JP6970903B2 - Variable magnification optical system and optical equipment - Google Patents

Variable magnification optical system and optical equipment Download PDF

Info

Publication number
JP6970903B2
JP6970903B2 JP2020068769A JP2020068769A JP6970903B2 JP 6970903 B2 JP6970903 B2 JP 6970903B2 JP 2020068769 A JP2020068769 A JP 2020068769A JP 2020068769 A JP2020068769 A JP 2020068769A JP 6970903 B2 JP6970903 B2 JP 6970903B2
Authority
JP
Japan
Prior art keywords
focusing
group
lens
focusing group
optical system
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2020068769A
Other languages
Japanese (ja)
Other versions
JP2020109537A (en
Inventor
悟 柴田
知之 幸島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nikon Corp
Original Assignee
Nikon Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2016007868A external-priority patent/JP6691320B2/en
Application filed by Nikon Corp filed Critical Nikon Corp
Priority to JP2020068769A priority Critical patent/JP6970903B2/en
Publication of JP2020109537A publication Critical patent/JP2020109537A/en
Application granted granted Critical
Publication of JP6970903B2 publication Critical patent/JP6970903B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Lenses (AREA)

Description

本発明は、変倍光学系及び光学機器に関する。 The present invention relates to variable magnification optical systems and optical instruments.

従来、複数群のフォーカシングによる近距離合焦機能を有する変倍光学系が提案されている(例えば、特許文献1参照)。しかしながら、特許文献1は、さらなる光学性能の向上が要望されているという課題があった。 Conventionally, a variable magnification optical system having a short-distance focusing function by focusing a plurality of groups has been proposed (see, for example, Patent Document 1). However, Patent Document 1 has a problem that further improvement in optical performance is required.

特開2009−271471号公報Japanese Unexamined Patent Publication No. 2009-271471

本発明の第1の態様に係る変倍光学系は、複数のレンズ群を有し、変倍時にレンズ群の間隔が変化する変倍光学系であって、開口絞りと、開口絞りより物体側に配置され、合焦時に光軸方向に移動する少なくとも1つの物体側合焦群と、開口絞りより像側に配置され、合焦時に光軸方向に移動する少なくとも1つの像側合焦群と、を有し、合焦時に、物体側合焦群と像側合焦群との移動軌跡は異なり、物体側合焦群より物体側に、少なくとも1つの物体側レンズ群を有し、変倍時に、物体側レンズ群と前記物体側合焦群との間隔が変化し、物体側合焦群の1つ及び像側合焦群の1つのうち、一方を第1合焦群とし、他方を第2合焦群としたとき、次式の条件を満足することを特徴とする。
|ff1/ff2| < 1.000
0.010 < |FZ2T/FZ1T| < 1.000
0.050 < |FZ2W/FZ2T| < 0.950
ff2 ≦ −34.47
但し、
ff1:第1合焦群の焦点距離
ff2:第2合焦群の焦点距離
FZ1T:望遠端状態且つ無限遠合焦状態において第1合焦群が光軸方向に1[mm]移動した際の軸上合焦位置の変動量[mm]
FZ2W:広角端状態且つ無限遠合焦状態において第2合焦群が光軸方向に1[mm]移動した際の軸上合焦位置の変動量[mm]
FZ2T:望遠端状態且つ無限遠合焦状態において第2合焦群が光軸方向に1[mm]移動した際の軸上合焦位置の変動量[mm]
The variable magnification optical system according to the first aspect of the present invention is a variable magnification optical system having a plurality of lens groups and changing the distance between the lens groups at the time of magnification change, and is on the object side of the aperture aperture and the aperture aperture. At least one object-side focusing group arranged in the image side and moving in the optical axis direction at the time of focusing, and at least one image-side focusing group arranged on the image side of the aperture aperture and moving in the optical axis direction at the time of focusing. , The movement locus between the object-side focusing group and the image-side focusing group is different at the time of focusing, and there is at least one object-side lens group on the object side from the object-side focusing group, and the magnification is variable. Occasionally, the distance between the object-side lens group and the object-side focusing group changes, and one of the object-side focusing group and one of the image-side focusing group is designated as the first focusing group and the other is designated as the first focusing group. When the second focusing group is used, the condition of the following equation is satisfied.
| ff1 / ff2 | <1,000
0.010 << | FZ2T / FZ1T | <1,000
0.050 << | FZ2W / FZ2T | <0.950
ff2 ≤ −34.47
However,
ff1: Focal length of the first focusing group ff2: Focal length of the second focusing group FZ1T: When the first focusing group moves 1 [mm] in the optical axis direction in the telephoto end state and the infinity focusing state. Fluctuation amount of on-axis focal length position [mm]
FZ2W: Fluctuation amount of on-axis focusing position when the second focusing group moves 1 [mm] in the optical axis direction in the wide-angle end state and infinity focusing state [mm]
FZ2T: Fluctuation amount of on-axis focusing position when the second focusing group moves 1 [mm] in the optical axis direction in the telephoto end state and infinity focusing state [mm]

本発明の第2の態様に係る変倍光学系は、複数のレンズ群を有し、変倍時にレンズ群の間隔が変化する変倍光学系であって、開口絞りと、開口絞りより物体側に配置され、合焦時に光軸方向に移動する少なくとも1つの物体側合焦群と、開口絞りより像側に配置され、合焦時に光軸方向に移動する少なくとも1つの像側合焦群と、を有し、合焦時に、物体側合焦群と像側合焦群との移動軌跡は異なり、物体側合焦群の1つは、物体側に凹面を向けた負レンズからなり、物体側合焦群の1つ及び像側合焦群の1つのうち、一方を第1合焦群とし、他方を第2合焦群としたとき、次式の条件を満足することを特徴とする。 The variable magnification optical system according to the second aspect of the present invention is a variable magnification optical system having a plurality of lens groups and changing the distance between the lens groups at the time of magnification change, and is on the object side of the aperture aperture and the aperture aperture. At least one object-side focusing group arranged in the image side and moving in the optical axis direction at the time of focusing, and at least one image-side focusing group arranged on the image side of the aperture aperture and moving in the optical axis direction at the time of focusing. When focusing, the movement trajectory of the object-side focusing group and the image-side focusing group is different, and one of the object-side focusing groups consists of a negative lens with a concave surface facing the object side. Of the one of the side focusing group and the one of the image side focusing group, when one is the first focusing group and the other is the second focusing group, the condition of the following equation is satisfied. ..
|ff1/ff2| < 1.000| ff1 / ff2 | <1,000
0.010 < |FZ2T/FZ1T| < 1.0000.010 << | FZ2T / FZ1T | <1,000
0.050 < |FZ2W/FZ2T| < 0.9500.050 << | FZ2W / FZ2T | <0.950
ff2 ≦ −34.47ff2 ≤ −34.47
但し、 However,
ff1:第1合焦群の焦点距離 ff1: Focal length of the first focusing group
ff2:第2合焦群の焦点距離 ff2: Focal length of the second focusing group
FZ1T:望遠端状態且つ無限遠合焦状態において第1合焦群が光軸方向に1[mm]移動した際の軸上合焦位置の変動量[mm] FZ1T: Fluctuation amount of on-axis focusing position when the first focusing group moves 1 [mm] in the optical axis direction in the telephoto end state and infinity focusing state [mm]
FZ2W:広角端状態且つ無限遠合焦状態において第2合焦群が光軸方向に1[mm]移動した際の軸上合焦位置の変動量[mm] FZ2W: Fluctuation amount of on-axis focusing position when the second focusing group moves 1 [mm] in the optical axis direction in the wide-angle end state and infinity focusing state [mm]
FZ2T:望遠端状態且つ無限遠合焦状態において第2合焦群が光軸方向に1[mm]移動した際の軸上合焦位置の変動量[mm] FZ2T: Fluctuation amount of on-axis focusing position when the second focusing group moves 1 [mm] in the optical axis direction in the telephoto end state and infinity focusing state [mm]
本発明の第3の態様に係る変倍光学系は、複数のレンズ群を有し、変倍時にレンズ群の間隔が変化する変倍光学系であって、開口絞りと、開口絞りより物体側に配置され、合焦時に光軸方向に移動する少なくとも1つの物体側合焦群と、開口絞りより像側に配置され、合焦時に光軸方向に移動する少なくとも1つの像側合焦群と、を有し、合焦時に、物体側合焦群と像側合焦群との移動軌跡は異なり、物体側合焦群の1つ及び像側合焦群の1つのうち、一方を第1合焦群とし、他方を第2合焦群としたとき、次式の条件を満足することを特徴とする。 The variable magnification optical system according to the third aspect of the present invention is a variable magnification optical system having a plurality of lens groups and changing the distance between the lens groups at the time of magnification change, and is on the object side of the aperture aperture and the aperture aperture. At least one object-side focusing group arranged in the image side and moving in the optical axis direction at the time of focusing, and at least one image-side focusing group arranged on the image side of the aperture aperture and moving in the optical axis direction at the time of focusing. , And the movement locus between the object-side focusing group and the image-side focusing group is different at the time of focusing, and one of the object-side focusing group and one of the image-side focusing group is the first. When the in-focus group is used and the other is the second in-focus group, the condition of the following equation is satisfied.
|ff1/ff2| < 1.000| ff1 / ff2 | <1,000
0.010 < |FZ2T/FZ1T| < 1.0000.010 << | FZ2T / FZ1T | <1,000
0.600 < |FZ2W/FZ2T| < 0.9500.600 << | FZ2W / FZ2T | <0.950
ff2 ≦ −34.47ff2 ≤ −34.47
但し、 However,
ff1:第1合焦群の焦点距離 ff1: Focal length of the first focusing group
ff2:第2合焦群の焦点距離 ff2: Focal length of the second focusing group
FZ1T:望遠端状態且つ無限遠合焦状態において第1合焦群が光軸方向に1[mm]移動した際の軸上合焦位置の変動量[mm] FZ1T: Fluctuation amount of on-axis focusing position when the first focusing group moves 1 [mm] in the optical axis direction in the telephoto end state and infinity focusing state [mm]
FZ2W:広角端状態且つ無限遠合焦状態において第2合焦群が光軸方向に1[mm]移動した際の軸上合焦位置の変動量[mm] FZ2W: Fluctuation amount of on-axis focusing position when the second focusing group moves 1 [mm] in the optical axis direction in the wide-angle end state and infinity focusing state [mm]
FZ2T:望遠端状態且つ無限遠合焦状態において第2合焦群が光軸方向に1[mm]移動した際の軸上合焦位置の変動量[mm] FZ2T: Fluctuation amount of on-axis focusing position when the second focusing group moves 1 [mm] in the optical axis direction in the telephoto end state and infinity focusing state [mm]

本発明の第4の態様に係る変倍光学系は、複数のレンズ群を有し、変倍時にレンズ群の間隔が変化する変倍光学系であって、開口絞りと、開口絞りより物体側に配置され、合焦時に光軸方向に移動する少なくとも1つの物体側合焦群と、開口絞りより像側に配置され、合焦時に光軸方向に移動する少なくとも1つの像側合焦群と、を有し、合焦時に、物体側合焦群と像側合焦群との移動軌跡は異なり、像側合焦群の1つを第1合焦群とし、物体側合焦群の1つを第2合焦群としたとき、次式の条件を満足することを特徴とする。
|ff1/ff2| < 1.000
ff1 > 0
0.010 < |FZ1W/FZ1T| < 0.350
但し、
ff1:第1合焦群の焦点距離
ff2:第2合焦群の焦点距離
FZ1W:広角端状態且つ無限遠合焦状態において第1合焦群が光軸方向に1[mm]移動した際の軸上合焦位置の変動量[mm]
FZ1T:望遠端状態且つ無限遠合焦状態において第1合焦群が光軸方向に1[mm]移動した際の軸上合焦位置の変動量[mm]
The variable magnification optical system according to the fourth aspect of the present invention is a variable magnification optical system having a plurality of lens groups and changing the distance between the lens groups at the time of magnification change. At least one object-side focusing group arranged in the image side and moving in the optical axis direction at the time of focusing, and at least one image-side focusing group arranged on the image side of the aperture aperture and moving in the optical axis direction at the time of focusing. , And the movement trajectory between the object-side focusing group and the image-side focusing group is different at the time of focusing, and one of the image-side focusing groups is set as the first focusing group, and one of the object-side focusing groups is set as 1. When one is the second focusing group, it is characterized by satisfying the condition of the following equation.
| ff1 / ff2 | <1,000
ff1> 0
0.010 << | FZ1W / FZ1T | <0.350
However,
ff1: Focal length of the first focusing group ff2: Focal length of the second focusing group
FZ1W: Fluctuation amount [mm] of the on-axis focusing position when the first focusing group moves 1 [mm] in the optical axis direction in the wide-angle end state and the infinity focusing state.
FZ1T: Fluctuation amount of on-axis focusing position when the first focusing group moves 1 [mm] in the optical axis direction in the telephoto end state and infinity focusing state [mm]

第1実施例に係る変倍光学系の無限遠合焦状態のレンズ構成を示す断面図であって、(W)は広角端状態を示し、(M)は中間焦点距離状態を示し、(T)は望遠端状態を示す。It is sectional drawing which shows the lens composition of the infinitely focused state of the variable magnification optical system which concerns on 1st Example, (W) shows a wide-angle end state, (M) shows an intermediate focal length state, (T ) Indicates the telephoto end state. 第1実施形態に係る変倍光学系の無限遠合焦状態における諸収差図であって、(W)は広角端状態を示し、(M)は中間焦点距離状態を示し、(T)は望遠端状態を示す。In the aberration diagram in the infinity focusing state of the variable magnification optical system according to the first embodiment, (W) shows a wide-angle end state, (M) shows an intermediate focal length state, and (T) is a telephoto lens. Indicates the edge state. 第1実施形態に係る変倍光学系の至近合焦状態における諸収差図であって、(W)は広角端状態を示し、(M)は中間焦点距離状態を示し、(T)は望遠端状態を示す。It is a diagram of various aberrations in the close-focused state of the variable magnification optical system according to the first embodiment, in which (W) shows a wide-angle end state, (M) shows an intermediate focal length state, and (T) shows a telephoto end. Indicates the state. 第2実施例に係る変倍光学系の無限遠合焦状態のレンズ構成を示す断面図であって、(W)は広角端状態を示し、(M)は中間焦点距離状態を示し、(T)は望遠端状態を示す。It is sectional drawing which shows the lens composition of the infinitely focused state of the variable magnification optical system which concerns on 2nd Example, (W) shows a wide-angle end state, (M) shows an intermediate focal length state, (T ) Indicates the telephoto end state. 第2実施形態に係る変倍光学系の無限遠合焦状態における諸収差図であって、(W)は広角端状態を示し、(M)は中間焦点距離状態を示し、(T)は望遠端状態を示す。In the aberration diagram in the infinity focusing state of the variable magnification optical system according to the second embodiment, (W) shows a wide-angle end state, (M) shows an intermediate focal length state, and (T) is a telephoto lens. Indicates the edge state. 第2実施形態に係る変倍光学系の至近合焦状態における諸収差図であって、(W)は広角端状態を示し、(M)は中間焦点距離状態を示し、(T)は望遠端状態を示す。It is a diagram of various aberrations in the close-focused state of the variable magnification optical system according to the second embodiment, in which (W) shows a wide-angle end state, (M) shows an intermediate focal length state, and (T) shows a telephoto end. Indicates the state. 第3実施例に係る変倍光学系の無限遠合焦状態のレンズ構成を示す断面図であって、(W)は広角端状態を示し、(M)は中間焦点距離状態を示し、(T)は望遠端状態を示す。It is sectional drawing which shows the lens composition of the infinitely focused state of the variable magnification optical system which concerns on 3rd Example, (W) shows a wide-angle end state, (M) shows an intermediate focal length state, (T ) Indicates the telephoto end state. 第3実施形態に係る変倍光学系の無限遠合焦状態における諸収差図であって、(W)は広角端状態を示し、(M)は中間焦点距離状態を示し、(T)は望遠端状態を示す。In the aberration diagram in the infinity focusing state of the variable magnification optical system according to the third embodiment, (W) shows a wide-angle end state, (M) shows an intermediate focal length state, and (T) is a telephoto lens. Indicates the edge state. 第3実施形態に係る変倍光学系の至近合焦状態における諸収差図であって、(W)は広角端状態を示し、(M)は中間焦点距離状態を示し、(T)は望遠端状態を示す。It is a diagram of various aberrations in the close-focused state of the variable magnification optical system according to the third embodiment, in which (W) shows a wide-angle end state, (M) shows an intermediate focal length state, and (T) shows a telephoto end. Indicates the state. 第4実施例に係る変倍光学系の無限遠合焦状態のレンズ構成を示す断面図であって、(W)は広角端状態を示し、(M)は中間焦点距離状態を示し、(T)は望遠端状態を示す。It is sectional drawing which shows the lens composition of the infinitely focused state of the variable magnification optical system which concerns on 4th Embodiment, (W) shows a wide-angle end state, (M) shows an intermediate focal length state, (T ) Indicates the telephoto end state. 第4実施形態に係る変倍光学系の無限遠合焦状態における諸収差図であって、(W)は広角端状態を示し、(M)は中間焦点距離状態を示し、(T)は望遠端状態を示す。In the aberration diagram in the infinity focusing state of the variable magnification optical system according to the fourth embodiment, (W) shows a wide-angle end state, (M) shows an intermediate focal length state, and (T) is a telephoto lens. Indicates the edge state. 第4実施形態に係る変倍光学系の至近合焦状態における諸収差図であって、(W)は広角端状態を示し、(M)は中間焦点距離状態を示し、(T)は望遠端状態を示す。It is a diagram of various aberrations in the close-focused state of the variable magnification optical system according to the fourth embodiment, in which (W) shows a wide-angle end state, (M) shows an intermediate focal length state, and (T) shows a telephoto end. Indicates the state. 第5実施例に係る変倍光学系の無限遠合焦状態のレンズ構成を示す断面図であって、(W)は広角端状態を示し、(M)は中間焦点距離状態を示し、(T)は望遠端状態を示す。It is sectional drawing which shows the lens composition of the infinitely focused state of the variable magnification optical system which concerns on 5th Embodiment, (W) shows a wide-angle end state, (M) shows an intermediate focal length state, (T ) Indicates the telephoto end state. 第5実施形態に係る変倍光学系の無限遠合焦状態における諸収差図であって、(W)は広角端状態を示し、(M)は中間焦点距離状態を示し、(T)は望遠端状態を示す。In the aberration diagram in the infinity focusing state of the variable magnification optical system according to the fifth embodiment, (W) shows a wide-angle end state, (M) shows an intermediate focal length state, and (T) is a telephoto lens. Indicates the edge state. 第5実施形態に係る変倍光学系の至近合焦状態における諸収差図であって、(W)は広角端状態を示し、(M)は中間焦点距離状態を示し、(T)は望遠端状態を示す。It is a diagram of various aberrations in the close-focused state of the variable magnification optical system according to the fifth embodiment, in which (W) shows a wide-angle end state, (M) shows an intermediate focal length state, and (T) shows a telephoto end. Indicates the state. 上記変倍光学系を搭載するカメラの断面図である。It is sectional drawing of the camera equipped with the said variable magnification optical system. 上記変倍光学系の製造方法を説明するためのフローチャートである。It is a flowchart for demonstrating the manufacturing method of the said variable magnification optical system.

