JP7002203B2 - Fiber reinforced plastic composition - Google Patents

Fiber reinforced plastic composition Download PDF

Info

Publication number
JP7002203B2
JP7002203B2 JP2017039133A JP2017039133A JP7002203B2 JP 7002203 B2 JP7002203 B2 JP 7002203B2 JP 2017039133 A JP2017039133 A JP 2017039133A JP 2017039133 A JP2017039133 A JP 2017039133A JP 7002203 B2 JP7002203 B2 JP 7002203B2
Authority
JP
Japan
Prior art keywords
fiber
aromatic polyamide
resin composition
resin
fibers
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2017039133A
Other languages
Japanese (ja)
Other versions
JP2018039972A (en
Inventor
尚光 村山
悠生 水田
嘉仁 木皿
夕哉 正鋳
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Teijin Ltd
Original Assignee
Teijin Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Teijin Ltd filed Critical Teijin Ltd
Publication of JP2018039972A publication Critical patent/JP2018039972A/en
Application granted granted Critical
Publication of JP7002203B2 publication Critical patent/JP7002203B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Description

本発明は、低温から高温までの幅広い範囲で使用することができる繊維強化樹脂組成物に関する。さらに詳しくは、本発明は、部品同士が接触した場合に、相手材を傷つけることが少なく、動力伝達用の部品に用いることが可能である繊維強化樹脂組成物に関する。 The present invention relates to a fiber reinforced resin composition that can be used in a wide range from low temperature to high temperature. More specifically, the present invention relates to a fiber reinforced resin composition that is less likely to damage the mating material when the parts come into contact with each other and can be used as a part for power transmission.

繊維強化成形品は、軽量性、高度な機械物性、易加工性、耐食性などの優れた特長を有し、自動車部材など様々な産業用部材として利用されている。その具体例として、熱可塑性樹脂を、炭素繊維と有機繊維で補強した繊維強化樹脂成形品が挙げられる(例えば、特許文献1や特許文献2)。しかしながら、成形品中の炭素繊維の平均繊維長が0.3~1.5mmと長いため、相手材への傷つけ性が高かった。そのため、相手材の硬質化処理対応が必要となり、コストアップにつながっていた。 Fiber reinforced molded products have excellent features such as light weight, high mechanical properties, easy workability, and corrosion resistance, and are used as various industrial parts such as automobile parts. Specific examples thereof include fiber-reinforced resin molded products in which a thermoplastic resin is reinforced with carbon fibers and organic fibers (for example, Patent Document 1 and Patent Document 2). However, since the average fiber length of the carbon fibers in the molded product is as long as 0.3 to 1.5 mm, the damage to the mating material is high. Therefore, it is necessary to deal with the hardening treatment of the mating material, which leads to an increase in cost.

特許第5633660号Patent No. 5633660 特開2009-256827号公報Japanese Unexamined Patent Publication No. 2009-256827

本発明の目的は、低温から高温の広い温度範囲での曲げ特性、耐衝撃性、相手材への傷つけ性を大幅に改良した繊維強化樹脂組成物およびその成形品を提供することにある。 An object of the present invention is to provide a fiber reinforced resin composition having significantly improved bending characteristics, impact resistance, and damage to a mating material in a wide temperature range from low temperature to high temperature, and a molded product thereof.

本発明は、熱可塑性樹脂、炭素繊維および共重合芳香族ポリアミド繊維を含有し、
熱可塑性樹脂がポリアミド樹脂であり、
炭素繊維の繊維長が0.1~0.3mmであり、
共重合芳香族ポリアミド繊維の繊維長が0.5~5.0mmの範囲であり、
共重合芳香族ポリアミド繊維が、コポリパラフェニレン3,4’-オキシジフェニレンテレフタラアミド繊維であり、
共重合芳香族ポリアミド繊維は、総繊度800~25,000dtexであり、かつ表面にポリウレタン樹脂が1~20重量%付着している繊維束として用いられフィブリル化された繊維であって、主たる繊維および該主たる繊維の直径の8%未満の太さのフィブリル繊維を含有し、主たる繊維の直径が、フィブリル化前の繊維の直径の95%以上であることを特徴とする樹脂組成物である。
また本発明は、上記樹脂組成物からなる成形品である。
また本発明は、熱可塑性樹脂、炭素繊維および共重合芳香族ポリアミド繊維を溶融混練する工程を含み、
熱可塑性樹脂がポリアミド樹脂であり、
炭素繊維の繊維長が0.1~0.3mmであり、
共重合芳香族ポリアミド繊維の繊維長が0.5~5.0mmの範囲であり、
共重合芳香族ポリアミド繊維が、コポリパラフェニレン3,4’-オキシジフェニレンテレフタラアミド繊維であり、
共重合芳香族ポリアミド繊維が繊維束であり、繊維束の総繊度は、800~25,000dtexであり、繊維束の表面にはポリウレタン樹脂が1~20重量%付着している、
樹脂組成物の製造方法である。
また本発明は、上記樹脂組成物を、溶融し、成形する各工程を含む、成形品の製造方法である。
The present invention contains thermoplastic resins, carbon fibers and copolymerized aromatic polyamide fibers.
The thermoplastic resin is a polyamide resin,
The fiber length of the carbon fiber is 0.1 to 0.3 mm,
The fiber length of the copolymerized aromatic polyamide fiber is in the range of 0.5 to 5.0 mm, and the fiber length is in the range of 0.5 to 5.0 mm.
The copolymerized aromatic polyamide fiber is a copolyparaphenylene 3,4'-oxydiphenylene terephthalamide fiber.
The copolymerized aromatic polyamide fiber is a fibrillated fiber having a total fineness of 800 to 25,000 dtex and having 1 to 20% by weight of polyurethane resin adhered to the surface thereof, and is a main fiber. The resin composition comprises fibril fibers having a thickness of less than 8% of the diameter of the main fiber, and the diameter of the main fiber is 95% or more of the diameter of the fiber before fibrillation.
Further, the present invention is a molded product made of the above resin composition.
The present invention also includes a step of melt-kneading a thermoplastic resin, carbon fibers and a copolymerized aromatic polyamide fiber.
The thermoplastic resin is a polyamide resin,
The fiber length of the carbon fiber is 0.1 to 0.3 mm,
The fiber length of the copolymerized aromatic polyamide fiber is in the range of 0.5 to 5.0 mm, and the fiber length is in the range of 0.5 to 5.0 mm.
The copolymerized aromatic polyamide fiber is a copolyparaphenylene 3,4'-oxydiphenylene terephthalamide fiber.
The copolymerized aromatic polyamide fiber is a fiber bundle, the total fineness of the fiber bundle is 800 to 25,000 dtex, and 1 to 20% by weight of polyurethane resin is adhered to the surface of the fiber bundle.
This is a method for producing a resin composition.
Further, the present invention is a method for producing a molded product, which comprises each step of melting and molding the resin composition.

本発明の樹脂組成物は、剛性の高い炭素繊維と、共重合芳香族ポリアミド繊維とを含有するので、低温から高温の広い温度範囲での曲げ特性、耐衝撃性、相手材への傷つけ性に優れる。 Since the resin composition of the present invention contains carbon fibers having high rigidity and copolymerized aromatic polyamide fibers, it has excellent bending properties, impact resistance, and damage to the mating material in a wide temperature range from low temperature to high temperature. Excellent.

