JP7010553B2 - Zinc negative electrode secondary battery - Google Patents

Zinc negative electrode secondary battery Download PDF

Info

Publication number
JP7010553B2
JP7010553B2 JP2017045886A JP2017045886A JP7010553B2 JP 7010553 B2 JP7010553 B2 JP 7010553B2 JP 2017045886 A JP2017045886 A JP 2017045886A JP 2017045886 A JP2017045886 A JP 2017045886A JP 7010553 B2 JP7010553 B2 JP 7010553B2
Authority
JP
Japan
Prior art keywords
zinc
electrode
nickel
negative electrode
secondary battery
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2017045886A
Other languages
Japanese (ja)
Other versions
JP2018152175A (en
Inventor
有広 櫛部
且英 愛知
亮二 大坪
悠 宇田川
美枝 阿部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Showa Denko Materials Co Ltd
Original Assignee
Hitachi Chemical Co Ltd
Showa Denko Materials Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Chemical Co Ltd, Showa Denko Materials Co Ltd filed Critical Hitachi Chemical Co Ltd
Priority to JP2017045886A priority Critical patent/JP7010553B2/en
Publication of JP2018152175A publication Critical patent/JP2018152175A/en
Application granted granted Critical
Publication of JP7010553B2 publication Critical patent/JP7010553B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Description

本発明は、亜鉛負極二次電池に関する。 The present invention relates to a zinc negative electrode secondary battery.

ニッケル亜鉛二次電池では電極周縁部の反応性が高くなる傾向がある。そのため、電池反応によって負極の周縁部の亜鉛が溶出し易く、これに起因する周縁部におけるシェイプチェンジ又はデンドライト発生が、電池の長寿命化における問題となっている。電極周縁部の反応性を下げる方法として、亜鉛極の周縁部とニッケル極の周縁部とが対向しないように構成する方法が提案されている(例えば、特許文献1)。 Nickel-zinc secondary batteries tend to have higher reactivity at the periphery of the electrodes. Therefore, zinc in the peripheral portion of the negative electrode is likely to be eluted by the battery reaction, and the occurrence of shape change or dendrite in the peripheral portion due to this is a problem in extending the life of the battery. As a method of reducing the reactivity of the peripheral portion of the electrode, a method of configuring the peripheral portion of the zinc electrode and the peripheral portion of the nickel electrode so as not to face each other has been proposed (for example, Patent Document 1).

特開昭60-37678号公報Japanese Unexamined Patent Publication No. 60-37678

しかしながら、特許文献1のように、周縁部の全てが対向しないような構成では、極板間の対向面積が減少し、必要となるエネルギー密度を確保できない虞がある。 However, in a configuration such as Patent Document 1 in which all the peripheral edges do not face each other, the facing area between the plates is reduced, and there is a possibility that the required energy density cannot be secured.

そこで本発明は、電極構造を改良することによって、十分な長期サイクル寿命及びエネルギー密度を両立することのできる亜鉛負極二次電池を提供することを目的とする。 Therefore, an object of the present invention is to provide a zinc negative electrode secondary battery capable of achieving both a sufficient long-term cycle life and energy density by improving the electrode structure.

本発明は、中央部及び、中央部の外周を囲む周縁部を有する亜鉛負極と、正極とを備え、周縁部のうち、下端部及び下端部から一方向に連続する部分のみが正極と対向しない、亜鉛負極二次電池を提供する。このような構成とすることで、長期サイクル寿命に耐え、且つエネルギー密度の高い二次電池を提供することができる。亜鉛負極二次電池では電極周縁部の反応性が高くなる傾向がある。そのため、電池反応によって負極の周縁部の亜鉛が溶出し易く、これに起因する周縁部におけるシェイプチェンジ又はデンドライト発生が、電池の長寿命化における問題となっている。この問題において、発明者らの知見により、周縁部のうち特に下部及び側部の劣化が激しい傾向にあることが分かった。そこで、本発明では、亜鉛負極の周縁部のうち特に下部及び側部の反応性を敢えて低下させるべく、正極のサイズや形状を変更して、負極周縁下部及び側部が正極と非対向になるような構成としている。一方、負極中央部や、負極周縁部のうち中央部上端と隣接する領域については正極と対向させることで、電池容量の減少を抑制することができる。 The present invention includes a zinc negative electrode having a central portion and a peripheral edge surrounding the outer periphery of the central portion, and a positive electrode, and only a portion of the peripheral edge portion continuous in one direction from the lower end portion and the lower end portion does not face the positive electrode. , Zinc negative electrode secondary battery is provided. With such a configuration, it is possible to provide a secondary battery that can withstand a long cycle life and has a high energy density. In a zinc negative electrode secondary battery, the reactivity of the peripheral portion of the electrode tends to be high. Therefore, zinc in the peripheral portion of the negative electrode is likely to be eluted by the battery reaction, and the occurrence of shape change or dendrite in the peripheral portion due to this is a problem in extending the life of the battery. In this problem, it was found from the findings of the inventors that the deterioration of the lower portion and the side portion of the peripheral portion tends to be severe. Therefore, in the present invention, in order to intentionally reduce the reactivity of the lower portion and the side portion of the peripheral portion of the zinc negative electrode, the size and shape of the positive electrode are changed so that the lower portion and the side portion of the negative electrode peripheral portion do not face the positive electrode. It has such a structure. On the other hand, the decrease in battery capacity can be suppressed by facing the central portion of the negative electrode and the region of the peripheral edge of the negative electrode adjacent to the upper end of the central portion so as to face the positive electrode.

