JPS59154752A - Nickel zinc battery - Google Patents

Nickel zinc battery

Info

Publication number
JPS59154752A
JPS59154752A JP58028797A JP2879783A JPS59154752A JP S59154752 A JPS59154752 A JP S59154752A JP 58028797 A JP58028797 A JP 58028797A JP 2879783 A JP2879783 A JP 2879783A JP S59154752 A JPS59154752 A JP S59154752A
Authority
JP
Japan
Prior art keywords
battery
zinc
nickel
separator
positive electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP58028797A
Other languages
Japanese (ja)
Inventor
Masakado Yamaji
山地 正矩
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Storage Battery Co Ltd
Nihon Denchi KK
Original Assignee
Japan Storage Battery Co Ltd
Nihon Denchi KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Storage Battery Co Ltd, Nihon Denchi KK filed Critical Japan Storage Battery Co Ltd
Priority to JP58028797A priority Critical patent/JPS59154752A/en
Publication of JPS59154752A publication Critical patent/JPS59154752A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/446Composite material consisting of a mixture of organic and inorganic materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/449Separators, membranes or diaphragms characterised by the material having a layered structure
    • H01M50/457Separators, membranes or diaphragms characterised by the material having a layered structure comprising three or more layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/449Separators, membranes or diaphragms characterised by the material having a layered structure
    • H01M50/454Separators, membranes or diaphragms characterised by the material having a layered structure comprising a non-fibrous layer and a fibrous layer superimposed on one another
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

PURPOSE:To prevent the internal short-circuit of a battery and obtain a battery with a long life by inserting a non-woven fabric mixed with metal fibers such as nickel and stainless steel between a positive electrode and a negative electrode together with porous film-like separators. CONSTITUTION:A positive electrode 1 made of sinter-type nickel hydride and a negative electrode 3 made of zinc are stored in a battery jar 5 made of synthetic resin, and leads 2, 4 are extracted. An electrolyte 7 such as a caustic potash aqueous solution is injected into the battery jar 5. Then, separators 8-10 are provided, the separators 8, 10 absorb and retain the electrolyte and the separator 9 prevents short circuit due to penetration of resin-like zinc. The non-woven fabric of the separator 8 is formed by mixing spread-out nylon fibers and nickel fibers thoroughly, spreading them in a sheet shape, overlapping it on a nylon non-woven fabric, pinching them between metal nets, and heat-treating and melting fibers together. One surface not mixed with metal fibers is faced to the positive electrode 1 and the other surface is faced to the separator 9. Accordingly, resin-like zinc is prevented from getting contact with the positive electrode.

Description

【発明の詳細な説明】 本発明は水酸化ニッケルを活物質とする正極と、亜鉛を
活物質とする負極およびセパレータなどから構成される
、繰返し充放電可能なニッケル亜1()電池に関するも
ので、その目的とするところは、正極板とΩ極板との間
にレバレータと共に金属製繊維を混在させた不織布を介
在させることにより、充電中に負極板の亜鉛から成長し
てくる樹枝状亜鉛による正、負極間の短絡を防止するこ
とにある。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a nickel-substance battery that can be repeatedly charged and discharged, and is composed of a positive electrode made of nickel hydroxide as an active material, a negative electrode made of zinc as an active material, a separator, etc. The purpose of this is to interpose a nonwoven fabric mixed with metal fibers together with a lever between the positive electrode plate and the Ω electrode plate, so that the dendritic zinc that grows from the negative electrode plate during charging can be removed. The purpose is to prevent short circuits between the positive and negative electrodes.

従来のニッケル亜11)電池は、例えば焼結式水酸化ニ
ッケル正極板と、酸化亜鉛などの亜鉛酸化物の粉末ある
いは金属亜鉛の粉末を合成樹脂の結着剤と共に練り、こ
れを集電体に塗布したf″44極板、セパレータを介し
て電槽内に対向させて配置し、酸化亜鉛等を飽和させた
苛性カリ水溶液からなる電解液を注入して構成されてい
る。この電池は外部の直流電力により充電を受【プる場
合には(1)式に示づ様に右から左への電気化学反応が
起こり、放電の場合には逆に左から右への電気化学反応
が起こる。
Conventional nickel-substance batteries are made by kneading, for example, a sintered nickel hydroxide positive electrode plate with a powder of zinc oxide such as zinc oxide or powder of zinc metal together with a synthetic resin binder, and then using this as a current collector. The battery is constructed by applying an electrolyte consisting of a caustic potassium aqueous solution saturated with zinc oxide, etc. to the coated F''44 electrode plates, which are placed facing each other in a battery case via a separator. When receiving electric charge, an electrochemical reaction occurs from right to left as shown in equation (1), and when discharging, an electrochemical reaction occurs from left to right.