<樹脂組成物>
本発明の樹脂組成物は、熱可塑性樹脂、炭素繊維および共重合芳香族ポリアミド繊維を含有し、炭素繊維の繊維長が0.1~0.3mm、共重合芳香族ポリアミド繊維の繊維長が0.5~5.0mmの範囲である。
(熱可塑性樹脂)
熱可塑性樹脂として、ポリオレフィン樹脂、ポリスチレン樹脂、ポリアミド樹脂、ハロゲン化ビニル樹脂、ポリアセタール樹脂、飽和ポリエステル樹脂、ポリカーボネート樹脂、ポリアリールスルホン樹脂、ポリアリールケトン樹脂、ポリフェニレンエーテル樹脂、ポリフェニレンスルフィド樹脂、ポリアリールエーテルケトン樹脂、ポリエーテルスルホン樹脂、ポリフェニレンサルファイドスルフォン樹脂、ポリアリレート樹脂、ポリアミド樹脂、液晶ポリエステル樹脂、フッ素樹脂等が挙げられる。これらを2種以上用いることもできる。これらの中でも、低温から高温までの幅広い範囲で使用できる耐熱性の観点から、ポリアミド系樹脂やポリフェニレンスルフィド樹脂(PPS樹脂)が好ましい。
熱可塑性樹脂の融点は、200~300℃であることが好ましく、さらには220~260℃の範囲であることが好ましい。融点が高いほど、得られる繊維強化樹脂の耐熱性を高めることができるものの、高すぎると加工性は低下する傾向にある。
<Resin composition>
The resin composition of the present invention contains a thermoplastic resin, carbon fibers and a copolymerized aromatic polyamide fiber, the fiber length of the carbon fiber is 0.1 to 0.3 mm, and the fiber length of the copolymerized aromatic polyamide fiber is 0. It is in the range of .5 to 5.0 mm.
(Thermoplastic resin)
As the thermoplastic resin, polyolefin resin, polystyrene resin, polyamide resin, vinyl halide resin, polyacetal resin, saturated polyester resin, polycarbonate resin, polyarylsulfone resin, polyarylketone resin, polyphenylene ether resin, polyphenylene sulfide resin, polyaryl ether Examples thereof include ketone resins, polyether sulfone resins, polyphenylene sulfide sulfone resins, polyarylate resins, polyamide resins, liquid crystal polyester resins, and fluororesins. Two or more of these can also be used. Among these, polyamide-based resins and polyphenylene sulfide resins (PPS resins) are preferable from the viewpoint of heat resistance that can be used in a wide range from low temperature to high temperature.
The melting point of the thermoplastic resin is preferably 200 to 300 ° C, more preferably 220 to 260 ° C. The higher the melting point, the higher the heat resistance of the obtained fiber reinforced resin, but if it is too high, the processability tends to decrease.

本発明においては、耐熱性や強度に優れるという点から、200℃以上の融点を有するポリアミド樹脂が特に有用である。その具体的な例としては、ポリカプロアミド(ナイロン6)、ポリヘキサメチレンアジパミド(ナイロン66)、ポリカプロアミド/ポリヘキサメチレンアジパミドコポリマー(ナイロン6/66)、ポリテトラメチレンアジパミド(ナイロン46)、ポリヘキサメチレンセバカミド(ナイロン610)、ポリヘキサメチレンドデカミド(ナイロン612)、ポリヘキサメチレンテレフタルアミド/ポリカプロアミドコポリマー(ナイロン6T/6)、ポリヘキサメチレンアジパミド/ポリヘキサメチレンテレフタルアミドコポリマー(ナイロン66/6T)、ポリヘキサメチレンアジパミド/ポリヘキサメチレンイソフタルアミドコポリマー(ナイロン66/6I)、ポリヘキサメチレンアジパミド/ポリヘキサメチレンテレフタルアミド/ポリヘキサメチレンイソフタルアミドコポリマー(ナイロン66/6T/6I)、ポリヘキサメチレンテレフタルアミド/ポリヘキサメチレンイソフタルアミドコポリマー(ナイロン6T/6I)、ポリヘキサメチレンテレフタルアミド/ポリドデカンアミドコポリマー(ナイロン6T/12)、ポリヘキサメチレンテレフタルアミド/ポリ(2-メチルペンタメチレン)テレフタルアミドコポリマー(ナイロン6T/M5T)、ポリキシリレンアジパミド(ナイロンXD6)、ポリノナメチレンテレフタルアミド(ナイロン9T)およびこれらの共重合体などが挙げられる。これらを2種以上用いてもよい。これらの中でも、ナイロン6、ナイロン66がより好ましい。 In the present invention, a polyamide resin having a melting point of 200 ° C. or higher is particularly useful from the viewpoint of excellent heat resistance and strength. Specific examples thereof include polycaproamide (nylon 6), polyhexamethylene adipamide (nylon 66), polycaproamide / polyhexamethylene adipamide copolymer (nylon 6/66), and polytetramethylene adipa. Mido (nylon 46), polyhexamethylene sebacamide (nylon 610), polyhexamethylene dodecamide (nylon 612), polyhexamethylene terephthalamide / polycaproamide copolymer (nylon 6T / 6), polyhexamethylene adipamide / Polyhexamethylene terephthalamide copolymer (nylon 66 / 6T), polyhexamethylene adipamide / polyhexamethylene isophthalamide copolymer (nylon 66 / 6I), polyhexamethylene adipamide / polyhexamethylene terephthalamide / polyhexamethylene Isophthalamide copolymer (nylon 66 / 6T / 6I), polyhexamethylene terephthalamide / polyhexamethylene isophthalamide copolymer (nylon 6T / 6I), polyhexamethylene terephthalamide / polydodecaneamide copolymer (nylon 6T / 12), polyhexa Methylene terephthalamide / poly (2-methylpentamethylene) terephthalamide copolymer (nylon 6T / M5T), polyxylylene adipamide (nylon XD6), polynonamethylene terephthalamide (nylon 9T) and copolymers thereof Can be mentioned. Two or more of these may be used. Among these, nylon 6 and nylon 66 are more preferable.

(炭素繊維)
炭素繊維として、PAN系炭素繊維、ピッチ系炭素繊維、セルロース系炭素繊維、気相成長系炭素繊維、これらの黒鉛化繊維などが挙げられる。
PAN系炭素繊維は、ポリアクリロニトリル繊維を原料とする炭素繊維である。ピッチ系炭素繊維は、石油タールや石油ピッチを原料とする炭素繊維である。セルロース系炭素繊維は、ビスコースレーヨンや酢酸セルロースなどを原料とする炭素繊維である。気相成長系炭素繊維は、炭化水素などを原料とする炭素繊維である。これらのうち、強度と弾性率のバランスに優れる点で、PAN系炭素繊維が好ましい。また、導電性を付与する目的では、ニッケル、銅またはイッテルビウムなどの金属を被覆した炭素繊維を用いることもできる。
炭素繊維の平均繊維径は特に限定されないが、成形品の力学特性と表面外観の観点から、1~20μmが好ましく、3~15μmがより好ましい。
また炭素繊維は、引張強度3000MPa以上、弾性率200GPa以上であることが好ましい。
(Carbon fiber)
Examples of the carbon fiber include PAN-based carbon fiber, pitch-based carbon fiber, cellulose-based carbon fiber, gas phase growth-based carbon fiber, and graphitized fiber thereof.
The PAN-based carbon fiber is a carbon fiber made from polyacrylonitrile fiber. Pitch-based carbon fiber is carbon fiber made from petroleum tar or petroleum pitch. Cellulose-based carbon fibers are carbon fibers made from viscose rayon, cellulose acetate, or the like. The vapor phase growth type carbon fiber is a carbon fiber made from a hydrocarbon or the like as a raw material. Of these, PAN-based carbon fibers are preferable because they have an excellent balance between strength and elastic modulus. Further, for the purpose of imparting conductivity, carbon fibers coated with a metal such as nickel, copper or ytterbium can also be used.
The average fiber diameter of the carbon fiber is not particularly limited, but is preferably 1 to 20 μm, more preferably 3 to 15 μm, from the viewpoint of the mechanical properties of the molded product and the surface appearance.
Further, the carbon fiber preferably has a tensile strength of 3000 MPa or more and an elastic modulus of 200 GPa or more.

