JP6989188B1 - Method for manufacturing resin composition, cured product, electronic component, two-component kit and cured product - Google Patents

Method for manufacturing resin composition, cured product, electronic component, two-component kit and cured product Download PDF

Info

Publication number
JP6989188B1
JP6989188B1 JP2021070944A JP2021070944A JP6989188B1 JP 6989188 B1 JP6989188 B1 JP 6989188B1 JP 2021070944 A JP2021070944 A JP 2021070944A JP 2021070944 A JP2021070944 A JP 2021070944A JP 6989188 B1 JP6989188 B1 JP 6989188B1
Authority
JP
Japan
Prior art keywords
repeating unit
cured product
resin composition
mol
copolymer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2021070944A
Other languages
Japanese (ja)
Other versions
JP2022165558A (en
Inventor
徹 八嶋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Konishi Chemical Industries Co Ltd
Original Assignee
Konishi Chemical Industries Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Konishi Chemical Industries Co Ltd filed Critical Konishi Chemical Industries Co Ltd
Priority to JP2021070944A priority Critical patent/JP6989188B1/en
Application granted granted Critical
Publication of JP6989188B1 publication Critical patent/JP6989188B1/en
Priority to PCT/JP2022/014216 priority patent/WO2022224699A1/en
Publication of JP2022165558A publication Critical patent/JP2022165558A/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G77/00Macromolecular compounds obtained by reactions forming a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon in the main chain of the macromolecule
    • C08G77/04Polysiloxanes
    • C08G77/22Polysiloxanes containing silicon bound to organic groups containing atoms other than carbon, hydrogen and oxygen
    • C08G77/24Polysiloxanes containing silicon bound to organic groups containing atoms other than carbon, hydrogen and oxygen halogen-containing groups
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/16Nitrogen-containing compounds
    • C08K5/34Heterocyclic compounds having nitrogen in the ring
    • C08K5/3442Heterocyclic compounds having nitrogen in the ring having two nitrogen atoms in the ring
    • C08K5/3462Six-membered rings
    • C08K5/3465Six-membered rings condensed with carbocyclic rings
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L83/00Compositions of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon only; Compositions of derivatives of such polymers
    • C08L83/04Polysiloxanes
    • C08L83/08Polysiloxanes containing silicon bound to organic groups containing atoms other than carbon, hydrogen and oxygen
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • G02B1/04Optical elements characterised by the material of which they are made; Optical coatings for optical elements made of organic materials, e.g. plastics
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • G02B1/10Optical coatings produced by application to, or surface treatment of, optical elements
    • G02B1/14Protective coatings, e.g. hard coatings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/44Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the coatings, e.g. passivation layer or anti-reflective coating

Landscapes

  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Optics & Photonics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Silicon Polymers (AREA)

Abstract

【課題】硬度及び光透過率が高く、屈折率及び光分散が低い硬化物を製造できる樹脂組成物の提供。【解決手段】共重合体と硬化剤とを含む樹脂組成物であって、前記共重合体は、繰返し単位(A)、繰返し単位(B)、繰返し単位(C)及び繰返し単位(D)を含み、前記硬化剤は、環状アミジンを有する化合物と有機酸との塩であり、繰返し単位(A)の割合は、10mol%以上20mol%以下であり、繰返し単位(B)の割合は、20mol%以上50mol%以下であり、繰返し単位(C)の割合は、10mol%以上20mol%以下であり、繰返し単位(D)の割合は、20mol%以上50mol%以下であり、硬化剤の割合は50ppm以上10000ppm以下である、樹脂組成物。【選択図】なしPROBLEM TO BE SOLVED: To provide a resin composition capable of producing a cured product having high hardness and light transmittance and low refractive index and light dispersion. SOLUTION: The resin composition contains a copolymer and a curing agent, and the copolymer has a repeating unit (A), a repeating unit (B), a repeating unit (C) and a repeating unit (D). The curing agent is a salt of a compound having cyclic amidin and an organic acid, the ratio of the repeating unit (A) is 10 mol% or more and 20 mol% or less, and the ratio of the repeating unit (B) is 20 mol%. The ratio of the repeating unit (C) is 10 mol% or more and 20 mol% or less, the ratio of the repeating unit (D) is 20 mol% or more and 50 mol% or less, and the ratio of the curing agent is 50 ppm or more. A resin composition having a concentration of 10000 ppm or less. [Selection diagram] None

Description

本発明は、樹脂組成物、硬化物、電子部品、2成分キット及び硬化物の製造方法に関する。 The present invention relates to a resin composition, a cured product, an electronic component, a two-component kit, and a method for producing the cured product.

シリコーン樹脂の硬化物は、屈折率が制御しやすく光透過性に優れるため、各種光学部材に使用されている。光学部材としては、例えば、液晶表示素子や有機EL表示素子等の電子ディスプレイやイメージセンサー等に使用されるカバーガラスが挙げられる。 A cured product of a silicone resin is used in various optical members because its refractive index is easy to control and it has excellent light transmission. Examples of the optical member include a cover glass used for an electronic display such as a liquid crystal display element and an organic EL display element, an image sensor, and the like.

例えば特許文献1は、低屈折率の膜を形成するためのシリコーン樹脂組成物を開示している。 For example, Patent Document 1 discloses a silicone resin composition for forming a film having a low refractive index.

特開2012−203059号公報Japanese Unexamined Patent Publication No. 2012-203059

光学部材として使用する硬化物の中には、ガラスと同程度の硬度と優れた光学特性が求められる。
例えば特許文献1に記載のシリコーン樹脂組成物には、硬度や光透過性の観点から改良の余地があった。
The cured product used as an optical member is required to have the same hardness as glass and excellent optical properties.
For example, the silicone resin composition described in Patent Document 1 has room for improvement from the viewpoint of hardness and light transmission.

本発明は上記事情に鑑みてなされたものであって、硬度及び光透過率が高く、屈折率及び光分散が低い硬化物を製造できる樹脂組成物を提供することを目的とする。さらにこの樹脂組成物を用いた硬化物、電子部品、2成分キット及び硬化物の製造方法を提供することを目的とする。 The present invention has been made in view of the above circumstances, and an object of the present invention is to provide a resin composition capable of producing a cured product having high hardness and light transmittance and low refractive index and light dispersion. Further, it is an object of the present invention to provide a cured product, an electronic component, a two-component kit, and a method for producing a cured product using this resin composition.

本発明は以下の[1]〜[7]を包含する。
[1]共重合体と硬化剤とを含む樹脂組成物であって、前記共重合体は、下記式(A)で表される繰返し単位(A)、下記式(B)で表される繰返し単位(B)、下記式(C)で表される繰返し単位(C)及び下記式(D)で表される繰返し単位(D)を含み、前記硬化剤は、環状アミジンを有する化合物と有機酸との塩であり、前記共重合体を構成する全繰返し単位の合計に対する前記繰返し単位(A)の割合は、10mol%以上20mol%以下であり、前記共重合体を構成する全繰返し単位の合計に対する前記繰返し単位(B)の割合は、20mol%以上50mol%以下であり、前記共重合体を構成する全繰返し単位の合計に対する前記繰返し単位(C)の割合は、10mol%以上20mol%以下であり、前記共重合体を構成する全繰返し単位の合計に対する前記繰返し単位(D)の割合は、20mol%以上50mol%以下であり、前記樹脂組成物の樹脂全固形分の全量に対する、前記硬化剤の割合は50ppm以上10000ppm以下である、樹脂組成物。
[MeSiO2/2] ・・・式(A)
[MeSiO3/2] ・・・式(B)
[SiO4/2] ・・・式(C)
[RSiO3/2] ・・・式(D)
(式(D)中、Rはフッ素原子を有する炭素数1〜3のアルキル基である。)
[2]前記環状アミジンを有する化合物は1,8−ジアザビシクロ[5.4.0]−7−ウンデセン、1,5−ジアザビシクロ[4.3.0]−5−ノネン、及び1,4−ジアザビシクロ[2.2.2]オクタンからなる群より選択される1種以上である、[1]に記載の樹脂組成物。
[3][1]又は[2]に記載の樹脂組成物の硬化物。
[4]厚さが0.1mm以上3.0mm以下である、[3]に記載の硬化物。
[5][3]又は[4]に記載の硬化物を光学部材として含む電子部品。
[6][1]又は[2]に記載の樹脂組成物を得るための2成分キットであって、第1成分が前記共重合体であり、第2成分が前記硬化剤である、2成分キット。
[7]前記共重合体と前記硬化剤とを混合し、[1]又は[2]に記載の樹脂組成物を得る工程と、前記樹脂組成物を加熱して硬化させる硬化工程と、を備える、硬化物の製造方法。
The present invention includes the following [1] to [7].
[1] A resin composition containing a copolymer and a curing agent, wherein the copolymer is a repeating unit (A) represented by the following formula (A) and a repeating unit (B) represented by the following formula (B). The curing agent comprises a unit (B), a repeating unit (C) represented by the following formula (C), and a repeating unit (D) represented by the following formula (D), and the curing agent is a compound having cyclic amidin and an organic acid. The ratio of the repeating unit (A) to the total of all repeating units constituting the copolymer is 10 mol% or more and 20 mol% or less, and the total of all repeating units constituting the copolymer. The ratio of the repeating unit (B) to the polymer is 20 mol% or more and 50 mol% or less, and the ratio of the repeating unit (C) to the total of all the repeating units constituting the copolymer is 10 mol% or more and 20 mol% or less. The ratio of the repeating unit (D) to the total of all the repeating units constituting the copolymer is 20 mol% or more and 50 mol% or less, and the curing agent is used with respect to the total amount of the total solid content of the resin in the resin composition. The ratio of the resin composition is 50 ppm or more and 10000 ppm or less.
[Me 2 SiO 2/2 ] ・ ・ ・ Equation (A)
[MeSiO 3/2 ] ... Equation (B)
[SiO 4/2 ] ・ ・ ・ Equation (C)
[RSiO 3/2 ] ... Equation (D)
(In the formula (D), R is an alkyl group having a fluorine atom and having 1 to 3 carbon atoms.)
[2] The compounds having cyclic amidine are 1,8-diazabicyclo [5.4.0] -7-undecene, 1,5-diazabicyclo [4.3.0] -5-nonene, and 1,4-diazabicyclo. [2.2.2] The resin composition according to [1], which is one or more selected from the group consisting of octane.
[3] A cured product of the resin composition according to [1] or [2].
[4] The cured product according to [3], which has a thickness of 0.1 mm or more and 3.0 mm or less.
[5] An electronic component containing the cured product according to [3] or [4] as an optical member.
[6] A two-component kit for obtaining the resin composition according to [1] or [2], wherein the first component is the copolymer and the second component is the curing agent. kit.
[7] The present invention comprises a step of mixing the copolymer and the curing agent to obtain the resin composition according to [1] or [2], and a curing step of heating and curing the resin composition. , How to make a cured product.