2 Ni O01−1千Zn +t−I 20ニツケル
亜鉛電池の問題点は、充電時に充電電流の分布の不均一
等が原因で、負極板の、特に周縁部に部分的に樹枝状の
亜鉛が析出、成長し、その先端が対向する正極板に達す
ると、短絡を起こし、電池の寿命を短縮することである
。これを防止する為に、正負極間には、数十〜数百オン
グストロームの細孔を有するポリオレフィン系またはセ
ル日−ズ系の膜がセパレータとして挿入される。
2 Ni O01-1,000 Zn +t-I 20 The problem with nickel zinc batteries is that dendritic zinc partially precipitates on the negative electrode plate, especially on the periphery, due to uneven distribution of charging current during charging. , and when its tip reaches the opposing positive electrode plate, it will cause a short circuit and shorten the life of the battery. To prevent this, a polyolefin or cellulose membrane having pores of several tens to hundreds of angstroms is inserted as a separator between the positive and negative electrodes.

あるいはまたこれらのセパレータは袋状に加工され、そ
の中に正極又は負極が挿入されるのが一般的である。し
かし、これらのセパレータを2〜3重に正、負極間に配
しても、析出する樹”枝状亜鉛による短絡を防止するこ
とが出来ないのが現実である。またこれらのセパレータ
をさらに多重に用いると、短絡の起きる確率は低下する
が、この種のセパレータの細孔は上述の様に小さいため
、内部抵抗が大きくなり、放電特性を著しく悪くすると
いうあらたな問題が発生する。
Alternatively, these separators are generally processed into a bag shape into which a positive electrode or a negative electrode is inserted. However, the reality is that even if these separators are arranged in two or three layers between the positive and negative electrodes, short circuits due to the precipitated dendritic zinc cannot be prevented. When used in a separator, the probability of a short circuit is reduced, but since the pores of this type of separator are small as described above, a new problem arises in that the internal resistance becomes large and the discharge characteristics are significantly deteriorated.

本発明はこれらの欠点を除去し、放電特性の優れた、且
つ、寿命の長い電池を得ようとするもので、以下その実
施例について詳述する。
The present invention aims to eliminate these drawbacks and provide a battery with excellent discharge characteristics and a long life.Examples thereof will be described in detail below.

第1図は本発明によるニッケル亜鉛電池の一実施例の構
成を示す図であり、(1)は焼結式水酸化ニッケル極の
正極板で、(2)が該極板のリードである。(3)が酸
化亜鉛と、結着剤などの混練物を金属網などシル電体に
塗布した亜鉛負極板で、(4)が該極板の一ドである。
FIG. 1 is a diagram showing the structure of an embodiment of a nickel-zinc battery according to the present invention, in which (1) is a positive electrode plate of a sintered nickel hydroxide electrode, and (2) is a lead of the electrode plate. (3) is a zinc negative electrode plate in which a kneaded material such as zinc oxide and a binder is coated on a sill electric body such as a metal mesh, and (4) is one electrode of the electrode plate.