炭素繊維の繊維長は0.1~0.3mmであり、好ましくは0.15~0.25mmである。炭素繊維の繊維長が0.1mm未満では、得られる繊維強化樹脂の曲げ弾性が低下する傾向にあり、0.3mmを超えると、相手材を傷つけやすくなる傾向にある。繊維強化樹脂中の単位体積あたりの炭素繊維の本数が少なくなるため、樹脂リッチな部分が存在する。そのため、相手材と接触するときに、炭素繊維側に応力が集中しやすくなり、傷つけやすくなる傾向にある。また炭素繊維のL/D{アスペクト比=繊維長さ(L)/繊維径(D)}は、10~50であることが好ましく、20~40であることがより好ましい。
また、炭素繊維の繊維長が0.1~0.3mm、かつ、そのL/Dが10~50にあることで、熱可塑性樹脂の単位体積あたりの炭素繊維の本数が多くなるため、局所的に応力を受けるような場合においても、機械特性が向上する。また、有機繊維に比べて、耐熱性が格段に高いので、低温から高温までの幅広い範囲で使用することができる。
炭素繊維とマトリックス樹脂である熱可塑性樹脂の接着性を向上する等の目的で、炭素繊維は表面処理されたものも好ましい。表面処理の方法としては、例えば、電解処理、オゾン処理、紫外線処理等を挙げることができる。
The fiber length of the carbon fiber is 0.1 to 0.3 mm, preferably 0.15 to 0.25 mm. If the fiber length of the carbon fiber is less than 0.1 mm, the bending elasticity of the obtained fiber reinforced resin tends to decrease, and if it exceeds 0.3 mm, the mating material tends to be easily damaged. Since the number of carbon fibers per unit volume in the fiber reinforced resin is reduced, there is a resin-rich portion. Therefore, when it comes into contact with the mating material, stress tends to be concentrated on the carbon fiber side, and it tends to be easily damaged. The L / D {aspect ratio = fiber length (L) / fiber diameter (D)} of the carbon fiber is preferably 10 to 50, more preferably 20 to 40.
Further, since the fiber length of the carbon fibers is 0.1 to 0.3 mm and the L / D is 10 to 50, the number of carbon fibers per unit volume of the thermoplastic resin increases, so that it is local. Mechanical properties are improved even when stress is applied to the carbon fiber. Moreover, since it has much higher heat resistance than organic fibers, it can be used in a wide range from low temperature to high temperature.
Surface-treated carbon fibers are also preferable for the purpose of improving the adhesiveness between the carbon fibers and the thermoplastic resin which is a matrix resin. Examples of the surface treatment method include electrolytic treatment, ozone treatment, ultraviolet treatment, and the like.

(共重合芳香族ポリアミド繊維)
本発明で用いる芳香族ポリアミド繊維とは、ポリアミドを構成する繰返し単位の80モル%以上好ましくは90モル%以上が、芳香族コポリアミドからなる繊維である。ここで繊維となる芳香族基は同一または相異なる芳香族基からなるものでも構わない。また、芳香族基の水素原子は、ハロゲン原子、低級アルキル基、フェニル基で置換されていても良い。
本発明で用いる共重合芳香族ポリアミド繊維としては、コポリパラフェニレン・3,4’-オキシジフェニレンテレフタルアミド繊維が好ましい。共重合芳香族ポリアミド繊維として、コポリパラフェニレン・3,4’-オキシジフェニレンテレフタラミド繊維を用いることにより、耐衝撃性を向上させることができる。また共重合芳香族ポリアミド繊維は、炭素繊維に比べて剛性も低いので、相手材への攻撃性を少なくすることができる。コポリパラフェニレン・3,4’-オキシジフェニレンテレフタルアミド繊維として、例えば、帝人テクノプロダクツ(株)製、「テクノーラ」が例示される。
共重合芳香族ポリアミド繊維の繊維長は、0.5~5.0mmであり、好ましくは1.0~3.0μmである。繊維長が0.5mm未満では得られる樹脂組成物の耐衝撃性が低下する傾向にあり、5.0mmを超えると、樹脂組成物の破断時の断面積あたりの共重合芳香族ポリアミド繊維の本数が少なくなるため、やはり耐衝撃性が低下する傾向にある。
共重合芳香族ポリアミド繊維の総繊度は、800~25,000dtexであることが好ましい。また共重合芳香族ポリアミド繊維束の表面にあらかじめポリウレタン樹脂が1~20重量%付着していることが好ましい。
(Copolymerized aromatic polyamide fiber)
The aromatic polyamide fiber used in the present invention is a fiber in which 80 mol% or more, preferably 90 mol% or more of the repeating unit constituting the polyamide is composed of an aromatic copolyamide. Here, the aromatic group used as the fiber may be composed of the same or different aromatic groups. Further, the hydrogen atom of the aromatic group may be substituted with a halogen atom, a lower alkyl group or a phenyl group.
As the copolymerized aromatic polyamide fiber used in the present invention, copolyparaphenylene 3,4'-oxydiphenylene terephthalamide fiber is preferable. Impact resistance can be improved by using copolyparaphenylene 3,4'-oxydiphenylene terephthalamide fiber as the copolymerized aromatic polyamide fiber. Further, since the copolymerized aromatic polyamide fiber has a lower rigidity than the carbon fiber, the aggression to the mating material can be reduced. Examples of the copolyparaphenylene 3,4'-oxydiphenylene terephthalamide fiber include "Technora" manufactured by Teijin Techno-Products Co., Ltd.
The fiber length of the copolymerized aromatic polyamide fiber is 0.5 to 5.0 mm, preferably 1.0 to 3.0 μm. If the fiber length is less than 0.5 mm, the impact resistance of the obtained resin composition tends to decrease, and if it exceeds 5.0 mm, the number of copolymerized aromatic polyamide fibers per cross-sectional area of the resin composition at break time. As the amount of the material decreases, the impact resistance tends to decrease.
The total fineness of the copolymerized aromatic polyamide fiber is preferably 800 to 25,000 dtex. Further, it is preferable that 1 to 20% by weight of the polyurethane resin is previously adhered to the surface of the copolymerized aromatic polyamide fiber bundle.