以下、本発明の好ましい実施形態について図面を参照して説明する。図1に示すように、本実施形態に係る変倍光学系ZLは、複数のレンズ群を有し、変倍時にレンズ群の間隔が変化するように構成されている。この変倍光学系ZLは、開口絞りSと、この開口絞りSより物体側に配置され、合焦時に光軸方向に移動する少なくとも1つの物体側合焦群GfFと、開口絞りSより像側に配置され、合焦時に光軸方向に移動する少なくとも1つの像側合焦群GfRと、を有している。また、この物体側合焦群GfF及び像側合焦群GfRの合焦時における移動軌跡は異なるように構成されている。このように、開口絞りSの前後に配置された複数の合焦群で合焦を行うことにより、近距離合焦時の軸外性能、特に像面湾曲を良好に補正できる。 Hereinafter, preferred embodiments of the present invention will be described with reference to the drawings. As shown in FIG. 1, the variable magnification optical system ZL according to the present embodiment has a plurality of lens groups, and is configured so that the distance between the lens groups changes at the time of magnification change. This variable-magnification optical system ZL is arranged on the object side of the aperture diaphragm S, at least one object-side focusing group GfF that moves in the optical axis direction at the time of focusing, and the image side of the aperture diaphragm S. It has at least one image-side focusing group GfR, which is arranged in the image and moves in the optical axis direction at the time of focusing. Further, the movement trajectories of the object-side focusing group GfF and the image-side focusing group GfR at the time of focusing are configured to be different. By performing focusing with a plurality of focusing groups arranged before and after the aperture stop S in this way, off-axis performance at short-distance focusing, particularly curvature of field can be satisfactorily corrected.

ここで、本実施形態に係る変倍光学系ZLは、物体側合焦群GfFの1つ及び像側合焦群GfRの1つのうち、一方を第1合焦群Gf1とし、他方を第2合焦群Gf2としたとき、以下に示す条件式(1)を満足する。 Here, in the variable magnification optical system ZL according to the present embodiment, one of the object-side focusing group GfF and the image-side focusing group GfR has one as the first focusing group Gf1 and the other as the second focusing group Gf1. When the in-focus group Gf2 is used, the following conditional expression (1) is satisfied.

|ff1/ff2| < 1.000 (1)
但し、
ff1:第1合焦群Gf1の焦点距離
ff2:第2合焦群Gf2の焦点距離
| ff1 / ff2 | < 1.000 (1)
However,
ff1: Focal length of the first focusing group Gf1 ff2: Focal length of the second focusing group Gf2

この条件式(1)は、物体側合焦群GfFの1つ及び像側合焦群GfRの1つのうち、屈折力の強い方を第1合焦群Gf1とし、屈折力の弱い方を第2合焦群Gf2として規定するものである。本実施形態に係る変倍光学系ZLにおいて、第1合焦群Gf1は、物体が移動したときにその像を像面に結像させる機能を有し、第2合焦群Gf2は、第1合焦群Gf1の移動による周辺部の収差(軸外収差)を補正する機能を有している。条件式(1)の上限値を上回ると、第1合焦群Gf1の屈折力が弱くなり、合焦時の移動量が増加するとともに、合焦時に発生する軸外収差、像面湾曲、コマ収差が大きく発生し過ぎてしまう。また、第2合焦群Gf2の屈折力が強くなりすぎると、像面湾曲補正を行う際に、球面収差の悪化を招いてしまう。なお、この条件式(1)の効果を確実にするために、条件式(1)の上限値を0.900とすることが望ましい。また、この条件式(1)の効果を更に確実にするために、条件式(1)の上限値を0.800とすることが望ましい。また、この条件式(1)の効果を更に確実にするために、条件式(1)の上限値を0.700とすることが望ましい。また、この条件式(1)の効果を更に確実にするために、条件式(1)の上限値を0.600とすることが望ましい。また、この条件式(1)の効果を更に確実にするために、条件式(1)の上限値を0.500とすることが望ましい。 In this conditional equation (1), of one of the object-side focusing group GfF and one of the image-side focusing group GfR, the one with the stronger refractive power is designated as the first focusing group Gf1, and the one with the weaker refractive power is the first. It is defined as a two-focus group Gf2. In the variable magnification optical system ZL according to the present embodiment, the first focusing group Gf1 has a function of forming an image of the object on the image plane when the object moves, and the second focusing group Gf2 is the first. It has a function of correcting peripheral aberrations (off-axis aberrations) due to the movement of the in-focus group Gf1. When the upper limit of the conditional equation (1) is exceeded, the refractive power of the first focusing group Gf1 becomes weaker, the amount of movement during focusing increases, and off-axis aberrations, curvature of field, and coma that occur during focusing increase. Aberration is too large. Further, if the refractive power of the second focusing group Gf2 becomes too strong, the spherical aberration is deteriorated when the curvature of field is corrected. In order to ensure the effect of the conditional expression (1), it is desirable that the upper limit value of the conditional expression (1) is 0.900. Further, in order to further ensure the effect of the conditional expression (1), it is desirable to set the upper limit value of the conditional expression (1) to 0.800. Further, in order to further ensure the effect of the conditional expression (1), it is desirable to set the upper limit value of the conditional expression (1) to 0.700. Further, in order to further ensure the effect of the conditional expression (1), it is desirable to set the upper limit value of the conditional expression (1) to 0.600. Further, in order to further ensure the effect of the conditional expression (1), it is desirable to set the upper limit value of the conditional expression (1) to 0.500.

また、条件式(1)の下限値付近においては、第2合焦群Gf2の屈折力が弱くなり過ぎるため、像面湾曲補正を良好に行うことができなくなる。そのため、この条件式(1)の効果を確実にするために、条件式(1)の下限値を0.020とすることが望ましい。また、この条件式(1)の効果を更に確実にするために、条件式(1)の下限値を0.040とすることが望ましい。また、この条件式(1)の効果を更に確実にするために、条件式(1)の下限値を0.060とすることが望ましい。また、この条件式(1)の効果を更に確実にするために、条件式(1)の下限値を0.080とすることが望ましい。また、この条件式(1)の効果を更に確実にするために、条件式(1)の下限値を0.100とすることが望ましい。 Further, in the vicinity of the lower limit of the conditional expression (1), the refractive power of the second focusing group Gf2 becomes too weak, so that the curvature of field correction cannot be performed satisfactorily. Therefore, in order to ensure the effect of the conditional expression (1), it is desirable to set the lower limit value of the conditional expression (1) to 0.020. Further, in order to further ensure the effect of the conditional expression (1), it is desirable to set the lower limit value of the conditional expression (1) to 0.040. Further, in order to further ensure the effect of the conditional expression (1), it is desirable to set the lower limit value of the conditional expression (1) to 0.060. Further, in order to further ensure the effect of the conditional expression (1), it is desirable to set the lower limit value of the conditional expression (1) to 0.080. Further, in order to further ensure the effect of the conditional expression (1), it is desirable to set the lower limit value of the conditional expression (1) to 0.100.

また、本実施形態に係る変倍光学系ZLは、以下に示す条件式(2)を満足することが望ましい。 Further, it is desirable that the variable magnification optical system ZL according to the present embodiment satisfies the conditional expression (2) shown below.

0.010 < |FZ2T/FZ1T| < 1.000 (2)
但し、
FZ1T:望遠端状態且つ無限遠合焦状態において第1合焦群Gf1が光軸方向に1[mm]移動した際の軸上合焦位置の変動量[mm]
FZ2T:望遠端状態且つ無限遠合焦状態において第2合焦群Gf2が光軸方向に1[mm]移動した際の軸上合焦位置の変動量[mm]
0.010 << | FZ2T / FZ1T | <1,000 (2)
However,
FZ1T: Fluctuation amount [mm] of the on-axis focusing position when the first focusing group Gf1 moves 1 [mm] in the optical axis direction in the telephoto end state and the infinity focusing state.
FZ2T: Fluctuation amount [mm] of the on-axis focusing position when the second focusing group Gf2 moves 1 [mm] in the optical axis direction in the telephoto end state and the infinity focusing state.

条件式(2)は、良好な至近性能を得るために、広角端状態における、第1合焦群Gf1と第2合焦群Gf2との合焦位置感度を規定している。この条件式(2)を満足することにより、第1合焦群Gf1より第2合焦群Gf2の方が、軸上合焦位置変動量が小さくなる。上述したように、第2合焦群Gf2は軸外収差補正を行うため、軸上での合焦位置変動量が第1合焦群G1fよりも小さい必要があり、この変動量の差が大きいほど補正が容易となる。条件式(2)の上限値を上回ると、第2合焦群Gf2の軸上合焦位置変動量が大きくなり、軸上及び軸外合焦位置を揃えるために第1合焦群Gf1の移動量が大きくなり、近距離合焦時の球面収差やコマ収差が大きくなってしまう。なお、この条件式(2)の効果を確実にするために、条件式(2)の上限値を0.900とすることが望ましい。また、この条件式(2)の効果を更に確実にするために、条件式(2)の上限値を0.800とすることが望ましい。また、この条件式(2)の効果を更に確実にするために、条件式(2)の上限値を0.750とすることが望ましい。また、この条件式(2)の効果を更に確実にするために、条件式(2)の上限値を0.700とすることが望ましい。一方、条件式(2)の下限値を下回ると、第2合焦群Gf2の屈折力が弱くなるため、軸外収差補正が困難になる。なお、この条件式(2)の効果を確実にするために、条件式(2)の下限値を0.015とすることが望ましい。また、この条件式(2)の効果を更に確実にするために、条件式(2)の下限値を0.020とすることが望ましい。また、この条件式(2)の効果を更に確実にするために、条件式(2)の下限値を0.025とすることが望ましい。また、この条件式(2)の効果を更に確実にするために、条件式(2)の下限値を0.030とすることが望ましい。 The conditional expression (2) defines the focusing position sensitivity of the first focusing group Gf1 and the second focusing group Gf2 in the wide-angle end state in order to obtain good close-up performance. By satisfying this conditional expression (2), the amount of on-axis focusing position fluctuation is smaller in the second focusing group Gf2 than in the first focusing group Gf1. As described above, since the second focusing group Gf2 corrects off-axis aberrations, the amount of fluctuation in the focusing position on the axis needs to be smaller than that of the first focusing group G1f, and the difference in the amount of fluctuation is large. The easier it is to make corrections. When the upper limit of the conditional expression (2) is exceeded, the amount of on-axis focusing position fluctuation of the second focusing group Gf2 becomes large, and the movement of the first focusing group Gf1 in order to align the on-axis and off-axis focusing positions. The amount becomes large, and spherical aberration and coma aberration at the time of short-range focusing become large. In order to ensure the effect of the conditional expression (2), it is desirable that the upper limit value of the conditional expression (2) is 0.900. Further, in order to further ensure the effect of the conditional expression (2), it is desirable to set the upper limit value of the conditional expression (2) to 0.800. Further, in order to further ensure the effect of the conditional expression (2), it is desirable to set the upper limit value of the conditional expression (2) to 0.750. Further, in order to further ensure the effect of the conditional expression (2), it is desirable to set the upper limit value of the conditional expression (2) to 0.700. On the other hand, if it is less than the lower limit of the conditional expression (2), the refractive power of the second focusing group Gf2 becomes weak, and it becomes difficult to correct the off-axis aberration. In order to ensure the effect of the conditional expression (2), it is desirable to set the lower limit value of the conditional expression (2) to 0.015. Further, in order to further ensure the effect of the conditional expression (2), it is desirable to set the lower limit value of the conditional expression (2) to 0.020. Further, in order to further ensure the effect of the conditional expression (2), it is desirable to set the lower limit value of the conditional expression (2) to 0.025. Further, in order to further ensure the effect of the conditional expression (2), it is desirable to set the lower limit value of the conditional expression (2) to 0.030.

また、本実施形態に係る変倍光学系ZLは、以下に示す条件式(3)を満足することが望ましい。 Further, it is desirable that the variable magnification optical system ZL according to the present embodiment satisfies the conditional expression (3) shown below.

0.050 < |FZ2W/FZ2T| < 0.950 (3)
但し、
FZ2W:広角端状態且つ無限遠合焦状態において第2合焦群Gf2が光軸方向に1[mm]移動した際の軸上合焦位置の変動量[mm]
FZ2T:望遠端状態且つ無限遠合焦状態において第2合焦群Gf2が光軸方向に1[mm]移動した際の軸上合焦位置の変動量[mm]
0.050 << | FZ2W / FZ2T | <0.950 (3)
However,
FZ2W: Fluctuation amount [mm] of the on-axis focusing position when the second focusing group Gf2 moves 1 [mm] in the optical axis direction in the wide-angle end state and the infinity focusing state.
FZ2T: Fluctuation amount [mm] of the on-axis focusing position when the second focusing group Gf2 moves 1 [mm] in the optical axis direction in the telephoto end state and the infinity focusing state.

条件式(3)は、良好な至近性能を得るために、第2合焦群Gf2における広角端状態及び望遠端状態の合焦位置感度を規定している。この条件式(3)を満足することにより、広角端状態より望遠端状態の方が、第2合焦群Gf2の合焦位置変動量が大きくなる。第2合焦群Gf2は、軸外収差補正を行うが、広角端状態では像面湾曲が発生しやすく、軸上での合焦位置変化が小さいことが望ましい。条件式(3)の上限値を上回ると、広角端状態での軸上、軸外合焦位置を良好に合わせることができなくなる。なお、この条件式(3)の効果を確実にするために、条件式(3)の上限値を0.900とすることが望ましい。また、この条件式(3)の効果を更に確実にするために、条件式(3)の上限値を0.850とすることが望ましい。一方、条件式(3)の下限値を下回ると、望遠端状態での軸上、軸外合焦位置を良好に合わせることができなくなる。なお、この条件式(3)の効果を確実にするために、条件式(3)の下限値を0.250とすることが望ましい。また、この条件式(3)の効果を更に確実にするために、条件式(3)の下限値を0.350とすることが望ましい。また、この条件式(3)の効果を更に確実にするために、条件式(3)の下限値を0.500とすることが望ましい。また、この条件式(3)の効果を更に確実にするために、条件式(3)の下限値を0.600とすることが望ましい。 The conditional expression (3) defines the focusing position sensitivity in the wide-angle end state and the telephoto end state in the second focusing group Gf2 in order to obtain good close-up performance. By satisfying this conditional expression (3), the amount of change in the focusing position of the second focusing group Gf2 becomes larger in the telephoto end state than in the wide-angle end state. The second in-focus group Gf2 corrects off-axis aberrations, but it is desirable that curvature of field is likely to occur in the wide-angle end state and the change in in-focus position on the axis is small. If the upper limit of the conditional expression (3) is exceeded, it becomes impossible to satisfactorily align the on-axis and off-axis in-focus positions in the wide-angle end state. In order to ensure the effect of the conditional expression (3), it is desirable to set the upper limit value of the conditional expression (3) to 0.900. Further, in order to further ensure the effect of the conditional expression (3), it is desirable to set the upper limit value of the conditional expression (3) to 0.850. On the other hand, if it falls below the lower limit of the conditional expression (3), it becomes impossible to satisfactorily align the on-axis and off-axis focusing positions in the telephoto end state. In order to ensure the effect of the conditional expression (3), it is desirable that the lower limit value of the conditional expression (3) is 0.250. Further, in order to further ensure the effect of the conditional expression (3), it is desirable to set the lower limit value of the conditional expression (3) to 0.350. Further, in order to further ensure the effect of the conditional expression (3), it is desirable to set the lower limit value of the conditional expression (3) to 0.500. Further, in order to further ensure the effect of the conditional expression (3), it is desirable to set the lower limit value of the conditional expression (3) to 0.600.

また、本実施形態に係る変倍光学系ZLにおいて、像側合焦群GfRの1つを第1合焦群Gf1とし、物体側合焦群GfFの1つを第2合焦群とすることが望ましい。物体側合焦群GfFを第1合焦群Gf1とした場合、前玉径の大型化及び像面湾曲収差の発生が懸念されるため、像側合焦群GfRを第1合焦群Gf1にすることが望ましい。 Further, in the variable magnification optical system ZL according to the present embodiment, one of the image-side focusing group GfR is designated as the first focusing group Gf1, and one of the object-side focusing group GfF is designated as the second focusing group. Is desirable. When the object-side focusing group GfF is set to the first focusing group Gf1, there is a concern that the front lens diameter may increase and the field curvature aberration may occur. Therefore, the image-side focusing group GfR is set to the first focusing group Gf1. It is desirable to do.

また、本実施形態に係る変倍光学系ZLは、以下に示す条件式(4)を満足する、すなわち、第1合焦群Gf1は正の屈折力を有することが望ましい。 Further, it is desirable that the variable magnification optical system ZL according to the present embodiment satisfies the conditional expression (4) shown below, that is, the first focusing group Gf1 has a positive refractive power.

ff1 > 0 (4)
但し、
ff1:第1合焦群Gf1の焦点距離
ff1> 0 (4)
However,
ff1: Focal length of the first focusing group Gf1

また、本実施形態に係る変倍光学系ZLは、以下に示す条件式(5)を満足する、すなわち、第2合焦群Gf2は負の屈折力を有することが望ましい。 Further, it is desirable that the variable magnification optical system ZL according to the present embodiment satisfies the conditional expression (5) shown below, that is, the second focusing group Gf2 has a negative refractive power.

ff2 < 0 (5)
但し、
ff2:第2合焦群Gf2の焦点距離
ff2 <0 (5)
However,
ff2: Focal length of the second focusing group Gf2

なお、本実施形態に係る変倍光学系ZLは、条件式(5)を満足するときは、上述の条件式(3)に代えて、次の条件式(3′)を満足することが望ましい。 When the variable magnification optical system ZL according to the present embodiment satisfies the conditional expression (5), it is desirable that the following conditional expression (3') is satisfied instead of the above-mentioned conditional expression (3). ..

0.400 < |FZ2W/FZ2T| < 0.950 (3′)
但し、
FZ2W:広角端状態且つ無限遠合焦状態において第2合焦群Gf2が光軸方向に1[mm]移動した際の軸上合焦位置の変動量[mm]
FZ2T:望遠端状態且つ無限遠合焦状態において第2合焦群Gf2が光軸方向に1[mm]移動した際の軸上合焦位置の変動量[mm]
0.400 << | FZ2W / FZ2T | <0.950 (3')
However,
FZ2W: Fluctuation amount [mm] of the on-axis focusing position when the second focusing group Gf2 moves 1 [mm] in the optical axis direction in the wide-angle end state and the infinity focusing state.
FZ2T: Fluctuation amount [mm] of the on-axis focusing position when the second focusing group Gf2 moves 1 [mm] in the optical axis direction in the telephoto end state and the infinity focusing state.

また、本実施形態に係る変倍光学系ZLは、以下に示す条件式(6)を満足することが望ましい。 Further, it is desirable that the variable magnification optical system ZL according to the present embodiment satisfies the conditional expression (6) shown below.