(5)は合成樹脂からなる電槽で、(6)が注液口栓、
(7)は苛性カリ水溶液などの電解液である。(8)(
9)  (10)は従来のニッケル亜鉛電池に一般的に
使用されるセパレータ群である。これらの中で(8)(
10)は電解液を吸収保持するもので、一般的には、ナ
イロンあるいはポリプロピレンの0.1〜0.3mm程
度の厚さを有する不織布が使用される。(9)が樹枝状
亜鉛の貫通による短絡を防止するためのセパレータで、
セロファンおよびポリエチレンあるいはポリプロピレン
からなる数十ないし数百オングストロームの細孔を有す
る膜で、これらを2重あるいは3重に重ねて使用される
のが一般的である。なお、以上のような電池構成であれ
ば、従来のニッケル亜鉛電池であって、本発明において
は、(8)の不織布に代え、ニッケルウールあるいはス
テンレスウールなどの金属製繊維を混在させた不織布を
配置り“ることが特徴となる。該不織布の製造方法の一
例について述べると、良く開綿したナイロンmR112
aとニッケル繊維189とを良く混ぜ合せてシート状に
広げ、これを30cmx 30auに切断したナイロン
不織布FT−−218(日本バイリーン製、厚さ150
μ)の上に重ね、金網に挾んで300℃、 1分の熱処
理を施し、繊維同志を熱aaさぜ、厚さ約200μの不
織布を得た。ここで用いるナイロン繊維は、直径10〜
30μ、長さ5〜20mmの綿状のものである。またニ
ッケル繊維は直径10〜50μ、長さ5〜20 m m
の綿状であるが、ニッケル繊維の代りにステンレススチ
ールの繊維を用いてもよい。
(5) is a battery case made of synthetic resin, (6) is a liquid filler plug,
(7) is an electrolytic solution such as a caustic potassium aqueous solution. (8)(
9) (10) is a separator group commonly used in conventional nickel-zinc batteries. Among these (8) (
10) absorbs and retains the electrolyte, and generally a nonwoven fabric of nylon or polypropylene having a thickness of about 0.1 to 0.3 mm is used. (9) is a separator to prevent short circuit due to penetration of dendritic zinc,
It is a membrane having pores of tens to hundreds of angstroms made of cellophane and polyethylene or polypropylene, and is generally used in double or triple layers. Note that the above battery configuration is a conventional nickel-zinc battery, and in the present invention, instead of the nonwoven fabric in (8), a nonwoven fabric mixed with metal fibers such as nickel wool or stainless wool is used. An example of the method for manufacturing the nonwoven fabric is as follows: well-opened nylon mR112
Nylon nonwoven fabric FT-218 (manufactured by Nippon Vilene, thickness 150 mm) was prepared by mixing a and nickel fiber 189 well, spreading it into a sheet, and cutting it into 30 cm x 30 au pieces.
The fibers were stacked on top of the fibers (μ), sandwiched between wire meshes, and heat treated at 300° C. for 1 minute to heat the fibers together to obtain a nonwoven fabric with a thickness of about 200 μ. The nylon fiber used here has a diameter of 10~
It is a cotton-like material with a diameter of 30 μm and a length of 5 to 20 mm. In addition, the nickel fiber has a diameter of 10 to 50 μm and a length of 5 to 20 mm.
However, stainless steel fibers may be used instead of nickel fibers.

この実施例では、強度を増すために既製の不織布を用い
たが、ナイロン繊維などを予めシート状とし、その上に
金IM m l(fを混合したナイロン1IIEの層を
形成させてもよい。以上のようにして製造した金属繊維
を混在させたナイロン不織布は、金属繊維を混在させな
い不織布と比べて、電解液の保持性、電気抵抗などはほ
とんど変らない。この金属繊維を混在させた不織布(8
)を、金属81i射1を混在させていない面をニッケル
正極(1)に対向させ、一方の面をセパレータ(9)に
対向させて、第1図に示すように配VII”Jる。
In this example, a ready-made non-woven fabric was used to increase the strength, but it is also possible to form a sheet of nylon fiber or the like in advance and form a layer of nylon 1IIE mixed with gold IM ml (f) thereon. The nylon nonwoven fabric mixed with metal fibers produced as described above has almost no difference in electrolyte retention, electrical resistance, etc. compared to nonwoven fabrics mixed with metal fibers.The nonwoven fabric mixed with metal fibers ( 8
) are arranged as shown in FIG. 1, with the surface on which the metal 81i is not mixed facing the nickel positive electrode (1) and one surface facing the separator (9).

該不織布を(8)を介在させることによる、充電中の樹
枝状亜鉛の生成によって発生づ゛る、短絡を防止する原
理は次の通りである。
The principle of preventing short circuits caused by the formation of dendritic zinc during charging by interposing the nonwoven fabric (8) is as follows.