共重合芳香族ポリアミド繊維の集束体の単繊維繊度は、0.1~5.5dtex、好ましくは0.3dtex~2.5dtexの範囲である。0.1dtex未満の場合は製糸技術上困難な点が多く、断糸や毛羽が発生して良好な品質の繊維を安定して生産することが困難になるだけでなく、コストも高くなるため好ましくない。一方、5.5dtexを超えると繊維の機械的物性、特に強度低下が大きくなり、かつ繊維強化樹脂成形体とした時に、成形体中に均一に繊維を分散させることが困難となるため好ましくない。
共重合芳香族ポリアミド繊維の集束体の集束剤として使用するポリウレタン樹脂は100%モジュラスが好ましくは0.1~10MPa、より好ましくは0.5~5MPa、さらに好ましくは0.5~3.0MPaである。
また、ポリウレタン樹脂の付着量は、共重合芳香族ポリアミド繊維の全重量に対して1~20重量%であることが必要である。好ましくは2~19重量%、更に好ましくは3~18重量%である。付着量が1重量%未満の場合、短繊維の集束性が不十分となり、ばらけ易く、ハンドリング性が悪化したり、樹脂ペレットと混合する工程において容易に短繊維集束体が開繊し、繊維塊状物が発生するなどの問題が生じ、また、付着量が20重量%を超えると、製造が困難となるため好ましくない。
集束剤を付与した共重合芳香族ポリアミド繊維の集束体の乾燥方法としては、加熱した金属ロール等に接触させる方法、非接触のヒーター中に通す方法、高温のスチームを付与する方法等が挙げられる。また、円柱形状の短繊維集束体を得やすくする為に、乾燥工程の前に円形のノズルガイドを通しても良い。また円柱状の穴を有する加熱された金型に通しても良い。いずれの方法を用いる場合でも温度は120℃~200℃、滞留時間0.05~10分の条件で乾燥させることが好ましい。集束剤の付着量に応じて適宜調整した上で条件は設定することが必要である。
The single fiber fineness of the aggregate of the copolymerized aromatic polyamide fiber is in the range of 0.1 to 5.5 dtex, preferably 0.3 dtex to 2.5 dtex. If it is less than 0.1 dtex, there are many difficult points in the silk-reeling technology, and not only is it difficult to stably produce fibers of good quality due to yarn breakage and fluffing, but also the cost is high, which is preferable. do not have. On the other hand, if it exceeds 5.5 dtex, the mechanical properties of the fiber, particularly the decrease in strength, becomes large, and when the fiber-reinforced resin molded body is formed, it becomes difficult to uniformly disperse the fiber in the molded body, which is not preferable.
The polyurethane resin used as the sizing agent for the copolyaromatic polyamide fiber is preferably 100% modulus, preferably 0.1 to 10 MPa, more preferably 0.5 to 5 MPa, still more preferably 0.5 to 3.0 MPa. be.
Further, the amount of the polyurethane resin adhered needs to be 1 to 20% by weight based on the total weight of the copolymerized aromatic polyamide fiber. It is preferably 2 to 19% by weight, more preferably 3 to 18% by weight. When the amount of adhesion is less than 1% by weight, the sizing property of the short fibers becomes insufficient, the fibers are easily disintegrated, the handling property is deteriorated, and the staples are easily opened in the step of mixing with the resin pellets, and the fibers are separated. Problems such as the generation of lumps occur, and if the adhered amount exceeds 20% by weight, production becomes difficult, which is not preferable.
Examples of the method for drying the focused body of the copolymerized aromatic polyamide fiber to which the sizing agent is applied include a method of bringing it into contact with a heated metal roll or the like, a method of passing it through a non-contact heater, a method of applying high temperature steam, and the like. .. Further, in order to facilitate obtaining a columnar staple fiber bundle, a circular nozzle guide may be passed before the drying step. It may also be passed through a heated mold having a columnar hole. Regardless of which method is used, it is preferable to dry under the conditions of a temperature of 120 ° C. to 200 ° C. and a residence time of 0.05 to 10 minutes. It is necessary to set the conditions after appropriately adjusting according to the amount of the sizing agent attached.

またカットの方法としては、共重合芳香族ポリアミド繊維の切断が可能ないずれのカッターを用いてカットしてもよく、具体的にはロータリーカッター、ギロチンカッター等を用いてカットすればよい。
共重合芳香族ポリアミド繊維とポリアミド系樹脂とを複合することにより、製造時の取扱性が良好で、成形体中で繊維が均一に分散・配置され、機械的強度にも優れた樹脂組成物を得ることができる。
この共重合芳香族ポリアミド繊維は、その主たる繊維の直径の8%未満の太さのフィブリル繊維を含有するものであることが好ましい。樹脂組成物中に最終的にこのようなフィブリル繊維を有していることにより、機械強度とともに耐摩耗性に非常に優れた樹脂組成物となる。このようなフィブリル繊維は、物理的な力によって繊維が繊維軸方向に裂けて細繊度の繊維成分が生じ、フィブリル化しているものである。
As a cutting method, any cutter capable of cutting the copolymerized aromatic polyamide fiber may be used for cutting, and specifically, a rotary cutter, a guillotine cutter or the like may be used for cutting.
By combining the copolymerized aromatic polyamide fiber and the polyamide-based resin, a resin composition having good handleability at the time of manufacture, the fibers being uniformly dispersed and arranged in the molded body, and excellent mechanical strength can be obtained. Obtainable.
The copolymerized aromatic polyamide fiber preferably contains a fibril fiber having a thickness of less than 8% of the diameter of the main fiber. By finally having such fibril fibers in the resin composition, the resin composition is extremely excellent in mechanical strength and wear resistance. In such a fibril fiber, the fiber is torn in the fiber axis direction by a physical force to generate a fiber component having a fine fineness, and the fiber is fibrillated.

なお、融点が低い繊維では、熱可塑性樹脂との溶融混練工程において、熱で容易に溶解するため、樹脂組成物中ではフィブリル繊維は発生しない。また炭素繊維のような無機繊維では、主たる繊維の直径の8%未満の太さとなるような細いフィルリルとならない。物理的な力によって、容易に折損して粉砕されるからである。
フィブリル繊維の直径としては、せいぜいフィブリル化を生じた太い繊維の直径の8%未満の直径であって、さらには5%未満の直径のフィブリル繊維であることが好ましい。あるいはフィブリル繊維の直径が1μm未満、さらには0.05~0.6μmの範囲にあることが好ましい。
またこのようなフィブリル繊維の存在量としては、繊維10mmあたり100本以下であることが好ましい。さらには繊維10mmあたり1~10本、特には1~5本の範囲であることが好ましい。ここでフィブリル繊維の測定法は、樹脂組成物からマトリックス樹脂を溶解除去した後、取りだした繊維を電子顕微鏡像にて500倍に拡大し、10本の繊維を選択し、各繊維1000μmずつフィブリル繊維の本数を測定して合計したものである(1000μm×10本=10mm)。
In addition, since the fiber having a low melting point is easily melted by heat in the melt-kneading step with the thermoplastic resin, fibril fiber is not generated in the resin composition. Inorganic fibers such as carbon fibers do not have a thin filril having a thickness of less than 8% of the diameter of the main fiber. This is because it is easily broken and crushed by physical force.
The diameter of the fibril fiber is preferably less than 8% of the diameter of the thick fibrilized fiber, and more preferably less than 5% in diameter. Alternatively, the diameter of the fibril fiber is preferably less than 1 μm, more preferably in the range of 0.05 to 0.6 μm.
Further, the abundance of such fibril fibers is preferably 100 or less per 10 mm of fibers. Further, it is preferably in the range of 1 to 10 fibers, particularly 1 to 5 fibers per 10 mm of fiber. Here, the method for measuring fibril fibers is to dissolve and remove the matrix resin from the resin composition, then magnify the extracted fibers 500 times with an electron microscope image, select 10 fibers, and select 1000 μm of each fiber. The number of fibers is measured and totaled (1000 μm × 10 fibers = 10 mm).

