられるため、骨部材25は真空吸着支持棒22a,22b,22c上に確実に固定される。 Suction ports 24a, 24b, and 24c formed of flexible members are attached to the respective tip portions of the vacuum suction support rods 22a, 22b, and 22c via ball joints 23a, 23b, and 23c. An air passage is provided in each of the shaft core portions of the vacuum suction support rods 22a, 22b, and 22c, the central portions of the ball joints 24a, 24b, and 24c, and the central portions of the suction ports 24a, 24b, and 24c. It is connected to a three-branched air passage. Therefore, when the bone member 25 is placed on the suction ports 24a, 24b, and 24c and the vacuum pump is activated, the bone member 25 is adsorbed by the suction ports 24a, 24b, and 24c. At this time, the suction holes 24a, 24b, and 24c can be freely changed in accordance with the shape of the bone member 25 by the ball joints 23a, 23b, and 23c, so that the bone member 25 is placed on the vacuum suction support rods 22a, 22b, and 22c. Securely fixed.

本実施例では、真空吸着支持棒の本数は3本であったが、3本以上の複数本の真空吸着支持棒を用いても良い。また、本実施例では、真空吸着支持棒22a,22b,22cのそれぞれの先端部に吸口24a,24b,24cを備えるものであったが、柔軟性のある部材により形成された吸盤を備えたものであっても良い。なお、吸口24a,24b,24cおよび吸盤は生体適合部材により形成することが好ましい。 In this embodiment, the number of vacuum suction support bars is three, but a plurality of three or more vacuum suction support bars may be used. Further, in this embodiment, the suction ports 24a, 24b, 24c are provided at the tip portions of the vacuum suction support rods 22a, 22b, 22c, but the suction cups formed of flexible members are provided. It may be. The suction ports 24a, 24b, 24c and the suction cup are preferably formed of biocompatible members.

回転テーブル30と旋回テーブル40は、回転案内ガイド(例えば、ベアリング)、減速器(例えば、ウォームギア)、サーボモータなどで構成され、サーボアンプを介して、制御部90(例えば、NC制御装置)からの制御信号により回転駆動される。また、X軸直動ステージ50と、Y軸直動ステージ60と、Z軸直動ステージ70とは、直線案内ガイド(例えば、LMガイド)、サーボモータなどで構成され、サーボアンプを介して、制御部90(例えば、NC制御装置)からの制御信号により直線駆動される。スピンドル80は、カップリングを介して、スピンドルモータ85に連結されている。スピンドルモータ85は、ドライバを介して、制御部90(例えば、NC制御装置)からの制御信号により回転駆動される。したがって、制御部90は、骨部材支持部20に把持される骨部材25とスピンドル80に固定される刃具84との相対的配置は、刃具84が骨部材25の任意部分を5面加工できるものとなっている。   The rotary table 30 and the turning table 40 are composed of a rotation guide (for example, a bearing), a speed reducer (for example, a worm gear), a servo motor, and the like, and from a control unit 90 (for example, an NC control device) via a servo amplifier. It is driven to rotate by the control signal. Further, the X-axis linear motion stage 50, the Y-axis linear motion stage 60, and the Z-axis linear motion stage 70 are composed of a linear guide (for example, LM guide), a servo motor, etc., and via a servo amplifier, Linear driving is performed by a control signal from a control unit 90 (for example, an NC control device). The spindle 80 is connected to a spindle motor 85 via a coupling. The spindle motor 85 is rotationally driven by a control signal from a control unit 90 (for example, an NC control device) via a driver. Therefore, the control unit 90 has a relative arrangement of the bone member 25 gripped by the bone member support unit 20 and the blade tool 84 fixed to the spindle 80 so that the blade tool 84 can process an arbitrary portion of the bone member 25 in five planes. It has become.

スピンドル80の先端部80aは、刃具84を把持するツールホルダー81が脱着可能にして固定できる構造になっている。また、スピンドル80の先端部80aは、下記に述べる接触探針110や、空気マイクロメータ120の空気ノズル部121や、光学式距離測定器130の光学測定部131を、それぞれのホルダーを介して脱着可能にして固定できる構造になっている。   The tip 80a of the spindle 80 has a structure in which a tool holder 81 that holds the cutting tool 84 can be attached and detached. Further, the tip 80a of the spindle 80 is attached to and detached from the contact probe 110, the air nozzle part 121 of the air micrometer 120, and the optical measuring part 131 of the optical distance measuring device 130 described below through respective holders. It has a structure that can be fixed.

次に、本発明に係る骨部材用NC加工装置の動作モードについて、以下に説明する。動作モードには、<形状測定モード>と<整形加工モード>とがある。   Next, the operation mode of the NC processing apparatus for bone members according to the present invention will be described below. The operation modes include <shape measurement mode> and <shaping mode>.