本発明によれば、硬度及び光透過率が高く、屈折率及び光分散が低い硬化物を製造できる樹脂組成物を提供することができる。さらにこの樹脂組成物を用いた硬化物、電子部品、2成分キット及び硬化物の製造方法を提供することができる。 According to the present invention, it is possible to provide a resin composition capable of producing a cured product having high hardness and light transmittance and low refractive index and light dispersion. Further, it is possible to provide a cured product, an electronic component, a two-component kit, and a method for producing a cured product using this resin composition.

<樹脂組成物>
本実施形態は、共重合体と硬化剤とを含む樹脂組成物である。本発明者の検討により、共重合体の繰り返し単位の比率を特定の範囲とし、かつ特定の硬化剤を含む樹脂組成物の硬化物は、硬度及び光透過率が高く、屈折率及び光分散が低いことが見いだされた。
<Resin composition>
The present embodiment is a resin composition containing a copolymer and a curing agent. According to the study of the present inventor, the cured product of the resin composition having the ratio of the repeating unit of the copolymer in a specific range and containing a specific curing agent has high hardness and light transmittance, and has high refractive index and light dispersion. It was found to be low.

≪共重合体≫
共重合体は、下記式(A)で表される繰返し単位(A)、下記式(B)で表される繰返し単位(B)、下記式(C)で表される繰返し単位(C)及び下記式(D)で表される繰返し単位(D)を含む。式中、Meはメチル基を意味する。
[MeSiO2/2] ・・・式(A)
[MeSiO3/2] ・・・式(B)
[SiO4/2] ・・・式(C)
[RSiO3/2] ・・・式(D)
(式(D)中、Rはフッ素原子を有する炭素数1〜3のアルキル基である。)
≪Copolymer≫
The copolymer is a repeating unit (A) represented by the following formula (A), a repeating unit (B) represented by the following formula (B), a repeating unit (C) represented by the following formula (C), and a repeating unit (C). The repeating unit (D) represented by the following formula (D) is included. In the formula, Me means a methyl group.
[Me 2 SiO 2/2 ] ・ ・ ・ Equation (A)
[MeSiO 3/2 ] ... Equation (B)
[SiO 4/2 ] ・ ・ ・ Equation (C)
[RSiO 3/2 ] ... Equation (D)
(In the formula (D), R is an alkyl group having a fluorine atom and having 1 to 3 carbon atoms.)

共重合体は、実質的に繰返し単位(A)、繰返し単位(B)、繰返し単位(C)及び繰り返し単位(D)からなることが好ましい。「実質的に繰返し単位(A)、繰返し単位(B)、繰返し単位(C)及び繰り返し単位(D)からなる」とは、共重合体を構成する全繰返し単位の合計に対する、繰返し単位(A)、繰返し単位(B)、繰返し単位(C)及び繰り返し単位(D)の和が、90質量%以上100質量%以下であり、より好ましくは95質量%以上100質量%以下であることを意味する。 It is preferable that the copolymer is substantially composed of a repeating unit (A), a repeating unit (B), a repeating unit (C) and a repeating unit (D). "Substantially composed of a repeating unit (A), a repeating unit (B), a repeating unit (C) and a repeating unit (D)" means a repeating unit (A) with respect to the total of all the repeating units constituting the copolymer. ), The sum of the repeating unit (B), the repeating unit (C) and the repeating unit (D) is 90% by mass or more and 100% by mass or less, more preferably 95% by mass or more and 100% by mass or less. do.

(繰り返し単位(A))
繰返し単位(A)は、ジアルコキシジメチルシランから誘導される繰り返し単位である。
ジアルコキシジメチルシランは、例えば、ジエトキシジメチルシラン、ジメトキシジメチルシラン、又はジプロポキシジメチルシランが挙げられる。
(Repeating unit (A))
The repeating unit (A) is a repeating unit derived from dialkoxydimethylsilane.
Examples of the dialkoxydimethylsilane include diethoxydimethylsilane, dimethoxydimethylsilane, and dipropoxydimethylsilane.

「誘導される繰り返し単位」とは、アルコキシ基が加水分解、脱水縮合して構成される繰り返し単位を意味する。 The "derived repeating unit" means a repeating unit composed of an alkoxy group hydrolyzed and dehydrated and condensed.

共重合体を構成する全繰返し単位の合計に対する繰返し単位(A)の割合は、10mol%以上20mol%以下である。 The ratio of the repeating unit (A) to the total of all the repeating units constituting the copolymer is 10 mol% or more and 20 mol% or less.

繰返し単位(A)の割合が上記下限値以上であると、樹脂組成物を硬化する工程において硬化不良が生じにくい。硬化不良とは、例えば樹脂組成物を硬化する際の加熱により、表面の一部が硬化し、膜が形成される不具合をいう。膜が形成されると、樹脂組成物に含まれる溶剤が揮発しにくくなり、乾燥しにくくなる。 When the ratio of the repeating unit (A) is at least the above lower limit value, curing failure is unlikely to occur in the step of curing the resin composition. Curing failure refers to a defect in which a part of the surface is cured and a film is formed by heating, for example, when the resin composition is cured. When the film is formed, the solvent contained in the resin composition is less likely to volatilize and is less likely to dry.

繰返し単位(A)の割合が上記上限値以下であると、得られる硬化物の硬度が低下しにくくなる。 When the ratio of the repeating unit (A) is not more than the above upper limit value, the hardness of the obtained cured product is less likely to decrease.

(繰り返し単位(B))
繰返し単位(B)は、トリアルコキシメチルシランから誘導される繰り返し単位である。
トリアルコキシメチルシランとしては、トリエトキシメチルシラン、トリメトキシメチルシラン、又はトリプロポキシキシメチルシランが挙げられる。
(Repeating unit (B))
The repeating unit (B) is a repeating unit derived from trialkoxymethylsilane.
Examples of the trialkoxymethylsilane include triethoxymethylsilane, trimethoxymethylsilane, and tripropoxymethylsilane.

共重合体を構成する全繰返し単位の合計に対する繰返し単位(B)の割合は、20mol%以上50mol%以下である。
繰返し単位(B)の割合が上記下限値以上であると、得られる硬化物の硬度が低下しにくくなる。またヘイズ値が低く、透明性が高くなりやすい。
The ratio of the repeating unit (B) to the total of all the repeating units constituting the copolymer is 20 mol% or more and 50 mol% or less.
When the ratio of the repeating unit (B) is at least the above lower limit value, the hardness of the obtained cured product is less likely to decrease. In addition, the haze value is low and the transparency tends to be high.

繰返し単位(B)の割合が上記上限値以下であると、上述した硬化不良が生じにくい。 When the ratio of the repeating unit (B) is not more than the above upper limit value, the above-mentioned curing failure is unlikely to occur.