第1図の電池を繰り返し充放電にか(プると、亜鉛負極
(3)中の亜鉛活物質は比較的初期に電解液保持用セパ
レータ(10)内、に侵入するが、膜状セパレータ(9
)中にはほとんど侵入しない。しかし充放電が数百サイ
クル繰返されると、亜鉛は膜状セパレータ(θ)の中に
も侵入し、これに膜状セパレータ(9)の劣化が重なる
と、亜鉛がセパレータ(9)を貫通し、セパレータ(8
)を容易に通過して、正極(1)に到達して短絡を起こ
す。しかしながら、セパレータ群(8)  (9)(1
0)の中にニッケル繊維を混在させた不織布(8)を介
在させると、膜状セパレータ(9)を通過してきた樹枝
状亜鉛は、不織布(8〉の金属ニッケルに接触すると局
部電池を形成し、(2)式の反応により、ニッケルの表
面より水素ガスを発生して、亜鉛は酸化亜鉛に変化し、
次第に電解液中に溶ける。
When the battery shown in Figure 1 is repeatedly charged and discharged, the zinc active material in the zinc negative electrode (3) invades the electrolyte holding separator (10) at a relatively early stage, but the membrane separator ( 9
) It hardly penetrates inside. However, when charging and discharging are repeated several hundred cycles, zinc also penetrates into the membrane separator (θ), and when this is combined with deterioration of the membrane separator (9), zinc penetrates the separator (9). Separator (8
) and reach the positive electrode (1), causing a short circuit. However, separator group (8) (9) (1
When a nonwoven fabric (8) mixed with nickel fibers is interposed in the nonwoven fabric (8), the dendritic zinc that has passed through the membrane separator (9) forms a local battery when it comes into contact with the metal nickel of the nonwoven fabric (8>). , Due to the reaction of equation (2), hydrogen gas is generated from the surface of nickel, and zinc changes to zinc oxide,
It gradually dissolves into the electrolyte.

Zn+t−120→ Z110+1−+2  ↑ ・・
・・・・・・・・・・(2)したがって、従来の電池の
ように、樹枝状亜鉛がセパレータ(9)を通過してニッ
ケル正極(1)に接触Jることは防止される。
Zn+t-120→ Z110+1-+2 ↑ ・・
(2) Therefore, the dendritic zinc is prevented from passing through the separator (9) and coming into contact with the nickel positive electrode (1) as in conventional batteries.

本発明の効果を実証するために、第1図に示した本発明
による電池(A)と、セパレータ(8)の代りに金RH
a Iffを混在させない不織布を用いた従来形電池(
B)および(C)を製作した。これらの電池において、
< 8>  (10)には厚さ0.2n+mのナイロン
不織布、(9)にはポリプロピレンの微孔性膜状セパレ
ータを(△)および(B)については3枚、また(C)
については5枚重ねて使用した。なお本発明による電池
(A)には(8)として実施例による厚さ0.25mm
のニツウル概紐を混在させたナイロン不織布を用いた。
In order to demonstrate the effects of the present invention, the battery (A) according to the present invention shown in FIG.
a Conventional battery using non-woven fabric that does not contain Iff (
B) and (C) were produced. In these batteries,
<8> For (10), nylon nonwoven fabric with a thickness of 0.2n+m, for (9), three sheets of polypropylene microporous membrane separators for (Δ) and (B), and for (C)
For this, 5 sheets were stacked and used. Note that the battery (A) according to the present invention has a thickness of 0.25 mm according to the example as (8).
A nylon nonwoven fabric mixed with Nitsuur yarn was used.

電池の容量はいずれも10Ahとした。The capacity of each battery was 10 Ah.

これら(△)(B)(C)の電池を室温において2Aで
6時間充電した後、5Aで電池電圧が1、Ovになるま
で放電し、初期放電特性を調ベノζ。
After charging these (Δ), (B), and (C) batteries at room temperature for 6 hours at 2A, they were discharged at 5A until the battery voltage reached 1.0V, and the initial discharge characteristics were measured.

結果は第2図に示す通りで、本発明品(A)と従来品(
B)とはほとんど差がなかったが、従来品(C)につい
ては、微孔性膜状レバレータを5重に使用したため、内
部抵抗が大きくなり、<A)(B)電池より悪い特性を
示した。次に3八で4時間充電し、3Aで電池電圧が1
.Ovになるまで放電環る充放電リイクル試験を35℃
で行ない、電池容量の低下の様子を調べた。 結果は第
3図に示づ−通りで、いずれの電池も次第に容量は低下
するが、従来品(B)は約250回で短絡により、また
(C)は初期より容■が少なかったが約420回で同じ
く短絡により寿命が尽きた。しかし本発明品(A>は約
500回の充放電においても、放電容量は公称容ff1
lOAhの約80%を維持した。以」二の様に本発明は
電池の内部短絡を防止し、長存命のニッケル亜鉛電池を
提供するものである。
The results are shown in Figure 2, and the results are as follows: the present invention product (A) and the conventional product (
There was almost no difference from battery B), but because the conventional product (C) used five layers of microporous membrane levers, the internal resistance increased, and the battery had worse characteristics than battery A) and battery B). Ta. Next, I charged it for 4 hours at 38, and the battery voltage was 1 at 3A.
.. A charge/discharge recycle test is performed at 35°C until the discharge reaches Ov.
We investigated the decline in battery capacity. The results are as shown in Figure 3.The capacity of all batteries gradually decreases, but the conventional product (B) has a short circuit after about 250 cycles, and the battery (C) has a smaller capacity than the initial one, but it decreases after about 250 cycles. After 420 cycles, the life span also expired due to a short circuit. However, the product of the present invention (A>) has a discharge capacity of nominal capacity ff1 even after approximately 500 charging and discharging
Approximately 80% of lOAh was maintained. As described above, the present invention prevents internal short circuits in the battery and provides a long-life nickel-zinc battery.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明によるニッケル亜鉛電池の一実施例を示
す図で、第2図および第3図は本発明による電池と従来
の電池との14性の比較図である。 1・・・・・・正極板、3.・・・・・・負極板、8・
・・・・・金属製繊維を混在させた不織イ11. 9・
・・・・・微孔性膜状レバレータ、10・・・・・・不
織布
FIG. 1 is a diagram showing one embodiment of a nickel-zinc battery according to the present invention, and FIGS. 2 and 3 are comparison diagrams of the battery according to the present invention and a conventional battery. 1... Positive electrode plate, 3.・・・・・・Negative electrode plate, 8・
・・・・・・Non-woven material mixed with metal fibers11. 9・
...Microporous membrane leverator, 10...Nonwoven fabric