<整形加工モード>
この動作モードは、制御部90に予め記憶したプログラムに従って被加工物を加工するものであって、通常のNC加工装置における動作と同じあるので説明は省略する。
<形状測定モード>
この動作モードでは、三次元形状寸法測定手段100に、接触探針110、空気マイクロメータ120、光学式距離測定器130、光学模様投影手段140と電子カメラ141とによる方法、あるいは、2つの方向から撮影する電子カメラ151,152と画像処理装置153とによる方法、のいずれのものを用いるかによって、実施形態が異なる。
<Shaping mode>
This operation mode is for processing a workpiece in accordance with a program stored in advance in the control unit 90, and is the same as the operation in a normal NC machining apparatus, and therefore will not be described.
<Shape measurement mode>
In this operation mode, the three-dimensional shape dimension measuring means 100 includes the contact probe 110, the air micrometer 120, the optical distance measuring device 130, the optical pattern projecting means 140 and the electronic camera 141, or two directions. The embodiment differs depending on which of the electronic camera 151, 152 for photographing and the method using the image processing device 153 is used.

[第1の実施形態]
この実施形態では、接触探針110を三次元形状寸法測定手段100に用いる。接触探針110は、該探針部が被測定物に接触すると電気的な接触信号を発生するものである。
[First Embodiment]
In this embodiment, the contact probe 110 is used for the three-dimensional shape dimension measuring means 100. The contact probe 110 generates an electrical contact signal when the probe unit comes into contact with an object to be measured.

図3は、接触探針110の一例を示す概略図である。接触探針110は、小さな球111と、円柱形ロッド112と、バネ113と、スタイラス114と、スタイラスホルダ115と、を備える。円柱形ロッド112の先端には小さな球111が、一方、円柱形ロッド112の他端部にはスタイラス114が固定されており、スタイラス114はバネ113により3点支持機構でスタイラスホルダ114の位置を定位置に保持されている。小さな球112が被測定物に接触すると、スタイラス114がスタイラスホルダ115を押す圧力が変化し、スタイラス114とスタイラスホルダ115との電気抵抗も変化する。接触探針110は、この電気抵抗の変化を検知して電気的な接触信号を出力する。 FIG. 3 is a schematic diagram illustrating an example of the contact probe 110. The contact probe 110 includes a small sphere 111, a cylindrical rod 112, a spring 113, a stylus 114, and a stylus holder 115. A small sphere 111 is fixed to the tip of the cylindrical rod 112, and a stylus 114 is fixed to the other end of the cylindrical rod 112. The stylus 114 is moved by a spring 113 to position the stylus holder 114 by a three-point support mechanism. It is held in place. When the small sphere 112 contacts the object to be measured, the pressure with which the stylus 114 pushes the stylus holder 115 changes, and the electrical resistance between the stylus 114 and the stylus holder 115 also changes. The contact probe 110 detects this change in electrical resistance and outputs an electrical contact signal.

接触探針110の探針部である小さな球111は、耐摩耗性の高い材質(例えば、サファイア)のものが好ましい。さらに、小さな球111の材質は、生体適合材料であることが好ましい。 The small sphere 111 that is the probe portion of the contact probe 110 is preferably made of a highly wear-resistant material (for example, sapphire). Furthermore, the material of the small sphere 111 is preferably a biocompatible material.

本実施形態における被測定物の三次元形状寸法測定では、骨部材用NC加工装置の本体部10のスピンドル80の先端部80aに接触探針ホルダーを介して接触探針110を把持させるとともに、被測定物である骨部材25を骨部材支持部20に固定する。制御部90は、予め記憶したプログラムに従って、被測定物に接触探針110の探針部である小さな球111を接触させ、その接触位置を制御部90の記憶部に記憶する。この動作を多数繰り返して他の接触位置を制御部90の記憶部に記憶する。その後、制御部90は、該記憶部に記憶された多数の接触位置から、被測定物の三次元形状寸法を算出する。さらに具体的には、例えば、XY平面上に碁盤目状の格子点を設定し、ある格子点のXY位置に接触探針110の探針部を移動させた後に、接触探針110をZ軸に沿って下降させ接触位置を検出して記憶する動作を、各格子点において繰り返すことによって三次元形状寸法の算出に必要な三次元接触位置が測定できる。 In the three-dimensional shape measurement of the object to be measured in the present embodiment, the tip 80a of the spindle 80 of the main body 10 of the bone member NC processing apparatus is held by the contact probe 110 via the contact probe holder, and the object to be measured is measured. The bone member 25 as a measurement object is fixed to the bone member support portion 20. The control unit 90 contacts the object to be measured with a small sphere 111 that is the probe unit of the contact probe 110 according to a program stored in advance, and stores the contact position in the storage unit of the control unit 90. This operation is repeated many times to store other contact positions in the storage unit of the control unit 90. Thereafter, the control unit 90 calculates the three-dimensional shape dimension of the object to be measured from the multiple contact positions stored in the storage unit. More specifically, for example, a grid-like grid point is set on the XY plane, the probe part of the contact probe 110 is moved to the XY position of a certain grid point, and then the contact probe 110 is moved to the Z axis. The three-dimensional contact position necessary for calculation of the three-dimensional shape dimension can be measured by repeating the operation of detecting and storing the contact position along the grid points at each lattice point.