(繰り返し単位(C))
繰り返し単位(C)は、テトラエトキシシランから誘導される繰り返し単位である。
共重合体を構成する全繰返し単位の合計に対する繰返し単位(C)の割合は、10mol%以上20mol%以下である。
繰返し単位(C)の割合が上記下限値以上であると、得られる硬化物の硬度が低下しにくくなる。
(Repeating unit (C))
The repeating unit (C) is a repeating unit derived from tetraethoxysilane.
The ratio of the repeating unit (C) to the total of all the repeating units constituting the copolymer is 10 mol% or more and 20 mol% or less.
When the ratio of the repeating unit (C) is at least the above lower limit value, the hardness of the obtained cured product is less likely to decrease.

繰返し単位(C)の割合が上記上限値以下であると、上述した硬化不良が生じにくい。また、得られる硬化物の屈折率が低くなりやすい。 When the ratio of the repeating unit (C) is not more than the above upper limit value, the above-mentioned curing failure is unlikely to occur. In addition, the refractive index of the obtained cured product tends to be low.

(繰り返し単位(D))
繰り返し単位(D)は、フッ化アルキルトリアルコキシシランから誘導される繰り返し単位である。
式(D)で表される繰り返し単位において、Rはフッ素原子を有する炭素数1〜3のアルキル基である。Rとしては、−CF、−CHCF、−CFCF、−CHCHCF、−CHCFCF、又は−CFCFCFが挙げられる。
(Repeating unit (D))
The repeating unit (D) is a repeating unit derived from an alkylfluorotrialkoxysilane.
In the repeating unit represented by the formula (D), R is an alkyl group having 1 to 3 carbon atoms having a fluorine atom. Examples of R include -CF 3 , -CH 2 CF 3 , -CF 2 CF 3 , -CH 2 CH 2 CF 3 , -CH 2 CF 2 CF 3 , or -CF 2 CF 2 CF 3 .

繰り返し単位(D)は、例えばトリメトキシ(3,3,3−トリフルオロプロピル)シランから誘導される繰り返し単位である。 The repeating unit (D) is, for example, a repeating unit derived from trimethoxy (3,3,3-trifluoropropyl) silane.

Rはフッ素原子を有する炭素数2又は3のアルキル基が好ましく、−CHCF、−CHCHCF、−CHCFCF、又は−CFCFCFがより好ましく、−CHCF又は−CHCHCFがさらに好ましい。 R is preferably an alkyl group having 2 or 3 carbon atoms having a fluorine atom, more preferably -CH 2 CF 3 , -CH 2 CH 2 CF 3 , -CH 2 CF 2 CF 3 , or -CF 2 CF 2 CF 3. , -CH 2 CF 3 or -CH 2 CH 2 CF 3 are more preferred.

共重合体を構成する全繰返し単位の合計に対する繰返し単位(D)の割合は、20mol%以上50mol%以下である。
繰返し単位(D)の割合が上記下限値以上であると、得られる硬化物の屈折率が低くなりやすい。
The ratio of the repeating unit (D) to the total of all the repeating units constituting the copolymer is 20 mol% or more and 50 mol% or less.
When the ratio of the repeating unit (D) is at least the above lower limit value, the refractive index of the obtained cured product tends to be low.

繰返し単位(D)の割合が上記上限値以下であると、得られる硬化物の硬度が低下しにくくなる。フッ素原子は水素原子に近い原子サイズであるものの、トリフルオロメチル基はメチル基よりも立体的にかさ高くなる。このため、繰返し単位(D)の割合が上記上限値を超えると、トリフルオロメチル基の立体障害により架橋が進みにくくなり、得られる硬化物の硬度が低下しやすい。一方、側鎖であるRの炭素数が2又は3である場合には、架橋が進みやすくなり、得られる硬化物の硬度は低下しにくい。 When the ratio of the repeating unit (D) is not more than the above upper limit value, the hardness of the obtained cured product is less likely to decrease. Although the fluorine atom has an atomic size close to that of a hydrogen atom, the trifluoromethyl group is sterically bulkier than the methyl group. Therefore, when the ratio of the repeating unit (D) exceeds the above upper limit value, cross-linking is difficult to proceed due to steric hindrance of the trifluoromethyl group, and the hardness of the obtained cured product tends to decrease. On the other hand, when the carbon number of R, which is a side chain, is 2 or 3, cross-linking is likely to proceed, and the hardness of the obtained cured product is unlikely to decrease.

共重合体の重量平均分子量(Mw)(ゲルパーミエーションクロマトグラフィー(GPC)によるポリスチレン換算基準)は、例えば500以上20000以下を満たし、1000以上10000以下を満たすことが好ましく、1500以上6000以下を満たすことがさらに好ましい。 The weight average molecular weight (Mw) (polystyrene conversion standard by gel permeation chromatography (GPC)) of the copolymer preferably satisfies, for example, 500 or more and 20000 or less, preferably 1000 or more and 10000 or less, and preferably 1500 or more and 6000 or less. Is even more preferable.

[重量平均分子量の測定方法]
重量平均分子量(Mw)は、GPC測定により得られる標準ポリスチレン(PS)の検量線から求めた、ポリスチレン換算値を用いる。GPC測定の測定条件は、例えば、以下の通りである。
本体:HLC−8320GPC(東ソー株式会社製)
カラム:TSKgel G2000HXL&TSKgel G4000HXL(東ソー株式会社製)
カラム温度:40℃
移動層:テトラヒドロフラン(THF)
流量:0.65mL/min
検出装置:RI
標準物質:ポリスチレン
[Measurement method of weight average molecular weight]
For the weight average molecular weight (Mw), a polystyrene-equivalent value obtained from a calibration curve of standard polystyrene (PS) obtained by GPC measurement is used. The measurement conditions for GPC measurement are as follows, for example.
Body: HLC-8320GPC (manufactured by Tosoh Corporation)
Column: TSKgel G2000HXL & TSKgel G4000HXL (manufactured by Tosoh Corporation)
Column temperature: 40 ° C
Moving layer: Tetrahydrofuran (THF)
Flow rate: 0.65 mL / min
Detection device: RI
Standard material: Polystyrene

≪硬化剤≫
硬化剤は、環状アミジンを有する化合物と有機酸との塩である。
≪Curing agent≫
The curing agent is a salt of a compound having cyclic amidine and an organic acid.

(環状アミジンを有する化合物)
環状アミジンを有する化合物としては、1,8−ジアザビシクロ[5.4.0]−7−ウンデセン、1,5−ジアザビシクロ[4.3.0]−5−ノネン及び1,4−ジアザビシクロ[2.2.2]オクタンからなる群より選択される1種以上が好ましい。以降において、1,8−ジアザビシクロ[5.4.0]−7−ウンデセンを「DBU」、1,5−ジアザビシクロ[4.3.0]−5−ノネンを「DBN」と記載する場合がある。
(Compound with cyclic amidine)
Compounds having cyclic amidine include 1,8-diazabicyclo [5.4.0] -7-undecene, 1,5-diazabicyclo [4.3.0] -5-nonene and 1,4-diazabicyclo [2. 2.2] One or more selected from the group consisting of octane is preferable. Hereinafter, 1,8-diazabicyclo [5.4.0] -7-undecene may be referred to as "DBU", and 1,5-diazabicyclo [4.3.0] -5-nonene may be referred to as "DBN". ..

さらに、環状アミジンを有する化合物としては、例えば、イミダゾール誘導体、イミダゾリン誘導体、又はテトラヒドロピリミジン誘導体が挙げられる。 Further, examples of the compound having cyclic amidine include an imidazole derivative, an imidazoline derivative, and a tetrahydropyrimidine derivative.

イミダゾール誘導体は、例えばイミダゾール、ベンズイミダゾール、メチルイミダゾール又は2−フェニルイミダゾール等である。メチルイミダゾールとしては、例えば2−メチルイミダゾール又は4−メチルイミダゾールが挙げられる。 The imidazole derivative is, for example, imidazole, benzimidazole, methylimidazole, 2-phenylimidazole and the like. Examples of methylimidazole include 2-methylimidazole or 4-methylimidazole.

イミダゾリン誘導体は、例えばメチルイミダゾリン又はジメチルイミダゾリン等である。
メチルイミダゾリンとしては、例えば、2−メチルイミダゾリンが挙げられる。
ジメチルイミダゾリンとしては、例えば4,4−ジメチルイミダゾリン、4,5−ジメチルイミダゾリン、又は5,5−ジメチルイミダゾリンが挙げられる。
The imidazoline derivative is, for example, methylimidazoline or dimethylimidazoline.
Examples of the methylimidazoline include 2-methylimidazoline.
Examples of dimethylimidazoline include 4,4-dimethylimidazoline, 4,5-dimethylimidazoline, and 5,5-dimethylimidazoline.