さらに本発明の樹脂組成物では、上記のフィブリル化が繊維の一部のみに発生し、大半の繊維が元の繊維形状を保っていることが好ましい。より具体的には、フィブリル化した元の繊維、すなわちフィブリル繊維以外の有機繊維(以下、「主体繊維」ということがある)が、そのフィブリル化前、あるいは加工前の繊維直径の95%以上の直径であることが好ましい。さらには97~99.5%の範囲にあることが好ましい。
主体繊維が細すぎたり、存在比率が少なすぎたりした場合、樹脂組成物の耐衝撃性が低下する傾向にある。一方、主体繊維の比率が多すぎても得られる樹脂組成物の耐摩耗性が低下する傾向にある。
また、主体繊維の直径は1~50μmが好ましく、5~15μmがより好ましい。主体繊維の直径が細すぎると得られる樹脂組成物の耐衝撃性が低下する傾向にあり、太すぎると単位体積あたりの主体繊維の本数が少なくなるため、耐衝撃性が低下する傾向にある。
Further, in the resin composition of the present invention, it is preferable that the above-mentioned fibrillation occurs only in a part of the fibers and most of the fibers maintain the original fiber shape. More specifically, the original fibrillated fiber, that is, an organic fiber other than the fibrillated fiber (hereinafter, may be referred to as "main fiber") is 95% or more of the fiber diameter before the fibrillation or processing. It is preferably the diameter. Further, it is preferably in the range of 97 to 99.5%.
If the main fiber is too thin or the abundance ratio is too small, the impact resistance of the resin composition tends to decrease. On the other hand, even if the ratio of the main fibers is too large, the wear resistance of the obtained resin composition tends to decrease.
The diameter of the main fiber is preferably 1 to 50 μm, more preferably 5 to 15 μm. If the diameter of the main fiber is too small, the impact resistance of the obtained resin composition tends to decrease, and if it is too thick, the number of main fibers per unit volume decreases, so that the impact resistance tends to decrease.

(繊維含有率)
樹脂組成物中の繊維含有率は、熱可塑性樹脂、炭素繊維および共重合芳香族ポリアミド繊維の合計100重量部に対して、炭素繊維を5~30重量部、共重合芳香族ポリアミド繊維を1~20重量部含むことが好ましい。炭素繊維を10~20重量部、共重合芳香族ポリアミド繊維を5~15重量部含むことがより好ましい。共重合芳香族ポリアミド繊維が1重量部未満では、耐衝撃性を得ることができず、20重量部を超えると、共重合芳香族ポリアミド繊維を繊維強化樹脂中に均一に分散させることが困難になる。一方、炭素繊維が5重量部未満では、十分な曲げ特性を得ることができず、30重量部を超えると、相手材を傷つけやすくなる。
本発明の樹脂組成物は、本発明の目的を損なわない範囲で、熱可塑性樹脂、炭素繊維および共重合芳香族ポリアミド繊維以外の他の成分を含有してもよい。他の成分の例としては、炭素繊維以外の無機充填材、難燃剤、導電性付与剤、結晶核剤、紫外線吸収剤、酸化防止剤、制振剤、抗菌剤、防虫剤、防臭剤、着色防止剤、熱安定剤、離型剤、帯電防止剤、可塑剤、滑剤、着色剤、顔料、染料、発泡剤、制泡剤、あるいは、カップリング剤などが挙げられる。
(Fiber content)
The fiber content in the resin composition is 5 to 30 parts by weight for carbon fibers and 1 to 1 to 3 parts by weight for the copolymerized aromatic polyamide fibers with respect to 100 parts by weight of the total of the thermoplastic resin, the carbon fibers and the copolymerized aromatic polyamide fibers. It is preferable to include 20 parts by weight. It is more preferable to contain 10 to 20 parts by weight of carbon fibers and 5 to 15 parts by weight of copolymerized aromatic polyamide fibers. If the amount of the copolymerized aromatic polyamide fiber is less than 1 part by weight, impact resistance cannot be obtained, and if it exceeds 20 parts by weight, it becomes difficult to uniformly disperse the copolymerized aromatic polyamide fiber in the fiber reinforced resin. Become. On the other hand, if the amount of carbon fiber is less than 5 parts by weight, sufficient bending characteristics cannot be obtained, and if it exceeds 30 parts by weight, the mating material is easily damaged.
The resin composition of the present invention may contain components other than the thermoplastic resin, carbon fibers and copolymerized aromatic polyamide fibers as long as the object of the present invention is not impaired. Examples of other components include inorganic fillers other than carbon fiber, flame retardants, conductivity-imparting agents, crystal nucleating agents, ultraviolet absorbers, antioxidants, anti-vibration agents, antibacterial agents, insect repellents, deodorants, and coloring agents. Examples thereof include inhibitor, heat stabilizer, mold release agent, antistatic agent, plasticizer, lubricant, colorant, pigment, dye, foaming agent, antifoaming agent, and coupling agent.

<樹脂組成物の製造方法>
本発明の樹脂組成物は、熱可塑性樹脂、炭素繊維および共重合芳香族ポリアミド繊維を溶融混練して製造することができる。
繊維の形態は、炭素繊維や共重合芳香族ポリアミド繊維を同時に加工する際の加工性の観点から、カットファイバー(短繊維)であることが好ましく、炭素繊維の繊維長は20~100mmが好ましく、共重合芳香族ポリアミド繊維の繊維長は10~60mmが好ましい。
さらにこのような共重合芳香族ポリアミド繊維は、溶融混練工程にてフィブリル繊維が適度に発生しやすく、特に得られた成形品同士が接触した場合にも相手材を傷つけることが少ない樹脂組成物となる。
<Manufacturing method of resin composition>
The resin composition of the present invention can be produced by melt-kneading a thermoplastic resin, carbon fibers and a copolymerized aromatic polyamide fiber.
The form of the fiber is preferably a cut fiber (short fiber) from the viewpoint of processability when carbon fiber or copolymerized aromatic polyamide fiber is processed at the same time, and the fiber length of the carbon fiber is preferably 20 to 100 mm. The fiber length of the copolymerized aromatic polyamide fiber is preferably 10 to 60 mm.
Further, such a copolymerized aromatic polyamide fiber is a resin composition in which fibril fibers are appropriately generated in the melt-kneading step, and particularly when the obtained molded products come into contact with each other, the mating material is less likely to be damaged. Become.

<成形品>
本発明は、上記樹脂組成物からなる成形品を包含する。本発明の成形品は、摺動性に優れ、動力伝達用の部品として用いることができる。
<成形品の製造方法>
成形品は、上記樹脂組成物を、溶融し、成形して製造することができる。
成形方法としては、射出成形が挙げられる。
<Molded product>
The present invention includes a molded product made of the above resin composition. The molded product of the present invention has excellent slidability and can be used as a component for power transmission.
<Manufacturing method of molded products>
The molded product can be produced by melting and molding the above resin composition.
Examples of the molding method include injection molding.

以下、本発明を実施例によりさらに詳細に説明するが、本発明はこれらの例によって限定されるものではない。
(1)繊維含有率
樹脂組成物1.0gを蟻酸(88%)に入れて、常温で24時間以上放置して、樹脂成分を溶解させた。これを濾過して、ギ酸を水洗し、105℃で2時間乾燥して、繊維含有率測定用の残渣とした。
まず残渣の重量を測定し、その後さらにこの残渣を、500℃で2時間加熱して、共重合芳香族ポリアミド繊維を灰化除去して、炭素繊維のみとした。この重量を測定し、炭素繊維の重量とした。共重合芳香族ポリアミド繊維の重量は、測定用の残渣から炭素繊維の重量を引くことで求めた。
(2)繊維長
上記(1)で得られた濾過後の繊維含有率測定用の残渣をシャーレに入れて、エタノールを加えて超音波で分散後、キーエンス社製光学顕微鏡を用いて、繊維長を測定した。共重合芳香族ポリアミド繊維と炭素繊維の繊維長は、各々400本測定して、各繊維長の平均を求めた。
Hereinafter, the present invention will be described in more detail with reference to Examples, but the present invention is not limited to these examples.
(1) Fiber content 1.0 g of the resin composition was put into formic acid (88%) and left at room temperature for 24 hours or more to dissolve the resin component. This was filtered, formic acid was washed with water, and dried at 105 ° C. for 2 hours to obtain a residue for measuring the fiber content.
First, the weight of the residue was measured, and then the residue was further heated at 500 ° C. for 2 hours to ash and remove the copolymerized aromatic polyamide fiber to obtain only carbon fiber. This weight was measured and used as the weight of carbon fiber. The weight of the copolymerized aromatic polyamide fiber was determined by subtracting the weight of the carbon fiber from the residue for measurement.
(2) Fiber length Put the residue for measuring the fiber content after filtration obtained in (1) above in a petri dish, add ethanol and disperse it with ultrasonic waves, and then use an optical microscope manufactured by KEYENCE Corporation to disperse the fiber length. Was measured. The fiber lengths of the copolymerized aromatic polyamide fiber and the carbon fiber were measured for each of 400 fibers, and the average of each fiber length was obtained.