[第2の実施形態]
この実施形態では、空気マイクロメータ120を三次元形状寸法測定手段100に用いる。空気マイクロメータ120は、該空気マイクロメータ120のノズル部121を通過する空気流量を測定し、該空気流量からノズル部121と被測定物との隙間寸法を測定するものである。
[Second Embodiment]
In this embodiment, the air micrometer 120 is used for the three-dimensional shape dimension measuring means 100. The air micrometer 120 measures the flow rate of air passing through the nozzle part 121 of the air micrometer 120, and measures the gap dimension between the nozzle part 121 and the object to be measured from the air flow rate.

図4は、空気マイクロメータ120の一例を示す概略構造図である。空気マイクロメータ120は、空気ノズル部121と、オリフィス122と、第1圧力計124と、第2圧力計126と、空気源127と、流量計算手段128と、隙間寸法計算手段129と、を備える。空気ノズル121と空気源127とは屈曲自在の配管で接続され、該配管の途中にオリフィス122が挿入される。該オリフィス122の空気ノズル121側に設けられた第1空気圧室123には第1圧力計124を、該オリフィス122の空気源側に設けられた第2空気圧室125は第2圧力計126を備え、それぞれオリフィス122の空気ノズル側及びオリフィス122の空気源側の空気圧を測定し、それぞれ第1圧力信号及び第2圧力信号として出力する。流量計算手段128は、第1圧力信号及び第2圧力信号から、空気ノズル121を通過する空気流量を計算し、流量信号として出力する。隙間寸法計算手段は、流量信号及び第2圧力信号から、空気ノズル121と被測定物との隙間寸法を計算し、制御部90に対して寸法信号として出力する。 FIG. 4 is a schematic structural diagram showing an example of the air micrometer 120. The air micrometer 120 includes an air nozzle part 121, an orifice 122, a first pressure gauge 124, a second pressure gauge 126, an air source 127, a flow rate calculation means 128, and a gap size calculation means 129. . The air nozzle 121 and the air source 127 are connected by a flexible pipe, and an orifice 122 is inserted in the middle of the pipe. The first air pressure chamber 123 provided on the air nozzle 121 side of the orifice 122 is provided with a first pressure gauge 124, and the second air pressure chamber 125 provided on the air source side of the orifice 122 is provided with a second pressure gauge 126. The air pressures on the air nozzle side of the orifice 122 and the air source side of the orifice 122 are measured and output as the first pressure signal and the second pressure signal, respectively. The flow rate calculation means 128 calculates the air flow rate passing through the air nozzle 121 from the first pressure signal and the second pressure signal, and outputs it as a flow rate signal. The gap dimension calculating means calculates the gap dimension between the air nozzle 121 and the object to be measured from the flow rate signal and the second pressure signal, and outputs the gap dimension to the control unit 90 as a dimension signal.

流量計算手段128や隙間寸法計算手段129の機能は、アナログデジタル変換器、ROM、RAM、MPU、デジタルアナログ変換器などの個別ICで構成したもの、あるいは、これらの個別ICを集積したワンチップマイコンで容易に構成でき、また制御部90に組み込んでもよい。ノズルと平面との隙間から流れる空気流量を測定すれば、ノズルと平面との隙間寸法が計算できることは、日本工業規格(流量式空気マイクロメータJISB7535)に記載されているので、ここでの説明は省略する。 The functions of the flow rate calculation means 128 and the gap size calculation means 129 are composed of individual ICs such as analog-digital converters, ROM, RAM, MPU, digital-analog converters, or one-chip microcomputers integrating these individual ICs. Can be easily configured, and may be incorporated in the control unit 90. It is described in Japanese Industrial Standards (flow rate air micrometer JISB7535) that if the flow rate of air flowing through the gap between the nozzle and the plane can be measured, the gap dimension between the nozzle and the plane can be calculated. Omitted.

本実施形態における被測定物の三次元形状寸法測定では、まずスピンドル80の先端部80aに、図示しない空気ノズルホルダを介して空気ノズル部121を接続し、被測定物である骨部材25を骨部材支持部20に固定する。次に、外部入力または制御部90によって空気源127を起動させると共に、制御部90は予め記憶したプログラムに従って、所定の位置へ空気ノズルを移動させ、該位置で空気ノズル部121を骨部材25へと近づけていく。流量計算手段128は、空気ノズル部121と被測定物との間の空気流量を計算し、隙間寸法計算手段129へ流量信号を出力する。該流量信号から、隙間寸法計算手段129は隙間寸法を計算して、制御部90の記憶部へと記憶させる。かかる一連動作を多数繰り返し、多数の隙間寸法を制御部90に記憶する。最後に、制御部90は、該記憶部に記憶された多数の隙間寸法から、被測定物の三次元形状寸法を算出する。 In the three-dimensional shape measurement of the object to be measured in this embodiment, first, the air nozzle part 121 is connected to the tip 80a of the spindle 80 via an air nozzle holder (not shown), and the bone member 25 as the object to be measured is boned. It fixes to the member support part 20. FIG. Next, the air source 127 is started by an external input or the control unit 90, and the control unit 90 moves the air nozzle to a predetermined position according to a program stored in advance, and the air nozzle unit 121 is moved to the bone member 25 at the position. And get closer. The flow rate calculation unit 128 calculates the air flow rate between the air nozzle unit 121 and the object to be measured, and outputs a flow rate signal to the gap size calculation unit 129. From the flow rate signal, the gap size calculation means 129 calculates the gap size and stores it in the storage unit of the control unit 90. Such a series of operations is repeated many times, and a large number of gap dimensions are stored in the control unit 90. Finally, the control unit 90 calculates the three-dimensional shape dimension of the object to be measured from the numerous gap dimensions stored in the storage unit.