0.010 < |FZ1W/FZ1T| < 1.500 (6)
但し、
FZ1W:広角端状態且つ無限遠合焦状態において第1合焦群Gf1が光軸方向に1[mm]移動した際の軸上合焦位置の変動量[mm]
FZ1T:望遠端状態且つ無限遠合焦状態において第1合焦群Gf1が光軸方向に1[mm]移動した際の軸上合焦位置の変動量[mm]
0.010 << | FZ1W / FZ1T | <1.50 (6)
However,
FZ1W: Fluctuation amount [mm] of the on-axis focusing position when the first focusing group Gf1 moves 1 [mm] in the optical axis direction in the wide-angle end state and the infinity focusing state.
FZ1T: Fluctuation amount [mm] of the on-axis focusing position when the first focusing group Gf1 moves 1 [mm] in the optical axis direction in the telephoto end state and the infinity focusing state.

条件式(6)は、良好な至近性能を得るために、第1合焦群Gf1における広角端状態及び望遠端状態の合焦位置感度を規定している。この条件式(6)の上限値を上回ると、広角端状態での第1合焦群Gf1の軸上感度が高くなり、球面収差及びコマ収差の変動が大きくなるため、良好な至近性能を得ることができない。なお、この条件式(6)の効果を確実にするために、条件式(6)の上限値を0.700とすることが望ましい。また、この条件式(6)の効果を更に確実にするために、条件式(6)の上限値を0.350とすることが望ましい。一方、条件式(6)の下限値を下回ると、望遠端状態での第1合焦群G1fの軸上感度が高くなり、球面収差及びコマ収差の変動が大きくなるため、良好な至近性能を得ることができない。なお、この条件式(6)の効果を確実にするために、条件式(6)の下限値を0.050とすることが望ましい。また、この条件式(6)の効果を更に確実にするために、条件式(6)の下限値を0.100とすることが望ましい。 The conditional expression (6) defines the focusing position sensitivity in the wide-angle end state and the telephoto end state in the first focusing group Gf1 in order to obtain good close-up performance. When the upper limit of this conditional expression (6) is exceeded, the on-axis sensitivity of the first focusing group Gf1 in the wide-angle end state becomes high, and the fluctuations of spherical aberration and coma become large, so that good close-up performance is obtained. Can't. In order to ensure the effect of the conditional expression (6), it is desirable to set the upper limit value of the conditional expression (6) to 0.700. Further, in order to further ensure the effect of the conditional expression (6), it is desirable to set the upper limit value of the conditional expression (6) to 0.350. On the other hand, when the value is lower than the lower limit of the conditional expression (6), the on-axis sensitivity of the first focusing group G1f in the telephoto end state becomes high, and the fluctuations of spherical aberration and coma become large. I can't get it. In order to ensure the effect of the conditional expression (6), it is desirable that the lower limit value of the conditional expression (6) is 0.050. Further, in order to further ensure the effect of the conditional expression (6), it is desirable to set the lower limit value of the conditional expression (6) to 0.100.

また、本実施形態に係る変倍光学系ZLは、物体側合焦群GfFより物体側に、少なくとも1つの物体側レンズ群(例えば、図1における第2レンズ群G2)を有し、変倍時に、物体側レンズ群(第2レンズ群G2)と物体側合焦群GfFとの間隔が変化するように構成されていることが望ましい。物体側合焦群GfFより物体側に物体側レンズ群を配置することにより、この物体側レンズ群で物体側合焦群GfFへの光線を集光できたり、倍率をかけることができたりするため、物体側レンズ群GfFを比較的簡素で径の小さなレンズ群とすることができる。 Further, the variable magnification optical system ZL according to the present embodiment has at least one object-side lens group (for example, the second lens group G2 in FIG. 1) on the object side of the object-side focusing group GfF, and has a variable magnification. Occasionally, it is desirable that the distance between the object-side lens group (second lens group G2) and the object-side in-focus group GfF changes. By arranging the object-side lens group on the object side from the object-side focusing group GfF, the light beam to the object-side focusing group GfF can be focused or magnified by this object-side lens group. The object-side lens group GfF can be a relatively simple lens group with a small diameter.

また、本実施形態に係る変倍光学系ZLは、物体側合焦群GfFより物体側に、負の屈折力を有する負レンズ群を少なくとも1つ(例えば、図1における第2レンズ群G2)有し、変倍時に、負レンズ群(第2レンズ群G2)と物体側合焦群GfFとの間隔が変化するように構成されていることが望ましい。物体側合焦群GfFより物体側に負レンズ群を配置することにより、物体側合焦群GfFへの光線入射角度を抑制しやすくなるため、物体側合焦群GfFで発生する像面湾曲量を比較的小さくでき、像側合焦群GfRでの補正を容易にすることができる。 Further, the variable magnification optical system ZL according to the present embodiment has at least one negative lens group having a negative refractive power on the object side of the object-side focusing group GfF (for example, the second lens group G2 in FIG. 1). It is desirable that the lens group is configured so that the distance between the negative lens group (second lens group G2) and the object-side focusing group GfF changes at the time of scaling. By arranging the negative lens group on the object side of the object-side focusing group GfF, it becomes easier to suppress the angle of light incident on the object-side focusing group GfF, so that the amount of image plane curvature generated in the object-side focusing group GfF Can be made relatively small, and correction in the image-side focusing group GfR can be facilitated.

また、本実施形態に係る変倍光学系ZLは、物体側合焦群GfFより物体側に、正の屈折力を有する正レンズ群(例えば、図1における第1レンズ群G1)及び負の屈折力を有する負レンズ群(例えば、図1における第2レンズ群G2)を少なくとも1つずつ有し、変倍時に、正レンズ群(第1レンズ群G1)と負レンズ群(第2レンズ群G2)との間隔、及び、負レンズ群(第2レンズ群G2)と物体側合焦群GfFとの間隔が変化するように構成されていることが望ましい。上述した負レンズ群より更に物体側に正レンズ群を配置することにより、変倍比を増やしつつ、物体側及び像側合焦群GfF,GfRを比較的小さくでき、また、合焦スピードを速くすることができる。 Further, the variable magnification optical system ZL according to the present embodiment has a positive lens group having a positive refractive force (for example, the first lens group G1 in FIG. 1) and negative refraction on the object side of the object-side focusing group GfF. It has at least one negative lens group (for example, the second lens group G2 in FIG. 1) having power, and at the time of scaling, a positive lens group (first lens group G1) and a negative lens group (second lens group G2). ) And the distance between the negative lens group (second lens group G2) and the object-side focusing group GfF are preferably configured to change. By arranging the positive lens group on the object side more than the negative lens group described above, the focusing ratio on the object side and the image side can be made relatively small and the focusing speed can be increased while increasing the magnification ratio. can do.

また、本実施形態に係る変倍光学系ZLにおいて、物体側合焦群GfFの1つは、物体側に凹面を向けた負レンズ(例えば、図1における負メニスカスレンズL31)からなることが望ましい。このように構成することで、変倍時の球面収差及び像面湾曲収差変動を抑制することができる。また、効率良く変倍することができ、レンズの小型化に繋がる。 Further, in the variable magnification optical system ZL according to the present embodiment, it is desirable that one of the object-side focusing group GfF is a negative lens (for example, the negative meniscus lens L31 in FIG. 1) having a concave surface facing the object side. .. With this configuration, it is possible to suppress fluctuations in spherical aberration and curvature of field aberration during scaling. In addition, the magnification can be changed efficiently, which leads to the miniaturization of the lens.

また、本実施形態に係る変倍光学系ZLにおいて、物体側合焦群GfF及び像側合焦群GfRはそれぞれ1つであることが望ましい。このように構成することで、簡素な構成で軸外光線の近距離性能を発揮させることができる。 Further, in the variable magnification optical system ZL according to the present embodiment, it is desirable that the object-side focusing group GfF and the image-side focusing group GfR are each one. With such a configuration, the short-range performance of off-axis light rays can be exhibited with a simple configuration.

また、本実施形態に係る変倍光学系ZLにおいて、第1合焦群Gf1は、以下に示す条件式(7)を満足するレンズ(例えば、図1における負メニスカスレンズL31)を有することが望ましい。 Further, in the variable magnification optical system ZL according to the present embodiment, it is desirable that the first focusing group Gf1 has a lens (for example, the negative meniscus lens L31 in FIG. 1) that satisfies the conditional expression (7) shown below. ..

νd1 > 45.0 (7)
但し、
νd1:第1合焦群Gf1に含まれるレンズの媒質のd線に対するアッベ数
νd1> 45.0 (7)
However,
νd1: Abbe number with respect to the d-line of the medium of the lens included in the first focusing group Gf1.

第1合焦群Gf1に、条件式(7)を満足するレンズを配置することにより、この第1合焦群Gf1で発生する色収差を小さくすることができる。この条件式(7)の下限値を下回る、すなわち、アッベ数の小さい媒質でレンズを構成すると、色補正を行うために、この第1合焦群Gf1のレンズ枚数が増えてしまう。なお、この条件式(7)の効果を確実にするために、条件式(7)の下限値を48.0にすることが望ましい。また、この条件式(7)の効果を更に確実にするために、条件式(7)の下限値を50.0にすることが望ましい。また、この条件式(7)の効果を更に確実にするために、条件式(7)の下限値を52.0にすることが望ましい。 By arranging a lens satisfying the conditional expression (7) in the first focusing group Gf1, the chromatic aberration generated in the first focusing group Gf1 can be reduced. If the lens is formed of a medium having a lower Abbe number, which is less than the lower limit of the conditional expression (7), the number of lenses in the first focusing group Gf1 increases in order to perform color correction. In order to ensure the effect of the conditional expression (7), it is desirable to set the lower limit value of the conditional expression (7) to 48.0. Further, in order to further ensure the effect of the conditional expression (7), it is desirable to set the lower limit value of the conditional expression (7) to 50.0. Further, in order to further ensure the effect of the conditional expression (7), it is desirable to set the lower limit value of the conditional expression (7) to 52.0.

また、本実施形態に係る変倍光学系ZLにおいて、物体側合焦群GfFは1つであって、1つの負レンズからなり、また、物体側合焦群GfFの物体側に対向する位置には負の屈折力を有する負レンズ群(例えば、図1における第2レンズ群G2)を有し、さらに、物体側合焦群GfFの像側に対向する位置には正の屈折力を有する正レンズ群(例えば、図1における第4レンズ群G4)を有するように構成されていることが望ましい。このように構成することで、物体側合焦群GfFの像倍率変化を小さくすることができる。 Further, in the variable magnification optical system ZL according to the present embodiment, the object-side focusing group GfF is one and consists of one negative lens, and the object-side focusing group GfF is located at a position facing the object side. Has a negative lens group having a negative refractive power (for example, the second lens group G2 in FIG. 1), and further has a positive refractive power at a position facing the image side of the object-side focusing group GfF. It is desirable that the lens group is configured to have a lens group (for example, the fourth lens group G4 in FIG. 1). With this configuration, it is possible to reduce the change in image magnification of the object-side focusing group GfF.

また、本実施形態に係る変倍光学系ZLにおいて、変倍時に、第2合焦群Gf2とこの第2合焦群Gf2の物体側に対向する位置に配置されるレンズ群(例えば、図1における第4レンズ群G4)との間隔が変化し、第2合焦群Gf2とこの第2合焦群Gf2の像側に対向する位置に配置されるレンズ群(例えば、図1における第6レンズ群G6)との間隔が変化するように構成されていることが望ましい。このように構成することにより、変倍時の球面収差及び像面湾曲収差変動を抑制することができる。 Further, in the variable magnification optical system ZL according to the present embodiment, a lens group (for example, FIG. 1) is arranged at a position facing the object side of the second focusing group Gf2 and the second focusing group Gf2 at the time of scaling. The distance from the fourth lens group G4) in FIG. 1 is changed, and the lens group (for example, the sixth lens in FIG. 1) is arranged at a position facing the image side of the second focusing group Gf2 and the second focusing group Gf2. It is desirable that it is configured so that the distance from the group G6) changes. With this configuration, it is possible to suppress fluctuations in spherical aberration and curvature of field aberration during scaling.

なお、以上で説明した条件及び構成は、それぞれが上述した効果を発揮するものであり、全ての条件及び構成を満たすものに限定されることはなく、いずれかの条件又は構成、或いは、いずれかの条件又は構成の組み合わせを満たすものでも、上述したそれぞれの効果を得ることが可能である。 It should be noted that the conditions and configurations described above are each exerting the above-mentioned effects, and are not limited to those satisfying all the conditions and configurations, and are any of the conditions or configurations, or any of them. It is possible to obtain each of the above-mentioned effects even if the combination of the above conditions or configurations is satisfied.

次に、本実施形態に係る変倍光学系ZLを備えた光学機器であるカメラを図16に基づいて説明する。このカメラ1は、撮影レンズ2として本実施形態に係る変倍光学系ZLを備えたレンズ交換式の所謂ミラーレスカメラである。本カメラ1において、不図示の物体(被写体)からの光は、撮影レンズ2で集光されて、不図示のOLPF(Optical low pass filter:光学ローパスフィルタ)を介して撮像部3の撮像面上に被写体像を形成する。そして、撮像部3に設けられた光電変換素子により被写体像が光電変換されて被写体の画像が生成される。この画像は、カメラ1に設けられたEVF(Electronic view finder:電子ビューファインダ)4に表示される。これにより撮影者は、EVF4を介して被写体を観察することができる。 Next, a camera, which is an optical device provided with the variable magnification optical system ZL according to the present embodiment, will be described with reference to FIG. The camera 1 is a so-called mirrorless camera with interchangeable lenses equipped with the variable magnification optical system ZL according to the present embodiment as the photographing lens 2. In the present camera 1, light from an object (subject) (not shown) is collected by the photographing lens 2 and passed through an OLPF (Optical low pass filter) (not shown) on the image pickup surface of the image pickup unit 3. Form a subject image. Then, the subject image is photoelectrically converted by the photoelectric conversion element provided in the image pickup unit 3, and the image of the subject is generated. This image is displayed on an EVF (Electronic viewfinder) 4 provided in the camera 1. This allows the photographer to observe the subject via the EVF4.

また、撮影者によって不図示のレリーズボタンが押されると、撮像部3により光電変換された画像が不図示のメモリに記憶される。このようにして、撮影者は本カメラ1による被写体の撮影を行うことができる。なお、本実施形態では、ミラーレスカメラの例を説明したが、カメラ本体にクイックリターンミラーを有しファインダー光学系により被写体を観察する一眼レフタイプのカメラに本実施形態に係る変倍光学系ZLを搭載した場合でも、上記カメラ1と同様の効果を奏することができる。 Further, when the photographer presses the release button (not shown), the image photoelectrically converted by the image pickup unit 3 is stored in the memory (not shown). In this way, the photographer can shoot the subject with the camera 1. In this embodiment, an example of a mirrorless camera has been described, but a single-lens reflex type camera having a quick return mirror in the camera body and observing a subject by a finder optical system is used as a variable magnification optical system ZL according to the present embodiment. Even when the camera 1 is mounted, the same effect as that of the camera 1 can be obtained.

なお、以下に記載の内容は、光学性能を損なわない範囲で適宜採用可能である。 The contents described below can be appropriately adopted as long as the optical performance is not impaired.

本実施形態では、5群、6群、7群構成の変倍光学系ZLを示したが、以上の構成条件等は、4群、8群等の他の群構成にも適用可能である。また、最も物体側にレンズまたはレンズ群を追加した構成や、最も像面側にレンズまたはレンズ群を追加した構成でも構わない。具体的には、最も像面側に、変倍時又は合焦時に像面に対する位置を固定されたレンズ群を追加した構成が考えられる。また、群とは、変倍時、合焦時、縮筒時などの少なくとも1つで変化する空気間隔で分離された、少なくとも1枚のレンズを有する部分を示すこととしてもよい。また、本実施形態の変倍光学系ZLは、変倍時に各群間の空気間隔が変化するように、第1レンズ群G1〜第5レンズ群G5(又は第6レンズ群G6、第7レンズ群G7)がそれぞれ光軸に沿って移動するように構成してもよい。また、レンズ成分とは、単レンズ又は複数のレンズが接合された接合レンズをいう。 In the present embodiment, the variable magnification optical system ZL having a 5-group, 6-group, and 7-group configuration is shown, but the above configuration conditions and the like can be applied to other group configurations such as the 4-group and 8-group. Further, a configuration in which a lens or a lens group is added on the most object side or a configuration in which a lens or a lens group is added on the most image plane side may be used. Specifically, it is conceivable to add a lens group whose position with respect to the image plane is fixed at the time of scaling or focusing on the image plane side. Further, the group may refer to a portion having at least one lens separated by an air interval that changes at least one such as at the time of scaling, focusing, and contraction. Further, in the variable magnification optical system ZL of the present embodiment, the first lens group G1 to the fifth lens group G5 (or the sixth lens group G6, the seventh lens) so that the air spacing between the groups changes at the time of magnification change. The group G7) may be configured to move along the optical axis. Further, the lens component means a single lens or a bonded lens in which a plurality of lenses are bonded.

また、2以上のレンズ群、2以上の部分レンズ群、または光学系全体を光軸方向に移動させて、無限遠物体から近距離物点への合焦を行う合焦群としてもよい。この場合、合焦群はオートフォーカスにも適用でき、オートフォーカス用のモータ駆動(DCモータ、ステッピングモータ、ボイスコイルモータ等、モータの種類は限定されない)にも適している。例えば、上述した6群構成の場合は、第3レンズ群G3(物体側合焦群GfF)及び第5レンズ群G5(像側合焦群GfR)を合焦群とし、その他のレンズは合焦時に像面に対する位置を固定とするのが好ましい。モータにかかる負荷を考慮すると、合焦レンズ群は1つまたは2つのレンズ成分から構成するのが好ましい。また、物体側合焦群GfFと像側合焦群GfRとの間には、合焦時に光軸方向の位置を固定されるレンズを少なくとも1つ配置するのが好ましい。 Further, it may be a focusing group in which two or more lens groups, two or more partial lens groups, or the entire optical system is moved in the optical axis direction to focus from an infinite object to a short-distance object point. In this case, the in-focus group can be applied to autofocus, and is also suitable for driving a motor for autofocus (the type of motor is not limited, such as a DC motor, a stepping motor, and a voice coil motor). For example, in the case of the above-mentioned 6-group configuration, the 3rd lens group G3 (object-side focusing group GfF) and the 5th lens group G5 (image-side focusing group GfR) are set as the focusing group, and the other lenses are in focus. Sometimes it is preferable to fix the position with respect to the image plane. Considering the load applied to the motor, the in-focus lens group is preferably composed of one or two lens components. Further, it is preferable to arrange at least one lens whose position in the optical axis direction is fixed at the time of focusing between the object-side focusing group GfF and the image-side focusing group GfR.

また、レンズ群または部分レンズ群を光軸に直交方向の変位成分を持つように移動させ、または、光軸を含む面内方向に回転移動(揺動)させて、手振れによって生じる像ブレを補正する防振群としてもよい。特に、開口絞りSより像側であって、像側合焦群GfRの物体側または像側に対向する位置に配置されたレンズ群の少なくとも一部を防振レンズ群としてもよい。また、防振レンズ群は、レンズ枚数に特に限定は無く、1枚の単レンズや複数のレンズ成分から構成することとしてもよい。 In addition, the lens group or partial lens group is moved so as to have a displacement component in the direction orthogonal to the optical axis, or is rotationally moved (swinged) in the in-plane direction including the optical axis to correct image shake caused by camera shake. It may be a vibration-proof group. In particular, at least a part of the lens group arranged on the image side of the aperture diaphragm S at a position facing the object side or the image side of the image side focusing group GfR may be used as the anti-vibration lens group. Further, the anti-vibration lens group is not particularly limited in the number of lenses, and may be composed of one single lens or a plurality of lens components.