テトラヒドロピリミジン誘導体は、例えば1−メチル−1,4,5,6−テトラヒドロピリミジン又は1,2−ジメチル−1,4,5,6−テトラヒドロピリミジン等である。 The tetrahydropyrimidine derivative is, for example, 1-methyl-1,4,5,6-tetrahydropyrimidine or 1,2-dimethyl-1,4,5,6-tetrahydropyrimidine.

環状アミジンを有する化合物は、1種単独でも2種以上の組み合わせであってもよい。 The compound having cyclic amidine may be one kind alone or a combination of two or more kinds.

(有機酸)
環状アミジンを有する化合物と有機酸との塩における有機酸としては、例えば、芳香族ポリカルボン酸、又は芳香族スルホン酸が挙げられる。
(Organic acid)
Examples of the organic acid in the salt of the compound having cyclic amidin and the organic acid include aromatic polycarboxylic acid and aromatic sulfonic acid.

芳香族ポリカルボン酸(o−、m−、p−)としては、例えばフタル酸、イソフタル酸、又はテレフタル酸等が挙げられる。 Examples of the aromatic polycarboxylic acid (o-, m-, p-) include phthalic acid, isophthalic acid, terephthalic acid and the like.

芳香族スルホン酸としては、ベンゼンスルホン酸又はp−トルエンスルホン酸が挙げられる。 Examples of the aromatic sulfonic acid include benzenesulfonic acid and p-toluenesulfonic acid.

これらの中でも、有機酸はフタル酸又はp−トルエンスルホン酸が好ましい。有機酸は、1種単独でも2種以上の組み合わせであってもよい。 Among these, the organic acid is preferably phthalic acid or p-toluenesulfonic acid. The organic acid may be used alone or in combination of two or more.

環状アミジンを有する化合物と有機酸との塩としては、1,8−ジアザビシクロ[5.4.0]−7−ウンデセンとフタル酸との塩、1,8−ジアザビシクロ[5.4.0]−7−ウンデセンとp−トルエンスルホン酸との塩又は1,5−ジアザビシクロ[4.3.0]−5−ノネンとフタル酸との塩が好ましい。 Examples of the salt of the compound having cyclic amidine and the organic acid include 1,8-diazabicyclo [5.4.0] -7-salt of undecene and phthalic acid, and 1,8-diazabicyclo [5.4.0]-. A salt of 7-undecene and p-toluenesulfonic acid or a salt of 1,5-diazabicyclo [4.3.0] -5-nonen and phthalic acid is preferable.

樹脂組成物の樹脂全固形分の全量に対する、硬化剤の割合は50ppm以上10000ppm以下を満たし、50ppm以上5000ppm以下を満たすことが好ましい。
硬化剤の割合が上記下限値以上であると、得られる硬化物の硬度が低下しにくい。
硬化剤の割合が上記上限値以下であると、樹脂組成物の可使時間が長くなりやすい。
The ratio of the curing agent to the total amount of the total solid content of the resin in the resin composition is preferably 50 ppm or more and 10000 ppm or less, and preferably 50 ppm or more and 5000 ppm or less.
When the ratio of the curing agent is at least the above lower limit value, the hardness of the obtained cured product is unlikely to decrease.
When the ratio of the curing agent is not more than the above upper limit value, the pot life of the resin composition tends to be long.

可使時間とは、共重合体と硬化剤とを混合した後、使用不可能となるまでの時間である。使用不可能とは、樹脂組成物の硬化反応が進み、粘度や状態が使用に耐えられなくなるまでの時間をいう。例えば硬化剤の割合が多いと、硬化反応が進行しやすく、可使時間は短くなる。可使時間はポットライフともいう。 The pot life is the time after mixing the copolymer and the curing agent until it becomes unusable. The term "unusable" means the time until the curing reaction of the resin composition proceeds and the viscosity or state becomes unusable. For example, if the proportion of the curing agent is large, the curing reaction tends to proceed and the pot life becomes short. Pot life is also called pot life.

本実施形態の樹脂組成物は、特定の種類の硬化剤を特定の配合割合で含む。これにより、共重合体と硬化剤とを混合した後のゲルタイムを長くすることができる。ゲルタイムは下記のゲルタイム試験により測定する。 The resin composition of the present embodiment contains a specific type of curing agent in a specific blending ratio. This makes it possible to prolong the gel time after mixing the copolymer and the curing agent. Gel time is measured by the following gel time test.

[ゲルタイム試験]
共重合体と硬化剤とを混合し、30℃に設定した恒温器内に静置する。その後、ゲル化するまでの時間を測定する。「ゲル化」とは、樹脂組成物が硬化して流動性が認められない状態になることを意味する。「ゲルタイム」とは、ゲル化するまでの時間を意味する。本実施形態において、ゲルタイムが3時間以上であると、「ゲルタイムが長い」と評価する。
[Gel time test]
The copolymer and the curing agent are mixed and allowed to stand in an incubator set at 30 ° C. After that, the time until gelation is measured. "Gelification" means that the resin composition is cured to a state in which fluidity is not recognized. "Gel time" means the time until gelation. In the present embodiment, when the gel time is 3 hours or more, it is evaluated as "the gel time is long".

<硬化物>
本実施形態は、前記樹脂組成物を硬化させた硬化物である。
<Curing product>
The present embodiment is a cured product obtained by curing the resin composition.

本実施形態の硬化物の厚さは、0.1mm以上3.0mm以下を満たすことが好ましく、0.5mm以上2.5mm以下を満たすことがより好ましく、0.8mm以上2.0mm以下を満たすことがさらに好ましい。 The thickness of the cured product of the present embodiment preferably satisfies 0.1 mm or more and 3.0 mm or less, more preferably 0.5 mm or more and 2.5 mm or less, and preferably 0.8 mm or more and 2.0 mm or less. Is even more preferable.

本実施形態において「硬化物の厚さ」とは硬化物の平均厚さであり、例えば間隔をあけて測定した5点の厚さの測定値の平均値である。
本実施形態の硬化物は、硬度及び光透過率が高く、屈折率及び光分散が低い。
In the present embodiment, the "thickness of the cured product" is the average thickness of the cured product, and is, for example, the average value of the measured values of the thicknesses of five points measured at intervals.
The cured product of the present embodiment has high hardness and light transmittance, and low refractive index and light dispersion.

[硬度の測定]
本実施形態において、硬化物の硬度とは、硬化物の鉛筆硬度である。
硬化物の鉛筆硬度は以下の方法により測定する。
まず、樹脂組成物を硬化し、厚さが1.0mmの硬化物を得る。
次に、JIS K 5600−5−4(1999)「引っかき硬度(鉛筆法)」に準拠して、得られた各1.0mm厚の硬化物を、750g荷重下において鉛筆硬度を測定する。
[Measurement of hardness]
In the present embodiment, the hardness of the cured product is the pencil hardness of the cured product.
The pencil hardness of the cured product is measured by the following method.
First, the resin composition is cured to obtain a cured product having a thickness of 1.0 mm.
Next, in accordance with JIS K 5600-5-4 (1999) "Scratch hardness (pencil method)", the pencil hardness of each 1.0 mm thick cured product obtained is measured under a load of 750 g.

本実施形態においては、鉛筆硬度が8H以上を満たすと硬度が高いと評価する。 In the present embodiment, when the pencil hardness satisfies 8H or more, it is evaluated that the hardness is high.

[光透過率の測定]
本実施形態において、硬化物の光透過率は下記の方法により測定する。
まず、樹脂組成物を硬化し、厚さが1.0mmの硬化物を得る。
[Measurement of light transmittance]
In the present embodiment, the light transmittance of the cured product is measured by the following method.
First, the resin composition is cured to obtain a cured product having a thickness of 1.0 mm.

次に、分光光度計を用い、硬化物の厚さ方向の光透過率を測定する。波長は400nmとする。
分光光度計としては、例えば株式会社島津製作所製のUV−2600が使用できる。
具体的な測定条件は以下の通りである。
(条件)バックグラウンド測定:大気
測定速度:中速
積分球:ISR−2600PLUS
スリット幅:5.0mm
Next, a spectrophotometer is used to measure the light transmittance in the thickness direction of the cured product. The wavelength is 400 nm.
As the spectrophotometer, for example, UV-2600 manufactured by Shimadzu Corporation can be used.
The specific measurement conditions are as follows.
(Conditions) Background measurement: Atmosphere
Measurement speed: Medium speed
Integrating sphere: ISR-2600PLUS
Slit width: 5.0 mm

本実施形態において、光透過率が92%以上を満たすと光透過率が高いと評価する。 In the present embodiment, when the light transmittance satisfies 92% or more, it is evaluated that the light transmittance is high.