本発明において、負極周縁部のうち、下端部のみが正極と対向しないよう構成してもよい。電池反応で溶出した亜鉛は重力によって下部に集中する。特に下部の反応性が高くなるため、劣化の進行を抑制するべく少なくとも下部において正極と対向しないようにすることが好ましい。一方で、周縁部の側部においては負極と正極とが対向するため、このような態様により電池特性の低下を抑制しつつ、長寿命化を図ることができる。 In the present invention, only the lower end portion of the peripheral edge portion of the negative electrode may be configured not to face the positive electrode. Zinc eluted by the battery reaction concentrates on the lower part due to gravity. In particular, since the reactivity of the lower part becomes high, it is preferable not to face the positive electrode at least in the lower part in order to suppress the progress of deterioration. On the other hand, since the negative electrode and the positive electrode face each other on the side portion of the peripheral edge portion, it is possible to extend the life while suppressing the deterioration of the battery characteristics by such an embodiment.

本発明の亜鉛負極二次電池は、ニッケル正極を有する(すなわちニッケル亜鉛二次電池である)ことが好ましい。 The zinc negative electrode secondary battery of the present invention preferably has a nickel positive electrode (that is, a nickel-zinc secondary battery).

本発明によれば、十分な長期サイクル寿命及びエネルギー密度を両立することのできる亜鉛負極二次電池を提供することができる。 According to the present invention, it is possible to provide a zinc negative electrode secondary battery capable of achieving both a sufficient long-term cycle life and energy density.

一実施形態の亜鉛負極二次電池における、亜鉛負極と正極との対向状態を示す平面図である。It is a top view which shows the facing state of the zinc negative electrode and the positive electrode in the zinc negative electrode secondary battery of one Embodiment. 各実施例及び比較例にて準備した、亜鉛負極とニッケル正極との対向状態を示す平面図である。It is a top view which shows the facing state of a zinc negative electrode and a nickel positive electrode prepared in each Example and a comparative example.

本実施形態の二次電池は亜鉛負極二次電池である。まず、当該二次電池がニッケル正極を有するニッケル亜鉛二次電池である場合を例にとり説明する。 The secondary battery of this embodiment is a zinc negative electrode secondary battery. First, a case where the secondary battery is a nickel-zinc secondary battery having a nickel positive electrode will be described as an example.

[ニッケル亜鉛二次電池]
ニッケル亜鉛二次電池は、正極又は負極の一方の極としてニッケル(Ni)極と、正極又は負極の他方の極として亜鉛(Zn)極と、両極の間にセパレータと、さらにこれらが浸漬するアルカリ水溶液からなる電解液と、から少なくとも構成される。セパレータは正極と負極とを電気的に絶縁すると共に、微多孔を通じてOHイオンを導通する役割を担う。ニッケル亜鉛二次電池の電池反応の一例を以下に示す(放電反応:右向き、充電反応:左向き)。
(正極)2NiOOH+2HO+2e → 2Ni(OH)+2OH
(負極)Zn+2OH→Zn(OH) 2-+2e
(全体)2NiOOH+Zn+2HO → 2Ni(OH)+Zn(OH)
[Nickel-zinc secondary battery]
A nickel-zinc secondary battery has a nickel (Ni) electrode as one electrode of the positive electrode or the negative electrode, a zinc (Zn) electrode as the other electrode of the positive electrode or the negative electrode, a separator between the two electrodes, and an alkali in which these are immersed. It is composed of at least an electrolytic solution composed of an aqueous solution. The separator electrically insulates the positive electrode and the negative electrode, and also plays a role of conducting OH - ions through microporous. An example of the battery reaction of a nickel-zinc secondary battery is shown below (discharge reaction: facing right, charging reaction: facing left).
(Positive electrode) 2NiOOH + 2H 2O + 2e → 2Ni (OH) 2 + 2OH
(Negative electrode) Zn + 2OH- → Zn (OH) 2 2- + 2e-
(Overall) 2NiOOH + Zn + 2H 2 O → 2Ni (OH) 2 + Zn (OH) 2

(ニッケル極)
ニッケル極は、集電体と、集電体上に、水酸化ニッケル粒子を主成分とする活物質、添加剤、結着剤等を含む活物質層とを備える。水酸化ニッケル粒子の原料となる水酸化ニッケルには、コバルト、亜鉛、カドミウム、マグネシウム、ジルコニウム等が固溶されていてもよい。また、水酸化ニッケル粒子の表面は、コバルト化合物等で被覆されていてもよい。
(Nickel pole)
The nickel electrode includes a current collector and an active material layer containing an active material containing nickel hydroxide particles as a main component, an additive, a binder, and the like on the current collector. Cobalt, zinc, cadmium, magnesium, zirconium and the like may be dissolved in nickel hydroxide as a raw material for nickel hydroxide particles. Further, the surface of the nickel hydroxide particles may be coated with a cobalt compound or the like.

添加剤としては、金属コバルト、酸化コバルト、水酸化コバルト等のコバルト化合物、金属ニッケル、金属亜鉛、酸化亜鉛、水酸化亜鉛等の亜鉛化合物、水酸化カルシウム、炭酸カルシウム等のカルシウム化合物、希土類金属、希土類金属化合物、などが挙げられる。添加剤の添加量は、例えば活物質100質量部に対して、5~30質量部とすることができる。 Additives include cobalt compounds such as metallic cobalt, cobalt oxide and cobalt hydroxide, zinc compounds such as metallic nickel, metallic zinc, zinc oxide and zinc hydroxide, calcium compounds such as calcium hydroxide and calcium carbonate, and rare earth metals. Rare earth metal compounds, etc. may be mentioned. The amount of the additive added can be, for example, 5 to 30 parts by mass with respect to 100 parts by mass of the active material.