また、レンズ面は、球面または平面で形成されても、非球面で形成されても構わない。レンズ面が球面または平面の場合、レンズ加工及び組立調整が容易になり、加工及び組立調整の誤差による光学性能の劣化を防げるので好ましい。また、像面がずれた場合でも描写性能の劣化が少ないので好ましい。レンズ面が非球面の場合、非球面は、研削加工による非球面、ガラスを型で非球面形状に形成したガラスモールド非球面、ガラスの表面に樹脂を非球面形状に形成した複合型非球面のいずれの非球面でも構わない。また、レンズ面は回折面としてもよく、レンズを屈折率分布型レンズ(GRINレンズ)或いはプラスチックレンズとしてもよい。 Further, the lens surface may be formed of a spherical surface or a flat surface, or may be formed of an aspherical surface. When the lens surface is a spherical surface or a flat surface, lens processing and assembly adjustment are facilitated, and deterioration of optical performance due to errors in processing and assembly adjustment can be prevented, which is preferable. Further, even if the image plane is displaced, the deterioration of the depiction performance is small, which is preferable. When the lens surface is aspherical, the aspherical surface is an aspherical surface formed by grinding, a glass mold aspherical surface formed by forming glass into an aspherical shape, or a composite aspherical surface formed by forming resin on the surface of glass into an aspherical shape. Any aspherical surface may be used. Further, the lens surface may be a diffraction surface, and the lens may be a refractive index distribution type lens (GRIN lens) or a plastic lens.

開口絞りSは、物体側合焦群GfFと像側合焦群GfRとの間に配置されるのが好ましいが、開口絞りとしての部材を設けずに、レンズの枠でその役割を代用してもよい。また、第1合焦群Gf1を開口絞りSより像側に配置する場合、開口絞りSと第1合焦群Gf1との間には、合焦時に光軸方向の位置を固定されるレンズを少なくとも1つ配置するのが好ましい。 The aperture diaphragm S is preferably arranged between the object-side focusing group GfF and the image-side focusing group GfR, but the role of the aperture diaphragm S is substituted by the lens frame without providing the member as the aperture diaphragm. May be good. Further, when the first focusing group Gf1 is arranged on the image side of the aperture stop S, a lens whose position in the optical axis direction is fixed at the time of focusing is inserted between the aperture stop S and the first focusing group Gf1. It is preferable to arrange at least one.

さらに、各レンズ面には、フレアやゴーストを軽減し高い光学性能を達成するために、反射防止膜を施してもよい。反射防止膜は、適宜選択可能であり、単層コーティングや、多層膜コーティングや、微細な結晶粒子からなる超低屈折率層を有する反射防止膜等、膜の種類は限定されない。反射防止膜を施す面数も特に限定されない。 Further, each lens surface may be provided with an antireflection film in order to reduce flare and ghost and achieve high optical performance. The antireflection film can be appropriately selected, and the type of film is not limited, such as a single layer coating, a multilayer film coating, and an antireflection film having an ultra-low refractive index layer made of fine crystal particles. The number of surfaces to which the antireflection film is applied is also not particularly limited.

以下、本実施形態に係る変倍光学系ZLの製造方法の概略を、図17を参照して説明する。なお、ここでは図1に示す6群構成の変倍光学系ZL1に基づいて説明するが、5群又は7群構成の場合においても同様である。まず、各レンズを配置して第1レンズ群G1〜第6レンズ群G6をそれぞれ準備し(ステップS100)、開口絞りSと、開口絞りSより物体側に配置され、合焦時に光軸方向に移動する少なくとも1つの物体側合焦群GfFと、開口絞りSより像側に配置され、合焦時に光軸方向に移動する少なくとも1つの像側合焦群GfRと、を配置し(ステップS200)、合焦時に、物体側合焦群GfFと像側合焦群GfRとの移動軌跡は異なるように配置し(ステップS300)、物体側合焦群GfFの1つ及び像側合焦群GfRの1つのうち、一方を第1合焦群Gf1とし、他方を第2合焦群Gf2としたとき、上述した条件を満足するように配置する(ステップS400)。 Hereinafter, an outline of a method for manufacturing the variable magnification optical system ZL according to the present embodiment will be described with reference to FIG. Although the description will be given here based on the 6-group configuration variable magnification optical system ZL1 shown in FIG. 1, the same applies to the case of a 5-group or 7-group configuration. First, each lens is arranged to prepare the first lens group G1 to the sixth lens group G6 (step S100), arranged on the object side of the aperture aperture S and the aperture aperture S, and in the optical axis direction at the time of focusing. At least one moving object-side focusing group GfF and at least one image-side focusing group GfR arranged on the image side of the aperture aperture S and moving in the optical axis direction at the time of focusing are arranged (step S200). At the time of focusing, the movement trajectories of the object-side focusing group GfF and the image-side focusing group GfR are arranged so as to be different (step S300), and one of the object-side focusing group GfF and the image-side focusing group GfR are arranged. When one of them is the first focusing group Gf1 and the other is the second focusing group Gf2, they are arranged so as to satisfy the above-mentioned conditions (step S400).

具体的には、本実施形態では、例えば図1に示すように、物体側から順に、物体側に凸面を向けた負メニスカスレンズL11と両凸レンズL12とを接合した接合正レンズ、及び、物体側に凸面を向けた正メニスカスレンズL13を配置して第1レンズ群G1とし、物体側に凸面を向けた負メニスカスレンズL21、物体側のレンズ面及び像側のレンズ面が非球面形状に形成された両凹レンズ形状の非球面負レンズL22、及び、両凸レンズL23を配置して第2レンズ群G2とし、物体側に凹面を向けた負メニスカスレンズL31を配置して第3レンズ群G3とし、物体側のレンズ面及び像側のレンズ面が非球面形状に形成された両凸レンズ形状の非球面正レンズL41、及び、両凸レンズL42と両凹レンズL43とを接合した接合負レンズを配置して第4レンズ群G4とし、両凹レンズL51と物体側に凸面を向けた正メニスカスレンズL52とを接合した接合負レンズを配置して第5レンズ群G5とし、物体側のレンズ面が非球面形状に形成された、物体側に凹面を向けた正メニスカスレンズ形状の非球面正レンズL61、物体側のレンズ面が非球面形状に形成された両凸レンズ形状の非球面正レンズL62と物体側に凹面を向けた負メニスカスレンズL63とを接合した接合正レンズ、及び、物体側に凹面を向けた負メニスカスレンズL64を配置して第6レンズ群G6とする。なお、開口絞りSは第4レンズ群G4の最も物体側に配置する。また、第3レンズ群G3を物体側合焦群GfF(第1合焦群Gf1)とし、第5レンズ群G5を像側合焦群GfR(第2合焦群Gf2)とする。このように準備した各レンズ群を上述の手順で配置して変倍光学系ZLを製造する。 Specifically, in the present embodiment, for example, as shown in FIG. 1, a bonded positive lens in which a negative meniscus lens L11 having a convex surface facing the object side and a biconvex lens L12 are joined in order from the object side, and an object side. A positive meniscus lens L13 with a convex surface facing is arranged as a first lens group G1, a negative meniscus lens L21 with a convex surface facing the object side, a lens surface on the object side, and a lens surface on the image side are formed into an aspherical shape. An aspherical negative lens L22 having a biconcave lens shape and a biconvex lens L23 are arranged to form a second lens group G2, and a negative meniscus lens L31 having a concave surface facing the object side is arranged to form a third lens group G3. A fourth is arranged with an aspherical positive lens L41 having a biconvex lens shape in which the lens surface on the side and the lens surface on the image side are formed in an aspherical shape, and a bonded negative lens in which a biconvex lens L42 and a biconcave lens L43 are joined. A lens group G4 is formed, and a bonded negative lens obtained by joining a biconcave lens L51 and a positive meniscus lens L52 with a convex surface facing the object side is arranged to form a fifth lens group G5, and the lens surface on the object side is formed into an aspherical shape. In addition, the aspherical positive lens L61 having a positive meniscus lens shape with the concave surface facing the object side, the aspherical positive lens L62 having a biconvex lens shape with the lens surface on the object side formed into an aspherical shape, and the concave surface facing the object side. A bonded positive lens bonded to the negative meniscus lens L63 and a negative meniscus lens L64 with a concave surface facing the object side are arranged to form a sixth lens group G6. The aperture diaphragm S is arranged on the closest object side of the fourth lens group G4. Further, the third lens group G3 is referred to as an object-side focusing group GfF (first focusing group Gf1), and the fifth lens group G5 is referred to as an image-side focusing group GfR (second focusing group Gf2). Each lens group prepared in this way is arranged by the above-mentioned procedure to manufacture a variable magnification optical system ZL.

以下、本願の各実施例を、図面に基づいて説明する。なお、図1、図4、図7、図10、及び、図13は、各実施例に係る変倍光学系ZL(ZL1〜ZL5)の構成及び屈折力配分を示す断面図である。また、これらの変倍光学系ZL1〜ZL5の断面図の下部には、広角端状態(W)から中間焦点距離状態(M)を経て望遠端状態(T)に変倍する際の、各レンズ群G1〜G5(又はG6、G7)の光軸に沿った移動方向、及び、無限遠合焦状態(∞)から至近合焦状態に合焦する際の物体側合焦群GfF及び像側合焦群GfRの光軸に沿った移動方向が矢印で示されている。 Hereinafter, each embodiment of the present application will be described with reference to the drawings. In addition, FIG. 1, FIG. 4, FIG. 7, FIG. 10, and FIG. 13 are cross-sectional views showing the configuration and refractive power distribution of the variable magnification optical system ZL (ZL1 to ZL5) according to each embodiment. Further, in the lower part of the cross-sectional view of these variable magnification optical systems ZL1 to ZL5, each lens when changing the magnification from the wide-angle end state (W) to the telephoto end state (T) via the intermediate focal length state (M). The movement direction along the optical axis of the groups G1 to G5 (or G6, G7), and the object-side focusing group GfF and the image-side focusing when focusing from the infinity focusing state (∞) to the close focusing state. The direction of movement along the optical axis of the focal length group GfR is indicated by an arrow.

各実施例において、非球面は、光軸に垂直な方向の高さをyとし、高さyにおける各非球面の頂点の接平面から各非球面までの光軸に沿った距離(サグ量)をS(y)とし、基準球面の曲率半径(近軸曲率半径)をrとし、円錐定数をKとし、n次の非球面係数をAnとしたとき、以下の式(a)で表される。なお、以降の実施例において、「e−n」は「×10-n」を示す。 In each embodiment, the height of the aspherical surface in the direction perpendicular to the optical axis is y, and the distance (sag amount) along the optical axis from the tangent plane of the apex of each aspherical surface to each aspherical surface at the height y. Is S (y), the radius of curvature of the reference sphere (near-axis radius of curvature) is r, the conical constant is K, and the nth-order aspherical coefficient is An. .. In the following examples, " en " indicates "× 10 -n".

S(y)=(y2/r)/{1+(1−K×y2/r21/2
+A4×y4+A6×y6+A8×y8+A10×y10 (a)
S (y) = (y 2 / r) / {1+ (1-K × y 2 / r 2 ) 1/2 }
+ A4 x y 4 + A6 x y 6 + A8 x y 8 + A10 x y 10 (a)

なお、各実施例において、2次の非球面係数A2は0である。また、各実施例の表中において、非球面には面番号の左側に*印を付している。 In each embodiment, the second-order aspherical coefficient A2 is 0. Further, in the table of each embodiment, the aspherical surface is marked with * on the left side of the surface number.

[第1実施例]
図1は、第1実施例に係る変倍光学系ZL1の構成を示す図である。この図1に示す変倍光学系ZL1は、物体側から順に、正の屈折力を有する第1レンズ群G1と、負の屈折力を有する第2レンズ群G2と、負の屈折力を有する第3レンズ群G3と、正の屈折力を有する第4レンズ群G4と、負の屈折力を有する第5レンズ群G5と、正の屈折力を有する第6レンズ群G6と、から構成されている。
[First Example]
FIG. 1 is a diagram showing a configuration of a variable magnification optical system ZL1 according to the first embodiment. The variable magnification optical system ZL1 shown in FIG. 1 has a first lens group G1 having a positive refractive power, a second lens group G2 having a negative refractive power, and a second lens group having a negative refractive power in order from the object side. It is composed of three lens groups G3, a fourth lens group G4 having a positive refractive power, a fifth lens group G5 having a negative refractive power, and a sixth lens group G6 having a positive refractive power. ..

この変倍光学系ZL1において、第1レンズ群G1は、物体側から順に、物体側に凸面を向けた負メニスカスレンズL11と両凸レンズL12とを接合した接合正レンズ、及び、物体側に凸面を向けた正メニスカスレンズL13を有して構成されている。また、第2レンズ群G2は、物体側から順に、物体側に凸面を向けた負メニスカスレンズL21、物体側のレンズ面及び像側のレンズ面が非球面形状に形成された両凹レンズ形状の非球面負レンズL22、及び、両凸レンズL23を有して構成されている。また、第3レンズ群G3は、物体側に凹面を向けた負メニスカスレンズL31を有して構成されている。また、第4レンズ群G4は、物体側から順に、物体側のレンズ面及び像側のレンズ面が非球面形状に形成された両凸レンズ形状の非球面正レンズL41、及び、両凸レンズL42と両凹レンズL43とを接合した接合負レンズを有して構成されている。また、第5レンズ群G5は、物体側から順に、両凹レンズL51と物体側に凸面を向けた正メニスカスレンズL52とを接合した接合負レンズを有して構成されている。また、第6レンズ群G6は、物体側から順に、物体側のレンズ面が非球面形状に形成された、物体側に凹面を向けた正メニスカスレンズ形状の非球面正レンズL61、物体側のレンズ面が非球面形状に形成された両凸レンズ形状の非球面正レンズL62と物体側に凹面を向けた負メニスカスレンズL63とを接合した接合正レンズ、及び、物体側に凹面を向けた負メニスカスレンズL64を有して構成されている。また、開口絞りSは、第4レンズ群G4の最も物体側のレンズ面(第15面)の物体側に配置されている。 In this variable magnification optical system ZL1, the first lens group G1 has a bonded positive lens in which a negative meniscus lens L11 having a convex surface facing the object side and a biconvex lens L12 are joined in order from the object side, and a convex surface on the object side. It is configured to have a positive meniscus lens L13 directed toward it. Further, the second lens group G2 has a negative meniscus lens L21 having a convex surface facing the object side in order from the object side, and a non-concave lens shape in which the lens surface on the object side and the lens surface on the image side are formed in an aspherical shape. It is configured to have a spherical negative lens L22 and a biconvex lens L23. Further, the third lens group G3 is configured to have a negative meniscus lens L31 with a concave surface facing the object side. Further, the fourth lens group G4 includes an aspherical positive lens L41 having a biconvex lens shape in which the lens surface on the object side and the lens surface on the image side are formed in an aspherical shape, and a biconvex lens L42 in order from the object side. It is configured to have a bonded negative lens bonded to the concave lens L43. Further, the fifth lens group G5 is configured to have a bonded negative lens in which a biconcave lens L51 and a positive meniscus lens L52 having a convex surface facing the object side are joined in order from the object side. Further, the sixth lens group G6 includes an aspherical positive lens L61 having a positive meniscus lens shape with a concave surface facing the object side, in which the lens surface on the object side is formed in an aspherical shape in order from the object side, and a lens on the object side. A bonded positive lens in which an aspherical positive lens L62 having a biconvex lens shape with a surface formed into an aspherical shape and a negative meniscus lens L63 having a concave surface facing the object side are joined, and a negative meniscus lens having a concave surface facing the object side. It has L64 and is configured. Further, the aperture diaphragm S is arranged on the object side of the lens surface (15th surface) on the most object side of the fourth lens group G4.

この変倍光学系ZL1では、広角端状態から望遠端状態への変倍に際し、第1レンズ群G1と第2レンズ群G2との空気間隔が増大し、第2レンズ群G2と第3レンズ群G3との空気間隔が増大し、第3レンズ群G3と第4レンズ群G4との空気間隔が減少し、第4レンズ群G4と第5レンズ群G5との空気間隔が増大し、第5レンズ群G5と第6レンズ群G6との空気間隔が減少し、第6レンズ群G6と像面Iとの空気間隔が増大するように、第1レンズ群G1から第6レンズ群G6の各レンズ群が光軸上を移動する。なお、開口絞りSは、変倍に際し第4レンズ群G4とともに移動する。 In this variable magnification optical system ZL1, the air gap between the first lens group G1 and the second lens group G2 increases when the magnification is changed from the wide-angle end state to the telescopic end state, and the second lens group G2 and the third lens group The air gap with G3 increases, the air gap between the third lens group G3 and the fourth lens group G4 decreases, the air gap between the fourth lens group G4 and the fifth lens group G5 increases, and the fifth lens Each lens group of the first lens group G1 to the sixth lens group G6 so that the air distance between the group G5 and the sixth lens group G6 decreases and the air distance between the sixth lens group G6 and the image plane I increases. Moves on the optical axis. The aperture stop S moves together with the fourth lens group G4 at the time of scaling.

また、この変倍光学系ZL1では、物体側合焦群GfFを第3レンズ群G3とし、像側合焦群GfRを第5レンズ群G5とし、無限遠物体から近距離物体への合焦は、第1レンズ群G1、第2レンズ群G2、第4レンズ群G4及び第6レンズ群G6を像面Iに対して固定とし、物体側合焦群GfFである第3レンズ群G3を光軸に沿って像側から物体側に移動させ、像側合焦群GfRである第5レンズ群G5を光軸に沿って像側から物体側に移動させることにより行うように構成されている。なお、この合焦において、物体側合焦群GfFと像側合焦群GfRとの移動軌跡は異なるように構成されている。 Further, in this variable magnification optical system ZL1, the object-side focusing group GfF is set to the third lens group G3, the image-side focusing group GfR is set to the fifth lens group G5, and focusing from an infinity object to a short-range object is performed. , 1st lens group G1, 2nd lens group G2, 4th lens group G4 and 6th lens group G6 are fixed to the image plane I, and the 3rd lens group G3 which is the object side focusing group GfF is the optical axis. It is configured to move from the image side to the object side along the image side, and to move the fifth lens group G5, which is the image side focusing group GfR, from the image side to the object side along the optical axis. In this focusing, the movement loci of the object-side focusing group GfF and the image-side focusing group GfR are configured to be different.

以下に、第1実施例に係る変倍光学系ZL1の諸元の値を掲げる。ここで、以下の全ての諸元値において掲載されている焦点距離f、曲率半径r、面間隔d、その他長さの単位は一般に「mm」が使われるが、光学系は、比例拡大または比例縮小しても同等の光学性能が得られるので、これに限られるものではない。また、これらの符号の説明及び諸元表の説明は以降の実施例においても同様である。 The values of the specifications of the variable magnification optical system ZL1 according to the first embodiment are listed below. Here, "mm" is generally used as the unit of the focal length f, the radius of curvature r, the surface spacing d, and other lengths listed in all the following specification values, but the optical system is proportionally expanded or proportional. It is not limited to this because the same optical performance can be obtained even if the size is reduced. Further, the description of these reference numerals and the description of the specification table are the same in the following examples.