(3)フィブリル繊維、主体繊維の測定方法
上記(1)で得られた濾過後の繊維含有率測定用の残渣について、電子顕微鏡を用いて、共重合芳香族ポリアミド繊維を500倍で観察した。そして10本の太い繊維(主体繊維)を選択し、それぞれの各主体繊維について長さ1000μmに存在するフィブリル繊維の本数と、主体繊維およびフィブリル繊維の太さをそれぞれ測定した。本数は主体繊維10mm当たりのフィブリル繊維の本数(長さ1000μm×10本=10mm)、太さは平均値とした。なおフィブリル繊維の本数は、長さ100μmあたり20本以上あるときは測定をそこで中止し、Max 2000本/10mmとした。
(4)炭素繊維のL/D
上記(2)で得られた繊維長を、炭素繊維の直径で割って、L/D(=繊維長/直径)を求めた。
(5)曲げ強度
樹脂組成物を十分に乾燥した後、ファナック製射出成形機(α-100iA)を用いて、樹脂温度280℃、金型温度80℃、成形サイクル25秒の条件で、ISO準拠の試験片を作製した。前記成形片をISO178にしたがって、曲げ強度の測定を、常温(23℃)と高温(120℃)で行った。
(6)衝撃強度
上記(5)で作製した試験片を用いて、ISO 179にしたがって、シャルピー衝撃強度の測定を行った。
(3) Method for Measuring Fibril Fiber and Main Fiber With respect to the residue for measuring the fiber content after filtration obtained in (1) above, the copolymerized aromatic polyamide fiber was observed at a magnification of 500 times using an electron microscope. Then, 10 thick fibers (main fibers) were selected, and the number of fibril fibers existing in a length of 1000 μm for each main fiber and the thickness of the main fiber and the fibril fiber were measured. The number of fibers was the number of fibril fibers per 10 mm of the main fiber (length 1000 μm × 10 fibers = 10 mm), and the thickness was an average value. When the number of fibril fibers was 20 or more per 100 μm in length, the measurement was stopped there and the maximum was 2000 fibers / 10 mm.
(4) Carbon fiber L / D
The fiber length obtained in (2) above was divided by the diameter of the carbon fiber to obtain L / D (= fiber length / diameter).
(5) Bending strength After the resin composition is sufficiently dried, it conforms to ISO under the conditions of a resin temperature of 280 ° C., a mold temperature of 80 ° C., and a molding cycle of 25 seconds using a FANUC injection molding machine (α-100iA). The test piece of was prepared. The bending strength of the molded piece was measured at room temperature (23 ° C.) and high temperature (120 ° C.) according to ISO178.
(6) Impact strength Using the test piece prepared in (5) above, the Charpy impact strength was measured according to ISO 179.

(7)相手材への傷つけ性
スラストシリンダー式摩耗試験法で実施した。得られた樹脂組成物から作製した試験片と、アルミ製筒とを、接触面圧:9.8MPa、滑り速度:0.35m/s、試験時間:10minの条件にてこすり合わせ、アルミ製筒の表面をレーザー顕微鏡にて計測した。表面の平均粗さが10μm未満を良好、平均粗さが10μm以上を不良と評価した。
(8)二軸押出機の工程通過性
二軸押出機を用いて、スクリュー回転数は250rpm、吐出量35kg/時間で溶融混練して押し出した溶融樹脂組成物が60分未満で切れた場合は不良と判断し、60分以上切れずに連続運転できた場合は良好と判断した。
(7) Damage to mating material The thrust cylinder type wear test method was used. The test piece prepared from the obtained resin composition and the aluminum cylinder were rubbed under the conditions of contact surface pressure: 9.8 MPa, slip speed: 0.35 m / s, and test time: 10 min to form an aluminum cylinder. The surface was measured with a laser microscope. When the average roughness of the surface was less than 10 μm, it was evaluated as good, and when the average roughness was 10 μm or more, it was evaluated as poor.
(8) Process passability of twin-screw extruder When the molten resin composition extruded by melt-kneading at a screw rotation speed of 250 rpm and a discharge rate of 35 kg / hour using a twin-screw extruder is cut in less than 60 minutes. It was judged to be defective, and it was judged to be good if continuous operation was possible without breaking for 60 minutes or more.

[実施例1]
共重合芳香族ポリアミド繊維として、コポリパラフェニレン・3,4’-オキシジフェニレンテレフタルアミド繊維(帝人製「テクノーラT-200H」、繊維径12μm、繊度1,670dtex、繊維本数1000本)を、3本合わせてS方向に35回/mの撚りを加えた。次いで、ポリウレタン樹脂(大日本インキ化学工業製「ボンディック8510」)をイオン交換水で固形分濃度20重量%に希釈した液に、この撚りコードを連続浸漬させて、温度150℃の乾燥機に1分間通し、処理剤付着量を13重量%の共重合芳香族ポリアミド繊維を得た。次いで、このアラミド繊維を、ギロチンカッターで3mm長にカットし、共重合芳香族ポリアミド繊維短繊維を得た。
また、炭素繊維として、炭素繊維チョップドストランド(東邦テナックス製「HT C605 6MM」、繊維長6mm、繊維径7μm)を、熱可塑性樹脂としてポリアミド6樹脂(ユニチカ製)を用いた。
次いで、熱可塑性樹脂としてポリアミド6(ユニチカ製)80重量部をクボタ社製ロスインウェイト式連続定量供給装置CE-W-1を用いて計量し、スクリュー径26mm、L/D40の同方向二軸押出機(東芝機械社製TEM26SS)の主供給口に供給し、サイドフィーダーより共重合芳香族ポリアミド繊維12.5重量部と炭素繊維7.5重量部を供給し、溶融混練をおこなった。押出機のシリンダー温度は260~290℃、スクリュー回転数は250rpm、吐出量は35kg/時間であった。
次いで、溶融樹脂組成物をダイスからストランド状に引き取った後、水槽に通して冷却固化し、それをペレタイザーでカッティングして樹脂組成物のペレットを得た。
得られたペレットを用いて、射出成形機を用いて成形品を作製して、この繊維含有率、繊維長、L/D、を求めた。また、曲げ強度(23℃、120℃)、衝撃強度、相手材への傷つけ性を評価した。評価結果を表1に示す。
[Example 1]
As a copolymerized aromatic polyamide fiber, copolyparaphenylene 3,4'-oxydiphenylene terephthalamide fiber (Teijin's "Technora T-200H", fiber diameter 12 μm, fineness 1,670 dtex, number of fibers 1000) is 3 A total of 35 twists / m was added in the S direction. Next, this twisted cord was continuously immersed in a solution obtained by diluting a polyurethane resin (“Bondic 8510” manufactured by Dainippon Ink and Chemicals Co., Ltd.) with ion-exchanged water to a solid content concentration of 20% by weight, and placed in a dryer at a temperature of 150 ° C. Through 1 minute, a copolymerized aromatic polyamide fiber having a treatment agent adhering amount of 13% by weight was obtained. Next, the aramid fiber was cut into a length of 3 mm with a guillotine cutter to obtain a copolymerized aromatic polyamide fiber staple fiber.
Further, carbon fiber chopped strand (“HT C605 6MM” manufactured by Toho Tenax, fiber length 6 mm, fiber diameter 7 μm) was used as the carbon fiber, and polyamide 6 resin (manufactured by Unitica) was used as the thermoplastic resin.
Next, 80 parts by weight of polyamide 6 (manufactured by Unitika Ltd.) as a thermoplastic resin was weighed using a loss-in-weight continuous metering supply device CE-W-1 manufactured by Kubota, and a screw diameter of 26 mm and L / D40 in the same direction were biaxial. It was supplied to the main supply port of an extruder (TEM26SS manufactured by Toshiba Machinery Co., Ltd.), and 12.5 parts by weight of a copolymerized aromatic polyamide fiber and 7.5 parts by weight of carbon fiber were supplied from a side feeder and melt-kneaded. The cylinder temperature of the extruder was 260 to 290 ° C., the screw rotation speed was 250 rpm, and the discharge rate was 35 kg / hour.
Then, the molten resin composition was taken in a strand shape from the die, passed through a water tank to be cooled and solidified, and cut with a pelletizer to obtain pellets of the resin composition.
Using the obtained pellets, a molded product was produced using an injection molding machine, and the fiber content, fiber length, and L / D were determined. Moreover, the bending strength (23 ° C., 120 ° C.), the impact strength, and the damaging property to the mating material were evaluated. The evaluation results are shown in Table 1.