結着剤としては、親水性又は疎水性のポリマー等が挙げられる。より具体的には、結着剤としては、ヒドロキシプロピルメチルセルロース(HPMC)、カルボキシメチルセルロース(CMC)、ポリアクリル酸ナトリウム(SPA)等が挙げられる。また、結着剤として、ポリテトラフルオロエチレン(PTFE)、ポリフッ化ビニリデン(PVDF)等のフッ素系ポリマーを用いることもできる。結着剤の添加量は、例えば活物質100質量部に対して、0.01~0.5質量部とすることができる。 Examples of the binder include hydrophilic or hydrophobic polymers. More specifically, examples of the binder include hydroxypropylmethyl cellulose (HPMC), carboxymethyl cellulose (CMC), sodium polyacrylate (SPA) and the like. Further, as the binder, a fluoropolymer such as polytetrafluoroethylene (PTFE) or polyvinylidene fluoride (PVDF) can also be used. The amount of the binder added can be, for example, 0.01 to 0.5 parts by mass with respect to 100 parts by mass of the active material.

集電体としては、例えば、銅箔、電解銅箔、銅メッシュ(エキスパンドメタル)、発泡銅、パンチング銅、真鍮等の銅合金、真鍮箔、真鍮メッシュ(エキスパンドメタル)、発泡真鍮、パンチング真鍮、ニッケル箔、ニッケルメッシュ、耐食性ニッケル、ニッケルメッシュ(エキスパンドメタル)、パンチングニッケル、発泡ニッケル、金属亜鉛、耐食性金属亜鉛、亜鉛箔、亜鉛メッシュ(エキスパンドメタル)、鋼板、パンチング鋼板、銀箔などが挙げられる。これらの集電体材料には、Ni、Zn、Sn、Pb、Hg、Bi、In、Tl等の元素がさらに添加されていてもよく、また集電体材料表面にはNi、Zn、Sn、Pb、Hg、Bi、In、Tl等によるメッキが施されていてもよい。 Examples of the current collector include copper foil, electrolytic copper foil, copper mesh (expanded metal), foamed copper, punching copper, copper alloys such as brass, brass foil, brass mesh (expanded metal), foamed brass, punching brass, and the like. Examples thereof include nickel foil, nickel mesh, corrosion-resistant nickel, nickel mesh (expanded metal), punching nickel, foamed nickel, metallic zinc, corrosion-resistant metal zinc, zinc foil, zinc mesh (expanded metal), steel plate, punching steel plate, and silver foil. Elements such as Ni, Zn, Sn, Pb, Hg, Bi, In, and Tl may be further added to these current collector materials, and Ni, Zn, Sn, etc. may be added to the surface of the current collector material. It may be plated with Pb, Hg, Bi, In, Tl or the like.

(亜鉛極)
亜鉛極は、集電体と、集電体上に、亜鉛及び酸化亜鉛粒子を主成分とする活物質、添加剤、結着剤等を含む活物質層とを備える。
(Zinc pole)
The zinc electrode includes a current collector and an active material layer containing an active material containing zinc and zinc oxide particles as a main component, an additive, a binder, and the like on the current collector.

添加剤としては、酸化インジウム、酸化ビスマス、酸化鉛、酸化カドミウム、酸化タリウム等の亜鉛の還元電位より貴である金属酸化物、酸化チタン、酸化アルミニウム、酸化ケイ素等の湿潤性の高い金属酸化物、酸化カルシウム、水酸化カルシウム等のカルシウム化合物、フッ化カリウム、フッ化カルシウム等のフッ素化合物などが挙げられる。添加剤の添加量は、例えば活物質100質量部に対して、1~20質量部とすることができる。 As additives, metal oxides such as indium oxide, bismuth oxide, lead oxide, cadmium oxide, and tarium oxide, which are noble than the reduction potential of zinc, and highly wet metal oxides such as titanium oxide, aluminum oxide, and silicon oxide. , Calcium compounds such as calcium oxide and calcium hydroxide, and fluorine compounds such as potassium fluoride and calcium fluoride. The amount of the additive added can be, for example, 1 to 20 parts by mass with respect to 100 parts by mass of the active material.

結着剤としては、ポリテトラフルオロエチレン、ヒドロキシエチルセルロース、ポリエチレンオキシド等が挙げられる。添加剤の添加量は、例えば活物質100質量部に対して、0.5~10質量部とすることができる。なお、亜鉛極においては、これらの結着剤に代えて、ポリエチレン、ポリプロピレン、酸化アルミニウム等から成るファイバー(繊維)を添加しても良い。 Examples of the binder include polytetrafluoroethylene, hydroxyethyl cellulose, polyethylene oxide and the like. The amount of the additive added can be, for example, 0.5 to 10 parts by mass with respect to 100 parts by mass of the active material. In the zinc electrode, a fiber made of polyethylene, polypropylene, aluminum oxide or the like may be added instead of these binders.