まず、表1に全体諸元を示す。この全体諸元において、fは全系の焦点距離、FNOはFナンバー、ωは半画角[°]、Yは最大像高、TLは全長、及び、BFはバックフォーカスの値を表しており、広角端状態(W)、中間焦点距離状態(M)及び望遠端状態(T)のそれぞれにおける値が示されている。ここで、全長TLは、無限合焦時の最も物体側のレンズ面(図1における第1面)から像面Iまでの光軸上の距離を示している。また、バックフォーカスBFは、無限遠合焦時の最も像側のレンズ面(図1における第29面)から像面Iまでの光軸上の距離を示している。なお、BF(air)はバックフォーカスの空気換算長を示している。 First, Table 1 shows the overall specifications. In this overall specification, f is the focal length of the entire system, FNO is the F number, ω is the half angle of view [°], Y is the maximum image height, TL is the total length, and BF is the back focus value. , Wide-angle end state (W), intermediate focal length state (M), and telephoto end state (T) are shown. Here, the total length TL indicates the distance on the optical axis from the lens surface (first surface in FIG. 1) on the most object side to the image plane I at the time of infinite focusing. Further, the back focus BF indicates the distance on the optical axis from the lens plane on the image side (29th plane in FIG. 1) to the image plane I at the time of focusing at infinity. In addition, BF (air) indicates the air conversion length of the back focus.

Figure 0006970903
Figure 0006970903

次に、表2にレンズデータを示す。このレンズデータにおける第1欄mは、光線の進行する方向に沿った物体側からのレンズ面の順序(面番号)を、第2欄rは、各レンズ面の曲率半径を、第3欄dは、各光学面から次の光学面までの光軸上の距離(面間隔)を、第4欄nd及び第5欄νdは、d線(λ=587.6nm)に対する屈折率及びアッベ数を示している。また、曲率半径0.00000は平面を示し、空気の屈折率1.00000は省略してある。 Next, Table 2 shows the lens data. In this lens data, the first column m is the order (plane number) of the lens surfaces from the object side along the traveling direction of the light beam, the second column r is the radius of curvature of each lens surface, and the third column d. Is the distance (plane spacing) on the optical axis from each optical surface to the next optical surface, and the fourth column nd and the fifth column νd are the refractive index and Abbe number with respect to the d line (λ = 587.6 nm). Shows. The radius of curvature of 0.00000 indicates a plane, and the refractive index of air of 1.00000 is omitted.

Figure 0006970903
Figure 0006970903

また、表3にレンズ群焦点距離を示す。このレンズ群焦点距離におけるgは各レンズ群の符号を、mは各レンズ群の始面(最も物体側のレンズ面の面番号)を、fgは各レンズ群の焦点距離を示している。 Table 3 shows the focal lengths of the lens groups. In this lens group focal length, g indicates the code of each lens group, m indicates the starting surface of each lens group (the surface number of the lens surface on the most object side), and fg indicates the focal length of each lens group.

Figure 0006970903
Figure 0006970903

この変倍光学系ZL1において、第8面、第9面、第15面、第16面、第23面及び第25面は非球面形状に形成されている。次の表4に、非球面のデータ、すなわち円錐定数K及び各非球面定数A4〜A10の値を示す。 In this variable magnification optical system ZL1, the eighth surface, the ninth surface, the fifteenth surface, the sixteenth surface, the 23rd surface, and the 25th surface are formed in an aspherical shape. Table 4 below shows the aspherical data, that is, the conical constant K and the values of the aspherical constants A4 to A10.

Figure 0006970903
Figure 0006970903

また、この変倍光学系ZL1において、第1レンズ群G1と第2レンズ群G2との軸上空気間隔D5、第2レンズ群と第3レンズ群G3との軸上空気間隔D11、第3レンズ群G3と第4レンズ群G4との軸上空気間隔D13、第4レンズ群G4と第5レンズ群G5との軸上空気間隔D19、第5レンズ群G5と第6レンズ群G6との軸上空気間隔D22、及び、第6レンズ群G6と像面Iとの軸上空気間隔D29(バックフォーカスBFに相当する)は、変倍及び合焦に際して変化する。次の表5に、無限遠物体合焦状態、並びに、至近合焦状態での可変間隔を示す。なお、この表5において、Infiniteは無限遠合焦状態を示し、Closestは至近合焦状態を示す。また、Wは広角端状態を、Mは中間焦点距離状態を、Tは望遠端状態を示す。また、D0は変倍光学系ZL1の最も物体側の面(第1面)から物体までの距離を示し、βは撮影倍率を示し、fは全系の焦点距離を示す。 Further, in this variable magnification optical system ZL1, the axial air gap D5 between the first lens group G1 and the second lens group G2, the axial air gap D11 between the second lens group and the third lens group G3, and the third lens. On-axis air spacing D13 between group G3 and 4th lens group G4, on-axis air spacing D19 between 4th lens group G4 and 5th lens group G5, on-axis between 5th lens group G5 and 6th lens group G6 The air spacing D22 and the axial air spacing D29 (corresponding to the back focus BF) between the sixth lens group G6 and the image plane I change during scaling and focusing. Table 5 below shows the variable intervals in the infinity-focused state and the close-focused state. In Table 5, Infinite indicates an infinity-focused state, and Closest indicates a close-focused state. Further, W indicates a wide-angle end state, M indicates an intermediate focal length state, and T indicates a telephoto end state. Further, D0 indicates the distance from the surface (first surface) on the most object side of the variable magnification optical system ZL1 to the object, β indicates the photographing magnification, and f indicates the focal length of the entire system.

Figure 0006970903
Figure 0006970903

次の表6に、この変倍光学系ZL1における各条件式対応値を示す。この条件式対応値において、ff1は第1合焦群Gf1の焦点距離を、ff2は第2合焦群Gf2の焦点距離を、FZ1Wは広角端状態且つ無限遠合焦状態において第1合焦群Gf1が光軸方向に1[mm]移動した際の軸上合焦位置の変動量[mm]を、FZ1Tは望遠端状態且つ無限遠合焦状態において第1合焦群Gf1が光軸方向に1[mm]移動した際の軸上合焦位置の変動量[mm]を、FZ2Wは広角端状態且つ無限遠合焦状態において前記第2合焦群Gf2が光軸方向に1[mm]移動した際の軸上合焦位置の変動量[mm]を、FZ2Tは望遠端状態且つ無限遠合焦状態において第2合焦群Gf2が光軸方向に1[mm]移動した際の軸上合焦位置の変動量[mm]を、νd1は第1合焦群Gf1に含まれるレンズの媒質のd線に対するアッベ数をそれぞれ表している。なお、この第1実施例において、第1合焦群Gf1は、物体側合焦群GfFである第3レンズ群G3が相当し、第2合焦群Gf2は、像側合焦群GfRである第5レンズ群G5が相当する。また、νd1は、第1合焦群Gf1である第3レンズ群G3の負メニスカスレンズL31の値である。 Table 6 below shows the corresponding values of each conditional expression in this variable magnification optical system ZL1. In this conditional expression corresponding value, ff1 is the focal length of the first focusing group Gf1, ff2 is the focal length of the second focusing group Gf2, and FZ1W is the first focusing group in the wide-angle end state and the infinity focusing state. The amount of change in the on-axis focusing position [mm] when Gf1 moves 1 [mm] in the optical axis direction, FZ1T in the telephoto end state and infinity focusing state, and the first focusing group Gf1 in the optical axis direction. The amount of fluctuation [mm] of the on-axis focusing position when moved by 1 [mm] is the amount of change [mm] of the second focusing group Gf2 in the optical axis direction in the wide-angle end state and the infinity focusing state. The amount of change in the on-axis focusing position [mm] when the FZ2T is in the telescopic end state and in the infinity focusing state, the on-axis focusing when the second focusing group Gf2 moves by 1 [mm] in the optical axis direction. The amount of change in the focal length [mm] is represented by νd1 and the Abbe number of the lens included in the first focal length group Gf1 with respect to the d-line. In this first embodiment, the first focusing group Gf1 corresponds to the third lens group G3 which is the object-side focusing group GfF, and the second focusing group Gf2 is the image-side focusing group GfR. The fifth lens group G5 corresponds to this. Further, νd1 is a value of the negative meniscus lens L31 of the third lens group G3 which is the first focusing group Gf1.

Figure 0006970903
Figure 0006970903

このように、第1実施例に係る変倍光学系ZL1は、上記条件式(1)〜(3)、(5)及び(3′)、(6)並びに(7)を満足している。 As described above, the variable magnification optical system ZL1 according to the first embodiment satisfies the above conditional expressions (1) to (3), (5) and (3'), (6) and (7).

この変倍光学系ZL1の、無限遠合焦状態及び至近合焦状態における、広角端状態、中間焦点距離状態及び望遠端状態の球面収差図、非点収差図、歪曲収差図、倍率色収差図及び横収差図を図2及び図3に示す。各収差図において、FNOはFナンバー、NAは開口数、Yは像高をそれぞれ示す。なお、球面収差図では最大口径に対応するFナンバー又は開口数の値を示し、非点収差図及び歪曲収差図では像高の最大値をそれぞれ示し、横収差図では各像高の値を示している。また、dはd線(λ=587.6nm)、gはg線(λ=435.8nm)をそれぞれ示す。また、非点収差図において、実線はサジタル像面、破線はメリディオナル像面をそれぞれ示している。また、歪曲収差図はd線の値を示している。また、以降に示す各実施例の収差図においても、本実施例と同様の符号を用いる。これらの各収差図より、この変倍光学系ZL1は、合焦における無限遠物体合焦状態から至近合焦状態にわたって、また、変倍における広角端状態から望遠端状態にわたって諸収差が良好に補正されていることがわかる。 Spherical aberration diagram, astigmatism diagram, distortion diagram, chromatic aberration of magnification diagram and The transverse aberration diagram is shown in FIGS. 2 and 3. In each aberration diagram, FNO indicates F number, NA indicates numerical aperture, and Y indicates image height. The spherical aberration diagram shows the value of the F number or numerical aperture corresponding to the maximum aperture, the astigmatism diagram and the distortion diagram show the maximum image height, and the transverse aberration diagram shows the value of each image height. ing. Further, d indicates a d line (λ = 587.6 nm) and g indicates a g line (λ = 435.8 nm). In the astigmatism diagram, the solid line shows the sagittal image plane and the broken line shows the meridional image plane. The distortion diagram shows the value on the d-line. Further, in the aberration diagram of each embodiment shown below, the same reference numerals as those of this embodiment are used. From each of these aberration diagrams, this variable magnification optical system ZL1 satisfactorily corrects various aberrations from the in-focus state to the close-focus state in focusing and from the wide-angle end state to the telephoto end state in focusing. You can see that it has been done.

[第2実施例]
図4は、第2実施例に係る変倍光学系ZL2の構成を示す図である。この図4に示す変倍光学系ZL2は、物体側から順に、正の屈折力を有する第1レンズ群G1と、負の屈折力を有する第2レンズ群G2と、負の屈折力を有する第3レンズ群G3と、正の屈折力を有する第4レンズ群G4と、負の屈折力を有する第5レンズ群G5と、正の屈折力を有する第6レンズ群G6と、から構成されている。
[Second Example]
FIG. 4 is a diagram showing the configuration of the variable magnification optical system ZL2 according to the second embodiment. The variable magnification optical system ZL2 shown in FIG. 4 has a first lens group G1 having a positive refractive power, a second lens group G2 having a negative refractive power, and a second lens group having a negative refractive power in order from the object side. It is composed of three lens groups G3, a fourth lens group G4 having a positive refractive power, a fifth lens group G5 having a negative refractive power, and a sixth lens group G6 having a positive refractive power. ..

この変倍光学系ZL2において、第1レンズ群G1は、物体側から順に、物体側に凸面を向けた負メニスカスレンズL11と両凸レンズL12とを接合した接合正レンズ、及び、物体側に凸面を向けた正メニスカスレンズL13を有して構成されている。また、第2レンズ群G2は、物体側から順に、物体側に凸面を向けた負メニスカスレンズL21、物体側のレンズ面が非球面形状に形成された両凹レンズ形状の非球面負レンズL22、及び、両凸レンズL23を有して構成されている。また、第3レンズ群G3は、物体側から順に、両凹レンズL31と両凸レンズL32とを接合した接合負レンズを有して構成されている。また、第4レンズ群G4は、物体側から順に、物体側のレンズ面及び像側のレンズ面が非球面形状に形成された両凸レンズ形状の非球面正レンズL41、及び、両凸レンズL42と両凹レンズL43とを接合した接合正レンズを有して構成されている。また、第5レンズ群G5は、物体側から順に、両凹レンズL51と物体側に凸面を向けた正メニスカスレンズL52とを接合した接合負レンズを有して構成されている。また、第6レンズ群G6は、物体側から順に、物体側のレンズ面が非球面形状に形成され、物体側に凹面を向けた正メニスカスレンズ形状の非球面正レンズL61と物体側に凹面を向けた負メニスカスレンズL62とを接合した接合正レンズ、両凸レンズL63と物体側に凹面を向けた負メニスカスレンズL64とを接合した接合正レンズ、物体側に凹面を向けた正メニスカスレンズL65、及び、両凹レンズL66を有して構成されている。また、開口絞りSは、第4レンズ群G4の最も物体側のレンズ面(第16面)の物体側に配置されている。 In this variable magnification optical system ZL2, the first lens group G1 has a bonded positive lens in which a negative meniscus lens L11 having a convex surface facing the object side and a biconvex lens L12 are joined in order from the object side, and a convex surface on the object side. It is configured to have a positive meniscus lens L13 directed toward it. Further, the second lens group G2 includes a negative meniscus lens L21 having a convex surface facing the object side, an aspherical negative lens L22 having a biconcave lens shape in which the lens surface on the object side is formed into an aspherical shape, and a negative lens L22 having a concave surface on the object side. , It is configured to have a biconvex lens L23. Further, the third lens group G3 is configured to have a bonded negative lens in which a biconcave lens L31 and a biconvex lens L32 are joined in order from the object side. Further, the fourth lens group G4 includes an aspherical positive lens L41 having a biconvex lens shape in which the lens surface on the object side and the lens surface on the image side are formed in an aspherical shape, and a biconvex lens L42 in order from the object side. It is configured to have a bonded positive lens bonded to the concave lens L43. Further, the fifth lens group G5 is configured to have a bonded negative lens in which a biconcave lens L51 and a positive meniscus lens L52 having a convex surface facing the object side are joined in order from the object side. Further, in the sixth lens group G6, the lens surface on the object side is formed in an aspherical shape in order from the object side, and the aspherical positive lens L61 having a positive meniscus lens shape with the concave surface facing the object side and the concave surface on the object side are formed. A bonded positive lens joined with a negative meniscus lens L62 facing, a bonded positive lens joined with a biconvex lens L63 and a negative meniscus lens L64 with a concave surface facing the object side, a positive meniscus lens L65 with a concave surface facing the object side, and , Both concave lenses L66 are included. Further, the aperture diaphragm S is arranged on the object side of the lens surface (16th surface) on the most object side of the fourth lens group G4.

この変倍光学系ZL2では、広角端状態から望遠端状態への変倍に際し、第1レンズ群G1と第2レンズ群G2との空気間隔が増大し、第2レンズ群G2と第3レンズ群G3との空気間隔が増大し、第3レンズ群G3と第4レンズ群G4との空気間隔が減少し、第4レンズ群G4と第5レンズ群G5との空気間隔が増大し、第5レンズ群G5と第6レンズ群G6との空気間隔が減少し、第6レンズ群G6と像面Iとの空気間隔が増大するように、第1レンズ群G1から第6レンズ群G6の各レンズ群が光軸上を移動する。なお、開口絞りSは、変倍に際し第4レンズ群G4とともに移動する。 In this variable magnification optical system ZL2, the air gap between the first lens group G1 and the second lens group G2 increases when the magnification is changed from the wide-angle end state to the telescopic end state, and the second lens group G2 and the third lens group The air gap with G3 increases, the air gap between the third lens group G3 and the fourth lens group G4 decreases, the air gap between the fourth lens group G4 and the fifth lens group G5 increases, and the fifth lens Each lens group of the first lens group G1 to the sixth lens group G6 so that the air distance between the group G5 and the sixth lens group G6 decreases and the air distance between the sixth lens group G6 and the image plane I increases. Moves on the optical axis. The aperture stop S moves together with the fourth lens group G4 at the time of scaling.

また、この変倍光学系ZL2では、物体側合焦群GfFを第3レンズ群G3とし、像側合焦群GfRを第5レンズ群G5とし、無限遠物体から近距離物体への合焦は、第1レンズ群G1、第2レンズ群G2、第4レンズ群G4及び第6レンズ群G6を像面Iに対して固定とし、物体側合焦群GfFである第3レンズ群G3を光軸に沿って像側から物体側に移動させ、像側合焦群GfRである第5レンズ群G5を光軸に沿って像側から物体側に移動させることにより行うように構成されている。なお、この合焦において、物体側合焦群GfFと像側合焦群GfRとの移動軌跡は異なるように構成されている。 Further, in this variable magnification optical system ZL2, the object-side focusing group GfF is set to the third lens group G3, the image-side focusing group GfR is set to the fifth lens group G5, and focusing from an infinity object to a short-range object is performed. , 1st lens group G1, 2nd lens group G2, 4th lens group G4 and 6th lens group G6 are fixed to the image plane I, and the 3rd lens group G3 which is the object side focusing group GfF is the optical axis. It is configured to move from the image side to the object side along the image side, and to move the fifth lens group G5, which is the image side focusing group GfR, from the image side to the object side along the optical axis. In this focusing, the movement loci of the object-side focusing group GfF and the image-side focusing group GfR are configured to be different.

以下に、第2実施例に係る変倍光学系ZL2の諸元の値を掲げる。まず、表7に全体諸元を示す。 The values of the specifications of the variable magnification optical system ZL2 according to the second embodiment are listed below. First, Table 7 shows the overall specifications.

Figure 0006970903
Figure 0006970903

次に、表8に第2実施例におけるレンズデータを示す。 Next, Table 8 shows the lens data in the second embodiment.

Figure 0006970903
Figure 0006970903

また、表9に第2実施例におけるレンズ群焦点距離を示す。 Table 9 shows the focal length of the lens group in the second embodiment.

Figure 0006970903
Figure 0006970903

この変倍光学系ZL2において、第8面、第16面、第17面及び第24面は非球面形状に形成されている。次の表10に、非球面のデータ、すなわち円錐定数K及び各非球面定数A4〜A10の値を示す。 In this variable magnification optical system ZL2, the 8th surface, the 16th surface, the 17th surface, and the 24th surface are formed in an aspherical shape. The following Table 10 shows the aspherical data, that is, the conical constant K and the values of the aspherical constants A4 to A10.

Figure 0006970903
Figure 0006970903

また、この変倍光学系ZL2において、第1レンズ群G1と第2レンズ群G2との軸上空気間隔D5、第2レンズ群と第3レンズ群G3との軸上空気間隔D11、第3レンズ群G3と第4レンズ群G4との軸上空気間隔D14、第4レンズ群G4と第5レンズ群G5との軸上空気間隔D20、第5レンズ群G5と第6レンズ群G6との軸上空気間隔D23、及び、第6レンズ群G6と像面Iとの軸上空気間隔D33(バックフォーカスBFに相当する)は、変倍及び合焦に際して変化する。次の表11に、無限遠物体合焦状態、並びに、至近合焦状態での可変間隔を示す。 Further, in this variable magnification optical system ZL2, the axial air gap D5 between the first lens group G1 and the second lens group G2, the axial air gap D11 between the second lens group and the third lens group G3, and the third lens. On-axis air spacing D14 between group G3 and 4th lens group G4, on-axis air spacing D20 between 4th lens group G4 and 5th lens group G5, on-axis between 5th lens group G5 and 6th lens group G6 The air spacing D23 and the axial air spacing D33 (corresponding to the back focus BF) between the sixth lens group G6 and the image plane I change during scaling and focusing. Table 11 below shows the variable intervals in the infinity-focused state and the close-focused state.