[実施例2]
共重合芳香族ポリアミド繊維:炭素繊維:熱可塑性樹脂=5:10:85の組成(重量部)とし、実施例1と同様にして繊維強化樹脂を作製・評価した。評価結果を表1に示す。
[Example 2]
Copolymerized aromatic polyamide fiber: carbon fiber: thermoplastic resin = 5:10:85 composition (part by weight), and a fiber reinforced resin was prepared and evaluated in the same manner as in Example 1. The evaluation results are shown in Table 1.

[比較例1]
共重合芳香族ポリアミド繊維:炭素繊維:熱可塑性樹脂=20:0:80の組成(重量部)とし、実施例1と同様にして繊維強化樹脂を作製・評価した。評価結果を表1に示す。
[Comparative Example 1]
Copolymerized aromatic polyamide fiber: carbon fiber: thermoplastic resin = 20: 0: 80 composition (part by weight), and a fiber reinforced resin was prepared and evaluated in the same manner as in Example 1. The evaluation results are shown in Table 1.

[比較例2]
共重合芳香族ポリアミド繊維:炭素繊維:熱可塑性樹脂=0:20:80の組成(重量部)とし、実施例1と同様にして繊維強化樹脂を作製・評価した。評価結果を表1に示す。
[Comparative Example 2]
Copolymerized aromatic polyamide fiber: carbon fiber: thermoplastic resin = 0:20:80 composition (part by weight), and a fiber reinforced resin was prepared and evaluated in the same manner as in Example 1. The evaluation results are shown in Table 1.

[比較例3]
共重合芳香族ポリアミド繊維の代わりに、アラミド短繊維(パラフェニレンテレフタルアミド繊維、帝人製「トワロン1488」、繊維長6mm、繊維径12μm)を使用し、アラミド短繊維:炭素繊維:熱可塑性樹脂=25:0:75の組成(重量部)とし、実施例1と同様にして樹脂組成物を作製・評価した。評価結果を表1に示す。
[Comparative Example 3]
Instead of the copolymerized aromatic polyamide fiber, aramid short fiber (paraphenylene terephthalamide fiber, Teijin "Twaron 1488", fiber length 6 mm, fiber diameter 12 μm) is used, and aramid short fiber: carbon fiber: thermoplastic resin = The composition was 25: 0: 75 (part by weight), and a resin composition was prepared and evaluated in the same manner as in Example 1. The evaluation results are shown in Table 1.

Figure 0007002203000001
Figure 0007002203000001

本発明の樹脂組成物は、低温から高温までの幅広い範囲で使用することができる。本発明の成形品は、成形品同士が接触した場合には相手材を傷つけることが少なく、動力伝達用の部品等に用いることができる。
The resin composition of the present invention can be used in a wide range from low temperature to high temperature. The molded product of the present invention is less likely to damage the mating material when the molded products come into contact with each other, and can be used for parts for power transmission and the like.

Claims (10)

熱可塑性樹脂、炭素繊維および共重合芳香族ポリアミド繊維を含有し、
熱可塑性樹脂がポリアミド樹脂であり、
炭素繊維の繊維長が0.1~0.3mmであり、
共重合芳香族ポリアミド繊維の繊維長が0.5~5.0mmの範囲であり、
共重合芳香族ポリアミド繊維が、コポリパラフェニレン3,4’-オキシジフェニレンテレフタラアミド繊維であり、
共重合芳香族ポリアミド繊維は、総繊度800~25,000dtexであり、かつ表面にポリウレタン樹脂が1~20重量%付着している繊維束として用いられフィブリル化された繊維であって、主たる繊維および該主たる繊維の直径の8%未満の太さのフィブリル繊維を含有し、主たる繊維の直径が、フィブリル化前の繊維の直径の95%以上であることを特徴とする樹脂組成物。
Contains thermoplastic resin, carbon fiber and copolymerized aromatic polyamide fiber,
The thermoplastic resin is a polyamide resin,
The fiber length of the carbon fiber is 0.1 to 0.3 mm,
The fiber length of the copolymerized aromatic polyamide fiber is in the range of 0.5 to 5.0 mm, and the fiber length is in the range of 0.5 to 5.0 mm.
The copolymerized aromatic polyamide fiber is a copolyparaphenylene 3,4'-oxydiphenylene terephthalamide fiber.
The copolymerized aromatic polyamide fiber is a fibrillated fiber having a total fineness of 800 to 25,000 dtex and having 1 to 20% by weight of polyurethane resin adhered to the surface thereof, and is a main fiber. And a resin composition containing fibril fibers having a thickness of less than 8% of the diameter of the main fiber, wherein the diameter of the main fiber is 95% or more of the diameter of the fiber before fibrillation.
樹脂組成物全体100重量部に対し、炭素繊維を5~30重量部、共重合芳香族ポリアミド繊維を1~20重量部含有する請求項1に記載の樹脂組成物。 The resin composition according to claim 1, which contains 5 to 30 parts by weight of carbon fibers and 1 to 20 parts by weight of copolymerized aromatic polyamide fibers with respect to 100 parts by weight of the entire resin composition. 炭素繊維のL/D(アスペクト比)が、10~50である請求項1または2に記載の樹脂組成物。 The resin composition according to claim 1 or 2, wherein the L / D (aspect ratio) of the carbon fiber is 10 to 50. 熱可塑性樹脂の融点が200~300℃である請求項1~3のいずれか一項に記載の樹脂組成物。 The resin composition according to any one of claims 1 to 3, wherein the thermoplastic resin has a melting point of 200 to 300 ° C. 請求項1~4のいずれか一項に記載の樹脂組成物からなる成形品。 A molded product comprising the resin composition according to any one of claims 1 to 4. 熱可塑性樹脂、炭素繊維および共重合芳香族ポリアミド繊維を溶融混練する工程を含み、
熱可塑性樹脂がポリアミド樹脂であり、
炭素繊維の繊維長が0.1~0.3mmであり、
共重合芳香族ポリアミド繊維の繊維長が0.5~5.0mmの範囲であり、
共重合芳香族ポリアミド繊維が、コポリパラフェニレン3,4’-オキシジフェニレンテレフタラアミド繊維であり、
共重合芳香族ポリアミド繊維が繊維束であり、繊維束の総繊度は、800~25,000dtexであり、繊維束の表面にはポリウレタン樹脂が1~20重量%付着している、
樹脂組成物の製造方法。
Includes a step of melt-kneading thermoplastic resin, carbon fiber and copolymerized aromatic polyamide fiber.
The thermoplastic resin is a polyamide resin,
The fiber length of the carbon fiber is 0.1 to 0.3 mm,
The fiber length of the copolymerized aromatic polyamide fiber is in the range of 0.5 to 5.0 mm, and the fiber length is in the range of 0.5 to 5.0 mm.
The copolymerized aromatic polyamide fiber is a copolyparaphenylene 3,4'-oxydiphenylene terephthalamide fiber.
The copolymerized aromatic polyamide fiber is a fiber bundle, the total fineness of the fiber bundle is 800 to 25,000 dtex, and 1 to 20% by weight of polyurethane resin is adhered to the surface of the fiber bundle.
A method for producing a resin composition.
樹脂組成物全体100重量部に対し、炭素繊維を5~30重量部、共重合芳香族ポリアミド繊維を1~20重量部を溶融混練する請求項6に記載の樹脂組成物の製造方法。 The method for producing a resin composition according to claim 6, wherein 5 to 30 parts by weight of carbon fibers and 1 to 20 parts by weight of copolymerized aromatic polyamide fibers are melt-kneaded with respect to 100 parts by weight of the entire resin composition. 炭素繊維のL/D(アスペクト比)が、10~50である請求項6または7に記載の樹脂組成物の製造方法。 The method for producing a resin composition according to claim 6 or 7, wherein the L / D (aspect ratio) of the carbon fiber is 10 to 50. 請求項1~4のいずれか一項に記載の樹脂組成物を、溶融し、成形する各工程を含む、成形品の製造方法。 A method for producing a molded product, comprising each step of melting and molding the resin composition according to any one of claims 1 to 4. 成形が射出成形である請求項9記載の成形品の製造方法。 The method for manufacturing a molded product according to claim 9, wherein the molding is injection molding.
JP2017039133A 2016-09-01 2017-03-02 Fiber reinforced plastic composition Active JP7002203B2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016170513 2016-09-01
JP2016170513 2016-09-01