[第3の実施形態]
この実施形態では、光学式距離測定器130を三次元形状寸法測定手段100に用いる。光学式距離測定器130は、光学式距離測定器130が光を照射した位置と被測定物からの反射光を受光した位置とのずれから、光学式距離測定器130と被測定物との距離を計算するものである。
[Third Embodiment]
In this embodiment, the optical distance measuring device 130 is used for the three-dimensional shape dimension measuring means 100. The optical distance measuring device 130 determines the distance between the optical distance measuring device 130 and the object to be measured from the difference between the position where the optical distance measuring device 130 irradiates light and the position where the reflected light from the object to be measured is received. Is calculated.

図5は、光学式距離測定器130の一例を示す概略図である。光学式距離測定器130は、光学測定部131と、距離計算手段134と、を備え、光学測定部131は、光源132と、受光部133と、を備える。 FIG. 5 is a schematic diagram illustrating an example of the optical distance measuring device 130. The optical distance measuring device 130 includes an optical measuring unit 131 and a distance calculating unit 134, and the optical measuring unit 131 includes a light source 132 and a light receiving unit 133.

受光部133は、反射光を受光した位置に応じた受光位置信号を出力できるように構成され、例えば複数のフォトダイオードで構成することができる。距離計算手段134は、受光部133から出力される受光位置信号を受け取って被測定物と光学測定部131との距離を計算し、制御部90に対して距離信号として出力する。距離計算手段134の機能は、アナログデジタル変換器、ROM、RAM、MPU、デジタルアナログ変換器などの個別ICで構成したもの、あるいは、これらの個別ICを集積したワンチップマイコンで容易に構成でき、また制御部90に組み込んでもよい。 The light receiving unit 133 is configured to output a light receiving position signal corresponding to the position where the reflected light is received, and may be configured by, for example, a plurality of photodiodes. The distance calculating unit 134 receives the light receiving position signal output from the light receiving unit 133, calculates the distance between the object to be measured and the optical measuring unit 131, and outputs the distance to the control unit 90 as a distance signal. The function of the distance calculation means 134 can be easily configured by an individual digital IC such as an analog-digital converter, ROM, RAM, MPU, or digital-analog converter, or a one-chip microcomputer in which these individual ICs are integrated. Moreover, you may incorporate in the control part 90. FIG.

本実施形態における被測定物の三次元形状寸法測定では、スピンドル80の先端部80aに光学式距離測定器ホルダーを介して光学測定部131を把持させるとともに、被測定物である骨部材25を骨部材支持部20に固定する。次に、光学測定部131の光源132から光を照射すると共に、制御部90は光学測定部131を走査させる。走査の際、制御部90は、距離計算手段134から受け取る距離信号が一定となるように、すなわち受光部133における反射光受光位置が一定となるように制御し、走査した座標を、制御部90の記憶部へと記憶する。その後、制御部90は、該記憶部に記憶された走査座標から、被測定物の三次元形状寸法を算出する。なお、[実施形態1]や[実施形態2]と同様に、予め記憶したプログラムに従って所定の位置へと移動させ、各位置での被測定物と光源との距離を記憶し、これを多数の位置について行って、記憶された距離から三次元形状寸法を算出してもよい。 In the three-dimensional shape measurement of the object to be measured in the present embodiment, the optical measuring unit 131 is gripped by the tip 80a of the spindle 80 via the optical distance measuring device holder, and the bone member 25 as the object to be measured is boned. It fixes to the member support part 20. FIG. Next, light is emitted from the light source 132 of the optical measurement unit 131 and the control unit 90 scans the optical measurement unit 131. At the time of scanning, the control unit 90 controls the distance signal received from the distance calculation unit 134 to be constant, that is, controls the reflected light receiving position at the light receiving unit 133 to be constant, and the scanned coordinates are controlled by the control unit 90. Is stored in the storage unit. Thereafter, the control unit 90 calculates the three-dimensional shape dimension of the object to be measured from the scanning coordinates stored in the storage unit. As in [Embodiment 1] and [Embodiment 2], the distance between the object to be measured and the light source at each position is stored according to a program stored in advance, and this is stored in a number of ways. You may perform about a position and may calculate a three-dimensional shape dimension from the memorize | stored distance.