電解液としては、例えば、水酸化カリウム水溶液、水酸化ナトリウム水溶液、水酸化リチウム水溶液等のアルカリ水溶液が挙げられる。 Examples of the electrolytic solution include an alkaline aqueous solution such as an aqueous solution of potassium hydroxide, an aqueous solution of sodium hydroxide, and an aqueous solution of lithium hydroxide.

(セパレータ)
セパレータとして用いられるセパレータ材料としては、平板状、シート状等の形状を有する、ポリオレフィン系微多孔膜、ナイロン系微多孔膜、耐酸化性のイオン交換樹脂膜、セロハン系再生樹脂膜、無機-有機セパレータ等が挙げられる。
(Separator)
As the separator material used as a separator, a polyolefin-based microporous membrane, a nylon-based microporous membrane, an oxidation-resistant ion exchange resin membrane, a cellophane-based recycled resin membrane, an inorganic-organic film having a shape such as a flat plate or a sheet. Examples include separators.

セパレータの厚さは、電池のオーミック抵抗低減、高エネルギー密度化等の観点から、5~300μmとすることができる。ここでいう厚さは、膜厚計を用いて測定された異なる10点の厚さの平均値とする。 The thickness of the separator can be 5 to 300 μm from the viewpoint of reducing the ohmic resistance of the battery and increasing the energy density. The thickness referred to here is the average value of the thicknesses of 10 different points measured using a film thickness meter.

本実施形態の二次電池は、中央部及び、中央部の外周を囲む周縁部を有する亜鉛負極と、正極とを備え、周縁部のうち、下端部及び下端部から一方向に連続する部分のみが正極と対向しない、あるいは下端部のみが正極と対向しない構成を備えている。 The secondary battery of the present embodiment includes a zinc negative electrode having a central portion and a peripheral edge surrounding the outer periphery of the central portion, and a positive electrode, and only a portion of the peripheral edge portion continuous in one direction from the lower end portion and the lower end portion. Does not face the positive electrode, or only the lower end portion does not face the positive electrode.

図1は、一実施形態の亜鉛負極二次電池における、亜鉛負極と正極との対向状態を示す平面図である。図1に示すように、本実施形態の亜鉛負極1は、中央部10と、中央部10の外周を囲む周縁部20を有し、さらに周縁部20のうち、下端部20a及び下端部から一方向に連続する部分20bのみが正極と対向しない領域を有している。図中、斜線の部分が、正極と対向しない領域である。 FIG. 1 is a plan view showing a facing state between a zinc negative electrode and a positive electrode in the zinc negative electrode secondary battery of one embodiment. As shown in FIG. 1, the zinc negative electrode 1 of the present embodiment has a central portion 10 and a peripheral edge portion 20 surrounding the outer peripheral portion of the central portion 10, and further, one of the peripheral edge portions 20 from the lower end portion 20a and the lower end portion. Only the portion 20b continuous in the direction has a region not facing the positive electrode. In the figure, the shaded area is a region that does not face the positive electrode.

下端部20aとは、亜鉛負極1の下端から周縁部20の幅だけ内側の領域、あるいは亜鉛負極1下端から中央部10下端までの幅を有する領域、と言うことができる。下端部から一方向に連続する部分20bとは、下端部20aの上端から一定長さだけ、亜鉛負極1上端側に連続する領域と言うことができる。亜鉛負極1の下端~上端の長さを基準(100%)としたとき、下端部から一方向に連続する部分20bの上端の位置は、亜鉛負極1の下端から100%以下とすることができ、70%以下であってもよく、50%以下であってもよい。なお、下端部から一方向に連続する部分20bの上端の位置は、少なくとも中央部10の下端よりも、亜鉛負極1の上端側にある。このように、下端部20a及び下端部から一方向に連続する部分20bにより、周縁部20におけるコの字型の領域が定義される。 The lower end portion 20a can be said to be a region inside by the width of the peripheral portion 20 from the lower end of the zinc negative electrode 1 or a region having a width from the lower end of the zinc negative electrode 1 to the lower end of the central portion 10. The portion 20b continuous from the lower end portion in one direction can be said to be a region continuous from the upper end portion of the lower end portion 20a to the upper end side of the zinc negative electrode 1 by a certain length. When the length from the lower end to the upper end of the zinc negative electrode 1 is used as a reference (100%), the position of the upper end of the portion 20b continuous in one direction from the lower end portion can be 100% or less from the lower end of the zinc negative electrode 1. , 70% or less, or 50% or less. The position of the upper end of the portion 20b continuous in one direction from the lower end portion is at least closer to the upper end side of the zinc negative electrode 1 than the lower end of the central portion 10. In this way, the lower end portion 20a and the portion 20b continuous in one direction from the lower end portion 20 define the U-shaped region in the peripheral edge portion 20.

一方、他の実施形態の二次電池において、上述のとおり、周縁部のうち、下端部のみが正極と対向しないように構成してもよい。本態様はすなわち、図1において下端部から一方向に連続する部分20bが無い状態を示すものである。 On the other hand, in the secondary battery of another embodiment, as described above, only the lower end portion of the peripheral portion may be configured not to face the positive electrode. That is, this aspect shows a state in which there is no portion 20b continuous in one direction from the lower end portion in FIG.