Figure 0006970903
Figure 0006970903

次の表12に、この変倍光学系ZL2における各条件式対応値を示す。なお、この第2実施例において、第1合焦群Gf1は、物体側合焦群GfFである第3レンズ群G3が相当し、第2合焦群Gf2は、像側合焦群GfRである第5レンズ群G5が相当する。また、νd1は、第1合焦群Gf1である第3レンズ群G3の両凹レンズL31の値である。 Table 12 below shows the corresponding values of each conditional expression in this variable magnification optical system ZL2. In this second embodiment, the first focusing group Gf1 corresponds to the third lens group G3 which is the object-side focusing group GfF, and the second focusing group Gf2 is the image-side focusing group GfR. The fifth lens group G5 corresponds to this. Further, νd1 is a value of the biconcave lens L31 of the third lens group G3 which is the first focusing group Gf1.

Figure 0006970903
Figure 0006970903

このように、第2実施例に係る変倍光学系ZL2は、上記条件式(1)〜(3)、(5)及び(3′)、(6)並びに(7)を満足している。 As described above, the variable magnification optical system ZL2 according to the second embodiment satisfies the above conditional expressions (1) to (3), (5) and (3'), (6) and (7).

この変倍光学系ZL2の、無限遠合焦状態及び至近合焦状態における、広角端状態、中間焦点距離状態及び望遠端状態の球面収差図、非点収差図、歪曲収差図、倍率色収差図及び横収差図を図5及び図6に示す。これらの各収差図より、この変倍光学系ZL2は、合焦における無限遠物体合焦状態から至近合焦状態にわたって、また、変倍における広角端状態から望遠端状態にわたって諸収差が良好に補正されていることがわかる。 Spherical aberration diagram, astigmatism diagram, distortion diagram, chromatic aberration of magnification diagram and The transverse aberration diagram is shown in FIGS. 5 and 6. From each of these aberration diagrams, this variable magnification optical system ZL2 satisfactorily corrects various aberrations from the in-focus state to the close-focus state in focusing and from the wide-angle end state to the telephoto end state in focusing. You can see that it has been done.

[第3実施例]
図7は、第3実施例に係る変倍光学系ZL3の構成を示す図である。この図7に示す変倍光学系ZL3は、物体側から順に、正の屈折力を有する第1レンズ群G1と、負の屈折力を有する第2レンズ群G2と、正の屈折力を有する第3レンズ群G3と、負の屈折力を有する第4レンズ群G4と、正の屈折力を有する第5レンズ群G5と、から構成されている。
[Third Example]
FIG. 7 is a diagram showing the configuration of the variable magnification optical system ZL3 according to the third embodiment. The variable magnification optical system ZL3 shown in FIG. 7 has a first lens group G1 having a positive refractive power, a second lens group G2 having a negative refractive power, and a second lens group having a positive refractive power in order from the object side. It is composed of three lens groups G3, a fourth lens group G4 having a negative refractive power, and a fifth lens group G5 having a positive refractive power.

この変倍光学系ZL3において、第1レンズ群G1は、物体側から順に、物体側に凸面を向けた負メニスカスレンズL11と物体側に凸面を向けた正メニスカスレンズL12とを接合した接合正レンズを有して構成されている。また、第2レンズ群G2は、物体側から順に、物体側に凸面を向けた負メニスカスレンズL21、物体側のレンズ面が非球面形状に形成され、物体側に凸面を向けた負メニスカスレンズ形状の非球面負レンズL22、両凸レンズL23、及び、像側のレンズ面が非球面形状に形成された両凹レンズ形状の非球面負レンズL24を有して構成されている。また、第3レンズ群G3は、物体側から順に、物体側のレンズ面及び像側のレンズ面が非球面形状に形成された両凸レンズ形状の非球面正レンズL31、両凸レンズL32と物体側に凹面を向けた負メニスカスレンズL33とを接合した接合正レンズ、両凹レンズL34と物体側に凸面を向けた正メニスカスレンズL35とを接合した接合正レンズ、及び、物体側のレンズ面及び像側のレンズ面が非球面形状に形成された両凸レンズ形状の非球面正レンズL36を有して構成されている。また、第4レンズ群G4は、像側のレンズ面が非球面形状に形成され、物体側に凸面を向けた負メニスカスレンズ形状の非球面負レンズL41を有して構成されている。また、第5レンズ群G5は、物体側のレンズ面が非球面形状に形成された両凸レンズ形状の非球面正レンズL51を有して構成されている。また、開口絞りSは、第3レンズ群G3の非球面正レンズL31と両凸レンズL32との間に配置されている。また、第5レンズ群G5と像面Iとの間にはフィルタFLが配置されている。 In this variable magnification optical system ZL3, the first lens group G1 is a bonded positive lens in which a negative meniscus lens L11 having a convex surface facing the object side and a positive meniscus lens L12 having a convex surface facing the object side are joined in order from the object side. It is configured to have. Further, the second lens group G2 has a negative meniscus lens L21 having a convex surface facing the object side in order from the object side, and a negative meniscus lens shape having an aspherical shape of the lens surface on the object side and the convex surface facing the object side. The aspherical negative lens L22, the biconvex lens L23, and the aspherical negative lens L24 having a biconcave lens shape in which the lens surface on the image side is formed into an aspherical shape are included. Further, the third lens group G3 includes a biconvex lens-shaped aspherical positive lens L31 and a biconvex lens L32 in which the lens surface on the object side and the lens surface on the image side are formed in an aspherical shape in order from the object side. A bonded positive lens in which a negative meniscus lens L33 with a concave surface is joined, a bonded positive lens in which both concave lenses L34 and a positive meniscus lens L35 with a convex surface facing the object side are joined, and a lens surface on the object side and an image side. It is configured to have an aspherical positive lens L36 having a biconvex lens shape in which the lens surface is formed into an aspherical shape. Further, the fourth lens group G4 is configured to have an aspherical negative lens L41 having a negative meniscus lens shape in which the lens surface on the image side is formed in an aspherical shape and the convex surface is directed toward the object side. Further, the fifth lens group G5 includes an aspherical positive lens L51 having a biconvex lens shape in which the lens surface on the object side is formed into an aspherical shape. Further, the aperture stop S is arranged between the aspherical positive lens L31 and the biconvex lens L32 of the third lens group G3. Further, a filter FL is arranged between the fifth lens group G5 and the image plane I.

この変倍光学系ZL3では、広角端状態から望遠端状態への変倍に際し、第1レンズ群G1と第2レンズ群G2との空気間隔が増大し、第2レンズ群G2と第3レンズ群G3との空気間隔が減少し、第3レンズ群G3と第4レンズ群G4との空気間隔が増大し、第4レンズ群G4と第5レンズ群G5との空気間隔が増大し、第5レンズ群G5とフィルタFLとの空気間隔が減少するように、第1レンズ群G1から第5レンズ群G5の各レンズ群が光軸上を移動する。なお、開口絞りSは、変倍に際し第3レンズ群G3とともに移動する。 In this variable magnification optical system ZL3, the air gap between the first lens group G1 and the second lens group G2 increases when the magnification is changed from the wide-angle end state to the telescopic end state, and the second lens group G2 and the third lens group The air gap with G3 decreases, the air gap between the third lens group G3 and the fourth lens group G4 increases, the air gap between the fourth lens group G4 and the fifth lens group G5 increases, and the fifth lens Each lens group of the first lens group G1 to the fifth lens group G5 moves on the optical axis so that the air gap between the group G5 and the filter FL is reduced. The aperture stop S moves together with the third lens group G3 at the time of scaling.

また、この変倍光学系ZL3では、物体側合焦群GfFを第2レンズ群G2とし、像側合焦群GfRを第4レンズ群G4とし、無限遠物体から近距離物体への合焦は、第1レンズ群G1、第3レンズ群G3及び第5レンズ群G5を像面Iに対して固定とし、物体側合焦群GfFである第2レンズ群G2を光軸に沿って像側から物体側に移動させ、像側合焦群GfRである第4レンズ群G4を光軸に沿って物体側から像側に移動させることにより行うように構成されている。なお、この合焦において、物体側合焦群GfFと像側合焦群GfRとの移動軌跡は異なるように構成されている。 Further, in this variable magnification optical system ZL3, the object-side focusing group GfF is set to the second lens group G2, the image-side focusing group GfR is set to the fourth lens group G4, and focusing from an infinity object to a short-range object is performed. The first lens group G1, the third lens group G3, and the fifth lens group G5 are fixed to the image plane I, and the second lens group G2, which is the object-side focusing group GfF, is set from the image side along the optical axis. It is configured to move to the object side and move the fourth lens group G4, which is the image side focusing group GfR, from the object side to the image side along the optical axis. In this focusing, the movement loci of the object-side focusing group GfF and the image-side focusing group GfR are configured to be different.

以下に、第3実施例に係る変倍光学系ZL3の諸元の値を掲げる。まず、表13に全体諸元を示す。 The values of the specifications of the variable magnification optical system ZL3 according to the third embodiment are listed below. First, Table 13 shows the overall specifications.

Figure 0006970903
Figure 0006970903

次に、表14に第3実施例におけるレンズデータを示す。 Next, Table 14 shows the lens data in the third embodiment.

Figure 0006970903
Figure 0006970903

また、表15に第3実施例におけるレンズ群焦点距離を示す。 Table 15 shows the focal length of the lens group in the third embodiment.

Figure 0006970903
Figure 0006970903

この変倍光学系ZL3において、第6面、第11面、第12面、第13面、第21面、第22面、第24面及び第25面は非球面形状に形成されている。次の表16に、非球面のデータ、すなわち円錐定数K及び各非球面定数A4〜A10の値を示す。 In this variable magnification optical system ZL3, the sixth surface, the eleventh surface, the twelfth surface, the thirteenth surface, the 21st surface, the 22nd surface, the 24th surface, and the 25th surface are formed in an aspherical shape. Table 16 below shows the aspherical data, that is, the conical constant K and the values of the aspherical constants A4 to A10.

Figure 0006970903
Figure 0006970903

また、この変倍光学系ZL3において、第1レンズ群G1と第2レンズ群G2との軸上空気間隔D3、第2レンズ群と第3レンズ群G3との軸上空気間隔D11、第3レンズ群G3と第4レンズ群G4との軸上空気間隔D22、第4レンズ群G4と第5レンズ群G5との軸上空気間隔D24、及び、第5レンズ群G5とフィルタFLIとの軸上空気間隔D26は、変倍及び合焦に際して変化する。次の表17に、無限遠物体合焦状態、並びに、至近合焦状態での可変間隔を示す。 Further, in this variable magnification optical system ZL3, the axial air gap D3 between the first lens group G1 and the second lens group G2, the axial air gap D11 between the second lens group and the third lens group G3, and the third lens. The on-axis air gap D22 between the group G3 and the fourth lens group G4, the on-axis air gap D24 between the fourth lens group G4 and the fifth lens group G5, and the on-axis air between the fifth lens group G5 and the filter FLI. The interval D26 changes during scaling and focusing. Table 17 below shows the variable intervals in the infinity-focused state and the close-focused state.

Figure 0006970903
Figure 0006970903

次の表18に、この変倍光学系ZL3における各条件式対応値を示す。なお、この第3実施例において、第1合焦群Gf1は、物体側合焦群GfFである第2レンズ群G2が相当し、第2合焦群Gf2は、像側合焦群GfRである第4レンズ群G4が相当する。また、νd1は、第1合焦群Gf1である第2レンズ群G2の負メニスカスレンズL21の値である。 Table 18 below shows the corresponding values of each conditional expression in this variable magnification optical system ZL3. In this third embodiment, the first focusing group Gf1 corresponds to the second lens group G2 which is the object-side focusing group GfF, and the second focusing group Gf2 is the image-side focusing group GfR. The fourth lens group G4 corresponds to this. Further, νd1 is a value of the negative meniscus lens L21 of the second lens group G2 which is the first focusing group Gf1.

Figure 0006970903
Figure 0006970903

このように、第3実施例に係る変倍光学系ZL3は、上記条件式(1)〜(3)、(5)及び(3′)、(6)並びに(7)を満足している。 As described above, the variable magnification optical system ZL3 according to the third embodiment satisfies the above conditional expressions (1) to (3), (5) and (3'), (6) and (7).

この変倍光学系ZL3の、無限遠合焦状態及び至近合焦状態における、広角端状態、中間焦点距離状態及び望遠端状態の球面収差図、非点収差図、歪曲収差図、倍率色収差図及び横収差図を図8及び図9に示す。これらの各収差図より、この変倍光学系ZL3は、合焦における無限遠物体合焦状態から至近合焦状態にわたって、また、変倍における広角端状態から望遠端状態にわたって諸収差が良好に補正されていることがわかる。 Spherical aberration diagram, astigmatism diagram, distortion diagram, chromatic aberration of magnification diagram and The transverse aberration diagram is shown in FIGS. 8 and 9. From each of these aberration diagrams, this variable magnification optical system ZL3 satisfactorily corrects various aberrations from the in-focus state to the close-focus state in focusing and from the wide-angle end state to the telephoto end state in focusing. You can see that it has been done.

[第4実施例]
図10は、第4実施例に係る変倍光学系ZL4の構成を示す図である。この図10に示す変倍光学系ZL4は、物体側から順に、負の屈折力を有する第1レンズ群G1と、負の屈折力を有する第2レンズ群G2と、正の屈折力を有する第3レンズ群G3と、負の屈折力を有する第4レンズ群G4と、正の屈折力を有する第5レンズ群G5と、から構成されている。
[Fourth Example]
FIG. 10 is a diagram showing the configuration of the variable magnification optical system ZL4 according to the fourth embodiment. The variable magnification optical system ZL4 shown in FIG. 10 has a first lens group G1 having a negative refractive power, a second lens group G2 having a negative refractive power, and a second lens group having a positive refractive power in order from the object side. It is composed of three lens groups G3, a fourth lens group G4 having a negative refractive power, and a fifth lens group G5 having a positive refractive power.

この変倍光学系ZL4において、第1レンズ群G1は、物体側から順に、物体側に凸面を向けた負メニスカスレンズL11、物体側のレンズ面が非球面形状に形成され、物体側に凸面を向けた負メニスカスレンズ形状の非球面負レンズL12、及び、両凸レンズL13を有して構成されている。また、第2レンズ群G2は、物体側から順に、物体側のレンズ面が非球面形状に形成され、物体側に凹面を向けた負メニスカスレンズ形状の非球面負レンズL21と物体側に凹面を向けた正メニスカスレンズL22とを接合した接合負レンズを有して構成されている。また、第3レンズ群G3は、物体側から順に、物体側のレンズ面及び像側のレンズ面が非球面形状に形成され、物体側に凸面を向けた正メニスカスレンズ形状の非球面正レンズL31、及び、両凸レンズL32と両凹レンズL33とを接合した接合正レンズを有して構成されている。また、第4レンズ群G4は、物体側から順に、両凹レンズL41と物体側に凸面を向けた正メニスカスレンズL42とを接合した接合負レンズを有して構成されている。また、第5レンズ群G5は、物体側のレンズ面が非球面形状に形成され、物体側に凸面を向けた負メニスカスレンズ形状の非球面負レンズL51と物体側に凸面を向けた正メニスカスレンズL52とを接合した接合負レンズ、両凸レンズL53と物体側に凹面を向けた負メニスカスレンズL54とを接合した接合正レンズ、両凸レンズL55、及び、両凹レンズL56を有して構成されている。また、開口絞りSは、第3レンズ群G3の最も物体側のレンズ面(第11面)の物体側に配置されている。 In this variable magnification optical system ZL4, the first lens group G1 is a negative meniscus lens L11 having a convex surface facing the object side in order from the object side, and the lens surface on the object side is formed into an aspherical shape, and the convex surface is formed on the object side. It is configured to have an aspherical negative lens L12 having a negative meniscus lens shape and a biconvex lens L13. Further, in the second lens group G2, the lens surface on the object side is formed in an aspherical shape in order from the object side, and the negative meniscus lens-shaped aspherical negative lens L21 with the concave surface facing the object side and the concave surface on the object side are formed. It is configured to have a bonded negative lens bonded to a positive meniscus lens L22 to be directed. Further, in the third lens group G3, the lens surface on the object side and the lens surface on the image side are formed in an aspherical shape in order from the object side, and the aspherical positive lens L31 having a positive meniscus lens shape with the convex surface facing the object side. And, it is configured to have a bonded positive lens in which a biconvex lens L32 and a biconcave lens L33 are joined. Further, the fourth lens group G4 is configured to have a bonded negative lens in which a biconcave lens L41 and a positive meniscus lens L42 having a convex surface facing the object side are joined in order from the object side. Further, in the fifth lens group G5, the lens surface on the object side is formed in an aspherical shape, and the negative meniscus lens-shaped aspherical negative lens L51 with the convex surface facing the object side and the positive meniscus lens with the convex surface facing the object side. It includes a bonded negative lens bonded to L52, a bonded positive lens bonded to a biconvex lens L53 and a negative meniscus lens L54 having a concave surface facing the object side, a biconvex lens L55, and a biconcave lens L56. Further, the aperture diaphragm S is arranged on the object side of the lens surface (11th surface) on the most object side of the third lens group G3.

この変倍光学系ZL4では、広角端状態から望遠端状態への変倍に際し、第1レンズ群G1と第2レンズ群G2の空気間隔が増大し、第2レンズ群G2と第3レンズ群G3の空気間隔が減少し、第3レンズ群G3と第4レンズ群G4の空気間隔が増大し、第4レンズ群G4と第5レンズ群G5の空気間隔が減少し、第5レンズ群G5と像面Iの空気間隔が増大するように、第1レンズ群G1から第5レンズ群G5の各レンズ群が光軸上を移動する。なお、開口絞りSは、変倍に際し第3レンズ群G3とともに移動する。 In this variable magnification optical system ZL4, the air gap between the first lens group G1 and the second lens group G2 increases when the magnification is changed from the wide-angle end state to the telescopic end state, and the second lens group G2 and the third lens group G3 The air spacing between the 3rd lens group G3 and the 4th lens group G4 increases, the air spacing between the 4th lens group G4 and the 5th lens group G5 decreases, and the image with the 5th lens group G5. Each lens group of the first lens group G1 to the fifth lens group G5 moves on the optical axis so that the air spacing of the surface I increases. The aperture stop S moves together with the third lens group G3 at the time of scaling.