[第4の実施形態]
この実施形態では、光学模様投影手段140と、電子カメラ141と、投影面形状寸法計算手段142と、を三次元形状寸法測定手段100に用いる。
[Fourth Embodiment]
In this embodiment, the optical pattern projection unit 140, the electronic camera 141, and the projection plane shape dimension calculation unit 142 are used for the three-dimensional shape dimension measurement unit 100.

図6は、光学模様投影手段140の直線状の光学模様と、電子カメラ141の概略配置図である。光学模様投影手段140と電子カメラ141とは、その位置関係と向きが固定され、スピンドル80のハウジング83に取り付けられる。光学模様投影手段140は、被測定物上に一次元、または二次元の光学模様を投影するものであり、直線状の光学模様を投影するレーザー光源を用いることが好ましい。電子カメラ141は、被測定物に投影された光学模様を撮像し、画像信号を出力する。投影面形状寸法計算手段142は、電子カメラ141から出力される画像信号から骨部材25の光学模様投影面の形状寸法を計算するものであり、この機能は、アナログデジタル変換器、ROM、RAM、MPU、デジタルアナログ変換器などの個別ICで構成したもの、あるいは、これらの個別ICを集積したワンチップマイコンで容易に構成でき、また制御部90に容易に組み込んでもよい。 FIG. 6 is a schematic layout diagram of the linear optical pattern of the optical pattern projection unit 140 and the electronic camera 141. The positional relationship and orientation of the optical pattern projecting means 140 and the electronic camera 141 are fixed and attached to the housing 83 of the spindle 80. The optical pattern projecting unit 140 projects a one-dimensional or two-dimensional optical pattern on the object to be measured, and it is preferable to use a laser light source that projects a linear optical pattern. The electronic camera 141 captures an optical pattern projected on the object to be measured and outputs an image signal. The projection surface shape size calculation means 142 calculates the shape size of the optical pattern projection surface of the bone member 25 from the image signal output from the electronic camera 141, and this function is an analog-digital converter, ROM, RAM, It can be easily configured with an individual IC such as an MPU or a digital analog converter, or a one-chip microcomputer in which these individual ICs are integrated, and may be easily incorporated into the control unit 90.

図6のように、光学模様投影手段140から照射された直線光は、投影部の表面形状に沿って歪み、直線状の光学模様を描く。電子カメラ141は、該直線状の光学模様の歪みを撮像し、画像信号として出力する。投影面形状寸法計算手段142は、受け取った該画像信号から投影部の表面形状を計算し、形状信号として制御部90へと出力し、制御部90の記憶部へと記憶させる。かかる一連の動作を、光学模様投影手段140及び電子カメラ141が取り付けられたハウジング83を一次元に走査させながら逐次行うことで、制御部90の記憶部に記憶されたレーザーの通過した部分の被測定物の表面形状に関する情報から、被測定物の三次元形状寸法を算出する。 As shown in FIG. 6, the linear light emitted from the optical pattern projection unit 140 is distorted along the surface shape of the projection unit to draw a linear optical pattern. The electronic camera 141 captures the distortion of the linear optical pattern and outputs it as an image signal. The projection plane shape size calculation unit 142 calculates the surface shape of the projection unit from the received image signal, outputs it to the control unit 90 as a shape signal, and stores it in the storage unit of the control unit 90. Such a series of operations is sequentially performed while one-dimensionally scanning the housing 83 to which the optical pattern projecting means 140 and the electronic camera 141 are attached, so that the laser beam stored in the storage unit of the control unit 90 is covered. From the information on the surface shape of the measurement object, the three-dimensional shape dimension of the measurement object is calculated.

[第5の実施形態]
この実施形態では、電子カメラ151、152と、画像処理装置153と、を三次元形状寸法測定手段100として用いる。
[Fifth Embodiment]
In this embodiment, the electronic cameras 151 and 152 and the image processing device 153 are used as the three-dimensional shape dimension measuring unit 100.

図7は、2つの電子カメラ151、152の概略配置図である。電子カメラ151,152は、互いの位置関係が固定され、スピンドル80のハウジング83に配置される。電子カメラは3つ以上備えてもよい。図示しない画像処理装置153は、電子カメラ151,152から出力される画像信号から、ステレオ視の原理に基づいて被測定物の撮像面の形状寸法を計算するものである。画像処理装置153の機能は、市販のデジタル画像処理装置を用いて組み込むこともできるし、制御部90に容易に組み込むことができる。 FIG. 7 is a schematic layout diagram of the two electronic cameras 151 and 152. The electronic cameras 151 and 152 are arranged in the housing 83 of the spindle 80 with the mutual positional relationship fixed. Three or more electronic cameras may be provided. An image processing device 153 (not shown) calculates the shape dimension of the imaging surface of the object to be measured from the image signals output from the electronic cameras 151 and 152 based on the principle of stereo vision. The function of the image processing apparatus 153 can be incorporated using a commercially available digital image processing apparatus, or can be easily incorporated into the control unit 90.