周縁部20の幅は、特に限定されるものではないが、例えば亜鉛負極1が、平面視において略正方形である場合、亜鉛負極1の一辺の長さを基準(100%)として、0.1~25%程度とすることができる。あるいは、周縁部20の幅は、例えば平面視において100mm×100mm程度サイズの一般的な亜鉛負極1を想定した場合に、1~25mm程度とすることができる。周縁部20の幅は、その全領域において同一でもよく、部分的に異なっていてもよい(幅広い部分と狭い部分があってもよい)。なお、中央部10は、周縁部20の残領域である。 The width of the peripheral edge portion 20 is not particularly limited, but for example, when the zinc negative electrode 1 is substantially square in a plan view, 0.1 is 0.1 with respect to the length of one side of the zinc negative electrode 1 as a reference (100%). It can be about 25%. Alternatively, the width of the peripheral edge portion 20 can be set to about 1 to 25 mm, for example, assuming a general zinc negative electrode 1 having a size of about 100 mm × 100 mm in a plan view. The width of the peripheral edge portion 20 may be the same in all the regions thereof or may be partially different (there may be a wide portion and a narrow portion). The central portion 10 is the remaining region of the peripheral portion 20.

[ニッケル亜鉛二次電池の製造方法]
ニッケル極及び亜鉛極の製造方法は特に限定されず、例えば次のような方法が挙げられる。すなわち、活物質層を得るための各原料と水とを混練して活物質ペーストを調製し、これを集電体上に塗布する。この際、集電体として多孔質材料を用いた場合は、孔内にも活物質ペーストが充填される。その後、これを乾燥し、さらにローラプレスによる加圧成形を行うことにより、集電体上に活物質層を備える電極が得られる。なお、活物質ペーストのみを予め圧延してシート状に形成し、これを集電体に圧着して加圧成形した後、乾燥を行うことで、電極を得ることもできる。
[Manufacturing method of nickel-zinc secondary battery]
The method for producing the nickel electrode and the zinc electrode is not particularly limited, and examples thereof include the following methods. That is, each raw material for obtaining an active material layer and water are kneaded to prepare an active material paste, which is applied onto a current collector. At this time, when a porous material is used as the current collector, the active material paste is also filled in the pores. Then, this is dried and further pressure-molded by a roller press to obtain an electrode having an active material layer on the current collector. An electrode can also be obtained by rolling only the active material paste in advance to form a sheet, crimping the paste to a current collector, pressure-molding the paste, and then drying the paste.

なお、亜鉛負極と正極との対向状態は、正極のサイズや形状を変更して調整することができる。具体的には、各正極の形状に合った電極打抜き機、あるいはシャーベンダーを用いて、所望形状にカットすることで調整することができる。 The facing state between the zinc negative electrode and the positive electrode can be adjusted by changing the size and shape of the positive electrode. Specifically, it can be adjusted by cutting into a desired shape using an electrode punching machine or a shear bender suitable for the shape of each positive electrode.

上記により得られたニッケル極及び亜鉛極を、セパレータを介して交互に積層し、同極性の極板同士をストラップで連結させて極板群を作製する。この極板群を電槽内に配置して未化成のニッケル亜鉛二次電池とし、これに電解液を注入して放置後、所定の条件にて充電(化成処理)を行うことで、ニッケル亜鉛二次電池を得ることができる。 The nickel poles and zinc poles obtained as described above are alternately laminated via a separator, and the plates having the same polarity are connected to each other with a strap to prepare a group of plates. This group of plates is placed in an electric tank to form an unchemical nickel-zinc secondary battery, and after injecting an electrolytic solution into the battery and leaving it to stand, charging (chemical treatment) is performed under predetermined conditions to obtain nickel-zinc. A secondary battery can be obtained.

[亜鉛空気電池]
以上、本実施形態のセパレータがニッケル亜鉛二次電池に組み込まれる場合を例にとり説明をしたが、特に正極についてはニッケル極に限定されるものではない。その他の正極としては、空気極が挙げられる。
[Zinc air battery]
Although the case where the separator of the present embodiment is incorporated in the nickel-zinc secondary battery has been described above as an example, the positive electrode is not particularly limited to the nickel electrode. Examples of the other positive electrode include an air electrode.

空気極としては、亜鉛空気電池に使用される公知の空気極が挙げられる。空気極は、一般的に空気極触媒、電子伝導性材料等を含んでなる。なお、電子伝導性材料としても機能する空気極触媒を用いる場合には、空気極は、そのような電子伝導性材料でありかつ空気極触媒を含んでなるものであってもよい。 Examples of the air electrode include known air electrodes used in zinc-air batteries. The air electrode generally includes an air electrode catalyst, an electron conductive material, and the like. When an air electrode catalyst that also functions as an electron conductive material is used, the air electrode may be such an electron conductive material and may include an air electrode catalyst.

空気極触媒としては、亜鉛空気電池における正極として機能するものが挙げられ、酸素を正極活物質として利用可能な種々の空気極触媒が使用可能である。空気極触媒としては、黒鉛等の酸化還元触媒機能を有するカーボン系材料、白金、ニッケル等の酸化還元触媒機能を有する金属材料、ペロブスカイト型酸化物、二酸化マンガン、酸化ニッケル、酸化コバルト、スピネル酸化物等の酸化還元触媒機能を有する無機酸化物材料などが挙げられる。空気極触媒の形状は特に限定されないが、例えば粒子形状とすることができる。空気極における空気極触媒の含有量としては、空気極の合計量に対して、5~70体積%とすることができ、5~60体積%としてもよく、5~50体積%としてもよい。 Examples of the air electrode catalyst include those that function as a positive electrode in a zinc-air battery, and various air electrode catalysts that can use oxygen as a positive electrode active material can be used. As the air electrode catalyst, carbon-based materials having a redox catalyst function such as graphite, metal materials having a redox catalyst function such as platinum and nickel, perovskite-type oxides, manganese dioxide, nickel oxide, cobalt oxide and spinel oxides. Examples thereof include inorganic oxide materials having a redox catalyst function such as. The shape of the air electrode catalyst is not particularly limited, but may be, for example, a particle shape. The content of the air electrode catalyst in the air electrode may be 5 to 70% by volume, 5 to 60% by volume, or 5 to 50% by volume with respect to the total amount of the air electrode.