また、この変倍光学系ZL4では、物体側合焦群GfFを第2レンズ群G2とし、像側合焦群GfRを第4レンズ群G4とし、無限遠物体から近距離物体への合焦は、第1レンズ群G1、第3レンズ群G3及び第5レンズ群G5を像面Iに対して固定とし、物体側合焦群GfFである第2レンズ群G2を光軸に沿って像側から物体側に移動させ、像側合焦群GfRである第4レンズ群G4を光軸に沿って像側から物体側に移動させることにより行うように構成されている。なお、この合焦において、物体側合焦群GfFと像側合焦群GfRとの移動軌跡は異なるように構成されている。 Further, in this variable magnification optical system ZL4, the object-side focusing group GfF is set to the second lens group G2, the image-side focusing group GfR is set to the fourth lens group G4, and focusing from an infinity object to a short-range object is performed. The first lens group G1, the third lens group G3, and the fifth lens group G5 are fixed to the image plane I, and the second lens group G2, which is the object-side focusing group GfF, is set from the image side along the optical axis. It is configured to move to the object side and move the fourth lens group G4, which is the image side focusing group GfR, from the image side to the object side along the optical axis. In this focusing, the movement loci of the object-side focusing group GfF and the image-side focusing group GfR are configured to be different.

以下に、第4実施例に係る変倍光学系ZL4の諸元の値を掲げる。まず、表19に全体諸元を示す。 The values of the specifications of the variable magnification optical system ZL4 according to the fourth embodiment are listed below. First, Table 19 shows the overall specifications.

Figure 0006970903
Figure 0006970903

次に、表20に第4実施例におけるレンズデータを示す。 Next, Table 20 shows the lens data in the fourth embodiment.

Figure 0006970903
Figure 0006970903

また、表21に第4実施例におけるレンズ群焦点距離を示す。 Table 21 shows the focal lengths of the lens groups in the fourth embodiment.

Figure 0006970903
Figure 0006970903

この変倍光学系ZL4において、第3面、第7面、第11面、第12面、及び第19面は非球面形状に形成されている。次の表22に、非球面のデータ、すなわち円錐定数K及び各非球面定数A4〜A10の値を示す。 In this variable magnification optical system ZL4, the third surface, the seventh surface, the eleventh surface, the twelfth surface, and the nineteenth surface are formed in an aspherical shape. Table 22 below shows the aspherical data, that is, the conical constant K and the values of the aspherical constants A4 to A10.

Figure 0006970903
Figure 0006970903

また、この変倍光学系ZL4において、第1レンズ群G1と第2レンズ群G2との軸上空気間隔D6、第2レンズ群と第3レンズ群G3との軸上空気間隔D9、第3レンズ群G3と第4レンズ群G4との軸上空気間隔D15、第4レンズ群G4と第5レンズ群G5との軸上空気間隔D18、及び、第5レンズ群G5と像面Iとの軸上空気間隔D28(バックフォーカスBFに相当する)は、変倍及び合焦に際して変化する。次の表23に、無限遠物体合焦状態、並びに、至近合焦状態での可変間隔を示す。 Further, in this variable magnification optical system ZL4, the axial air gap D6 between the first lens group G1 and the second lens group G2, the axial air gap D9 between the second lens group and the third lens group G3, and the third lens. On-axis air spacing D15 between group G3 and 4th lens group G4, on-axis air spacing D18 between 4th lens group G4 and 5th lens group G5, and on-axis between 5th lens group G5 and image plane I The air spacing D28 (corresponding to the back focus BF) changes during scaling and focusing. Table 23 below shows the variable intervals in the infinity-focused state and the close-focused state.

Figure 0006970903
Figure 0006970903

次の表24に、この変倍光学系ZL4における各条件式対応値を示す。なお、この第4実施例において、第1合焦群Gf1は、物体側合焦群GfFである第2レンズ群G2が相当し、第2合焦群Gf2は、像側合焦群GfRである第4レンズ群G4が相当する。また、νd1は、第1合焦群Gf1である第2レンズ群G2の非球面負レンズL21の値である。 Table 24 below shows the corresponding values of each conditional expression in this variable magnification optical system ZL4. In this fourth embodiment, the first focusing group Gf1 corresponds to the second lens group G2 which is the object-side focusing group GfF, and the second focusing group Gf2 is the image-side focusing group GfR. The fourth lens group G4 corresponds to this. Further, νd1 is a value of the aspherical negative lens L21 of the second lens group G2 which is the first focusing group Gf1.

Figure 0006970903
Figure 0006970903

このように、第4実施例に係る変倍光学系ZL4は、上記条件式(1)〜(3)、(5)及び(3′)、(6)並びに(7)を満足している。 As described above, the variable magnification optical system ZL4 according to the fourth embodiment satisfies the above conditional expressions (1) to (3), (5) and (3'), (6) and (7).

この変倍光学系ZL4の、無限遠合焦状態及び至近合焦状態における、広角端状態、中間焦点距離状態及び望遠端状態の球面収差図、非点収差図、歪曲収差図、倍率色収差図及び横収差図を図11及び図12に示す。これらの各収差図より、この変倍光学系ZL4は、合焦における無限遠物体合焦状態から至近合焦状態にわたって、また、変倍における広角端状態から望遠端状態にわたって諸収差が良好に補正されていることがわかる。 Spherical aberration diagram, astigmatism diagram, distortion diagram, chromatic aberration of magnification diagram and The transverse aberration diagram is shown in FIGS. 11 and 12. From each of these aberration diagrams, this variable magnification optical system ZL4 satisfactorily corrects various aberrations from the in-focus state to the close-focus state in focusing, and from the wide-angle end state to the telephoto end state in focusing. You can see that it has been done.

[第5実施例]
図13は、第5実施例に係る変倍光学系ZL5の構成を示す図である。この図13に示す変倍光学系ZL5は、物体側から順に、正の屈折力を有する第1レンズ群G1と、負の屈折力を有する第2レンズ群G2と、負の屈折力を有する第3レンズ群G3と、正の屈折力を有する第4レンズ群G4と、正の屈折力を有する第5レンズ群G5と、負の屈折力を有する第6レンズ群G6と、負の屈折力を有する第7レンズ群G7と、から構成されている。
[Fifth Example]
FIG. 13 is a diagram showing the configuration of the variable magnification optical system ZL5 according to the fifth embodiment. The variable magnification optical system ZL5 shown in FIG. 13 has a first lens group G1 having a positive refractive power, a second lens group G2 having a negative refractive power, and a second lens group having a negative refractive power in order from the object side. The 3 lens group G3, the 4th lens group G4 having a positive refractive power, the 5th lens group G5 having a positive refractive power, the 6th lens group G6 having a negative refractive power, and the negative refractive power. It is composed of a seventh lens group G7 having a lens.

この変倍光学系ZL5において、第1レンズ群G1は、物体側から順に、物体側に凸面を向けた負メニスカスレンズL11と両凸レンズL12とを接合した接合正レンズ、及び、物体側に凸面を向けた正メニスカスレンズL13を有して構成されている。また、第2レンズ群G2は、物体側から順に、両凸レンズL21と両凹レンズL22とを接合した接合正レンズ、及び、両凹レンズL23と物体側に凸面を向けた正メニスカスレンズL24とを接合した接合負レンズを有して構成されている。また、第3レンズ群G3は、物体側に凹面を向けた負メニスカスレンズL31を有して構成されている。また、第4レンズ群G4は、物体側から順に、両凸レンズL41、両凹レンズL42と両凸レンズL43とを接合した接合正レンズ、及び、物体側に凹面を向けた正メニスカスレンズL44と物体側に凹面を向けた負メニスカスレンズL45とを接合した接合負レンズを有して構成されている。また、第5レンズ群G5は、物体側から順に、両凸レンズL51と両凹レンズL52とを接合した接合負レンズ、並びに、物体側のレンズ面及び像側のレンズ面が非球面形状に形成された両凸レンズ形状の非球面正レンズL53を有して構成されている。また、第6レンズ群G6は、物体側から順に、物体側のレンズ面が非球面形状に形成され、物体側に凸面を向けた負メニスカスレンズ形状の非球面負レンズL61と物体側に凸面を向けた正メニスカスレンズL62とを接合した接合負レンズ、及び、両凸レンズL63を有して構成されている。また、第7レンズ群G7は、物体側から順に、物体側に凸面を向けた正メニスカスレンズL71と物体側に凸面を向けた負メニスカスレンズL72とを接合した接合負レンズを有して構成されている。また、開口絞りSは、第4レンズ群G4の最も物体側のレンズ面(第15面)の物体側に配置されている。また、第7レンズ群G7と像面Iとの間にはフィルタFLが配置されている。 In this variable magnification optical system ZL5, the first lens group G1 has a bonded positive lens in which a negative meniscus lens L11 having a convex surface facing the object side and a biconvex lens L12 are joined in order from the object side, and a convex surface on the object side. It is configured to have a positive meniscus lens L13 directed toward it. Further, in the second lens group G2, a bonded positive lens in which a biconvex lens L21 and a biconcave lens L22 are joined, and a biconcave lens L23 and a positive meniscus lens L24 having a convex surface facing the object side are joined in order from the object side. It is configured to have a junction negative lens. Further, the third lens group G3 is configured to have a negative meniscus lens L31 with a concave surface facing the object side. Further, the fourth lens group G4 is, in order from the object side, a biconvex lens L41, a bonded positive lens in which a biconcave lens L42 and a biconvex lens L43 are joined, and a positive meniscus lens L44 with a concave surface facing the object side and the object side. It is configured to have a bonded negative lens bonded to a negative meniscus lens L45 with a concave surface facing. Further, in the fifth lens group G5, a bonded negative lens in which a biconvex lens L51 and a biconcave lens L52 are joined, and a lens surface on the object side and a lens surface on the image side are formed in an aspherical shape in order from the object side. It is configured to have an aspherical positive lens L53 having a biconvex lens shape. Further, in the sixth lens group G6, the lens surface on the object side is formed in an aspherical shape in order from the object side, and the aspherical negative lens L61 having a negative meniscus lens shape with the convex surface facing the object side and the convex surface on the object side are formed. It is configured to have a bonded negative lens bonded to a positive meniscus lens L62 and a biconvex lens L63. Further, the seventh lens group G7 is configured to have a bonded negative lens in which a positive meniscus lens L71 having a convex surface facing the object side and a negative meniscus lens L72 having a convex surface facing the object side are joined in order from the object side. ing. Further, the aperture diaphragm S is arranged on the object side of the lens surface (15th surface) on the most object side of the fourth lens group G4. Further, a filter FL is arranged between the 7th lens group G7 and the image plane I.

この変倍光学系ZL5では、広角端状態から望遠端状態への変倍に際し、第1レンズ群G1と第2レンズ群G2との空気間隔が増大し、第2レンズ群G2と第3レンズ群G3との空気間隔が減少し、第3レンズ群G3と第4レンズ群G4との空気間隔が減少し、第4レンズ群G4と第5レンズ群G5との空気間隔が変化し、第5レンズ群G5と第6レンズ群G6との空気間隔が変化し、第6レンズ群G6と第7レンズ群G7との空気間隔が変化するように、第1レンズ群G1から第6レンズ群G6の各レンズ群が光軸上を移動する。このとき、第7レンズ群G7は像面Iに対して固定されている。なお、開口絞りSは、変倍に際し第4レンズ群G4とともに移動する。 In this variable magnification optical system ZL5, the air gap between the first lens group G1 and the second lens group G2 increases when the magnification is changed from the wide-angle end state to the telescopic end state, and the second lens group G2 and the third lens group The air gap between the third lens group G3 and the fourth lens group G4 decreases, the air distance between the fourth lens group G4 and the fifth lens group G5 changes, and the fifth lens Each of the first lens group G1 to the sixth lens group G6 changes so that the air distance between the group G5 and the sixth lens group G6 changes and the air distance between the sixth lens group G6 and the seventh lens group G7 changes. The lens group moves on the optical axis. At this time, the seventh lens group G7 is fixed with respect to the image plane I. The aperture stop S moves together with the fourth lens group G4 at the time of scaling.

また、この変倍光学系ZL5では、物体側合焦群GfFを第3レンズ群G3とし、像側合焦群GfRを第5レンズ群G5とし、無限遠物体から近距離物体への合焦は、第1レンズ群G1、第2レンズ群G2、第4レンズ群G4、第6レンズ群G6及び第7レンズ群G7を像面Iに対して固定とし、物体側合焦群GfFである第3レンズ群G3を光軸に沿って像側から物体側に移動させ、像側合焦群GfRである第5レンズ群G5を光軸に沿って像側から物体側に移動させることにより行うように構成されている。なお、この合焦において、物体側合焦群GfFと像側合焦群GfRとの移動軌跡は異なるように構成されている。 Further, in this variable magnification optical system ZL5, the object-side focusing group GfF is set to the third lens group G3, the image-side focusing group GfR is set to the fifth lens group G5, and focusing from an infinity object to a short-range object is performed. , The first lens group G1, the second lens group G2, the fourth lens group G4, the sixth lens group G6, and the seventh lens group G7 are fixed with respect to the image plane I, and the third lens group is the object-side focusing group GfF. The lens group G3 is moved from the image side to the object side along the optical axis, and the fifth lens group G5, which is the image side focusing group GfR, is moved from the image side to the object side along the optical axis. It is configured. In this focusing, the movement loci of the object-side focusing group GfF and the image-side focusing group GfR are configured to be different.

以下に、第5実施例に係る変倍光学系ZL5の諸元の値を掲げる。まず、表25に全体諸元を示す。 The values of the specifications of the variable magnification optical system ZL5 according to the fifth embodiment are listed below. First, Table 25 shows the overall specifications.

Figure 0006970903
Figure 0006970903

次に、表26に第5実施例におけるレンズデータを示す。 Next, Table 26 shows the lens data in the fifth embodiment.

Figure 0006970903
Figure 0006970903

また、表27に第5実施例におけるレンズ群焦点距離を示す。 Table 27 shows the focal length of the lens group in the fifth embodiment.

Figure 0006970903
Figure 0006970903

この変倍光学系ZL5において、第26面、第27面及び第28面は非球面形状に形成されている。次の表28に、非球面のデータ、すなわち円錐定数K及び各非球面定数A4〜A10の値を示す。 In this variable magnification optical system ZL5, the 26th surface, the 27th surface, and the 28th surface are formed in an aspherical shape. Table 28 below shows the aspherical data, that is, the conical constant K and the values of the aspherical constants A4 to A10.

Figure 0006970903
Figure 0006970903

また、この変倍光学系ZL5において、第1レンズ群G1と第2レンズ群G2との軸上空気間隔D5、第2レンズ群と第3レンズ群G3との軸上空気間隔D11、第3レンズ群G3と第4レンズ群G4との軸上空気間隔D13、第4レンズ群G4と第5レンズ群G5との軸上空気間隔D22、第5レンズ群G5と第6レンズ群G6との軸上空気間隔27、及び、第6レンズ群G6と第7レンズ群G7との軸上空気間隔D32は、変倍及び合焦に際して変化する。次の表29に、無限遠物体合焦状態、並びに、至近合焦状態での可変間隔を示す。 Further, in this variable magnification optical system ZL5, the axial air gap D5 between the first lens group G1 and the second lens group G2, the axial air gap D11 between the second lens group and the third lens group G3, and the third lens. On-axis air spacing D13 between group G3 and 4th lens group G4, on-axis air spacing D22 between 4th lens group G4 and 5th lens group G5, on-axis between 5th lens group G5 and 6th lens group G6 The air spacing 27 and the axial air spacing D32 between the 6th lens group G6 and the 7th lens group G7 change during scaling and focusing. Table 29 below shows the variable intervals in the infinity-focused state and the close-focused state.

Figure 0006970903
Figure 0006970903

次の表30に、この変倍光学系ZL5における各条件式対応値を示す。なお、この第5実施例において、第1合焦群Gf1は、像側合焦群GfRである第5レンズ群G5が相当し、第2合焦群Gf2は、物体側合焦群GfFである第3レンズ群G3が相当する。また、νd1は、第1合焦群Gf1である第5レンズ群G5の非球面正レンズL53の値である。 The following Table 30 shows the corresponding values of each conditional expression in this variable magnification optical system ZL5. In this fifth embodiment, the first focusing group Gf1 corresponds to the fifth lens group G5 which is the image side focusing group GfR, and the second focusing group Gf2 is the object side focusing group GfF. The third lens group G3 corresponds to this. Further, νd1 is a value of the aspherical positive lens L53 of the fifth lens group G5, which is the first focusing group Gf1.

Figure 0006970903
Figure 0006970903

このように、第5実施例に係る変倍光学系ZL5は、上記条件式(1)、(2)、(4)〜(7)を満足している。 As described above, the variable magnification optical system ZL5 according to the fifth embodiment satisfies the above conditional expressions (1), (2), (4) to (7).

この変倍光学系ZL5の、無限遠合焦状態及び至近合焦状態における、広角端状態、中間焦点距離状態及び望遠端状態の球面収差図、非点収差図、歪曲収差図、倍率色収差図及び横収差図を図14及び図15に示す。これらの各収差図より、この変倍光学系ZL5は、合焦における無限遠物体合焦状態から至近合焦状態にわたって、また、変倍における広角端状態から望遠端状態にわたって諸収差が良好に補正されていることがわかる。 Spherical aberration diagram, astigmatism diagram, distortion diagram, chromatic aberration of magnification diagram and The transverse aberration diagram is shown in FIGS. 14 and 15. From each of these aberration diagrams, this variable magnification optical system ZL5 satisfactorily corrects various aberrations from the in-focus state to the close-focus state in focusing and from the wide-angle end state to the telephoto end state in focusing. You can see that it has been done.