本実施形態では、電子カメラ151,152が撮像し、出力した画像信号を、画像処理装置153がステレオ視の原理に基づいて処理することで撮像面の形状寸法を計算し、記憶するという一連の動作を複数の撮像面について実行し、複数の撮像面の形状寸法から被測定物の三次元形状寸法を算出する。 In the present embodiment, a series of processes in which the image processing device 153 calculates and stores the shape dimension of the imaging surface by processing the image signals captured and output by the electronic cameras 151 and 152 based on the principle of stereo vision. The operation is executed for a plurality of imaging surfaces, and the three-dimensional shape dimension of the object to be measured is calculated from the shape dimensions of the plurality of imaging surfaces.

10 本体部
20 骨部材支持部
22a,22b,22c 真空吸着支持棒
23a,23b,23c ボールジョイント
24a.24b,24c 吸口
25 骨部材
30 回転テーブル
40 旋回テーブル
50 X軸直動ステージ
60 Y軸直動ステージ
70 Z軸直動ステージ
80 スピンドル
100 三次元形状寸法測定手段
110 接触探針
111 小さな球
112 円柱形ロッド
113 バネ
114 スタイラス
115 スタイラスホルダ
120 空気マイクロメータ
121 空気ノズル部
122 オリフィス
123 第1空気圧室
124 第1圧力計
125 第2空気圧室
126 第2圧力計
130 光学式距離測定器
132 光源
133 受光部
140 光学模様投影手段
141,151,152 電子カメラ
















10 Main body 20 Bone member support portions 22a, 22b, 22c Vacuum suction support rods 23a, 23b, 23c Ball joint 24a. 24b, 24c Suction port 25 Bone member 30 Rotary table 40 Turning table 50 X-axis linear motion stage 60 Y-axis linear motion stage 70 Z-axis linear motion stage 80 Spindle 100 Three-dimensional shape dimension measuring means 110 Contact probe 111 Small ball 112 Cylindrical shape Rod 113 Spring 114 Stylus 115 Stylus holder 120 Air micrometer 121 Air nozzle portion 122 Orifice 123 First air pressure chamber 124 First pressure gauge 125 Second air pressure chamber 126 Second pressure gauge 130 Optical distance measuring device 132 Light source 133 Light receiving portion 140 Optical pattern projection means 141, 151, 152 Electronic camera
















Claims (11)

骨部材のNC加工装置であって、
該骨部材を把持する把持手段と、
該骨部材の三次元形状寸法を測定する三次元形状寸法測定手段と、
を備えたことを特徴とする骨部材用NC加工装置
NC processing device for bone members,
Gripping means for gripping the bone member;
Three-dimensional shape measurement means for measuring the three-dimensional shape of the bone member;
NC processing apparatus for bone members characterized by comprising
請求項1において、前記把持手段は、
複数本の真空吸着支持棒であること
を特徴とする骨部材用NC加工装置
The gripping means according to claim 1,
NC processing device for bone members, characterized by being a plurality of vacuum suction support rods
請求項2において、前記真空吸着支持棒は、
該先端部が、前記骨部材に密着するように、角度自在にして、柔軟性のある生体適合部材により覆われている
ことを特徴とする、骨部材用NC加工装置
The vacuum suction support rod according to claim 2,
An NC processing apparatus for bone members, wherein the distal end portion is covered with a flexible biocompatible member so as to be freely adjustable so as to be in close contact with the bone member
請求項3において、前記真空吸着支持棒は、該先端部に柔軟性のある生体適合部材により形成されている吸盤
を備えることを特徴とする骨部材用NC加工装置
4. The NC processing apparatus for bone members according to claim 3, wherein the vacuum suction support rod includes a suction cup formed of a flexible biocompatible member at a tip portion thereof.
請求項1〜4までのいずれかの1項において、前記三次元形状寸法測定手段は、
前記骨部材に接触したことを検知する接触探針
を備えることを特徴とする骨部材用NC加工装置
In any one of Claims 1-4, the said three-dimensional shape dimension measuring means is
An NC processing apparatus for a bone member comprising a contact probe for detecting contact with the bone member
請求項5において、前記接触探針は、
前記骨部材に接する接触部分が生体適合性部材により形成されていること
を特徴とする骨部材用NC加工装置
6. The contact probe according to claim 5, wherein the contact probe is
NC processing apparatus for bone member, wherein the contact portion in contact with the bone member is formed of a biocompatible member
前記請求項1〜4までのいずれかの1項において、前記三次元形状寸法測定手段は、
前記骨部材との隙間を測定する空気マイクロメータ
を備えたことを特徴とする骨部材用NC加工装置
The said three-dimensional shape dimension measurement means in any one of the said Claims 1-4 WHEREIN:
NC processing apparatus for bone members, comprising an air micrometer for measuring a gap between the bone members
前記請求項1〜4までのいずれかの1項において、前記三次元形状寸法測定手段は、
前記骨部材との距離を測定する光学式距離測定器
を備えることを特徴とする骨部材用NC加工装置
The said three-dimensional shape dimension measurement means in any one of the said Claims 1-4 WHEREIN:
An NC processing apparatus for a bone member comprising an optical distance measuring device for measuring a distance from the bone member
前記請求項1〜4までのいずれかの1項において、前記三次元形状寸法測定手段は、
前記骨部材上に光学模様を投影する光学模様投影手段と、
前記骨部材上に投影された光学模様を撮像する電子カメラと、
該電子カメラから出力される画像信号から前記骨部材の三次元形状寸法を計算する
画像処理装置と、
を備えたことを特徴とする骨部材用NC加工装置
The said three-dimensional shape dimension measurement means in any one of the said Claims 1-4 WHEREIN:
Optical pattern projection means for projecting an optical pattern on the bone member;
An electronic camera for imaging an optical pattern projected on the bone member;
An image processing device for calculating a three-dimensional shape dimension of the bone member from an image signal output from the electronic camera;
NC processing apparatus for bone members characterized by comprising
請求項9において、前記光学模様投影手段は、該光源がレーザーであり、かつ、前記光学模様が直線であること
を特徴とする骨部材用NC加工装置
10. The NC processing apparatus for a bone member according to claim 9, wherein the optical pattern projection means has a laser as the light source and the optical pattern is a straight line.
前記請求項1〜4までのいずれかの1項において、
前記三次元形状寸法測定手段は、
前記骨部材を少なくとも2つの方向から撮影する電子カメラと、
該電子カメラから出力される画像信号から前記骨部材の三次元形状寸法を計算する
画像処理装置と、
を備えたことを特徴とする骨部材用NC加工装置


