電子伝導性材料としては、導電性を有し、空気極触媒とセパレータとの間で電子伝導を可能とするものが挙げられる。電子伝導性材料としては、ケッチェンブラック、アセチレンブラック、チャンネルブラック、ファーネスブラック、ランプブラック、サーマルブラック等のカーボンブラック類、鱗片状黒鉛のような天然黒鉛、人造黒鉛、膨張黒鉛等のグラファイト類、炭素繊維、金属繊維等の導電性繊維類、銅、銀、ニッケル、アルミニウム等の金属粉末類、ポリフェニレン誘導体等の有機電子伝導性材料、これらの任意の混合物などが挙げられる。電子伝導性材料の形状は、粒子形状であってもよいし、その他の形状であってもよいが、空気極において厚さ方向に連続した相をもたらす形態で用いられるのが好ましい。例えば、電子伝導性材料は、多孔質材料であってもよい。また、電子伝導性材料は空気極触媒との混合物ないし複合体の形態であってもよく、前述したように電子伝導性材料としても機能する空気極触媒であってもよい。空気極における電子伝導性材料の含有量としては、空気極の合計量に対して、10~80体積%とすることができ、15~80体積%としてもよく、20~80体積%としてもよい。 Examples of the electron conductive material include those having conductivity and enabling electron conduction between the air electrode catalyst and the separator. Examples of the electronically conductive material include carbon blacks such as Ketjen black, acetylene black, channel black, furnace black, lamp black and thermal black, natural graphite such as scaly graphite, artificial graphite and graphite such as expanded graphite. Examples thereof include conductive fibers such as carbon fibers and metal fibers, metal powders such as copper, silver, nickel and aluminum, organic electron conductive materials such as polyphenylene derivatives, and arbitrary mixtures thereof. The shape of the electronically conductive material may be a particle shape or another shape, but it is preferably used in a form that provides a continuous phase in the thickness direction at the air electrode. For example, the electron conductive material may be a porous material. Further, the electron conductive material may be in the form of a mixture or a composite with an air electrode catalyst, or may be an air electrode catalyst that also functions as an electron conductive material as described above. The content of the electron conductive material in the air electrode may be 10 to 80% by volume, 15 to 80% by volume, or 20 to 80% by volume with respect to the total amount of the air electrode. ..

次に、下記の実施例により本発明をさらに詳しく説明するが、これらの実施例は本発明を何ら制限するものではない。 Next, the present invention will be described in more detail with reference to the following examples, but these examples do not limit the present invention in any way.

[ニッケル電極の作製]
多孔度95%、厚み1.6mmのスポンジ状ニッケル金属多孔体をロールプレスにより1.2mmまで調厚した。そして、平均粒子径が20μmのコバルト被覆水酸化ニッケル粉末88質量部、添加剤としてコバルト粉末8質量部、酸化コバルト2質量部、酸化亜鉛2質量部、及びカルボキシメチルセルロースの2質量%水溶液30質量部を混合して得られたペースト状活物質を、上記金属多孔体に充填した後、80℃で60分乾燥し、その後さらにロールプレスにて厚み0.4mmまで加圧成形した。その後、得られたニッケル電極を、必要に応じ、電極打ち抜き機を用いて所望形状にカットした。これにより所望の形状を有する各ニッケル電極を作製した。
[Making nickel electrodes]
A sponge-like nickel metal porous body having a porosity of 95% and a thickness of 1.6 mm was adjusted to 1.2 mm by a roll press. Then, 88 parts by mass of cobalt-coated nickel hydroxide powder having an average particle diameter of 20 μm, 8 parts by mass of cobalt powder as an additive, 2 parts by mass of cobalt oxide, 2 parts by mass of zinc oxide, and 30 parts by mass of a 2% by mass aqueous solution of carboxymethyl cellulose. The paste-like active material obtained by mixing the above was filled in the metal porous body, dried at 80 ° C. for 60 minutes, and then pressure-molded to a thickness of 0.4 mm by a roll press. Then, the obtained nickel electrode was cut into a desired shape using an electrode punching machine, if necessary. As a result, each nickel electrode having a desired shape was produced.