[屈折率及び光分散度の測定]
本実施形態において、硬化物の屈折率は下記の方法により測定する。
まず、スピンコート装置を用い、1000rpm、20秒間の条件で樹脂組成物をスライドガラス上に塗布する。塗布したスライドガラスを熱風乾燥オーブンに入れ、50℃で1時間、さらに100℃で1時間加熱し、ガラスコーティング膜を作製する。
[Measurement of refractive index and light dispersion]
In this embodiment, the refractive index of the cured product is measured by the following method.
First, using a spin coating device, the resin composition is applied onto the slide glass under the conditions of 1000 rpm and 20 seconds. The applied slide glass is placed in a hot air drying oven and heated at 50 ° C. for 1 hour and further at 100 ° C. for 1 hour to prepare a glass coating film.

次に、反射分光膜厚計を用いて、ガラスコーティング膜の反射スペクトルを測定する。反射分光膜厚計は、例えば大塚電子株式会社製のFE−3000が使用できる。波長は例えば450nm以上800nm以下である。 Next, the reflection spectrum of the glass coating film is measured using a reflection spectroscopic film thickness meter. As the reflection spectroscopic film thickness meter, for example, FE-3000 manufactured by Otsuka Electronics Co., Ltd. can be used. The wavelength is, for example, 450 nm or more and 800 nm or less.

反射分光膜厚計による測定で、ガラスコーティング膜の屈折率n及び光分散度の指標であるアッベ数が求まる。 As measured by reflectance spectroscopy film thickness meter, the Abbe number is an index of the refractive index n D and the light distribution of the glass coating film is obtained.

本実施形態において、ガラスコーティング膜の屈折率nが1.42以下であると、屈折率が低いと評価する。 In the present embodiment, when the refractive index n D of the glass coating film is 1.42 or less, it is evaluated that the refractive index is low.

アッベ数は下記計算式によって求める。
ν=(n−1)/(n−n
ν:アッベ数
:波長589nmの光に対する屈折率
:波長486nmの光に対する屈折率
:波長656nmの光に対する屈折率
The Abbe number is calculated by the following formula.
ν D = (n D -1) / (n F −n C )
ν D : Abbe number n D : Refractive index for light with a wavelength of 589 nm n F : Refractive index for light with a wavelength of 486 nm n C : Refractive index for light with a wavelength of 656 nm

本実施形態において、ガラスコーティング膜のアッベ数が58以上であると、光分散度が低いと評価する。 In the present embodiment, when the Abbe number of the glass coating film is 58 or more, it is evaluated that the degree of light dispersion is low.

アッベ数は、光分散度を示す尺度であり、アッベ数が大きければ大きいほど光分散度が小さくなる。例えば標準的な光学ガラスのアッベ数は60以上である。本実施形態の樹脂組成物を硬化した硬化物は、アッベ数が光学ガラスに近づき、広い波長領域の光線透過率が向上して、高い透明性を有する。 The Abbe number is a measure of the degree of light dispersion, and the larger the Abbe number, the smaller the degree of light dispersion. For example, a standard optical glass has an Abbe number of 60 or more. The cured product obtained by curing the resin composition of the present embodiment has a high transparency because the Abbe number approaches that of optical glass, the light transmittance in a wide wavelength region is improved, and the cured product has high transparency.

<電子部品>
本実施形態は、前記硬化物を光学部材として含む電子部品である。光学部材としては、液晶表示素子や有機EL表示素子等の電子ディスプレイやイメージセンサー等に使用されるカバーガラスが挙げられる。
<Electronic components>
The present embodiment is an electronic component containing the cured product as an optical member. Examples of the optical member include a cover glass used for an electronic display such as a liquid crystal display element and an organic EL display element, an image sensor, and the like.

<2成分キット>
本実施形態は、前記樹脂組成物を得るための2成分キットである。2成分キットは、第1成分が前記共重合体であり、第2成分が前記硬化剤である。第1成分として前記共重合体を、第2成分として前記硬化剤をそれぞれ独立して流通又は保存することで、使用する直前に混合して使用することができる。
<Two-component kit>
This embodiment is a two-component kit for obtaining the resin composition. In the two-component kit, the first component is the copolymer and the second component is the curing agent. By independently distributing or storing the copolymer as the first component and the curing agent as the second component, they can be mixed and used immediately before use.

第1成分又は第2成分は、それぞれ希釈剤を含んでいてもよい。希釈剤としては、メタノールや2−プロパノールが挙げられる。 The first component or the second component may each contain a diluent. Diluents include methanol and 2-propanol.

<その他>
本実施形態は、前記樹脂組成物を含むポッティング剤であってもよい。「ポッティング剤」とは、電子回路基板や半導体素子に対し、電気的絶縁、保護、防湿の目的で使用される剤である。
<Others>
The present embodiment may be a potting agent containing the resin composition. The "potting agent" is an agent used for the purpose of electrical insulation, protection, and moisture proofing for electronic circuit boards and semiconductor elements.

<硬化物の製造方法>
まず、前記共重合体と前記硬化剤とを混合し、本実施形態の樹脂組成物を得る。次に樹脂組成物を加熱して硬化させる。硬化のための加熱は、樹脂組成物の硬化反応が進行する温度で加熱する。
<Manufacturing method of cured product>
First, the copolymer and the curing agent are mixed to obtain the resin composition of the present embodiment. Next, the resin composition is heated and cured. The heating for curing is at a temperature at which the curing reaction of the resin composition proceeds.

硬化のための加熱温度は、例えば20℃以上180℃以下である。 The heating temperature for curing is, for example, 20 ° C. or higher and 180 ° C. or lower.

硬化のための加熱時間は、例えば30分間以上10時間以下である。 The heating time for curing is, for example, 30 minutes or more and 10 hours or less.

硬化のための加熱は、一定温度で保持する加熱工程を複数備えていてもよい。
一例を挙げると、硬化のための加熱条件は、40℃以上60℃以下の温度で30分間から90分間加熱する第1加熱処理、90℃以上110℃以下の温度で0.5時間以上4時間以下加熱する第2加熱処理、140℃以上160℃以下で0.5時間以上4時間以下加熱する第3加熱処理を有していてもよい。
The heating for curing may include a plurality of heating steps of holding at a constant temperature.
As an example, the heating conditions for curing are the first heat treatment of heating at a temperature of 40 ° C. or higher and 60 ° C. or lower for 30 to 90 minutes, and 0.5 hours or more and 4 hours at a temperature of 90 ° C. or higher and 110 ° C. or lower. It may have a second heat treatment for heating below and a third heat treatment for heating at 140 ° C. or higher and 160 ° C. or lower for 0.5 hours or longer and 4 hours or shorter.

≪硬化物の層を段階的に積層する実施形態≫
厚さが1.0mmを超える硬化物は、例えば1.0mm以下の厚さの硬化物の層を段階的に積層することにより製造できる。具体的には、1段階目で1.0mm以下の厚さの硬化物層を製造し、得られた硬化物層の上に、2段階目で1.0mm以下の厚さの硬化物層を重ね塗りして製造する。
<< Embodiment in which layers of cured products are laminated step by step >>
A cured product having a thickness of more than 1.0 mm can be produced, for example, by stepwise laminating layers of a cured product having a thickness of 1.0 mm or less. Specifically, a cured product layer having a thickness of 1.0 mm or less is produced in the first step, and a cured product layer having a thickness of 1.0 mm or less is formed on the obtained cured product layer in the second stage. Manufactured by recoating.

各段階の硬化物層の厚さは、製造する硬化物の厚さに合わせて適宜調整ですればよい。例えば厚さが2.0mmの硬化物は2段階の積層で製造でき、厚さが3.0mmの硬化物は3段階の積層で製造できる。 The thickness of the cured product layer at each stage may be appropriately adjusted according to the thickness of the cured product to be manufactured. For example, a cured product having a thickness of 2.0 mm can be produced by two-step lamination, and a cured product having a thickness of 3.0 mm can be produced by three-step lamination.

本実施形態の樹脂組成物は、硬化時にいわゆるスキニングが生じにくい。スキニングとは、硬化時に表面のみが乾燥して膜が張る現象である。スキニングは樹脂組成物が硬化する工程において、揮発速度に遅速がある場合に生じやすい。厚さが1.0mm以上の硬化物を製造する際にスキニングは発生しやすいが、本実施形態の樹脂組成物は加熱硬化時の粘性が低いため、揮発速度に遅速がなく、スキニングが生じにくい。 The resin composition of the present embodiment is less likely to cause so-called skinning during curing. Skinning is a phenomenon in which only the surface dries and a film is formed during curing. Skinning is likely to occur when the volatilization rate is slow in the process of curing the resin composition. Skinning is likely to occur when a cured product having a thickness of 1.0 mm or more is produced, but since the resin composition of the present embodiment has a low viscosity during heat curing, the volatilization rate does not slow down and skinning is unlikely to occur. ..