In any one of the said Claims 1-4,
The three-dimensional shape dimension measuring means includes
An electronic camera for photographing the bone member from at least two directions;
An image processing device for calculating a three-dimensional shape dimension of the bone member from an image signal output from the electronic camera;
NC processing apparatus for bone members characterized by comprising


















JP2016056904A 2016-03-22 2016-03-22 NC processing equipment for bone members Active JP7029222B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016056904A JP7029222B2 (en) 2016-03-22 2016-03-22 NC processing equipment for bone members

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016056904A JP7029222B2 (en) 2016-03-22 2016-03-22 NC processing equipment for bone members

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2021000081A Division JP2021073100A (en) 2021-01-04 2021-01-04 Nc machining device for frame member

Publications (2)

Publication Number Publication Date
JP2017173032A true JP2017173032A (en) 2017-09-28
JP7029222B2 JP7029222B2 (en) 2022-03-03

Family

ID=59972951

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016056904A Active JP7029222B2 (en) 2016-03-22 2016-03-22 NC processing equipment for bone members

Country Status (1)

Country Link
JP (1) JP7029222B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110196571A (en) * 2018-02-26 2019-09-03 波音公司 Laser scanner scanning is carried out for mobile using Computerized digital control system
JP2019166614A (en) * 2018-03-26 2019-10-03 ファナック株式会社 Working system
WO2020012757A1 (en) * 2018-07-13 2020-01-16 Dmg森精機株式会社 Measurement device

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63263405A (en) * 1987-04-22 1988-10-31 Komatsu Ltd Hole shape measuring method by air micrometer
JPH02147810A (en) * 1988-11-29 1990-06-06 Nissan Motor Co Ltd Three-dimensional measuring instrument
JPH06185947A (en) * 1991-04-11 1994-07-08 Romatec Kk Instrument for measuring shape of platy object having indefinite shape
JPH0861949A (en) * 1994-08-24 1996-03-08 Speedfam Co Ltd Surface contour measuring device for surface plate and polishing pad
JPH1058281A (en) * 1996-08-09 1998-03-03 Advance Co Ltd Measuring or machining system
JP2010539458A (en) * 2007-09-14 2010-12-16 ライカ ジオシステムズ アクチエンゲゼルシャフト Surface measuring method and measuring apparatus
JP2015087179A (en) * 2013-10-29 2015-05-07 株式会社日進製作所 Air micrometer
JP2017169463A (en) * 2016-03-22 2017-09-28 株式会社日進製作所 Cell mass adsorption-placing apparatus and cell mass transfer apparatus

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6185947B2 (en) 2014-03-31 2017-08-23 ミネベアミツミ株式会社 Ultraviolet curable resin composition, sliding member, and manufacturing method of sliding member

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63263405A (en) * 1987-04-22 1988-10-31 Komatsu Ltd Hole shape measuring method by air micrometer
JPH02147810A (en) * 1988-11-29 1990-06-06 Nissan Motor Co Ltd Three-dimensional measuring instrument
JPH06185947A (en) * 1991-04-11 1994-07-08 Romatec Kk Instrument for measuring shape of platy object having indefinite shape
JPH0861949A (en) * 1994-08-24 1996-03-08 Speedfam Co Ltd Surface contour measuring device for surface plate and polishing pad
JPH1058281A (en) * 1996-08-09 1998-03-03 Advance Co Ltd Measuring or machining system
JP2010539458A (en) * 2007-09-14 2010-12-16 ライカ ジオシステムズ アクチエンゲゼルシャフト Surface measuring method and measuring apparatus
JP2015087179A (en) * 2013-10-29 2015-05-07 株式会社日進製作所 Air micrometer
JP2017169463A (en) * 2016-03-22 2017-09-28 株式会社日進製作所 Cell mass adsorption-placing apparatus and cell mass transfer apparatus