[亜鉛電極の作製]
酸化亜鉛粉末82質量部、亜鉛粉末10質量部、及び添加剤として酸化インジウム5質量部を混合した混合粉末に、PTFEを60質量%含有するPTFEディスパージョン(三井デュポンフロロケミカル株式会社製、商品名;テフロン31-JR(テフロンは登録商標))5質量部、及び水10質量部を加えて、乳鉢で剪断応力を加えながら15分間混練して混練物を得た。これに水40質量部を加えて、さらに15分間混練して活物質ペーストを得た。このペーストをローラで厚み1.0mmまで圧延してシート化し、所定寸法に2枚切り取り、集電体である厚み0.1mmスズメッキ銅製パンチングメタルの両面に配した。その後、さらにロールプレスにて厚み0.4mmまで加圧成形して乾燥した。これにより亜鉛電極を作製した。
[Manufacturing of zinc electrode]
PTFE dispersion (manufactured by Mitsui DuPont Fluorochemical Co., Ltd., trade name) containing 60% by mass of PTFE in a mixed powder obtained by mixing 82 parts by mass of zinc oxide powder, 10 parts by mass of zinc powder, and 5 parts by mass of indium oxide as an additive. 5 parts by mass of Teflon 31-JR (Teflon is a registered trademark) and 10 parts by mass of water were added and kneaded in a dairy pot for 15 minutes while applying shear stress to obtain a kneaded product. To this, 40 parts by mass of water was added, and the mixture was further kneaded for 15 minutes to obtain an active substance paste. This paste was rolled to a thickness of 1.0 mm with a roller to form a sheet, and two sheets were cut to a predetermined size and placed on both sides of a tin-plated copper punching metal having a thickness of 0.1 mm, which was a current collector. Then, it was further pressure-molded to a thickness of 0.4 mm by a roll press and dried. This produced a zinc electrode.

[ニッケル亜鉛二次電池の作製]
各実施例及び比較例にて準備した、亜鉛負極とニッケル正極との対向状態を図2に示す。図2において、斜線部が、ニッケル極と対向していない亜鉛極の領域である。各実施例及び比較例における対向状態の詳細を表1に示す。表中、20a及び20bは、図1における符号に対応している。
[Manufacturing of nickel-zinc secondary battery]
FIG. 2 shows the facing states of the zinc negative electrode and the nickel positive electrode prepared in each Example and Comparative Example. In FIG. 2, the shaded area is a region of the zinc electrode that does not face the nickel electrode. Table 1 shows the details of the facing states in each Example and Comparative Example. In the table, 20a and 20b correspond to the reference numerals in FIG.

Figure 0007010553000001
Figure 0007010553000001

ニッケル極11枚と及び亜鉛極12枚を、ポリオレフィンセパレータとセルロース系不織布を介して交互に積層し、同極性の極板同士をストラップで連結させて極板群を作製した。この極板群を電槽内に配置して未化成のニッケル亜鉛二次電池とし、これに電解液として水酸化リチウム1質量%を添加した水酸化カリウム30質量%水溶液を注入した後、14時間放置した。その後、0.8A、15時間の条件で充電(化成処理)を行い、ニッケル亜鉛二次電池を作製した。また、2Aで電池電圧が1.0Vに達するまで放電した際の放電容量を、各電池の電池容量として用いた。 Eleven nickel poles and twelve zinc poles were alternately laminated via a polyolefin separator and a cellulosic non-woven fabric, and the plates having the same polarity were connected to each other with a strap to prepare a group of plates. This group of plates was placed in an electric tank to form an unchemical nickel-zinc secondary battery, and a 30% by mass aqueous solution of potassium hydroxide to which 1% by mass of lithium hydroxide was added as an electrolytic solution was injected therein for 14 hours. I left it. Then, the battery was charged (chemical conversion treatment) at 0.8 A for 15 hours to prepare a nickel-zinc secondary battery. Further, the discharge capacity when the battery voltage reached 1.0 V at 2 A was used as the battery capacity of each battery.

[ニッケル亜鉛二次電池の評価]
各実施例及び比較例で得られたニッケル亜鉛二次電池について、サイクルテストを行った。サイクルテストは、各電池の電池容量を基準に電流レート0.25Cにて4.6時間充電し、その後直ちに各電池の電池容量を基準に電流レート0.25Cで電池電圧が1.0Vに達するまで放電するという条件で充放電を繰返し行い、電池放電容量が公称容量の60%以下になった時点をサイクル寿命とした。結果を表2に示す。
[Evaluation of nickel-zinc secondary battery]
The nickel-zinc secondary batteries obtained in each Example and Comparative Example were subjected to a cycle test. In the cycle test, the battery is charged at a current rate of 0.25C for 4.6 hours based on the battery capacity of each battery, and then immediately after that, the battery voltage reaches 1.0V at a current rate of 0.25C based on the battery capacity of each battery. The cycle life was defined as the time when the battery discharge capacity became 60% or less of the nominal capacity after repeated charging and discharging under the condition of discharging to. The results are shown in Table 2.

Figure 0007010553000002
Figure 0007010553000002

表2から明らかなように、比較例1と比較して、実施例~3の電池は高いサイクル特性を示すことがわかった。負極周縁下端部と、下端部から一方向に連続する部分とを正極と非対向とすることで、当該部分における反応性が低下し、シェイプチェンジやデンドライト等といったサイクル特性低下の要因を抑制できたものと考えられる。また、比較例2と比較して実施例3はサイクル寿命が同程度であるのに対し、電池容量が大きい。すなわち、周縁下端部と、下端部から一方向に連続する部分とを正極と非対向とすることで、長期サイクル寿命に耐え、且つエネルギー密度の高いニッケル亜鉛二次電池を提供することができることが理解される。
As is clear from Table 2, it was found that the batteries of Examples 2 and 3 exhibited higher cycle characteristics as compared with Comparative Example 1. By making the lower end of the peripheral edge of the negative electrode and the portion continuous in one direction from the lower end non-facing with the positive electrode, the reactivity in the portion was lowered, and the factors of the cycle characteristics deterioration such as shape change and dendrite could be suppressed. It is considered to be. Further, the cycle life of Example 3 is about the same as that of Comparative Example 2, but the battery capacity is large. That is, by making the lower end of the peripheral edge and the portion continuous in one direction from the lower end non-facing with the positive electrode, it is possible to provide a nickel-zinc secondary battery that can withstand a long cycle life and has a high energy density. Understood.