硬化物層を複数段階で積層する場合、硬化物層同士の間に界面が生じる。例えば厚さが1μm以下の薄膜の製造を目的とした樹脂組成物の場合、厚さが1.0mm程度の硬化物を得るためには積層数を増加する必要がある。例えば厚さが1μm以下の薄膜から厚さが1.0mmの膜を製造するためには、積層数を1000回にする必要があるが、このような積層回数は生産効率を向上させる観点から現実的ではない。 When the cured product layers are laminated in a plurality of stages, an interface is formed between the cured product layers. For example, in the case of a resin composition for producing a thin film having a thickness of 1 μm or less, it is necessary to increase the number of layers in order to obtain a cured product having a thickness of about 1.0 mm. For example, in order to produce a film having a thickness of 1.0 mm from a thin film having a thickness of 1 μm or less, it is necessary to increase the number of layers to 1000, but such a number of layers is a reality from the viewpoint of improving production efficiency. Not the target.

さらに、積層数の増加により増加した界面は、光透過率が低下し、光分散が増加しやすくなる。本実施形態の樹脂組成物を用いると、厚さが1.0mm程度の硬化物を一段階で製造できる。このため、硬化物層を複数段階で積層する場合にも積層数を減らすことができるため、得られる硬化物は光透過率が低下しにくく、光分散が増加しにくい。 Further, the interface increased due to the increase in the number of layers, the light transmittance decreases, and the light dispersion tends to increase. By using the resin composition of the present embodiment, a cured product having a thickness of about 1.0 mm can be produced in one step. Therefore, even when the cured product layer is laminated in a plurality of stages, the number of layers can be reduced, so that the obtained cured product does not easily decrease the light transmittance and the light dispersion does not easily increase.

硬化物層間の界面をよりなじませるため、例えば1段階目で製造する硬化物層の加熱条件は、前記第2加熱処理まで実施することが好ましく、2段階目で製造する硬化物層の加熱条件は、前記第2加熱処理まで実施することが好ましく、最後に全体を前記第3加熱処理の実施条件で加熱することが好ましい。 In order to make the interface between the cured product layers more familiar, for example, the heating conditions of the cured product layer produced in the first step are preferably carried out up to the second heat treatment, and the heating conditions of the cured product layer produced in the second stage. It is preferable to carry out up to the second heat treatment, and finally, it is preferable to heat the whole under the conditions for carrying out the third heat treatment.

次に、本発明を実施例によりさらに詳細に説明する。 Next, the present invention will be described in more detail by way of examples.

<ゲルタイム試験>
樹脂組成物のゲルタイムは、上記[ゲルタイム試験]に記載の方法により評価した。ゲルタイムが3時間以上であると、「ゲルタイムが長い」と評価した。
<Gel time test>
The gel time of the resin composition was evaluated by the method described in the above [Gel time test]. When the gel time was 3 hours or more, it was evaluated as "long gel time".

<硬度の測定>
硬化物の硬度は、上記[硬度の測定]に記載の方法により評価した。鉛筆硬度が8H以上を満たすと硬度が高いと評価した。
<Measurement of hardness>
The hardness of the cured product was evaluated by the method described in the above [Measurement of hardness]. It was evaluated that the hardness was high when the pencil hardness satisfied 8H or more.

<光透過率の測定>
硬化物の光透過率は、上記[光透過率の測定]に記載の方法により評価した。光透過率が92%以上を満たすと光透過率が高いと評価した。
<Measurement of light transmittance>
The light transmittance of the cured product was evaluated by the method described in the above [Measurement of light transmittance]. It was evaluated that the light transmittance was high when the light transmittance was 92% or more.

<屈折率及び光分散度の測定>
硬化物の屈折率及び光分散度は、上記[屈折率及び光分散度の測定]に記載の方法により評価した。ガラスコーティング膜の屈折率nが1.42以下であると、屈折率が低いと評価した。ガラスコーティング膜のアッベ数が58以上であると、光分散度が低いと評価した。
<Measurement of refractive index and light dispersion>
The refractive index and the degree of light dispersion of the cured product were evaluated by the method described in the above [Measurement of Refractive Index and Light Dispersion]. When the refractive index n D of the glass coating film was 1.42 or less, it was evaluated that the refractive index was low. When the Abbe number of the glass coating film was 58 or more, it was evaluated that the light dispersion degree was low.

<重量平均分子量の測定方法>
共重合体の重量平均分子量は、上記[重量平均分子量の測定方法]に記載の方法により測定した。
<Measurement method of weight average molecular weight>
The weight average molecular weight of the copolymer was measured by the method described in the above [Method for measuring weight average molecular weight].

<実施例1>
2L四つ口フラスコにメチルトリエトキシシラン100.00g(0.561mol)、テトラエトキシシラン77.90g(0.374mol)、ジメチルジエトキシシラン55.44g(0.374mol)、トリメトキシ(3,3,3−トリフルオロプロピル)シラン122.48g(0.561mol)、2−プロパノール35.95gを仕込み、0.98gの35%塩酸をイオン交換水100.94gで希釈した溶液を滴下し、60℃で3時間撹拌した。室温まで冷却し、イオン交換水300g、メチルイソブチルケトン300gを加えて分液洗浄した。有機層を濃縮し、無色透明のワニス1を得た(収率97%)。
<Example 1>
Methyltriethoxysilane 100.00 g (0.561 mol), tetraethoxysilane 77.90 g (0.374 mol), dimethyldiethoxysilane 55.44 g (0.374 mol), trimethoxy (3,3) in a 2 L four-necked flask. 122.48 g (0.561 mol) of 3-trifluoropropyl) silane and 35.95 g of 2-propanol were added, and a solution of 0.98 g of 35% hydrochloric acid diluted with 100.94 g of ion-exchanged water was added dropwise at 60 ° C. The mixture was stirred for 3 hours. The mixture was cooled to room temperature, 300 g of ion-exchanged water and 300 g of methyl isobutyl ketone were added, and the mixture was separated and washed. The organic layer was concentrated to obtain a colorless and transparent varnish 1 (yield 97%).

得られたワニス1は、繰返し単位(A)としてジエトキシジメチルシランから誘導される繰り返し単位を、繰返し単位(B)としてトリエトキシメチルシランから誘導される繰り返し単位を、繰返し単位(C)としてテトラエトキシシランから誘導される繰り返し単位を、繰返し単位(D)としてトリメトキシ(3,3,3−トリフルオロプロピル)シランから誘導される繰り返し単位からなる共重合体を固形分濃度70質量%で含んでいた。 The obtained varnish 1 has a repeating unit derived from diethoxydimethylsilane as a repeating unit (A) and a repeating unit derived from triethoxymethylsilane as a repeating unit (B) as a repeating unit (C). The repeating unit derived from ethoxysilane is contained as the repeating unit (D), and a copolymer consisting of the repeating unit derived from trimethoxy (3,3,3-trifluoropropyl) silane is contained in a solid content concentration of 70% by mass. board.

それぞれの繰り返し単位の割合は、繰返し単位(A):繰返し単位(B):繰返し単位(C):繰返し単位(D)=20mol%:30mol%:20mol%:30mol%であった。 The ratio of each repeating unit was: repeating unit (A): repeating unit (B): repeating unit (C): repeating unit (D) = 20 mol%: 30 mol%: 20 mol%: 30 mol%.

サンアプロ製U−CAT SA810(0.10g)を2-プロパノール(99.90g)で希釈し、硬化剤溶液を得た。硬化剤溶液を上記で得たワニス1に添加した。このとき、ワニスの樹脂全固形分の全量に対するサンアプロ製U−CAT SA810の添加量が100ppmとなる割合で添加した。 U-CAT SA810 (0.10 g) manufactured by San-Apro was diluted with 2-propanol (99.90 g) to obtain a curing agent solution. The curing agent solution was added to the varnish 1 obtained above. At this time, the amount of U-CAT SA810 manufactured by San-Apro was added at a ratio of 100 ppm to the total amount of the total solid content of the resin of the varnish.

上記の工程により、樹脂組成物1を得た。 The resin composition 1 was obtained by the above steps.

樹脂組成物1を、固形分が2.0gとなるようアルミカップに添加した。このとき底面積が4cmであるアルミカップを用いた。 The resin composition 1 was added to the aluminum cup so that the solid content was 2.0 g. At this time, an aluminum cup having a bottom area of 4 cm 2 was used.

その後、熱風乾燥オーブンに樹脂組成物1を添加したアルミカップを入れ50℃で1時間、100℃で1時間、150℃で3時間加熱した。これにより、厚さ1.0mmの無色透明な硬化物1を得た。 Then, an aluminum cup to which the resin composition 1 was added was placed in a hot air drying oven and heated at 50 ° C. for 1 hour, 100 ° C. for 1 hour, and 150 ° C. for 3 hours. As a result, a colorless and transparent cured product 1 having a thickness of 1.0 mm was obtained.