Publications (2)

Publication Number Publication Date
JP2018039972A JP2018039972A (en) 2018-03-15
JP7002203B2 true JP7002203B2 (en) 2022-01-20

Family

ID=61625404

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017039133A Active JP7002203B2 (en) 2016-09-01 2017-03-02 Fiber reinforced plastic composition

Country Status (1)

Country Link
JP (1) JP7002203B2 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009114332A (en) 2007-11-07 2009-05-28 Mitsubishi Chemicals Corp Filament-reinforced composite resin composition and molded article
JP2011089060A (en) 2009-10-23 2011-05-06 Teijin Techno Products Ltd Fiber-reinforced resin composite material
WO2014098103A1 (en) 2012-12-21 2014-06-26 東レ株式会社 Fiber-reinforced thermoplastic-resin molded article, fiber-reinforced thermoplastic-resin molding material, and method for manufacturing fiber-reinforced thermoplastic-resin molding material
JP2015220493A (en) 2014-05-14 2015-12-07 ユニチカ株式会社 Speaker diaphragm
CN105131589A (en) 2015-08-31 2015-12-09 宁波海雨新材料科技有限公司 Gas-assisted molding glass fiber reinforced nylon 6 engineering plastic and preparation method thereof

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6166743A (en) * 1984-09-10 1986-04-05 ハ−キュルス インコ−ポレ−テッド Phenol detonator heat insulating material for rocket motor
JPH05194844A (en) * 1992-01-23 1993-08-03 Japan Synthetic Rubber Co Ltd Polyamide resin composition
JPH0641427A (en) * 1992-07-22 1994-02-15 Mitsubishi Petrochem Co Ltd Polyphenylene sulfide resin composition

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009114332A (en) 2007-11-07 2009-05-28 Mitsubishi Chemicals Corp Filament-reinforced composite resin composition and molded article
JP2011089060A (en) 2009-10-23 2011-05-06 Teijin Techno Products Ltd Fiber-reinforced resin composite material
WO2014098103A1 (en) 2012-12-21 2014-06-26 東レ株式会社 Fiber-reinforced thermoplastic-resin molded article, fiber-reinforced thermoplastic-resin molding material, and method for manufacturing fiber-reinforced thermoplastic-resin molding material
JP2015220493A (en) 2014-05-14 2015-12-07 ユニチカ株式会社 Speaker diaphragm
CN105131589A (en) 2015-08-31 2015-12-09 宁波海雨新材料科技有限公司 Gas-assisted molding glass fiber reinforced nylon 6 engineering plastic and preparation method thereof

Also Published As

Publication number Publication date
JP2018039972A (en) 2018-03-15

Similar Documents

Publication Publication Date Title
JP5633660B1 (en) Fiber-reinforced thermoplastic resin molded article, fiber-reinforced thermoplastic resin molding material, and method for producing fiber-reinforced thermoplastic resin molding material
Sever The improvement of mechanical properties of jute fiber/LDPE composites by fiber surface treatment
JP5938299B2 (en) Fiber reinforced resin composition
JP6123955B1 (en) Fiber-reinforced thermoplastic resin molded article and fiber-reinforced thermoplastic resin molding material
JP6123956B1 (en) Fiber-reinforced thermoplastic resin molded article and fiber-reinforced thermoplastic resin molding material
JP7136086B2 (en) Fiber-reinforced thermoplastic resin moldings and fiber-reinforced thermoplastic resin molding materials
JP2013177560A (en) Method for producing carbon fiber reinforced molded product, and carbon fiber reinforced molded product
JP2017082215A (en) Fiber reinforced thermoplastic resin molded article and fiber reinforced thermoplastic resin molding material
KR102481163B1 (en) Fiber Reinforced Thermoplastic Molding Articles and Fiber Reinforced Thermoplastic Molding Materials
JPWO2014007213A1 (en) Molding material, molded body thereof, and method for producing the molded body
CN116622102A (en) fiber reinforced resin composition
JP6497050B2 (en) Fiber-reinforced thermoplastic resin molding material and fiber-reinforced thermoplastic resin molded product
JP7002203B2 (en) Fiber reinforced plastic composition
JP6895756B2 (en) Heat-resistant resin composition and its manufacturing method
CN114667310B (en) Fiber-reinforced thermoplastic resin molded article
JP2022081402A (en) Rayon long fiber reinforced resin compositions
JP5161731B2 (en) Aliphatic polyester resin pellets and molded articles obtained by molding them
JP5649532B2 (en) Aliphatic polyester resin composition pellets and molded articles obtained by molding the same
JP2018145267A (en) Resin composition for power transmission and method for producing the same
JP7051397B2 (en) A resin composition, a manufacturing method thereof, and a molded product for power transmission comprising the resin composition.
JP2013155455A (en) Wholly aromatic polyamide converged thread, staple fiber bundle, and resin composite material
JP2007162172A (en) Resin-coated reinforcing fiber yarn and thermoplastic resin molded article comprising the same
JP2019099639A (en) Resin composition, molded article for power transmission consisting of the same
Panigrahi The Effect of Fiber Loading and Chemical Treatment on Mechanical and Thermal Properties of Jute Biocomposites
JP6322994B2 (en) Fiber-reinforced thermoplastic resin molded article and fiber-reinforced thermoplastic resin molding material

Legal Events

Date Code Title Description
AA64 Notification of invalidation of claim of internal priority (with term)

Free format text: JAPANESE INTERMEDIATE CODE: A241764

Effective date: 20170322

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170316

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20190531

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20190531

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200116

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20200116

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20200116

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200217

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20201012

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20201020

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20201214

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210601

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210709

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20211207

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20211227

R150 Certificate of patent or registration of utility model

Ref document number: 7002203

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150