1…亜鉛負極、10…中央部、20…周縁部、20a…下端部、20b…下端部から一方向に連続する部分。
1 ... Zinc negative electrode, 10 ... Central part, 20 ... Peripheral part, 20a ... Lower end part, 20b ... A part continuous in one direction from the lower end part.

Claims (2)

中央部及び、前記中央部の外周を囲む周縁部を有する亜鉛負極と、正極とを備え、
前記周縁部のうち、下端部及び前記下端部から一方向に連続する部分のみが前記正極と対向しない、亜鉛負極二次電池。
A zinc negative electrode having a central portion and a peripheral portion surrounding the outer periphery of the central portion, and a positive electrode are provided.
A zinc negative electrode secondary battery in which only the lower end portion and the portion continuous in one direction from the lower end portion of the peripheral portion do not face the positive electrode.
ニッケル正極を有する、請求項1に記載の亜鉛負極二次電池。 The zinc negative electrode secondary battery according to claim 1 , which has a nickel positive electrode.
JP2017045886A 2017-03-10 2017-03-10 Zinc negative electrode secondary battery Active JP7010553B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017045886A JP7010553B2 (en) 2017-03-10 2017-03-10 Zinc negative electrode secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017045886A JP7010553B2 (en) 2017-03-10 2017-03-10 Zinc negative electrode secondary battery

Publications (2)

Publication Number Publication Date
JP2018152175A JP2018152175A (en) 2018-09-27
JP7010553B2 true JP7010553B2 (en) 2022-01-26

Family

ID=63681059

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017045886A Active JP7010553B2 (en) 2017-03-10 2017-03-10 Zinc negative electrode secondary battery

Country Status (1)

Country Link
JP (1) JP7010553B2 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000251923A (en) 1999-03-02 2000-09-14 Furukawa Battery Co Ltd:The Rectangular storage battery
JP2016146263A (en) 2015-02-06 2016-08-12 株式会社日本触媒 Separator and battery including the same

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5030028A (en) * 1973-07-20 1975-03-26
JPS5534617Y2 (en) * 1975-01-17 1980-08-15
JPS5825085A (en) * 1981-08-05 1983-02-15 Furukawa Battery Co Ltd:The Zinc alkaline secondary battery
JPS59154752A (en) * 1983-02-22 1984-09-03 Japan Storage Battery Co Ltd Nickel zinc battery
JPS6037678A (en) * 1983-08-09 1985-02-27 Sanyo Electric Co Ltd Alkaline zinc storage battery
JP3287732B2 (en) * 1994-05-30 2002-06-04 キヤノン株式会社 Rechargeable battery

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000251923A (en) 1999-03-02 2000-09-14 Furukawa Battery Co Ltd:The Rectangular storage battery
JP2016146263A (en) 2015-02-06 2016-08-12 株式会社日本触媒 Separator and battery including the same

Also Published As

Publication number Publication date
JP2018152175A (en) 2018-09-27

Similar Documents

Publication Publication Date Title
KR102166391B1 (en) Secondary zinc-manganese dioxide batteries for high power applications
JP2018147738A (en) Method of manufacturing separator for zinc negative electrode secondary battery and separator for zinc negative electrode secondary battery
WO2020049902A1 (en) Negative electrode and zinc secondary battery
JP7007123B2 (en) Negative electrode for zinc secondary battery and zinc secondary battery
US20140220434A1 (en) Nickel iron battery employing a coated iron electrode
JP6234917B2 (en) Negative electrode material for metal-air secondary battery and metal-air secondary battery provided with the same
US20140220256A1 (en) Process for manufacturing a continuous coated iron electrode
JP7260349B2 (en) Electrolyte for zinc battery and zinc battery
JP2023133607A (en) Electrolyte solution for zinc battery and zinc battery
JP2019216057A (en) Porous membrane, battery member, and zinc battery
JP7025097B2 (en) Electrode material for zinc electrode and its manufacturing method, and manufacturing method of zinc battery
JP6203139B2 (en) Composition, electrode having porous layer containing the composition, and metal-air secondary battery having the electrode
JP6819402B2 (en) Electrolyte and zinc battery
JP2018147739A (en) Separator for zinc negative electrode secondary battery
JP7010553B2 (en) Zinc negative electrode secondary battery
JP2020087516A (en) Method for manufacturing zinc battery negative electrode and method for manufacturing zinc battery
JP2019079701A (en) Method of manufacturing separator for zinc negative electrode secondary battery and separator for zinc negative electrode secondary battery
JP7105525B2 (en) zinc battery
JP2019216059A (en) Porous membrane, battery member, and zinc battery
JP6783612B2 (en) Alkaline secondary battery
WO2023195233A1 (en) Negative electrode for zinc battery, and zinc battery
JP2008159355A (en) Coin type lithium battery
JP2020176210A (en) Porous film and zinc battery
JP2019106284A (en) Zinc battery negative electrode and zinc battery
JP7166705B2 (en) Method for manufacturing negative electrode for zinc battery and method for manufacturing zinc battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200210

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20201016

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20201201

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210629

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210818

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220104

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220111

R150 Certificate of patent or registration of utility model

Ref document number: 7010553

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350