<実施例2>
硬化剤溶液を、2-プロパノール(229.77g)、DBN(0.10g)、o−フタル酸(0.13g)を混合した溶液に変更した以外は実施例1と同様の方法により、樹脂組成物2及び硬化物2を製造した。
<Example 2>
The resin composition was changed by the same method as in Example 1 except that the curing agent solution was changed to a solution in which 2-propanol (229.77 g), DBN (0.10 g) and o-phthalic acid (0.13 g) were mixed. The product 2 and the cured product 2 were manufactured.

<実施例3〜10、比較例1〜17>
繰返し単位(A)〜(D)の比率と、硬化剤溶液を表1及び表2に記載の通り変更した以外は実施例1と同様の方法により、樹脂組成物及び硬化物をそれぞれ製造した。
<Examples 3 to 10 and Comparative Examples 1 to 17>
The resin composition and the cured product were produced by the same method as in Example 1 except that the ratio of the repeating units (A) to (D) and the curing agent solution were changed as described in Tables 1 and 2.

実施例1〜10、比較例1〜17により製造した樹脂組成物を用いて作成した硬化物又はガラスコーティング膜の、鉛筆硬度、光透過率、屈折率及び光分散度を表1及び表2にそれぞれ記載する。 Tables 1 and 2 show the pencil hardness, light transmittance, refractive index and light dispersibility of the cured product or glass coating film prepared using the resin compositions produced in Examples 1 to 10 and Comparative Examples 1 to 17. Describe each.

さらに、表3〜表4に共重合体の重量平均分子量を記載する。表3〜表4中、「Mw」は重量平均分子量を意味する。 Further, Tables 3 to 4 show the weight average molecular weights of the copolymers. In Tables 3 to 4, "Mw" means the weight average molecular weight.

Figure 0006989188
Figure 0006989188

Figure 0006989188
Figure 0006989188

Figure 0006989188
Figure 0006989188

Figure 0006989188
Figure 0006989188

表1及び表2中、各記号は以下を意味する。
(A):ジエトキシジメチルシランから誘導される繰り返し単位。
(B):トリエトキシメチルシランから誘導される繰り返し単位。
(C):テトラエトキシシランから誘導される繰り返し単位。
(D):トリメトキシ(3,3,3−トリフルオロプロピル)シランから誘導される繰り返し単位。
T1:サンアプロ製「U−CAT SA810」、DBUのo−フタル酸塩。
T2:サンアプロ製「U−CAT SA506」、DBUのp−トルエンスルホン酸塩。
T3:DBNとo−フタル酸の塩(モル比1:1)。
T4:トリエチルアミン。
T5:トリエチルアミンとo−フタル酸の塩(モル比1:1)。
In Tables 1 and 2, each symbol means the following.
(A): Repeating unit derived from diethoxydimethylsilane.
(B): Repeating unit derived from triethoxymethylsilane.
(C): Repeating unit derived from tetraethoxysilane.
(D): Repeat unit derived from trimethoxy (3,3,3-trifluoropropyl) silane.
T1: "U-CAT SA810" manufactured by San-Apro, o-phthalate salt of DBU.
T2: San-Apro's "U-CAT SA506", DBU's p-toluenesulfonate.
T3: Salt of DBN and o-phthalic acid (molar ratio 1: 1).
T4: Triethylamine.
T5: Salt of triethylamine and o-phthalic acid (molar ratio 1: 1).

表1及び表2に示した通り、実施例1〜10によれば硬度及び光透過率が高く、屈折率及び光分散が低い硬化物を製造できる樹脂組成物が得られた。 As shown in Tables 1 and 2, according to Examples 1 to 10, a resin composition capable of producing a cured product having high hardness and light transmittance and low refractive index and light dispersion was obtained.

比較例1〜3は、繰返し単位(D)の割合が本発明に規定する範囲の上限を超過しているため、硬化物の硬度が低下している。
比較例4は、繰返し単位(D)を含まないため、屈折率が1.42を超えている。
In Comparative Examples 1 to 3, the ratio of the repeating unit (D) exceeds the upper limit of the range specified in the present invention, so that the hardness of the cured product is lowered.
In Comparative Example 4, since the repeating unit (D) is not included, the refractive index exceeds 1.42.

比較例5は、繰返し単位(A)の割合が本発明に規定する範囲の上限を超過しているため、硬化物の硬度が低下している。
比較例6は、繰返し単位(C)の割合が本発明に規定する範囲の上限を超過しているため、硬化物の透過率が低下している。
In Comparative Example 5, since the ratio of the repeating unit (A) exceeds the upper limit of the range specified in the present invention, the hardness of the cured product is lowered.
In Comparative Example 6, since the ratio of the repeating unit (C) exceeds the upper limit of the range specified in the present invention, the transmittance of the cured product is lowered.

比較例7は繰返し単位(A)を含まないため、硬化時にサンプルが粉々になり、各物性を測定することができなかった。
比較例8は、繰返し単位(A)及び(C)の割合が本発明に規定する範囲の上限を超過し、繰返し単位(B)が本発明に規定する範囲の下限を下回っている。このため、硬化物の透過性が低く及び光分散性が上がっている。
Since Comparative Example 7 does not contain the repeating unit (A), the sample shattered during curing, and each physical property could not be measured.
In Comparative Example 8, the ratio of the repeating unit (A) and (C) exceeds the upper limit of the range specified in the present invention, and the repeating unit (B) is lower than the lower limit of the range specified in the present invention. Therefore, the transparency of the cured product is low and the light dispersibility is increased.

比較例9〜14は、硬化剤を用いていないため、硬化物の硬度が低い結果となっている。 In Comparative Examples 9 to 14, since no curing agent was used, the hardness of the cured product was low.

比較例15及び16は、硬化剤として環状アミジンを有する化合物と有機酸との塩を用いていないため、硬化物の硬度が低下している。
比較例17は、硬化剤として環状アミジンを有する化合物と有機酸との塩を用いず、さらに繰返し単位(B)の割合が本発明に規定する範囲の上限を超過し、繰返し単位(D)を含まない。この場合には、硬化物の硬度が低く、屈折率及び光分散は高い結果であった。
In Comparative Examples 15 and 16, since the salt of the compound having cyclic amidine and the organic acid is not used as the curing agent, the hardness of the cured product is lowered.
In Comparative Example 17, a salt of a compound having cyclic amidine and an organic acid was not used as a curing agent, and the ratio of the repeating unit (B) exceeded the upper limit of the range specified in the present invention, and the repeating unit (D) was used. Not included. In this case, the hardness of the cured product was low, and the refractive index and light dispersion were high.

共重合体の組成比が同じである実施例1と比較例14、実施例5と比較例9、実施例6と比較例10、実施例7と比較例11、実施例8と比較例13、実施例9と比較例12とをそれぞれ比べると、いずれにおいても比較例よりも実施例の方が、鉛筆硬度の高さに加え、アッベ数が高い結果となった。同じ共重合体を用いた場合でも、特定の硬化剤を用いると、鉛筆硬度の高さに加え、アッベ数が高くなることが確認できた。 Example 1 and Comparative Example 14, Example 5 and Comparative Example 9, Example 6 and Comparative Example 10, Example 7 and Comparative Example 11, and Example 8 and Comparative Example 13 in which the composition ratios of the copolymers are the same. Comparing Example 9 and Comparative Example 12, the results showed that the example had a higher pencil hardness and a higher Abbe number than the comparative example. It was confirmed that even when the same copolymer was used, the Abbe number increased in addition to the high pencil hardness when a specific curing agent was used.

<ゲルタイム試験結果>
実施例1で製造したワニス1に、U−CAT SA810、又はDBUをそれぞれ各量添加し、ゲルタイムを測定した。その結果を表5に記載する。
<Gel time test results>
Each amount of U-CAT SA810 or DBU was added to the varnish 1 produced in Example 1, and the gel time was measured. The results are shown in Table 5.

Figure 0006989188
Figure 0006989188

硬化剤として、DBUのo−フタル酸塩(U−CAT SA810)を用いた場合には、10000ppm以下の割合においてゲルタイムが3時間以上であった。硬化剤として、環状アミジンを有する化合物と有機酸との塩を用いると、作業上十分なゲルタイムが確保できることが確認できた。 When DBU o-phthalate salt (U-CAT SA810) was used as the curing agent, the gel time was 3 hours or more at a rate of 10,000 ppm or less. It was confirmed that a sufficient gel time could be secured for work when a salt of a compound having cyclic amidine and an organic acid was used as a curing agent.

硬化剤としてDBU単体を用いた場合には、いずれの添加量においても作業上十分なゲルタイムが確保できないことがわかった。 It was found that when DBU alone was used as the curing agent, sufficient gel time could not be secured for work regardless of the amount added.