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110196571A (en) * 2018-02-26 2019-09-03 波音公司 Laser scanner scanning is carried out for mobile using Computerized digital control system
JP2019177475A (en) * 2018-02-26 2019-10-17 ザ・ボーイング・カンパニーThe Boeing Company Laser scanner scanning using computer numerical controlled (cnc) system for movement
CN110196571B (en) * 2018-02-26 2024-04-16 波音公司 Method and system for scanning parts to reduce gaps between parts
JP2019166614A (en) * 2018-03-26 2019-10-03 ファナック株式会社 Working system
CN110355579A (en) * 2018-03-26 2019-10-22 发那科株式会社 Work system
US10775767B2 (en) 2018-03-26 2020-09-15 Fanuc Corporation Machining system
WO2020012757A1 (en) * 2018-07-13 2020-01-16 Dmg森精機株式会社 Measurement device
US11393104B2 (en) 2018-07-13 2022-07-19 Dmg Mori Co., Ltd. Distance measuring device

Also Published As

Publication number Publication date
JP7029222B2 (en) 2022-03-03

Similar Documents

Publication Publication Date Title
ES2769304T3 (en) Error correction device for CNC machines
JP5595798B2 (en) Workpiece measuring method and apparatus for machine tool
JP2017173032A (en) Nc machining apparatus for bone member
WO2012057280A1 (en) Method for measuring tool dimension, measurement device, and machine tool
US20150241203A1 (en) Coordinate measuring machine
JP6663807B2 (en) Image measuring device
JP7064884B2 (en) Calibration method of parts assembly device
JP2010264563A (en) Method and system for machining
JP2011502807A (en) Robot-equipped device, medical workstation, and method for positioning an object
US20090284755A1 (en) Device for Flexible Detection of the Geometric Shape of Objects by Means of Optical 3D Measuring Technology
US20110280674A1 (en) Machining device for producing a drilling jig for dental implants
CN111707189A (en) Laser displacement sensor light beam direction calibration method based on binocular vision
WO2009106830A1 (en) Modular scanning and machining apparatus
JP2012112790A (en) X-ray ct apparatus
KR101763199B1 (en) Observation equipment for fine object
JP2010216939A (en) Three-dimensional shape measuring apparatus
JP4203860B2 (en) Micro milling system and control method thereof
JP2009220247A (en) Robot apparatus and control method of robot apparatus
JP2011513078A (en) Intermittent indexing device
JP2006297559A (en) Calibration system and robot&#39;s calibration method
WO2017100296A1 (en) Moving sensor coordinate inspection system
JP2017142617A (en) Cutting machine and method for determining necessity of position correction
TW201601845A (en) Substrate processing apparatus, jig and teaching method
JP2021073100A (en) Nc machining device for frame member
JP2016055397A (en) Positioning control device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190320

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20200122

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200203

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200312

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200608

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200805

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20201002

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20201130

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210104

C60 Trial request (containing other claim documents, opposition documents)

Free format text: JAPANESE INTERMEDIATE CODE: C60

Effective date: 20210104

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20210119

C21 Notice of transfer of a case for reconsideration by examiners before appeal proceedings

Free format text: JAPANESE INTERMEDIATE CODE: C21

Effective date: 20210126

A912 Re-examination (zenchi) completed and case transferred to appeal board

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20210305

C211 Notice of termination of reconsideration by examiners before appeal proceedings

Free format text: JAPANESE INTERMEDIATE CODE: C211

Effective date: 20210309

C22 Notice of designation (change) of administrative judge

Free format text: JAPANESE INTERMEDIATE CODE: C22

Effective date: 20210615

C22 Notice of designation (change) of administrative judge

Free format text: JAPANESE INTERMEDIATE CODE: C22

Effective date: 20210907

C13 Notice of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: C13

Effective date: 20210921

C19 Decision taken to dismiss amendment

Free format text: JAPANESE INTERMEDIATE CODE: C19

Effective date: 20211005

C30A Notification sent

Free format text: JAPANESE INTERMEDIATE CODE: C3012

Effective date: 20211005

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20211122

C23 Notice of termination of proceedings

Free format text: JAPANESE INTERMEDIATE CODE: C23

Effective date: 20211214

C03 Trial/appeal decision taken

Free format text: JAPANESE INTERMEDIATE CODE: C03

Effective date: 20220125

C30A Notification sent

Free format text: JAPANESE INTERMEDIATE CODE: C3012

Effective date: 20220125

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220218

R150 Certificate of patent or registration of utility model

Ref document number: 7029222

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150