Claims (1)

【特許請求の範囲】[Claims] ニッケル、ステンレススヂールなどの金IN NM+ 
tfflを混在させた不i孔を微孔性膜状セパレータと
共に正、負極間に介在させIにとを特徴とづ−るニッケ
ル亜鉛電池。
Gold IN NM+ such as nickel and stainless steel
A nickel-zinc battery characterized by having pores mixed with tffl interposed between positive and negative electrodes together with a microporous membrane separator.
JP58028797A 1983-02-22 1983-02-22 Nickel zinc battery Pending JPS59154752A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58028797A JPS59154752A (en) 1983-02-22 1983-02-22 Nickel zinc battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58028797A JPS59154752A (en) 1983-02-22 1983-02-22 Nickel zinc battery

Publications (1)

Publication Number Publication Date
JPS59154752A true JPS59154752A (en) 1984-09-03

Family

ID=12258411

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58028797A Pending JPS59154752A (en) 1983-02-22 1983-02-22 Nickel zinc battery

Country Status (1)

Country Link
JP (1) JPS59154752A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100446304C (en) * 2003-03-07 2008-12-24 鸿富锦精密工业(深圳)有限公司 Battery partitioning board
JP2018152175A (en) * 2017-03-10 2018-09-27 日立化成株式会社 Zinc negative electrode secondary battery

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100446304C (en) * 2003-03-07 2008-12-24 鸿富锦精密工业(深圳)有限公司 Battery partitioning board
JP2018152175A (en) * 2017-03-10 2018-09-27 日立化成株式会社 Zinc negative electrode secondary battery

Similar Documents

Publication Publication Date Title
EP2822086B1 (en) Liquid holding body for lithium secondary batteries, and lithium secondary battery
EP0916164A1 (en) Calcium-zincate electrode for alkaline batteries and method for making same
US20050287438A1 (en) Alkaline electrochemical cell with improved lifetime
WO2007010821A1 (en) Electromotive device
JPS59154752A (en) Nickel zinc battery
JPS62291871A (en) Enclosed type nickel-cadmium storage battery
EP1022790A2 (en) Alkaline storage battery and manufacturing method of the same
JPH11307116A (en) Cadmium negative electrode for alkaline storage battery
JPH10106545A (en) Organic electrolyte secondary battery and manufacture of electrode thereof
JP2020061224A (en) Method of manufacturing nickel metal hydride storage battery
JP3436058B2 (en) Alkaline storage battery
JPH10106527A (en) Alkaline storate battery
JP3031156B2 (en) Alkaline storage battery
JP2001283902A (en) Alkaline battery
JPS58126667A (en) Nickel zinc battery
JPH06283194A (en) Sealed alkaline zinc storage battery
JP4400113B2 (en) Nickel-hydrogen battery manufacturing method
JPH071732Y2 (en) Alkaline zinc secondary battery
JPS58165244A (en) Nickel-zinc battery
KR20230044876A (en) Electrode plate manufacturing method of lead-acid battery using carbon paper
JP2689598B2 (en) Cylindrical sealed nickel-cadmium storage battery and its manufacturing method
JPS59154755A (en) Nichel zinc battery
JPS58165243A (en) Nickel-zinc battery
JPH0410176B2 (en)
JPH08203515A (en) Manufacture of nickel electrode