Claims (6)

共重合体と硬化剤とを含む樹脂組成物であって、
前記共重合体は、下記式(A)で表される繰返し単位(A)、下記式(B)で表される繰返し単位(B)、下記式(C)で表される繰返し単位(C)及び下記式(D)で表される繰返し単位(D)を含み、
前記硬化剤は、環状アミジンを有する化合物と有機酸との塩であり、
前記環状アミジンを有する化合物と有機酸との塩は、1,8−ジアザビシクロ[5.4.0]−7−ウンデセンとフタル酸との塩、1,8−ジアザビシクロ[5.4.0]−7−ウンデセンとp−トルエンスルホン酸との塩又は1,5−ジアザビシクロ[4.3.0]−5−ノネンとフタル酸との塩であり、
前記共重合体を構成する全繰返し単位の合計に対する前記繰返し単位(A)の割合は、10mol%以上20mol%以下であり、
前記共重合体を構成する全繰返し単位の合計に対する前記繰返し単位(B)の割合は、20mol%以上50mol%以下であり、
前記共重合体を構成する全繰返し単位の合計に対する前記繰返し単位(C)の割合は、10mol%以上20mol%以下であり、
前記共重合体を構成する全繰返し単位の合計に対する前記繰返し単位(D)の割合は、20mol%以上50mol%以下であり、
前記樹脂組成物の樹脂全固形分の全量に対する、前記硬化剤の割合は50ppm以上10000ppm以下である、樹脂組成物。
[MeSiO2/2] ・・・式(A)
[MeSiO3/2] ・・・式(B)
[SiO4/2] ・・・式(C)
[RSiO3/2] ・・・式(D)
(式(D)中、Rはフッ素原子を有する炭素数1〜3のアルキル基である。)
A resin composition containing a copolymer and a curing agent.
The copolymer is a repeating unit (A) represented by the following formula (A), a repeating unit (B) represented by the following formula (B), and a repeating unit (C) represented by the following formula (C). And the repeating unit (D) represented by the following formula (D).
The curing agent is a salt of a compound having cyclic amidine and an organic acid.
The salt of the compound having cyclic amidine and the organic acid is 1,8-diazabicyclo [5.4.0] -7-salt of undecene and phthalic acid, 1,8-diazabicyclo [5.4.0]-. A salt of 7-undecene and p-toluenesulfonic acid or a salt of 1,5-diazabicyclo [4.3.0] -5-nonen and phthalic acid.
The ratio of the repeating unit (A) to the total of all the repeating units constituting the copolymer is 10 mol% or more and 20 mol% or less.
The ratio of the repeating unit (B) to the total of all the repeating units constituting the copolymer is 20 mol% or more and 50 mol% or less.
The ratio of the repeating unit (C) to the total of all the repeating units constituting the copolymer is 10 mol% or more and 20 mol% or less.
The ratio of the repeating unit (D) to the total of all the repeating units constituting the copolymer is 20 mol% or more and 50 mol% or less.
A resin composition in which the ratio of the curing agent to the total amount of the total solid content of the resin in the resin composition is 50 ppm or more and 10,000 ppm or less.
[Me 2 SiO 2/2 ] ・ ・ ・ Equation (A)
[MeSiO 3/2 ] ... Equation (B)
[SiO 4/2 ] ・ ・ ・ Equation (C)
[RSiO 3/2 ] ... Equation (D)
(In the formula (D), R is an alkyl group having a fluorine atom and having 1 to 3 carbon atoms.)
請求項1に記載の樹脂組成物の硬化物。 A cured product of the resin composition according to claim 1. 厚さが0.1mm以上3.0mm以下である、請求項に記載の硬化物。 The cured product according to claim 2 , wherein the cured product has a thickness of 0.1 mm or more and 3.0 mm or less. 請求項又はに記載の硬化物を光学部材として含む電子部品。 An electronic component containing the cured product according to claim 2 or 3 as an optical member. 請求項1に記載の樹脂組成物を得るための2成分キットであって、
第1成分が前記共重合体であり、第2成分が前記硬化剤である、2成分キット。
A two-component kit for obtaining the resin composition according to claim 1.
A two-component kit in which the first component is the copolymer and the second component is the curing agent.
前記共重合体と前記硬化剤とを混合し、請求項1に記載の樹脂組成物を得る工程と、
前記樹脂組成物を加熱して硬化させる硬化工程と、を備える、硬化物の製造方法。
The step of mixing the copolymer and the curing agent to obtain the resin composition according to claim 1.
A method for producing a cured product, comprising a curing step of heating and curing the resin composition.
JP2021070944A 2021-04-20 2021-04-20 Method for manufacturing resin composition, cured product, electronic component, two-component kit and cured product Active JP6989188B1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2021070944A JP6989188B1 (en) 2021-04-20 2021-04-20 Method for manufacturing resin composition, cured product, electronic component, two-component kit and cured product
PCT/JP2022/014216 WO2022224699A1 (en) 2021-04-20 2022-03-25 Resin composition, cured product, electronic part, two-component kit and method for producing cured product

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2021070944A JP6989188B1 (en) 2021-04-20 2021-04-20 Method for manufacturing resin composition, cured product, electronic component, two-component kit and cured product

Publications (2)

Publication Number Publication Date
JP6989188B1 true JP6989188B1 (en) 2022-01-05
JP2022165558A JP2022165558A (en) 2022-11-01

Family

ID=79239845

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2021070944A Active JP6989188B1 (en) 2021-04-20 2021-04-20 Method for manufacturing resin composition, cured product, electronic component, two-component kit and cured product

Country Status (2)

Country Link
JP (1) JP6989188B1 (en)
WO (1) WO2022224699A1 (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018016796A (en) * 2016-07-19 2018-02-01 セントラル硝子株式会社 Curable resin composition and cured product of the same, and semiconductor device using them

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3296441B2 (en) * 1991-10-17 2002-07-02 鐘淵化学工業株式会社 Silicon-based hybrid materials
JP2004210975A (en) * 2003-01-06 2004-07-29 Daikin Ind Ltd Coating composition
JP4361007B2 (en) * 2004-11-26 2009-11-11 東亞合成株式会社 Curable composition
EP2035503B1 (en) * 2006-06-20 2012-06-13 Dow Corning Corporation Curable organosilicon composition
JP6627654B2 (en) * 2016-06-16 2020-01-08 信越化学工業株式会社 Fluorosilicone rubber composition and rubber parts for engine periphery of transport aircraft

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018016796A (en) * 2016-07-19 2018-02-01 セントラル硝子株式会社 Curable resin composition and cured product of the same, and semiconductor device using them

Also Published As

Publication number Publication date
WO2022224699A1 (en) 2022-10-27
JP2022165558A (en) 2022-11-01

Similar Documents

Publication Publication Date Title
JP6920568B2 (en) Polyimide-based varnish, method for manufacturing polyimide-based film using it, and polyimide-based film
CN101203546B (en) Crosslinkable fluorine-containing aromatic prepolymer and use thereof
CN108473682B (en) Polysilsesquioxane resin composition for flexible substrate
CN107922620B (en) Low-temperature-curable composition, cured film, and electronic device
US20140051804A1 (en) Polysilanesiloxane resins for use in an antireflective coating
JP2011084672A (en) Composition for optical material
TWI677521B (en) Polyimide film
JP2011173738A (en) Transparent fired body
WO2013175962A1 (en) Fluorine-containing polymer and method for producing same
KR101519559B1 (en) Modified polysilazane-based polymer, coating composition comprising the same, coated plastic substrate obtainable using the same and its preparing method, and method of preparing the modified polysilazane-based polymer
CN103608407B (en) High refraction composition
KR101492251B1 (en) Modified polysiloxane-based copolymer, coating composition comprising the same, coated plastic substrate obtainable using the same and its preparing method, and method of preparing the modified polysiloxane-based copolymer
WO2020016485A1 (en) Novel polysiloxane compositions and uses thereof
JP6989188B1 (en) Method for manufacturing resin composition, cured product, electronic component, two-component kit and cured product
JP2013087162A (en) Fluorine-containing polymer, curable resin composition, and cured product
WO2007130014A1 (en) Organosilicon polymers
TWI480344B (en) White coating composition, and device employing a coating made of the composition
KR101549473B1 (en) Modified Organic-Inorganic Hybrid Copolymer, Process of Preparing the Copolymer, Coating Composition Having the Copolymer and Application Thereof
CN102803377B (en) Curable resin composition, cured article and fluoropolymer
KR20160079417A (en) Silicone Resin Hybrid Composition and Method of Preparing the Same
KR101676521B1 (en) Composite sheet, method for preparing the same and display apparatus comprising the same
WO2017110623A1 (en) Silicone resin composition and sealing material for semiconductor light emitting element
KR102316332B1 (en) Curable resin composition, cured film prepared therefrom, and electronic device incorporating cured film
KR101848346B1 (en) Low Temperature Curable Composition, Cured Film Prepared therefrom, and Electronic Device Incorporating Cured Film
KR102167370B1 (en) Silicone Resin and Method of Preparing the Same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210913

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20210913

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20211019

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20211102

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20211116

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20211125

R150 Certificate of patent or registration of utility model

Ref document number: 6989188

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150