1 カメラ(光学機器) ZL(ZL1〜ZL5) 変倍光学系
GfF 物体側合焦群 S 開口絞り GfR 像側合焦群
Gf1 第1合焦群 Gf2 第2合焦群
1 Camera (optical equipment) ZL (ZL1 to ZL5) Variable magnification optical system GfF Object side focusing group S Aperture aperture GfR Image side focusing group Gf1 First focusing group Gf2 Second focusing group

Claims (16)

複数のレンズ群を有し、変倍時に前記レンズ群の間隔が変化する変倍光学系であって、
開口絞りと、
前記開口絞りより物体側に配置され、合焦時に光軸方向に移動する少なくとも1つの物体側合焦群と、
前記開口絞りより像側に配置され、合焦時に光軸方向に移動する少なくとも1つの像側合焦群と、を有し、
合焦時に、前記物体側合焦群と前記像側合焦群との移動軌跡は異なり、
前記物体側合焦群より物体側に、少なくとも1つの物体側レンズ群を有し、
変倍時に、前記物体側レンズ群と前記物体側合焦群との間隔が変化し、
前記物体側合焦群の1つ及び前記像側合焦群の1つのうち、一方を第1合焦群とし、他方を第2合焦群としたとき、次式の条件を満足することを特徴とする変倍光学系。
|ff1/ff2| < 1.000
0.010 < |FZ2T/FZ1T| < 1.000
0.050 < |FZ2W/FZ2T| < 0.950
ff2 ≦ −34.47
但し、
ff1:前記第1合焦群の焦点距離
ff2:前記第2合焦群の焦点距離
FZ1T:望遠端状態且つ無限遠合焦状態において前記第1合焦群が光軸方向に1[mm]移動した際の軸上合焦位置の変動量[mm]
FZ2W:広角端状態且つ無限遠合焦状態において前記第2合焦群が光軸方向に1[mm]移動した際の軸上合焦位置の変動量[mm]
FZ2T:望遠端状態且つ無限遠合焦状態において前記第2合焦群が光軸方向に1[mm]移動した際の軸上合焦位置の変動量[mm]
A variable magnification optical system having a plurality of lens groups and changing the distance between the lens groups at the time of magnification change.
Aperture aperture and
At least one object-side focusing group that is arranged on the object side of the aperture stop and moves in the optical axis direction at the time of focusing.
It has at least one image-side focusing group, which is arranged on the image side of the aperture stop and moves in the optical axis direction at the time of focusing.
At the time of focusing, the movement loci of the object-side focusing group and the image-side focusing group are different.
It has at least one object-side lens group on the object side of the object-side in-focus group.
At the time of scaling, the distance between the object-side lens group and the object-side focusing group changes,
When one of the object-side focusing group and one of the image-side focusing groups is defined as the first focusing group and the other as the second focusing group, the condition of the following equation is satisfied. Characterized variable magnification optical system.
| ff1 / ff2 | <1,000
0.010 << | FZ2T / FZ1T | <1,000
0.050 << | FZ2W / FZ2T | <0.950
ff2 ≤ −34.47
However,
ff1: Focal length of the first focusing group ff2: Focal length of the second focusing group FZ1T: The first focusing group moves 1 [mm] in the optical axis direction in the telephoto end state and the infinity focusing state. Amount of fluctuation in the on-axis focal length [mm]
FZ2W: Fluctuation amount [mm] of the on-axis focusing position when the second focusing group moves 1 [mm] in the optical axis direction in the wide-angle end state and the infinity focusing state.
FZ2T: Fluctuation amount [mm] of the on-axis focusing position when the second focusing group moves 1 [mm] in the optical axis direction in the telephoto end state and the infinity focusing state.
複数のレンズ群を有し、変倍時に前記レンズ群の間隔が変化する変倍光学系であって、
開口絞りと、
前記開口絞りより物体側に配置され、合焦時に光軸方向に移動する少なくとも1つの物体側合焦群と、
前記開口絞りより像側に配置され、合焦時に光軸方向に移動する少なくとも1つの像側合焦群と、を有し、
合焦時に、前記物体側合焦群と前記像側合焦群との移動軌跡は異なり、
前記物体側合焦群の1つは、物体側に凹面を向けた負レンズからなり、
前記物体側合焦群の1つ及び前記像側合焦群の1つのうち、一方を第1合焦群とし、他方を第2合焦群としたとき、次式の条件を満足することを特徴とする変倍光学系。
|ff1/ff2| < 1.000
0.010 < |FZ2T/FZ1T| < 1.000
0.050 < |FZ2W/FZ2T| < 0.950
ff2 ≦ −34.47
但し、
ff1:前記第1合焦群の焦点距離
ff2:前記第2合焦群の焦点距離
FZ1T:望遠端状態且つ無限遠合焦状態において前記第1合焦群が光軸方向に1[mm]移動した際の軸上合焦位置の変動量[mm]
FZ2W:広角端状態且つ無限遠合焦状態において前記第2合焦群が光軸方向に1[mm]移動した際の軸上合焦位置の変動量[mm]
FZ2T:望遠端状態且つ無限遠合焦状態において前記第2合焦群が光軸方向に1[mm]移動した際の軸上合焦位置の変動量[mm]
A variable magnification optical system having a plurality of lens groups and changing the distance between the lens groups at the time of magnification change.
Aperture aperture and
At least one object-side focusing group that is arranged on the object side of the aperture stop and moves in the optical axis direction at the time of focusing.
It has at least one image-side focusing group, which is arranged on the image side of the aperture stop and moves in the optical axis direction at the time of focusing.
At the time of focusing, the movement loci of the object-side focusing group and the image-side focusing group are different.
One of the object-side focusing groups consists of a negative lens with a concave surface facing the object side.
When one of the object-side focusing group and one of the image-side focusing groups is defined as the first focusing group and the other as the second focusing group, the condition of the following equation is satisfied. Characterized variable magnification optical system.
| ff1 / ff2 | <1,000
0.010 << | FZ2T / FZ1T | <1,000
0.050 << | FZ2W / FZ2T | <0.950
ff2 ≤ −34.47
However,
ff1: Focal length of the first focusing group ff2: Focal length of the second focusing group FZ1T: The first focusing group moves 1 [mm] in the optical axis direction in the telephoto end state and the infinity focusing state. Amount of fluctuation in the on-axis focal length [mm]
FZ2W: Fluctuation amount [mm] of the on-axis focusing position when the second focusing group moves 1 [mm] in the optical axis direction in the wide-angle end state and the infinity focusing state.
FZ2T: Fluctuation amount [mm] of the on-axis focusing position when the second focusing group moves 1 [mm] in the optical axis direction in the telephoto end state and the infinity focusing state.
複数のレンズ群を有し、変倍時に前記レンズ群の間隔が変化する変倍光学系であって、
開口絞りと、
前記開口絞りより物体側に配置され、合焦時に光軸方向に移動する少なくとも1つの物体側合焦群と、
前記開口絞りより像側に配置され、合焦時に光軸方向に移動する少なくとも1つの像側合焦群と、を有し、
合焦時に、前記物体側合焦群と前記像側合焦群との移動軌跡は異なり、
前記物体側合焦群の1つ及び前記像側合焦群の1つのうち、一方を第1合焦群とし、他方を第2合焦群としたとき、次式の条件を満足することを特徴とする変倍光学系。
|ff1/ff2| < 1.000
0.010 < |FZ2T/FZ1T| < 1.000
0.600 < |FZ2W/FZ2T| < 0.950
ff2 ≦ −34.47
但し、
ff1:前記第1合焦群の焦点距離
ff2:前記第2合焦群の焦点距離
FZ1T:望遠端状態且つ無限遠合焦状態において前記第1合焦群が光軸方向に1[mm]移動した際の軸上合焦位置の変動量[mm]
FZ2W:広角端状態且つ無限遠合焦状態において前記第2合焦群が光軸方向に1[mm]移動した際の軸上合焦位置の変動量[mm]
FZ2T:望遠端状態且つ無限遠合焦状態において前記第2合焦群が光軸方向に1[mm]移動した際の軸上合焦位置の変動量[mm]
A variable magnification optical system having a plurality of lens groups and changing the distance between the lens groups at the time of magnification change.
Aperture aperture and
At least one object-side focusing group that is arranged on the object side of the aperture stop and moves in the optical axis direction at the time of focusing.
It has at least one image-side focusing group, which is arranged on the image side of the aperture stop and moves in the optical axis direction at the time of focusing.
At the time of focusing, the movement loci of the object-side focusing group and the image-side focusing group are different.
When one of the object-side focusing group and one of the image-side focusing groups is defined as the first focusing group and the other as the second focusing group, the condition of the following equation is satisfied. Characterized variable magnification optical system.
| ff1 / ff2 | <1,000
0.010 << | FZ2T / FZ1T | <1,000
0.600 << | FZ2W / FZ2T | <0.950
ff2 ≤ −34.47
However,
ff1: Focal length of the first focusing group ff2: Focal length of the second focusing group FZ1T: The first focusing group moves 1 [mm] in the optical axis direction in the telephoto end state and the infinity focusing state. Amount of fluctuation in the on-axis focal length [mm]
FZ2W: Fluctuation amount [mm] of the on-axis focusing position when the second focusing group moves 1 [mm] in the optical axis direction in the wide-angle end state and the infinity focusing state.
FZ2T: Fluctuation amount [mm] of the on-axis focusing position when the second focusing group moves 1 [mm] in the optical axis direction in the telephoto end state and the infinity focusing state.
複数のレンズ群を有し、変倍時に前記レンズ群の間隔が変化する変倍光学系であって、
開口絞りと、
前記開口絞りより物体側に配置され、合焦時に光軸方向に移動する少なくとも1つの物体側合焦群と、
前記開口絞りより像側に配置され、合焦時に光軸方向に移動する少なくとも1つの像側合焦群と、を有し、
合焦時に、前記物体側合焦群と前記像側合焦群との移動軌跡は異なり、
前記像側合焦群の1つを第1合焦群とし、前記物体側合焦群の1つを第2合焦群としたとき、次式の条件を満足することを特徴とする変倍光学系。
|ff1/ff2| < 1.000
ff1 > 0
0.010 < |FZ1W/FZ1T| < 0.350
但し、
ff1:前記第1合焦群の焦点距離
ff2:前記第2合焦群の焦点距離
FZ1W:広角端状態且つ無限遠合焦状態において前記第1合焦群が光軸方向に1[mm]移動した際の軸上合焦位置の変動量[mm]
FZ1T:望遠端状態且つ無限遠合焦状態において前記第1合焦群が光軸方向に1[mm]移動した際の軸上合焦位置の変動量[mm]
A variable magnification optical system having a plurality of lens groups and changing the distance between the lens groups at the time of magnification change.
Aperture aperture and
At least one object-side focusing group that is arranged on the object side of the aperture stop and moves in the optical axis direction at the time of focusing.
It has at least one image-side focusing group, which is arranged on the image side of the aperture stop and moves in the optical axis direction at the time of focusing.
At the time of focusing, the movement loci of the object-side focusing group and the image-side focusing group are different.
When one of the image-side focusing groups is the first focusing group and one of the object-side focusing groups is the second focusing group, the scaling factor is characterized by satisfying the condition of the following equation. Optical system.
| ff1 / ff2 | <1,000
ff1> 0
0.010 << | FZ1W / FZ1T | <0.350
However,
ff1: Focal length of the first focusing group ff2: Focal length of the second focusing group
FZ1W: Fluctuation amount [mm] of the on-axis focusing position when the first focusing group moves 1 [mm] in the optical axis direction in the wide-angle end state and the infinity focusing state.
FZ1T: Fluctuation amount [mm] of the on-axis focusing position when the first focusing group moves 1 [mm] in the optical axis direction in the telephoto end state and the infinity focusing state.
次式の条件を満足することを特徴とする請求項1〜3のいずれか一項に記載の変倍光学系。 The variable magnification optical system according to any one of claims 1 to 3, wherein the variable magnification optical system satisfies the condition of the following equation.
ff1 > 0ff1> 0
但し、 However,
ff1:前記第1合焦群の焦点距離 ff1: Focal length of the first focusing group
次式の条件を満足することを特徴とする請求項4に記載の変倍光学系。 The variable magnification optical system according to claim 4, wherein the conditions of the following equation are satisfied.
ff2 < 0ff2 <0
但し、 However,
ff2:前記第2合焦群の焦点距離 ff2: Focal length of the second focusing group
次式の条件を満足することを特徴とする請求項1〜3のいずれか一項に記載の変倍光学系。
0.010 < |FZ1W/FZ1T| < 1.500
但し、
FZ1W:広角端状態且つ無限遠合焦状態において前記第1合焦群が光軸方向に1[mm]移動した際の軸上合焦位置の変動量[mm]
FZ1T:望遠端状態且つ無限遠合焦状態において前記第1合焦群が光軸方向に1[mm]移動した際の軸上合焦位置の変動量[mm]
The variable magnification optical system according to any one of claims 1 to 3, wherein the variable magnification optical system satisfies the condition of the following equation.
0.010 << | FZ1W / FZ1T | <1.50
However,
FZ1W: Fluctuation amount [mm] of the on-axis focusing position when the first focusing group moves 1 [mm] in the optical axis direction in the wide-angle end state and the infinity focusing state.
FZ1T: Fluctuation amount [mm] of the on-axis focusing position when the first focusing group moves 1 [mm] in the optical axis direction in the telephoto end state and the infinity focusing state.
前記物体側合焦群より物体側に、少なくとも1つの物体側レンズ群を有し、
変倍時に、前記物体側レンズ群と前記物体側合焦群との間隔が変化することを特徴とする請求項2〜4のいずれか一項に記載の変倍光学系。
It has at least one object-side lens group on the object side of the object-side in-focus group.
The variable magnification optical system according to any one of claims 2 to 4, wherein the distance between the object-side lens group and the object-side focusing group changes at the time of scaling.
前記物体側合焦群の1つは、物体側に凹面を向けた負レンズからなることを特徴とする請求項1、3、4のいずれか一項に記載の変倍光学系。 The variable magnification optical system according to any one of claims 1, 3 and 4, wherein one of the object-side focusing groups comprises a negative lens having a concave surface facing the object side. 前記物体側合焦群より物体側に、負の屈折力を有する負レンズ群を少なくとも1つを有し、
変倍時に、前記負レンズ群と前記物体側合焦群との間隔が変化することを特徴とする請求項1〜9のいずれか一項に記載の変倍光学系。
It has at least one negative lens group having a negative refractive power on the object side of the object-side focusing group.
The variable magnification optical system according to any one of claims 1 to 9, wherein the distance between the negative lens group and the object-side focusing group changes at the time of scaling.
前記物体側合焦群より物体側に、正の屈折力を有する正レンズ群及び負の屈折力を有する負レンズ群を少なくとも1つずつを有し、
変倍時に、前記正レンズ群と前記負レンズ群との間隔、及び、前記負レンズ群と前記物体側合焦群との間隔が変化することを特徴とする請求項1〜10のいずれか一項に記載の変倍光学系。
At least one positive lens group having a positive refractive power and one negative lens group having a negative refractive power are provided on the object side of the object-side focusing group.
One of claims 1 to 10, wherein the distance between the positive lens group and the negative lens group and the distance between the negative lens group and the object-side focusing group change at the time of scaling. The variable magnification optical system described in the section.
前記物体側合焦群及び前記像側合焦群はそれぞれ1つであることを特徴とする請求項1〜11のいずれか一項に記載の変倍光学系。 The variable magnification optical system according to any one of claims 1 to 11, wherein the object-side focusing group and the image-side focusing group are each one. 前記第1合焦群は、次式の条件を満足するレンズを有することを特徴とする請求項1〜12のいずれか一項に記載の変倍光学系。
νd1 > 45.0
但し、
νd1:前記第1合焦群に含まれる前記レンズの媒質のd線に対するアッベ数
The variable magnification optical system according to any one of claims 1 to 12, wherein the first focusing group has a lens that satisfies the conditions of the following equation.
νd1> 45.0
However,
νd1: Abbe number with respect to the d-line of the medium of the lens included in the first focusing group.
前記物体側合焦群は1つであって、1つの負レンズからなり、
前記物体側合焦群の物体側に対向する位置には負の屈折力を有する負レンズ群を有し、
前記物体側合焦群の像側に対向する位置には正の屈折力を有する正レンズ群を有することを特徴とする請求項1〜13のいずれか一項に記載の変倍光学系。
The object-side focusing group is one and consists of one negative lens.
A negative lens group having a negative refractive power is provided at a position facing the object side of the object-side focusing group.
The variable magnification optical system according to any one of claims 1 to 13, wherein a positive lens group having a positive refractive power is provided at a position facing the image side of the object-side focusing group.
変倍時に、前記第2合焦群と前記第2合焦群の物体側に対向する位置に配置されるレンズ群との間隔が変化し、前記第2合焦群と前記第2合焦群の像側に対向する位置に配置されるレンズ群との間隔が変化することを特徴とする請求項1〜14のいずれか一項に記載の変倍光学系。 At the time of scaling, the distance between the second focusing group and the lens group arranged at the position facing the object side of the second focusing group changes, and the second focusing group and the second focusing group change. The variable magnification optical system according to any one of claims 1 to 14, wherein the distance from the lens group arranged at a position facing the image side of the above is changed. 請求項1〜15のいずれか一項に記載の変倍光学系を有することを特徴とする光学機器。 An optical device comprising the variable magnification optical system according to any one of claims 1 to 15.
JP2020068769A 2016-01-19 2020-04-07 Variable magnification optical system and optical equipment Active JP6970903B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020068769A JP6970903B2 (en) 2016-01-19 2020-04-07 Variable magnification optical system and optical equipment

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016007868A JP6691320B2 (en) 2016-01-19 2016-01-19 Variable magnification optical system and optical equipment
JP2020068769A JP6970903B2 (en) 2016-01-19 2020-04-07 Variable magnification optical system and optical equipment

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2016007868A Division JP6691320B2 (en) 2016-01-19 2016-01-19 Variable magnification optical system and optical equipment

Publications (2)

Publication Number Publication Date
JP2020109537A JP2020109537A (en) 2020-07-16
JP6970903B2 true JP6970903B2 (en) 2021-11-24

Family

ID=71570082

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020068769A Active JP6970903B2 (en) 2016-01-19 2020-04-07 Variable magnification optical system and optical equipment

Country Status (1)

Country Link
JP (1) JP6970903B2 (en)

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11316341A (en) * 1998-05-02 1999-11-16 Canon Inc Inner focus type photographing lens
JP2014095781A (en) * 2012-11-08 2014-05-22 Olympus Imaging Corp Zoom lens and image capturing device having the same
JP5658811B2 (en) * 2013-01-25 2015-01-28 パナソニックIpマネジメント株式会社 Zoom lens system, interchangeable lens device and camera system
JPWO2014129187A1 (en) * 2013-02-22 2017-02-02 パナソニックIpマネジメント株式会社 Zoom lens system, interchangeable lens device and camera system

Also Published As

Publication number Publication date
JP2020109537A (en) 2020-07-16

Similar Documents

Publication Publication Date Title
JP6691320B2 (en) Variable magnification optical system and optical equipment
KR101834094B1 (en) Variable magnification optical system, optical device and method for manufacturing variable magnification optical system
WO2009139253A1 (en) Variable power optical system, optical apparatus equipped with the variable power optical system, and method for manufacturing variable power optical system
JP6946774B2 (en) Variable magnification optics and optics
JP6721859B2 (en) Optical system and optical equipment
JP6857305B2 (en) Variable magnification optics and optical equipment
WO2018012624A1 (en) Variable-power optical system, optical device, and method for manufacturing variable-power optical system
WO2015015792A1 (en) Variable magnification optical system, optical device, and method for manufacturing variable magnification optical system
JP7227572B2 (en) Variable magnification optical system and optical equipment
JP6237147B2 (en) Variable magnification optical system, optical apparatus, and variable magnification optical system manufacturing method
JP6237146B2 (en) Variable magnification optical system, optical apparatus, and variable magnification optical system manufacturing method
JP5326434B2 (en) Variable magnification optical system and optical apparatus equipped with the variable magnification optical system
JP6751506B2 (en) Variable magnification optics and optical equipment
JP6281200B2 (en) Variable magnification optical system and optical apparatus
JP6970903B2 (en) Variable magnification optical system and optical equipment
JP6620998B2 (en) Variable magnification optical system and optical apparatus
JP2017068115A (en) Fisheye zoom lens, optical device, method for manufacturing the fisheye zoom lens
WO2014034728A1 (en) Variable-magnification optical system, optical device having same variable-magnification optical system, and method for manufacturing variable-magnification optical system
JP6232806B2 (en) Variable magnification optical system, optical apparatus, and variable magnification optical system manufacturing method
JP6232805B2 (en) Variable magnification optical system, optical apparatus, and variable magnification optical system manufacturing method
JP6119953B2 (en) Variable magnification optical system, optical apparatus having the variable magnification optical system, and method of manufacturing the variable magnification optical system
WO2024034428A1 (en) Optical system, optical device, and method for manufacturing optical system
WO2023090050A1 (en) Optical system, optical device, and method for manufacturing optical system
JP6601471B2 (en) Variable magnification optical system and optical apparatus
JP5326433B2 (en) Variable magnification optical system and optical apparatus equipped with the variable magnification optical system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200407

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20201210

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20210202

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210401

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210930

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20211013

R150 Certificate of patent or registration of utility model

Ref document number: 6970903

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150